doc-src/isac/jrocnik/eJMT-paper/jrocnik_eJMT.tex
author Walther Neuper <neuper@ist.tugraz.at>
Tue, 11 Sep 2012 21:34:20 +0200
changeset 42499 ce5df8efc5fb
parent 42498 149043b0685f
child 42501 988e6bd123c4
permissions -rwxr-xr-x
jrocnik: finished \sect.4
jan@42463
     1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
     2
% Electronic Journal of Mathematics and Technology (eJMT) %
jan@42463
     3
% style sheet for LaTeX.  Please do not modify sections   %
jan@42463
     4
% or commands marked 'eJMT'.                              %
jan@42463
     5
%                                                         %
jan@42463
     6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
     7
%                                                         %
jan@42463
     8
% eJMT commands                                           %
jan@42463
     9
%                                                         %
jan@42463
    10
\documentclass[12pt,a4paper]{article}%                    %
jan@42463
    11
\usepackage{times}                                        %
jan@42463
    12
\usepackage{amsfonts,amsmath,amssymb}                     %
jan@42463
    13
\usepackage[a4paper]{geometry}                            %
jan@42463
    14
\usepackage{fancyhdr}                                     %
jan@42463
    15
\usepackage{color}                                        %
jan@42463
    16
\usepackage[pdftex]{hyperref} % see note below            %
jan@42463
    17
\usepackage{graphicx}%                                    %
jan@42463
    18
\hypersetup{                                              %
jan@42463
    19
    a4paper,                                              %
jan@42463
    20
    breaklinks                                            %
jan@42463
    21
}                                                         %
jan@42463
    22
%                                                         %
jan@42463
    23
\newtheorem{theorem}{Theorem}                             %
jan@42463
    24
\newtheorem{acknowledgement}[theorem]{Acknowledgement}    %
jan@42463
    25
\newtheorem{algorithm}[theorem]{Algorithm}                %
jan@42463
    26
\newtheorem{axiom}[theorem]{Axiom}                        %
jan@42463
    27
\newtheorem{case}[theorem]{Case}                          %
jan@42463
    28
\newtheorem{claim}[theorem]{Claim}                        %
jan@42463
    29
\newtheorem{conclusion}[theorem]{Conclusion}              %
jan@42463
    30
\newtheorem{condition}[theorem]{Condition}                %
jan@42463
    31
\newtheorem{conjecture}[theorem]{Conjecture}              %
jan@42463
    32
\newtheorem{corollary}[theorem]{Corollary}                %
jan@42463
    33
\newtheorem{criterion}[theorem]{Criterion}                %
jan@42463
    34
\newtheorem{definition}[theorem]{Definition}              %
jan@42463
    35
\newtheorem{example}[theorem]{Example}                    %
jan@42463
    36
\newtheorem{exercise}[theorem]{Exercise}                  %
jan@42463
    37
\newtheorem{lemma}[theorem]{Lemma}                        %
jan@42463
    38
\newtheorem{notation}[theorem]{Notation}                  %
jan@42463
    39
\newtheorem{problem}[theorem]{Problem}                    %
jan@42463
    40
\newtheorem{proposition}[theorem]{Proposition}            %
jan@42463
    41
\newtheorem{remark}[theorem]{Remark}                      %
jan@42463
    42
\newtheorem{solution}[theorem]{Solution}                  %
jan@42463
    43
\newtheorem{summary}[theorem]{Summary}                    %
jan@42463
    44
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }  %
jan@42463
    45
{\ \rule{0.5em}{0.5em}}                                   %
jan@42463
    46
%                                                         %
jan@42463
    47
% eJMT page dimensions                                    %
jan@42463
    48
%                                                         %
jan@42463
    49
\geometry{left=2cm,right=2cm,top=3.2cm,bottom=4cm}        %
jan@42463
    50
%                                                         %
jan@42463
    51
% eJMT header & footer                                    %
jan@42463
    52
%                                                         %
jan@42463
    53
\newcounter{ejmtFirstpage}                                %
jan@42463
    54
\setcounter{ejmtFirstpage}{1}                             %
jan@42463
    55
\pagestyle{empty}                                         %
jan@42463
    56
\setlength{\headheight}{14pt}                             %
jan@42463
    57
\geometry{left=2cm,right=2cm,top=3.2cm,bottom=4cm}        %
jan@42463
    58
\pagestyle{fancyplain}                                    %
jan@42463
    59
\fancyhf{}                                                %
jan@42463
    60
\fancyhead[c]{\small The Electronic Journal of Mathematics%
jan@42463
    61
\ and Technology, Volume 1, Number 1, ISSN 1933-2823}     %
jan@42463
    62
\cfoot{%                                                  %
jan@42463
    63
  \ifnum\value{ejmtFirstpage}=0%                          %
jan@42463
    64
    {\vtop to\hsize{\hrule\vskip .2cm\thepage}}%          %
jan@42463
    65
  \else\setcounter{ejmtFirstpage}{0}\fi%                  %
jan@42463
    66
}                                                         %
jan@42463
    67
%                                                         %
jan@42463
    68
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
    69
%
jan@42463
    70
% Please place your own definitions here
jan@42463
    71
%
jan@42463
    72
\def\isac{${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$}
jan@42463
    73
\def\sisac{\footnotesize${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$}
jan@42463
    74
jan@42463
    75
\usepackage{color}
jan@42463
    76
\definecolor{lgray}{RGB}{238,238,238}
jan@42463
    77
jan@42463
    78
%
jan@42463
    79
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
    80
%                                                         %
jan@42463
    81
% How to use hyperref                                     %
jan@42463
    82
% -------------------                                     %
jan@42463
    83
%                                                         %
jan@42463
    84
% Probably the only way you will need to use the hyperref %
jan@42463
    85
% package is as follows.  To make some text, say          %
jan@42463
    86
% "My Text Link", into a link to the URL                  %
jan@42463
    87
% http://something.somewhere.com/mystuff, use             %
jan@42463
    88
%                                                         %
jan@42463
    89
% \href{http://something.somewhere.com/mystuff}{My Text Link}
jan@42463
    90
%                                                         %
jan@42463
    91
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
    92
%
jan@42463
    93
\begin{document}
jan@42463
    94
%
jan@42463
    95
% document title
jan@42463
    96
%
neuper@42464
    97
\title{Trials with TP-based Programming
neuper@42464
    98
\\
neuper@42464
    99
for Interactive Course Material}%
jan@42463
   100
%
jan@42463
   101
% Single author.  Please supply at least your name,
jan@42463
   102
% email address, and affiliation here.
jan@42463
   103
%
jan@42463
   104
\author{\begin{tabular}{c}
jan@42463
   105
\textit{Jan Ro\v{c}nik} \\
jan@42463
   106
jan.rocnik@student.tugraz.at \\
jan@42463
   107
IST, SPSC\\
neuper@42464
   108
Graz University of Technologie\\
jan@42463
   109
Austria\end{tabular}
jan@42463
   110
}%
jan@42463
   111
%
jan@42463
   112
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
   113
%                                                         %
jan@42463
   114
% eJMT commands - do not change these                     %
jan@42463
   115
%                                                         %
jan@42463
   116
\date{}                                                   %
jan@42463
   117
\maketitle                                                %
jan@42463
   118
%                                                         %
jan@42463
   119
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
   120
%
jan@42463
   121
% abstract
jan@42463
   122
%
jan@42463
   123
\begin{abstract}
jan@42463
   124
jan@42463
   125
Traditional course material in engineering disciplines lacks an
jan@42463
   126
important component, interactive support for step-wise problem
neuper@42464
   127
solving. Theorem-Proving (TP) technology is appropriate for one part
jan@42463
   128
of such support, in checking user-input. For the other part of such
jan@42463
   129
support, guiding the learner towards a solution, another kind of
jan@42463
   130
technology is required. %TODO ... connect to prototype ...
jan@42463
   131
jan@42463
   132
A prototype combines TP with a programming language, the latter
jan@42463
   133
interpreted in a specific way: certain statements in a program, called
jan@42463
   134
tactics, are treated as breakpoints where control is handed over to
jan@42463
   135
the user. An input formula is checked by TP (using logical context
jan@42463
   136
built up by the interpreter); and if a learner gets stuck, a program
jan@42463
   137
describing the steps towards a solution of a problem ``knows the next
jan@42463
   138
step''. This kind of interpretation is called Lucas-Interpretation for
jan@42463
   139
\emph{TP-based programming languages}.
jan@42463
   140
jan@42463
   141
This paper describes the prototype's TP-based programming language
jan@42463
   142
within a case study creating interactive material for an advanced
jan@42463
   143
course in Signal Processing: implementation of definitions and
jan@42463
   144
theorems in TP, formal specification of a problem and step-wise
jan@42463
   145
development of the program solving the problem. Experiences with the
neuper@42464
   146
ork flow in iterative development with testing and identifying errors
jan@42463
   147
are described, too. The description clarifies the components missing
jan@42463
   148
in the prototype's language as well as deficiencies experienced during
jan@42463
   149
programming.
jan@42463
   150
\par
jan@42463
   151
These experiences are particularly notable, because the author is the
jan@42463
   152
first programmer using the language beyond the core team which
jan@42463
   153
developed the prototype's TP-based language interpreter.
jan@42463
   154
%
jan@42463
   155
\end{abstract}%
jan@42463
   156
%
jan@42463
   157
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
   158
%                                                         %
jan@42463
   159
% eJMT command                                            %
jan@42463
   160
%                                                         %
jan@42463
   161
\thispagestyle{fancy}                                     %
jan@42463
   162
%                                                         %
jan@42463
   163
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
   164
%
jan@42463
   165
% Please use the following to indicate sections, subsections,
jan@42463
   166
% etc.  Please also use \subsubsection{...}, \paragraph{...}
jan@42463
   167
% and \subparagraph{...} as necessary.
jan@42463
   168
%
jan@42463
   169
neuper@42464
   170
\section{Introduction}\label{intro}
jan@42463
   171
jan@42466
   172
% \paragraph{Didactics of mathematics} 
jan@42466
   173
%WN: wenn man in einem high-quality paper von 'didactics' spricht, 
jan@42466
   174
%WN muss man am state-of-the-art ankn"upfen -- siehe
jan@42466
   175
%WN W.Neuper, On the Emergence of TP-based Educational Math Assistants
neuper@42464
   176
% faces a specific issue, a gap
neuper@42464
   177
% between (1) introduction of math concepts and skills and (2)
neuper@42464
   178
% application of these concepts and skills, which usually are separated
neuper@42464
   179
% into different units in curricula (for good reasons). For instance,
neuper@42464
   180
% (1) teaching partial fraction decomposition is separated from (2)
neuper@42464
   181
% application for inverse Z-transform in signal processing.
neuper@42464
   182
% 
neuper@42464
   183
% \par This gap is an obstacle for applying math as an fundamental
neuper@42464
   184
% thinking technology in engineering: In (1) motivation is lacking
neuper@42464
   185
% because the question ``What is this stuff good for?'' cannot be
neuper@42464
   186
% treated sufficiently, and in (2) the ``stuff'' is not available to
neuper@42464
   187
% students in higher semesters as widespread experience shows.
neuper@42464
   188
% 
neuper@42464
   189
% \paragraph{Motivation} taken by this didactic issue on the one hand,
neuper@42464
   190
% and ongoing research and development on a novel kind of educational
neuper@42464
   191
% mathematics assistant at Graz University of
neuper@42464
   192
% Technology~\footnote{http://www.ist.tugraz.at/isac/} promising to
neuper@42464
   193
% scope with this issue on the other hand, several institutes are
neuper@42464
   194
% planning to join their expertise: the Institute for Information
neuper@42464
   195
% Systems and Computer Media (IICM), the Institute for Software
neuper@42464
   196
% Technology (IST), the Institutes for Mathematics, the Institute for
neuper@42464
   197
% Signal Processing and Speech Communication (SPSC), the Institute for
neuper@42464
   198
% Structural Analysis and the Institute of Electrical Measurement and
neuper@42464
   199
% Measurement Signal Processing.
jan@42466
   200
%WN diese Information ist f"ur das Paper zu spezielle, zu aktuell 
jan@42466
   201
%WN und damit zu verg"anglich.
neuper@42464
   202
% \par This thesis is the first attempt to tackle the above mentioned
neuper@42464
   203
% issue, it focuses on Telematics, because these specific studies focus
neuper@42464
   204
% on mathematics in \emph{STEOP}, the introductory orientation phase in
neuper@42464
   205
% Austria. \emph{STEOP} is considered an opportunity to investigate the
neuper@42464
   206
% impact of {\sisac}'s prototype on the issue and others.
neuper@42464
   207
% 
jan@42466
   208
jan@42466
   209
\paragraph{Traditional course material} in engineering disciplines lacks an
neuper@42464
   210
important component, interactive support for step-wise problem
neuper@42464
   211
solving. Theorem-Proving (TP) technology can provide such support by
neuper@42464
   212
specific services. An important part of such services is called
neuper@42464
   213
``next-step-guidance'', generated by a specific kind of ``TP-based
neuper@42464
   214
programming language''. In the
neuper@42464
   215
{\sisac}-project~\footnote{http://www.ist.tugraz.at/projects/isac/} such
neuper@42464
   216
a language is prototyped in line with~\cite{plmms10} and built upon
neuper@42464
   217
the theorem prover
neuper@42464
   218
Isabelle~\cite{Nipkow-Paulson-Wenzel:2002}\footnote{http://isabelle.in.tum.de/}.
neuper@42464
   219
The TP services are coordinated by a specific interpreter for the
neuper@42464
   220
programming language, called
neuper@42464
   221
Lucas-Interpreter~\cite{wn:lucas-interp-12}. The language and the
neuper@42464
   222
interpreter will be briefly re-introduced in order to make the paper
neuper@42464
   223
self-contained.
jan@42463
   224
jan@42466
   225
\subparagraph{The main part} of the paper is an account of first experiences
neuper@42464
   226
with programming in this TP-based language. The experience was gained
neuper@42464
   227
in a case study by the author. The author was considered an ideal
neuper@42464
   228
candidate for this study for the following reasons: as a student in
neuper@42464
   229
Telematics (computer science with focus on Signal Processing) he had
neuper@42464
   230
general knowledge in programming as well as specific domain knowledge
neuper@42464
   231
in Signal Processing; and he was not involved in the development of
neuper@42464
   232
{\sisac}'s programming language and interpeter, thus a novice to the
neuper@42464
   233
language.
jan@42463
   234
jan@42466
   235
\subparagraph{The goal} of the case study was (1) some TP-based programs for
neuper@42464
   236
interactive course material for a specific ``Adavanced Signal
neuper@42464
   237
Processing Lab'' in a higher semester, (2) respective program
neuper@42464
   238
development with as little advice from the {\sisac}-team and (3) records
neuper@42464
   239
and comments for the main steps of development in an Isabelle theory;
neuper@42464
   240
this theory should provide guidelines for future programmers. An
neuper@42464
   241
excerpt from this theory is the main part of this paper.
jan@42466
   242
\par
jan@42466
   243
The paper will use the problem in Fig.\ref{fig-interactive} as a
jan@42463
   244
running example:
jan@42463
   245
\begin{figure} [htb]
jan@42463
   246
\begin{center}
neuper@42468
   247
\includegraphics[width=140mm]{fig/isac-Ztrans-math-3}
neuper@42468
   248
%\includegraphics[width=140mm]{fig/isac-Ztrans-math}
jan@42463
   249
\caption{Step-wise problem solving guided by the TP-based program}
jan@42463
   250
\label{fig-interactive}
jan@42463
   251
\end{center}
jan@42463
   252
\end{figure}
jan@42466
   253
jan@42466
   254
\paragraph{The problem is} from the domain of Signal Processing and requests to
neuper@42464
   255
determine the inverse Z-transform for a given term. Fig.\ref{fig-interactive}
neuper@42464
   256
also shows the beginning of the interactive construction of a solution
neuper@42464
   257
for the problem. This construction is done in the right window named
neuper@42464
   258
``Worksheet''.
jan@42466
   259
\par
neuper@42464
   260
User-interaction on the Worksheet is {\em checked} and {\em guided} by
neuper@42464
   261
TP services:
neuper@42464
   262
\begin{enumerate}
neuper@42464
   263
\item Formulas input by the user are {\em checked} by TP: such a
neuper@42464
   264
formula establishes a proof situation --- the prover has to derive the
neuper@42464
   265
formula from the logical context. The context is built up from the
neuper@42464
   266
formal specification of the problem (here hidden from the user) by the
neuper@42464
   267
Lucas-Interpreter.
neuper@42464
   268
\item If the user gets stuck, the program developed below in this
neuper@42464
   269
paper ``knows the next step'' from behind the scenes. How the latter
neuper@42464
   270
TP-service is exploited by dialogue authoring is out of scope of this
neuper@42464
   271
paper and can be studied in~\cite{gdaroczy-EP-13}.
neuper@42464
   272
\end{enumerate} It should be noted that the programmer using the
neuper@42464
   273
TP-based language is not concerned with interaction at all; we will
neuper@42464
   274
see that the program contains neither input-statements nor
neuper@42464
   275
output-statements. Rather, interaction is handled by services
neuper@42464
   276
generated automatically.
jan@42466
   277
\par
jan@42466
   278
So there is a clear separation of concerns: Dialogues are
neuper@42464
   279
adapted by dialogue authors (in Java-based tools), using automatically
neuper@42464
   280
generated TP services, while the TP-based program is written by
neuper@42464
   281
mathematics experts (in Isabelle/ML). The latter is concern of this
neuper@42464
   282
paper.
jan@42466
   283
jan@42466
   284
\paragraph{The paper is structed} as follows: The introduction
neuper@42464
   285
\S\ref{intro} is followed by a brief re-introduction of the TP-based
neuper@42464
   286
programming language in \S\ref{PL}, which extends the executable
neuper@42464
   287
fragment of Isabelle's language (\S\ref{PL-isab}) by tactics which
neuper@42464
   288
play a specific role in Lucas-Interpretation and in providing the TP
neuper@42464
   289
services (\S\ref{PL-tacs}). The main part in \S\ref{trial} describes
neuper@42464
   290
the main steps in developing the program for the running example:
neuper@42464
   291
prepare domain knowledge, implement the formal specification of the
neuper@42464
   292
problem, prepare the environment for the program, implement the
neuper@42464
   293
program. The workflow of programming, debugging and testing is
neuper@42464
   294
described in \S\ref{workflow}. The conclusion \S\ref{conclusion} will
neuper@42464
   295
give directions identified for future development. 
neuper@42464
   296
jan@42463
   297
jan@42463
   298
\section{\isac's Prototype for a Programming Language}\label{PL} 
jan@42463
   299
The prototype's language extends the executable fragment in the
jan@42463
   300
language of the theorem prover
jan@42463
   301
Isabelle~\cite{Nipkow-Paulson-Wenzel:2002}\footnote{http://isabelle.in.tum.de/}
jan@42463
   302
by tactics which have a specific role in Lucas-Interpretation.
jan@42463
   303
jan@42463
   304
\subsection{The Executable Fragment of Isabelle's Language}\label{PL-isab}
jan@42463
   305
The executable fragment consists of data-type and function
jan@42463
   306
definitions.  It's usability even suggests that fragment for
jan@42463
   307
introductory courses \cite{nipkow-prog-prove}. HOL is a typed logic
jan@42463
   308
whose type system resembles that of functional programming
jan@42463
   309
languages. Thus there are
jan@42463
   310
\begin{description}
jan@42463
   311
\item[base types,] in particular \textit{bool}, the type of truth
jan@42463
   312
values, \textit{nat}, \textit{int}, \textit{complex}, and the types of
jan@42463
   313
natural, integer and complex numbers respectively in mathematics.
jan@42463
   314
\item[type constructors] allow to define arbitrary types, from
jan@42463
   315
\textit{set}, \textit{list} to advanced data-structures like
jan@42463
   316
\textit{trees}, red-black-trees etc.
jan@42463
   317
\item[function types,] denoted by $\Rightarrow$.
jan@42463
   318
\item[type variables,] denoted by $^\prime a, ^\prime b$ etc, provide
jan@42463
   319
type polymorphism. Isabelle automatically computes the type of each
jan@42463
   320
variable in a term by use of Hindley-Milner type inference
jan@42463
   321
\cite{pl:hind97,Milner-78}.
jan@42463
   322
\end{description}
jan@42463
   323
jan@42463
   324
\textbf{Terms} are formed as in functional programming by applying
jan@42463
   325
functions to arguments. If $f$ is a function of type
jan@42463
   326
$\tau_1\Rightarrow \tau_2$ and $t$ is a term of type $\tau_1$ then
jan@42463
   327
$f\;t$ is a term of type~$\tau_2$. $t\;::\;\tau$ means that term $t$
jan@42463
   328
has type $\tau$. There are many predefined infix symbols like $+$ and
jan@42463
   329
$\leq$ most of which are overloaded for various types.
jan@42463
   330
jan@42463
   331
HOL also supports some basic constructs from functional programming:
jan@42463
   332
{\it\label{isabelle-stmts}
jan@42463
   333
\begin{tabbing} 123\=\kill
jan@42463
   334
\>$( \; {\tt if} \; b \; {\tt then} \; t_1 \; {\tt else} \; t_2 \;)$\\
jan@42463
   335
\>$( \; {\tt let} \; x=t \; {\tt in} \; u \; )$\\
jan@42463
   336
\>$( \; {\tt case} \; t \; {\tt of} \; {\it pat}_1
jan@42463
   337
  \Rightarrow t_1 \; |\dots| \; {\it pat}_n\Rightarrow t_n \; )$
jan@42463
   338
\end{tabbing} }
neuper@42482
   339
\noindent The running example's program uses some of these elements
neuper@42482
   340
(marked by {\tt tt-font} on p.\pageref{s:impl}): for instance {\tt
neuper@42482
   341
let}\dots{\tt in} in lines {\rm 02} \dots {\rm 13}. In fact, the whole program
neuper@42482
   342
is an Isabelle term with specific function constants like {\tt
neuper@42482
   343
program}, {\tt Take}, {\tt Rewrite}, {\tt Subproblem} and {\tt
neuper@42482
   344
Rewrite\_Set} in lines {\rm 01, 03. 04, 07, 10} and {\rm 11, 12}
neuper@42482
   345
respectively.
jan@42463
   346
jan@42463
   347
% Terms may also contain $\lambda$-abstractions. For example, $\lambda
jan@42463
   348
% x. \; x$ is the identity function.
jan@42463
   349
neuper@42467
   350
%JR warum auskommentiert? WN2...
neuper@42467
   351
%WN2 weil ein Punkt wie dieser in weiteren Zusammenh"angen innerhalb
neuper@42467
   352
%WN2 des Papers auftauchen m"usste; nachdem ich einen solchen
neuper@42467
   353
%WN2 Zusammenhang _noch_ nicht sehe, habe ich den Punkt _noch_ nicht
neuper@42467
   354
%WN2 gel"oscht.
neuper@42467
   355
%WN2 Wenn der Punkt nicht weiter gebraucht wird, nimmt er nur wertvollen
neuper@42467
   356
%WN2 Platz f"ur Anderes weg.
jan@42466
   357
neuper@42464
   358
\textbf{Formulae} are terms of type \textit{bool}. There are the basic
jan@42463
   359
constants \textit{True} and \textit{False} and the usual logical
jan@42463
   360
connectives (in decreasing order of precedence): $\neg, \land, \lor,
jan@42463
   361
\rightarrow$.
jan@42463
   362
neuper@42464
   363
\textbf{Equality} is available in the form of the infix function $=$
neuper@42464
   364
of type $a \Rightarrow a \Rightarrow {\it bool}$. It also works for
neuper@42464
   365
formulas, where it means ``if and only if''.
jan@42463
   366
jan@42463
   367
\textbf{Quantifiers} are written $\forall x. \; P$ and $\exists x. \;
jan@42463
   368
P$.  Quantifiers lead to non-executable functions, so functions do not
jan@42463
   369
always correspond to programs, for instance, if comprising \\$(
jan@42463
   370
\;{\it if} \; \exists x.\;P \; {\it then} \; e_1 \; {\it else} \; e_2
jan@42463
   371
\;)$.
jan@42463
   372
jan@42463
   373
\subsection{\isac's Tactics for Lucas-Interpretation}\label{PL-tacs}
jan@42463
   374
The prototype extends Isabelle's language by specific statements
neuper@42464
   375
called tactics~\footnote{{\sisac}'s tactics are different from
jan@42463
   376
Isabelle's tactics: the former concern steps in a calculation, the
jan@42463
   377
latter concern proof steps.}  and tacticals. For the programmer these
jan@42463
   378
statements are functions with the following signatures:
jan@42463
   379
jan@42463
   380
\begin{description}
jan@42463
   381
\item[Rewrite:] ${\it theorem}\Rightarrow{\it term}\Rightarrow{\it
jan@42463
   382
term} * {\it term}\;{\it list}$:
jan@42463
   383
this tactic appplies {\it theorem} to a {\it term} yielding a {\it
jan@42463
   384
term} and a {\it term list}, the list are assumptions generated by
jan@42463
   385
conditional rewriting. For instance, the {\it theorem}
jan@42463
   386
$b\not=0\land c\not=0\Rightarrow\frac{a\cdot c}{b\cdot c}=\frac{a}{b}$
jan@42463
   387
applied to the {\it term} $\frac{2\cdot x}{3\cdot x}$ yields
jan@42463
   388
$(\frac{2}{3}, [x\not=0])$.
jan@42463
   389
jan@42463
   390
\item[Rewrite\_Set:] ${\it ruleset}\Rightarrow{\it
jan@42463
   391
term}\Rightarrow{\it term} * {\it term}\;{\it list}$:
jan@42463
   392
this tactic appplies {\it ruleset} to a {\it term}; {\it ruleset} is
jan@42463
   393
a confluent and terminating term rewrite system, in general. If
jan@42463
   394
none of the rules ({\it theorem}s) is applicable on interpretation
jan@42463
   395
of this tactic, an exception is thrown.
jan@42463
   396
jan@42463
   397
% \item[Rewrite\_Inst:] ${\it substitution}\Rightarrow{\it
jan@42463
   398
% theorem}\Rightarrow{\it term}\Rightarrow{\it term} * {\it term}\;{\it
jan@42463
   399
% list}$:
jan@42463
   400
% 
jan@42463
   401
% \item[Rewrite\_Set\_Inst:] ${\it substitution}\Rightarrow{\it
jan@42463
   402
% ruleset}\Rightarrow{\it term}\Rightarrow{\it term} * {\it term}\;{\it
jan@42463
   403
% list}$:
jan@42463
   404
jan@42463
   405
\item[Substitute:] ${\it substitution}\Rightarrow{\it
neuper@42482
   406
term}\Rightarrow{\it term}$: allows to access sub-terms.
jan@42463
   407
jan@42463
   408
\item[Take:] ${\it term}\Rightarrow{\it term}$:
jan@42463
   409
this tactic has no effect in the program; but it creates a side-effect
jan@42463
   410
by Lucas-Interpretation (see below) and writes {\it term} to the
jan@42463
   411
Worksheet.
jan@42463
   412
jan@42463
   413
\item[Subproblem:] ${\it theory} * {\it specification} * {\it
jan@42463
   414
method}\Rightarrow{\it argument}\;{\it list}\Rightarrow{\it term}$:
neuper@42482
   415
this tactic is a generalisation of a function call: it takes an
neuper@42482
   416
\textit{argument list} as usual, and additionally a triple consisting
neuper@42482
   417
of an Isabelle \textit{theory}, an implicit \textit{specification} of the
neuper@42482
   418
program and a \textit{method} containing data for Lucas-Interpretation,
neuper@42482
   419
last not least a program (as an explicit specification)~\footnote{In
neuper@42482
   420
interactive tutoring these three items can be determined explicitly
neuper@42482
   421
by the user.}.
jan@42463
   422
\end{description}
jan@42463
   423
The tactics play a specific role in
jan@42463
   424
Lucas-Interpretation~\cite{wn:lucas-interp-12}: they are treated as
neuper@42482
   425
break-points where, as a side-effect, a line is added to a calculation
neuper@42483
   426
as a protocol for proceeding towards a solution in step-wise problem
neuper@42483
   427
solving. At the same points Lucas-Interpretation serves interactive
neuper@42483
   428
tutoring and control is handed over to the user. The user is free to
neuper@42483
   429
investigate underlying knowledge, applicable theorems, etc.  And the
neuper@42483
   430
user can proceed constructing a solution by input of a tactic to be
neuper@42483
   431
applied or by input of a formula; in the latter case the
jan@42463
   432
Lucas-Interpreter has built up a logical context (initialised with the
jan@42463
   433
precondition of the formal specification) such that Isabelle can
jan@42463
   434
derive the formula from this context --- or give feedback, that no
jan@42463
   435
derivation can be found.
jan@42463
   436
neuper@42496
   437
\subsection{Tacticals as Control Flow Statements}
jan@42463
   438
The flow of control in a program can be determined by {\tt if then else}
jan@42463
   439
and {\tt case of} as mentioned on p.\pageref{isabelle-stmts} and also
jan@42463
   440
by additional tacticals:
jan@42463
   441
\begin{description}
jan@42463
   442
\item[Repeat:] ${\it tactic}\Rightarrow{\it term}\Rightarrow{\it
jan@42463
   443
term}$: iterates over tactics which take a {\it term} as argument as
neuper@42482
   444
long as a tactic is applicable (for instance, {\tt Rewrite\_Set} might
jan@42463
   445
not be applicable).
jan@42463
   446
jan@42463
   447
\item[Try:] ${\it tactic}\Rightarrow{\it term}\Rightarrow{\it term}$:
jan@42463
   448
if {\it tactic} is applicable, then it is applied to {\it term},
neuper@42483
   449
otherwise {\it term} is passed on without changes.
jan@42463
   450
jan@42463
   451
\item[Or:] ${\it tactic}\Rightarrow{\it tactic}\Rightarrow{\it
neuper@42483
   452
term}\Rightarrow{\it term}$: If the first {\it tactic} is applicable,
neuper@42483
   453
it is applied to the first {\it term} yielding another {\it term},
neuper@42483
   454
otherwise the second {\it tactic} is applied; if none is applicable an
neuper@42483
   455
exception is raised.
jan@42463
   456
jan@42463
   457
\item[@@:] ${\it tactic}\Rightarrow{\it tactic}\Rightarrow{\it
neuper@42483
   458
term}\Rightarrow{\it term}$: applies the first {\it tactic} to the
neuper@42483
   459
first {\it term} yielding an intermediate term (not appearing in the
neuper@42483
   460
signature) to which the second {\it tactic} is applied.
jan@42463
   461
jan@42463
   462
\item[While:] ${\it term::bool}\Rightarrow{\it tactic}\Rightarrow{\it
neuper@42483
   463
term}\Rightarrow{\it term}$: if the first {\it term} is true, then the
neuper@42483
   464
{\it tactic} is applied to the first {\it term} yielding an
neuper@42483
   465
intermediate term (not appearing in the signature); the intermediate
neuper@42483
   466
term is added to the environment the first {\it term} is evaluated in
neuper@42483
   467
etc as long as the first {\it term} is true.
jan@42463
   468
\end{description}
neuper@42483
   469
The tacticals are not treated as break-points by Lucas-Interpretation
neuper@42483
   470
and thus do not contribute to the calculation nor to interaction.
jan@42463
   471
neuper@42498
   472
\section{Concepts and Tasks in TP-based Programming}\label{trial}
neuper@42498
   473
%\section{Development of a Program on Trial}
neuper@42498
   474
neuper@42498
   475
This section presents all the concepts involved in TP-based
neuper@42498
   476
programming and all the tasks to be accomplished by programmers. The
neuper@42498
   477
presentation uses the running example which has been introduced in
neuper@42498
   478
Fig.\ref{fig-interactive} on p.\pageref{fig-interactive}.
jan@42466
   479
jan@42466
   480
\subsection{Mechanization of Math --- Domain Engineering}\label{isabisac}
jan@42466
   481
neuper@42467
   482
%WN was Fachleute unter obigem Titel interessiert findet sich
jan@42466
   483
%WN unterhalb des auskommentierten Textes.
jan@42466
   484
jan@42466
   485
%WN der Text unten spricht Benutzer-Aspekte anund ist nicht speziell
jan@42466
   486
%WN auf Computer-Mathematiker fokussiert.
neuper@42464
   487
% \paragraph{As mentioned in the introduction,} a prototype of an
neuper@42464
   488
% educational math assistant called
neuper@42464
   489
% {{\sisac}}\footnote{{{\sisac}}=\textbf{Isa}belle for
neuper@42464
   490
% \textbf{C}alculations, see http://www.ist.tugraz.at/isac/.} bridges
neuper@42464
   491
% the gap between (1) introducation and (2) application of mathematics:
neuper@42464
   492
% {{\sisac}} is based on Computer Theorem Proving (TP), a technology which
neuper@42464
   493
% requires each fact and each action justified by formal logic, so
neuper@42464
   494
% {{{\sisac}{}}} makes justifications transparent to students in
neuper@42464
   495
% interactive step-wise problem solving. By that way {{\sisac}} already
neuper@42464
   496
% can serve both:
neuper@42464
   497
% \begin{enumerate}
neuper@42464
   498
%   \item Introduction of math stuff (in e.g. partial fraction
neuper@42464
   499
% decomposition) by stepwise explaining and exercising respective
neuper@42464
   500
% symbolic calculations with ``next step guidance (NSG)'' and rigorously
neuper@42464
   501
% checking steps freely input by students --- this also in context with
neuper@42464
   502
% advanced applications (where the stuff to be taught in higher
neuper@42464
   503
% semesters can be skimmed through by NSG), and
neuper@42464
   504
%   \item Application of math stuff in advanced engineering courses
neuper@42464
   505
% (e.g. problems to be solved by inverse Z-transform in a Signal
neuper@42464
   506
% Processing Lab) and now without much ado about basic math techniques
neuper@42464
   507
% (like partial fraction decomposition): ``next step guidance'' supports
neuper@42464
   508
% students in independently (re-)adopting such techniques.
neuper@42464
   509
% \end{enumerate} 
neuper@42464
   510
% Before the question is answers, how {{\sisac}}
neuper@42464
   511
% accomplishes this task from a technical point of view, some remarks on
neuper@42464
   512
% the state-of-the-art is given, therefor follow up Section~\ref{emas}.
neuper@42464
   513
% 
neuper@42464
   514
% \subsection{Educational Mathematics Assistants (EMAs)}\label{emas}
neuper@42464
   515
% 
jan@42466
   516
% \paragraph{Educational software in mathematics} is, if at all, based
jan@42466
   517
% on Computer Algebra Systems (CAS, for instance), Dynamic Geometry
jan@42466
   518
% Systems (DGS, for instance \footnote{GeoGebra http://www.geogebra.org}
jan@42466
   519
% \footnote{Cinderella http://www.cinderella.de/}\footnote{GCLC
jan@42466
   520
% http://poincare.matf.bg.ac.rs/~janicic/gclc/}) or spread-sheets. These
jan@42466
   521
% base technologies are used to program math lessons and sometimes even
jan@42466
   522
% exercises. The latter are cumbersome: the steps towards a solution of
jan@42466
   523
% such an interactive exercise need to be provided with feedback, where
jan@42466
   524
% at each step a wide variety of possible input has to be foreseen by
jan@42466
   525
% the programmer - so such interactive exercises either require high
neuper@42464
   526
% development efforts or the exercises constrain possible inputs.
neuper@42464
   527
% 
jan@42466
   528
% \subparagraph{A new generation} of educational math assistants (EMAs)
jan@42466
   529
% is emerging presently, which is based on Theorem Proving (TP). TP, for
jan@42466
   530
% instance Isabelle and Coq, is a technology which requires each fact
jan@42466
   531
% and each action justified by formal logic. Pushed by demands for
jan@42466
   532
% \textit{proven} correctness of safety-critical software TP advances
jan@42466
   533
% into software engineering; from these advancements computer
jan@42466
   534
% mathematics benefits in general, and math education in particular. Two
neuper@42464
   535
% features of TP are immediately beneficial for learning:
neuper@42464
   536
% 
jan@42466
   537
% \paragraph{TP have knowledge in human readable format,} that is in
jan@42466
   538
% standard predicate calculus. TP following the LCF-tradition have that
jan@42466
   539
% knowledge down to the basic definitions of set, equality,
jan@42466
   540
% etc~\footnote{http://isabelle.in.tum.de/dist/library/HOL/HOL.html};
jan@42466
   541
% following the typical deductive development of math, natural numbers
jan@42466
   542
% are defined and their properties
jan@42466
   543
% proven~\footnote{http://isabelle.in.tum.de/dist/library/HOL/Number\_Theory/Primes.html},
jan@42466
   544
% etc. Present knowledge mechanized in TP exceeds high-school
jan@42466
   545
% mathematics by far, however by knowledge required in software
neuper@42464
   546
% technology, and not in other engineering sciences.
neuper@42464
   547
% 
jan@42466
   548
% \paragraph{TP can model the whole problem solving process} in
jan@42466
   549
% mathematical problem solving {\em within} a coherent logical
jan@42466
   550
% framework. This is already being done by three projects, by
neuper@42464
   551
% Ralph-Johan Back, by ActiveMath and by Carnegie Mellon Tutor.
neuper@42464
   552
% \par
jan@42466
   553
% Having the whole problem solving process within a logical coherent
jan@42466
   554
% system, such a design guarantees correctness of intermediate steps and
jan@42466
   555
% of the result (which seems essential for math software); and the
jan@42466
   556
% second advantage is that TP provides a wealth of theories which can be
jan@42466
   557
% exploited for mechanizing other features essential for educational
neuper@42464
   558
% software.
neuper@42464
   559
% 
neuper@42464
   560
% \subsubsection{Generation of User Guidance in EMAs}\label{user-guid}
neuper@42464
   561
% 
jan@42466
   562
% One essential feature for educational software is feedback to user
neuper@42464
   563
% input and assistance in coming to a solution.
neuper@42464
   564
% 
jan@42466
   565
% \paragraph{Checking user input} by ATP during stepwise problem solving
jan@42466
   566
% is being accomplished by the three projects mentioned above
jan@42466
   567
% exclusively. They model the whole problem solving process as mentioned
jan@42466
   568
% above, so all what happens between formalized assumptions (or formal
jan@42466
   569
% specification) and goal (or fulfilled postcondition) can be
jan@42466
   570
% mechanized. Such mechanization promises to greatly extend the scope of
neuper@42464
   571
% educational software in stepwise problem solving.
neuper@42464
   572
% 
jan@42466
   573
% \paragraph{NSG (Next step guidance)} comprises the system's ability to
jan@42466
   574
% propose a next step; this is a challenge for TP: either a radical
jan@42466
   575
% restriction of the search space by restriction to very specific
jan@42466
   576
% problem classes is required, or much care and effort is required in
jan@42466
   577
% designing possible variants in the process of problem solving
neuper@42464
   578
% \cite{proof-strategies-11}.
neuper@42464
   579
% \par
jan@42466
   580
% Another approach is restricted to problem solving in engineering
jan@42466
   581
% domains, where a problem is specified by input, precondition, output
jan@42466
   582
% and postcondition, and where the postcondition is proven by ATP behind
jan@42466
   583
% the scenes: Here the possible variants in the process of problem
jan@42466
   584
% solving are provided with feedback {\em automatically}, if the problem
jan@42466
   585
% is described in a TP-based programing language: \cite{plmms10} the
jan@42466
   586
% programmer only describes the math algorithm without caring about
jan@42466
   587
% interaction (the respective program is functional and even has no
jan@42466
   588
% input or output statements!); interaction is generated as a
jan@42466
   589
% side-effect by the interpreter --- an efficient separation of concern
jan@42466
   590
% between math programmers and dialog designers promising application
neuper@42464
   591
% all over engineering disciplines.
neuper@42464
   592
% 
neuper@42464
   593
% 
neuper@42464
   594
% \subsubsection{Math Authoring in Isabelle/ISAC\label{math-auth}}
jan@42466
   595
% Authoring new mathematics knowledge in {{\sisac}} can be compared with
jan@42466
   596
% ``application programing'' of engineering problems; most of such
jan@42466
   597
% programing uses CAS-based programing languages (CAS = Computer Algebra
neuper@42464
   598
% Systems; e.g. Mathematica's or Maple's programing language).
neuper@42464
   599
% 
jan@42466
   600
% \paragraph{A novel type of TP-based language} is used by {{\sisac}{}}
jan@42466
   601
% \cite{plmms10} for describing how to construct a solution to an
jan@42466
   602
% engineering problem and for calling equation solvers, integration,
jan@42466
   603
% etc~\footnote{Implementation of CAS-like functionality in TP is not
jan@42466
   604
% primarily concerned with efficiency, but with a didactic question:
jan@42466
   605
% What to decide for: for high-brow algorithms at the state-of-the-art
jan@42466
   606
% or for elementary algorithms comprehensible for students?} within TP;
jan@42466
   607
% TP can ensure ``systems that never make a mistake'' \cite{casproto} -
neuper@42464
   608
% are impossible for CAS which have no logics underlying.
neuper@42464
   609
% 
jan@42466
   610
% \subparagraph{Authoring is perfect} by writing such TP based programs;
jan@42466
   611
% the application programmer is not concerned with interaction or with
jan@42466
   612
% user guidance: this is concern of a novel kind of program interpreter
jan@42466
   613
% called Lucas-Interpreter. This interpreter hands over control to a
jan@42466
   614
% dialog component at each step of calculation (like a debugger at
jan@42466
   615
% breakpoints) and calls automated TP to check user input following
neuper@42464
   616
% personalized strategies according to a feedback module.
neuper@42464
   617
% \par
jan@42466
   618
% However ``application programing with TP'' is not done with writing a
jan@42466
   619
% program: according to the principles of TP, each step must be
jan@42466
   620
% justified. Such justifications are given by theorems. So all steps
jan@42466
   621
% must be related to some theorem, if there is no such theorem it must
jan@42466
   622
% be added to the existing knowledge, which is organized in so-called
jan@42466
   623
% \textbf{theories} in Isabelle. A theorem must be proven; fortunately
jan@42466
   624
% Isabelle comprises a mechanism (called ``axiomatization''), which
jan@42466
   625
% allows to omit proofs. Such a theorem is shown in
neuper@42464
   626
% Example~\ref{eg:neuper1}.
jan@42466
   627
neuper@42498
   628
The running example requires to determine the inverse $\cal
jan@42466
   629
Z$-transform for a class of functions. The domain of Signal Processing
jan@42466
   630
is accustomed to specific notation for the resulting functions, which
jan@42466
   631
are absolutely summable and are called TODO: $u[n]$, where $u$ is the
jan@42466
   632
function, $n$ is the argument and the brackets indicate that the
jan@42466
   633
arguments are TODO. Surprisingly, Isabelle accepts the rules for
jan@42466
   634
${\cal Z}^{-1}$ in this traditional notation~\footnote{Isabelle
jan@42466
   635
experts might be particularly surprised, that the brackets do not
jan@42466
   636
cause errors in typing (as lists).}:
neuper@42464
   637
%\vbox{
neuper@42464
   638
% \begin{example}
jan@42463
   639
  \label{eg:neuper1}
jan@42463
   640
  {\small\begin{tabbing}
jan@42463
   641
  123\=123\=123\=123\=\kill
jan@42463
   642
  \hfill \\
jan@42463
   643
  \>axiomatization where \\
neuper@42464
   644
  \>\>  rule1: ``${\cal Z}^{-1}\;1 = \delta [n]$'' and\\
neuper@42464
   645
  \>\>  rule2: ``$\vert\vert z \vert\vert > 1 \Rightarrow {\cal Z}^{-1}\;z / (z - 1) = u [n]$'' and\\
jan@42466
   646
  \>\>  rule3: ``$\vert\vert$ z $\vert\vert$ < 1 ==> z / (z - 1) = -u [-n - 1]'' and \\
jan@42466
   647
%TODO
jan@42466
   648
  \>\>  rule4: ``$\vert\vert$ z $\vert\vert$ > $\vert\vert$ $\alpha$ $\vert\vert$ ==> z / (z - $\alpha$) = $\alpha^n$ $\cdot$ u [n]'' and\\
jan@42466
   649
%TODO
jan@42466
   650
  \>\>  rule5: ``$\vert\vert$ z $\vert\vert$ < $\vert\vert$ $\alpha$ $\vert\vert$ ==> z / (z - $\alpha$) = -($\alpha^n$) $\cdot$ u [-n - 1]'' and\\
jan@42466
   651
%TODO
jan@42466
   652
  \>\>  rule6: ``$\vert\vert$ z $\vert\vert$ > 1 ==> z/(z - 1)$^2$ = n $\cdot$ u [n]''\\
jan@42466
   653
%TODO
jan@42463
   654
  \end{tabbing}
jan@42463
   655
  }
neuper@42464
   656
% \end{example}
jan@42466
   657
%}
jan@42466
   658
These 6 rules can be used as conditional rewrite rules, depending on
jan@42466
   659
the respective convergence radius. Satisfaction from accordance with traditional notation
jan@42466
   660
contrasts with the above word {\em axiomatization}: As TP-based, the
jan@42466
   661
programming language expects these rules as {\em proved} theorems, and
jan@42466
   662
not as axioms implemented in the above brute force manner; otherwise
jan@42466
   663
all the verification efforts envisaged (like proof of the
jan@42466
   664
post-condition, see below) would be meaningless.
jan@42466
   665
jan@42466
   666
Isabelle provides a large body of knowledge, rigorously proven from
jan@42466
   667
the basic axioms of mathematics~\footnote{This way of rigorously
jan@42466
   668
deriving all knowledge from first principles is called the
jan@42466
   669
LCF-paradigm in TP.}. In the case of the Z-Transform the most advanced
jan@42466
   670
knowledge can be found in the theoris on Multivariate
jan@42466
   671
Analysis~\footnote{http://isabelle.in.tum.de/dist/library/HOL/HOL-Multivariate\_Analysis}. However,
jan@42466
   672
building up knowledge such that a proof for the above rules would be
jan@42466
   673
reasonably short and easily comprehensible, still requires lots of
jan@42466
   674
work (and is definitely out of scope of our case study).
jan@42466
   675
neuper@42487
   676
At the state-of-the-art in mechanization of knowledge in engineering
neuper@42487
   677
sciences, the process does not stop with the mechanization of
neuper@42487
   678
mathematics traditionally used in these sciences. Rather, ``Formal
neuper@42487
   679
Methods''~\cite{ fm-03} are expected to proceed to formal and explicit
neuper@42487
   680
description of physical items.  Signal Processing, for instance is
neuper@42487
   681
concerned with physical devices for signal acquisition and
neuper@42487
   682
reconstruction, which involve measuring a physical signal, storing it,
neuper@42487
   683
and possibly later rebuilding the original signal or an approximation
neuper@42487
   684
thereof. For digital systems, this typically includes sampling and
neuper@42487
   685
quantization; devices for signal compression, including audio
neuper@42487
   686
compression, image compression, and video compression, etc.  ``Domain
neuper@42487
   687
engineering''\cite{db:dom-eng} is concerned with {\em specification}
neuper@42487
   688
of these devices' components and features; this part in the process of
neuper@42487
   689
mechanization is only at the beginning in domains like Signal
neuper@42487
   690
Processing.
jan@42466
   691
neuper@42487
   692
TP-based programming, concern of this paper, is determined to
jan@42466
   693
add ``algorithmic knowledge'' in Fig.\ref{fig:mathuni} on
jan@42466
   694
p.\pageref{fig:mathuni}.  As we shall see below, TP-based programming
jan@42466
   695
starts with a formal {\em specification} of the problem to be solved.
neuper@42478
   696
\begin{figure}
neuper@42478
   697
  \begin{center}
jan@42494
   698
    %\includegraphics[width=110mm]{fig/math-universe-small}
neuper@42487
   699
    \caption{The three-dimensional universe of mathematics knowledge}
neuper@42478
   700
    \label{fig:mathuni}
neuper@42478
   701
  \end{center}
neuper@42478
   702
\end{figure}
neuper@42487
   703
The language for both axes is defined in the axis at the bottom, deductive
neuper@42487
   704
knowledge, in {\sisac} represented by Isabelle's theories.
jan@42466
   705
jan@42466
   706
\subsection{Preparation of Simplifiers for the Program}\label{simp}
jan@42469
   707
jan@42489
   708
\paragraph{If it is clear} how the later calculation should look like and when
jan@42489
   709
which mathematic rule should be applied, it can be started to find ways of
jan@42489
   710
simplifications. This includes in e.g. the simplification of reational 
jan@42489
   711
expressions or also rewrites of an expession.
jan@42489
   712
\subparagraph{Obligate is the use} of the function \texttt{drop\_questionmarks} 
jan@42489
   713
which excludes irrelevant symbols out of the expression. (Irrelevant symbols may 
jan@42489
   714
be result out of the system during the calculation. The function has to be
jan@42489
   715
applied for two reasons. First two make every placeholder in a expression 
jan@42489
   716
useable as a constant and second to provide a better view at the frontend.) 
jan@42489
   717
\subparagraph{Most rewrites are represented} through rulesets this
jan@42489
   718
rulesets tell the machine which terms have to be rewritten into which
jan@42489
   719
representation. In the upcoming programm a rewrite can be applied only in using
jan@42489
   720
such rulesets on existing terms.
jan@42489
   721
\paragraph{The core} of our implemented problem is the Z-Transformation
jan@42489
   722
(remember the description of the running example, introduced by
jan@42489
   723
Fig.\ref{fig-interactive} on p.\pageref{fig-interactive}) due the fact that the
jan@42489
   724
transformation itself would require higher math which isn't yet avaible in our system we decided to choose the way like it is applied in labratory and problem classes at our university - by applying transformation rules (collected in
jan@42489
   725
transformation tables).
jan@42489
   726
\paragraph{Rules,} in {\sisac{}}'s programming language can be designed by the
jan@42489
   727
use of axiomatizations like shown in Example~\ref{eg:ruledef}. This rules can be
jan@42489
   728
collected in a ruleset (collection of rules) and applied to a given expression
jan@42494
   729
as follows in the next example code.
jan@42475
   730
jan@42494
   731
%\begin{example}
jan@42489
   732
  \label{eg:ruledef}
jan@42489
   733
  \hfill\\
jan@42489
   734
  \begin{verbatim}
jan@42489
   735
  axiomatization where
jan@42489
   736
    rule1: ``1 = $\delta$[n]'' and
jan@42489
   737
    rule2: ``|| z || > 1 ==> z / (z - 1) = u [n]'' and
jan@42489
   738
    rule3: ``|| z || < 1 ==> z / (z - 1) = -u [-n - 1]''
jan@42489
   739
  \end{verbatim}
jan@42494
   740
%\end{example}
jan@42475
   741
jan@42494
   742
%\begin{example}
jan@42489
   743
  \hfill\\
jan@42489
   744
  \label{eg:ruleapp}
jan@42489
   745
  \begin{enumerate}
jan@42489
   746
  \item Store rules in ruleset:
jan@42489
   747
  \begin{verbatim}
jan@42489
   748
  val inverse_Z = append_rls "inverse_Z" e_rls
jan@42489
   749
    [ Thm ("rule1",num_str @{thm rule1}),
jan@42489
   750
      Thm ("rule2",num_str @{thm rule2}),
jan@42489
   751
      Thm ("rule3",num_str @{thm rule3})
neuper@42498
   752
    ];
neuper@42498
   753
  \end{verbatim}
jan@42489
   754
  \item Define exression:
jan@42489
   755
  \begin{verbatim}
neuper@42498
   756
  val sample_term = str2term "z/(z-1)+z/(z-</delta>)+1";
neuper@42498
   757
  \end{verbatim}
jan@42489
   758
  \item Apply ruleset:
jan@42489
   759
  \begin{verbatim}
jan@42489
   760
  val SOME (sample_term', asm) = 
neuper@42498
   761
    rewrite_set_ thy true inverse_Z sample_term;
neuper@42498
   762
  \end{verbatim}
jan@42489
   763
  \end{enumerate}
jan@42494
   764
%\end{example}
jan@42489
   765
 
jan@42489
   766
The use of rulesets makes it much easier to develop our designated applications,
jan@42489
   767
but the programmer has to be careful and patient. When applying rulesets
jan@42489
   768
two important issues have to be mentionend:
jan@42489
   769
\subparagraph{How often} the rules have to be applied? In case of
jan@42489
   770
transformations it is quite clear that we use them once but other fields
jan@42489
   771
reuqire to apply rules until a special condition is reached (e.g.
jan@42489
   772
a simplification is finished when there is nothing to be done left).
jan@42489
   773
\subparagraph{The order} in which rules are applied often takes a big effect
jan@42489
   774
and has to be evaluated for each purpose once again.
jan@42489
   775
\par
jan@42489
   776
In our special case of Signal Processing and the rules defined in
jan@42489
   777
Example~\ref{eg:ruledef} we have to apply rule~1 first of all to transform all
jan@42489
   778
constants. After this step has been done it no mather which rule fit's next.
jan@42469
   779
jan@42466
   780
\subsection{Preparation of ML-Functions}\label{funs}
neuper@42498
   781
The prototype's Lucas-Interpreter uses the {\sisac}-rewrite-engine for
neuper@42498
   782
all kinds of evaluation. Some functionality required in programming,
neuper@42498
   783
however, cannot be accomplished by rewriting. So the prototype has a
neuper@42498
   784
mechanism to call ML-functions during rewriting, and the programmer has
neuper@42498
   785
to use this mechanism.
jan@42469
   786
neuper@42498
   787
In the running example's program on p.\pageref{s:impl} the lines {\rm
neuper@42498
   788
05} and {\rm 06} contain such functions; we go into the details with
neuper@42498
   789
\textit{argument\_in X\_z;}. This function fetches the argument from a
neuper@42498
   790
function application: Line {\rm 03} in the example calculation on
neuper@42498
   791
p.\pageref{exp-calc} is created by line {\rm 06} of the example
neuper@42498
   792
program on p.\pageref{s:impl} where the program's environment assigns
neuper@42498
   793
the value \textit{X z} to the variable \textit{X\_z}; so the function
neuper@42498
   794
shall extract the argument \textit{z}.
jan@42469
   795
neuper@42498
   796
\medskip In order to be recognised as a function constant in the
neuper@42499
   797
program source the constant needs to be declared in a theory, here in
neuper@42498
   798
\textit{Build\_Inverse\_Z\_Transform.thy}; then it can be parsed in
neuper@42498
   799
the context \textit{ctxt} of that theory:
neuper@42498
   800
{\footnotesize
neuper@42498
   801
\begin{verbatim}
neuper@42498
   802
   consts
neuper@42498
   803
     argument'_in     :: "real => real"            ("argument'_in _" 10)
neuper@42498
   804
   
neuper@42498
   805
   ML {* val SOME t = parse ctxt "argument_in (X z)"; *}
jan@42473
   806
neuper@42498
   807
   val t = Const ("Build_Inverse_Z_Transform.argument'_in", "RealDef.real ⇒ RealDef.real") 
neuper@42498
   808
             $ (Free ("X", "RealDef.real ⇒ RealDef.real") $ Free ("z", "RealDef.real")): term
neuper@42498
   809
\end{verbatim}}
jan@42469
   810
neuper@42498
   811
\noindent Parsing produces a term \texttt{t} in internal
neuper@42499
   812
representation~\footnote{The attentive reader realizes the delicate
neuper@42499
   813
differences between interal and extermal representation even in the
neuper@42499
   814
strings, i.e \texttt{'\_}}, consisting of \texttt{Const
neuper@42499
   815
("argument'\_in", type)} and the two variables \texttt{Free ("X",
neuper@42499
   816
type)} and \texttt{Free ("z", type)}, \texttt{\$} is the term
neuper@42499
   817
constructor. The function body below is implemented directly in ML,
neuper@42499
   818
i.e in an \texttt{ML \{* *\}} block; the function definition provides
neuper@42499
   819
a unique prefix \texttt{eval\_} to the function name:
jan@42473
   820
neuper@42498
   821
{\footnotesize
jan@42470
   822
\begin{verbatim}
neuper@42498
   823
   ML {*
neuper@42498
   824
     fun eval_argument_in _ 
neuper@42498
   825
       "Build_Inverse_Z_Transform.argument'_in" 
neuper@42498
   826
       (t as (Const ("Build_Inverse_Z_Transform.argument'_in", _) $ (f $ arg))) _ =
neuper@42498
   827
         if is_Free arg (*could be something to be simplified before*)
neuper@42498
   828
         then SOME (term2str t ^ " = " ^ term2str arg, Trueprop $ (mk_equality (t, arg)))
neuper@42498
   829
         else NONE
neuper@42498
   830
     | eval_argument_in _ _ _ _ = NONE;
neuper@42498
   831
   *}
neuper@42498
   832
\end{verbatim}}
jan@42469
   833
neuper@42498
   834
\noindent The function body creates either creates \texttt{NONE}
neuper@42498
   835
telling the rewrite-engine to search for the next redex, or creates an
neuper@42498
   836
ad-hoc theorem for rewriting, thus the programmer needs to adopt many
neuper@42498
   837
technicalities of Isabelle, for instance, the \textit{Trueprop}
neuper@42498
   838
constant.
jan@42469
   839
neuper@42498
   840
\bigskip This sub-task particularly sheds light on basic issues in the
neuper@42498
   841
design of a programming language, the integration of diffent language
neuper@42498
   842
layers, the layer of Isabelle/Isar and Isabelle/ML.
jan@42469
   843
neuper@42498
   844
Another point of improvement for the prototype is the rewrite-engine: The
neuper@42498
   845
program on p.\pageref{s:impl} would not allow to contract the two lines {\rm 05}
neuper@42498
   846
and {\rm 06} to
jan@42469
   847
neuper@42498
   848
{\small\it\label{s:impl}
neuper@42498
   849
\begin{tabbing}
neuper@42498
   850
123l\=123\=123\=123\=123\=123\=123\=((x\=123\=(x \=123\=123\=\kill
neuper@42498
   851
\>{\rm 05/6}\>\>\>  (z::real) = argument\_in (lhs X\_eq) ;
neuper@42498
   852
\end{tabbing}}
jan@42469
   853
neuper@42498
   854
\noindent because nested function calls would require creating redexes
neuper@42498
   855
inside-out; however, the prototype's rewrite-engine only works top down
neuper@42498
   856
from the root of a term down to the leaves.
jan@42469
   857
neuper@42498
   858
How all these ugly technicalities are to be checked in the prototype is 
neuper@42498
   859
shown in \S\ref{flow-prep} below.
jan@42473
   860
neuper@42498
   861
% \paragraph{Explicit Problems} require explicit methods to solve them, and within
neuper@42498
   862
% this methods we have some explicit steps to do. This steps can be unique for
neuper@42498
   863
% a special problem or refindable in other problems. No mather what case, such
neuper@42498
   864
% steps often require some technical functions behind. For the solving process
neuper@42498
   865
% of the Inverse Z Transformation and the corresponding partial fraction it was
neuper@42498
   866
% neccessary to build helping functions like \texttt{get\_denominator},
neuper@42498
   867
% \texttt{get\_numerator} or \texttt{argument\_in}. First two functions help us
neuper@42498
   868
% to filter the denominator or numerator out of a fraction, last one helps us to
neuper@42498
   869
% get to know the bound variable in a equation.
neuper@42498
   870
% \par
neuper@42498
   871
% By taking \texttt{get\_denominator} as an example, we want to explain how to 
neuper@42498
   872
% implement new functions into the existing system and how we can later use them
neuper@42498
   873
% in our program.
neuper@42498
   874
% 
neuper@42498
   875
% \subsubsection{Find a place to Store the Function}
neuper@42498
   876
% 
neuper@42498
   877
% The whole system builds up on a well defined structure of Knowledge. This
neuper@42498
   878
% Knowledge sets up at the Path:
neuper@42498
   879
% \begin{center}\ttfamily src/Tools/isac/Knowledge\normalfont\end{center}
neuper@42498
   880
% For implementing the Function \texttt{get\_denominator} (which let us extract
neuper@42498
   881
% the denominator out of a fraction) we have choosen the Theory (file)
neuper@42498
   882
% \texttt{Rational.thy}.
neuper@42498
   883
% 
neuper@42498
   884
% \subsubsection{Write down the new Function}
neuper@42498
   885
% 
neuper@42498
   886
% In upper Theory we now define the new function and its purpose:
neuper@42498
   887
% \begin{verbatim}
neuper@42498
   888
%   get_denominator :: "real => real"
neuper@42498
   889
% \end{verbatim}
neuper@42498
   890
% This command tells the machine that a function with the name
neuper@42498
   891
% \texttt{get\_denominator} exists which gets a real expression as argument and
neuper@42498
   892
% returns once again a real expression. Now we are able to implement the function
neuper@42498
   893
% itself, upcoming example now shows the implementation of
neuper@42498
   894
% \texttt{get\_denominator}.
neuper@42498
   895
% 
neuper@42498
   896
% %\begin{example}
neuper@42498
   897
%   \label{eg:getdenom}
neuper@42498
   898
%   \begin{verbatim}
neuper@42498
   899
% 
neuper@42498
   900
% 01  (*
neuper@42498
   901
% 02   *("get_denominator",
neuper@42498
   902
% 03   *  ("Rational.get_denominator", eval_get_denominator ""))
neuper@42498
   903
% 04   *)
neuper@42498
   904
% 05  fun eval_get_denominator (thmid:string) _ 
neuper@42498
   905
% 06            (t as Const ("Rational.get_denominator", _) $
neuper@42498
   906
% 07                (Const ("Rings.inverse_class.divide", _) $num 
neuper@42498
   907
% 08                  $denom)) thy = 
neuper@42498
   908
% 09          SOME (mk_thmid thmid "" 
neuper@42498
   909
% 10              (Print_Mode.setmp [] 
neuper@42498
   910
% 11                (Syntax.string_of_term (thy2ctxt thy)) denom) "", 
neuper@42498
   911
% 12              Trueprop $ (mk_equality (t, denom)))
neuper@42498
   912
% 13    | eval_get_denominator _ _ _ _ = NONE;\end{verbatim}
neuper@42498
   913
% %\end{example}
neuper@42498
   914
% 
neuper@42498
   915
% Line \texttt{07} and \texttt{08} are describing the mode of operation the best -
neuper@42498
   916
% there is a fraction\\ (\ttfamily Rings.inverse\_class.divide\normalfont) 
neuper@42498
   917
% splittet
neuper@42498
   918
% into its two parts (\texttt{\$num \$denom}). The lines before are additionals
neuper@42498
   919
% commands for declaring the function and the lines after are modeling and 
neuper@42498
   920
% returning a real variable out of \texttt{\$denom}.
neuper@42498
   921
% 
neuper@42498
   922
% \subsubsection{Add a test for the new Function}
neuper@42498
   923
% 
neuper@42498
   924
% \paragraph{Everytime when adding} a new function it is essential also to add
neuper@42498
   925
% a test for it. Tests for all functions are sorted in the same structure as the
neuper@42498
   926
% knowledge it self and can be found up from the path:
neuper@42498
   927
% \begin{center}\ttfamily test/Tools/isac/Knowledge\normalfont\end{center}
neuper@42498
   928
% This tests are nothing very special, as a first prototype the functionallity
neuper@42498
   929
% of a function can be checked by evaluating the result of a simple expression
neuper@42498
   930
% passed to the function. Example~\ref{eg:getdenomtest} shows the test for our
neuper@42498
   931
% \textit{just} created function \texttt{get\_denominator}.
neuper@42498
   932
% 
neuper@42498
   933
% %\begin{example}
neuper@42498
   934
% \label{eg:getdenomtest}
neuper@42498
   935
% \begin{verbatim}
neuper@42498
   936
% 
neuper@42498
   937
% 01 val thy = @{theory Isac};
neuper@42498
   938
% 02 val t = term_of (the (parse thy "get_denominator ((a +x)/b)"));
neuper@42498
   939
% 03 val SOME (_, t') = eval_get_denominator "" 0 t thy;
neuper@42498
   940
% 04 if term2str t' = "get_denominator ((a + x) / b) = b" then ()
neuper@42498
   941
% 05 else error "get_denominator ((a + x) / b) = b" \end{verbatim}
neuper@42498
   942
% %\end{example}
neuper@42498
   943
% 
neuper@42498
   944
% \begin{description}
neuper@42498
   945
% \item[01] checks if the proofer set up on our {\sisac{}} System.
neuper@42498
   946
% \item[02] passes a simple expression (fraction) to our suddenly created
neuper@42498
   947
%           function.
neuper@42498
   948
% \item[04] checks if the resulting variable is the correct one (in this case
neuper@42498
   949
%           ``b'' the denominator) and returns.
neuper@42498
   950
% \item[05] handels the error case and reports that the function is not able to
neuper@42498
   951
%           solve the given problem.
neuper@42498
   952
% \end{description}
jan@42469
   953
jan@42491
   954
\subsection{Specification of the Problem}\label{spec}
jan@42491
   955
%WN <--> \chapter 7 der Thesis
jan@42491
   956
%WN die Argumentation unten sollte sich NUR auf Verifikation beziehen..
jan@42491
   957
jan@42491
   958
The problem of the running example is textually described in
jan@42491
   959
Fig.\ref{fig-interactive} on p.\pageref{fig-interactive}. The {\em
jan@42491
   960
formal} specification of this problem, in traditional mathematical
jan@42491
   961
notation, could look like is this:
jan@42491
   962
jan@42491
   963
%WN Hier brauchen wir die Spezifikation des 'running example' ...
jan@42491
   964
%JR Habe input, output und precond vom Beispiel eingefügt brauche aber Hilfe bei
jan@42491
   965
%JR der post condition - die existiert für uns ja eigentlich nicht aka
jan@42491
   966
%JR haben sie bis jetzt nicht beachtet WN...
jan@42491
   967
%WN2 Mein Vorschlag ist, das TODO zu lassen und deutlich zu kommentieren.
jan@42491
   968
%JR2 done
jan@42491
   969
jan@42491
   970
  \label{eg:neuper2}
jan@42491
   971
  {\small\begin{tabbing}
jan@42491
   972
  123,\=postcond \=: \= $\forall \,A^\prime\, u^\prime \,v^\prime.\,$\=\kill
jan@42491
   973
  \hfill \\
jan@42491
   974
  Specification:\\
jan@42491
   975
    \>input    \>: filterExpression $X=\frac{3}{(z-\frac{1}{4}+-\frac{1}{8}*\frac{1}{z}}$\\
jan@42491
   976
  \>precond  \>: filterExpression continius on $\mathbb{R}$ \\
jan@42491
   977
  \>output   \>: stepResponse $x[n]$ \\
jan@42491
   978
  \>postcond \>: TODO - (Mind the following remark)\\ \end{tabbing}}
jan@42491
   979
jan@42491
   980
\begin{remark}
jan@42491
   981
   Defining the postcondition requires a high amount mathematical 
jan@42491
   982
   knowledge, the difficult part in our case is not to set up this condition 
jan@42491
   983
   nor it is more to define it in a way the interpreter is able to handle it. 
jan@42491
   984
   Due the fact that implementing that mechanisms is quite the same amount as 
jan@42491
   985
   creating the programm itself, it is not avaible in our prototype.
jan@42491
   986
   \label{rm:postcond}
jan@42491
   987
\end{remark}
jan@42491
   988
jan@42491
   989
\paragraph{The implementation} of the formal specification in the present
jan@42491
   990
prototype, still bar-bones without support for authoring:
jan@42491
   991
%WN Kopie von Inverse_Z_Transform.thy, leicht versch"onert:
jan@42491
   992
{\footnotesize\label{exp-spec}
jan@42491
   993
\begin{verbatim}
jan@42491
   994
   01  store_specification
jan@42491
   995
   02    (prepare_specification
jan@42491
   996
   03      ["Jan Rocnik"]
jan@42491
   997
   04      "pbl_SP_Ztrans_inv"
jan@42491
   998
   05      thy
jan@42491
   999
   06      ( ["Inverse", "Z_Transform", "SignalProcessing"],
jan@42491
  1000
   07        [ ("#Given", ["filterExpression X_eq"]),
jan@42491
  1001
   08          ("#Pre"  , ["X_eq is_continuous"]),
jan@42494
  1002
   09          ("#Find" , ["stepResponse n_eq"]),
jan@42491
  1003
   10          ("#Post" , [" TODO "])],
jan@42491
  1004
   11        append_rls Erls [Calc ("Atools.is_continuous", eval_is_continuous)], 
jan@42491
  1005
   12        NONE, 
jan@42491
  1006
   13        [["SignalProcessing","Z_Transform","Inverse"]]));
jan@42491
  1007
\end{verbatim}}
jan@42491
  1008
Although the above details are partly very technical, we explain them
jan@42491
  1009
in order to document some intricacies of TP-based programming in the
jan@42491
  1010
present state of the {\sisac} prototype:
jan@42491
  1011
\begin{description}
jan@42491
  1012
\item[01..02]\textit{store\_specification:} stores the result of the
jan@42491
  1013
function \textit{prep\_specification} in a global reference
jan@42491
  1014
\textit{Unsynchronized.ref}, which causes principal conflicts with
jan@42491
  1015
Isabelle's asyncronous document model~\cite{Wenzel-11:doc-orient} and
jan@42491
  1016
parallel execution~\cite{Makarius-09:parall-proof} and is under
jan@42491
  1017
reconstruction already.
jan@42491
  1018
jan@42491
  1019
\textit{prep\_pbt:} translates the specification to an internal format
jan@42491
  1020
which allows efficient processing; see for instance line {\rm 07}
jan@42491
  1021
below.
jan@42491
  1022
\item[03..04] are the ``mathematics author'' holding the copy-rights
jan@42491
  1023
and a unique identifier for the specification within {\sisac},
jan@42491
  1024
complare line {\rm 06}.
jan@42491
  1025
\item[05] is the Isabelle \textit{theory} required to parse the
jan@42491
  1026
specification in lines {\rm 07..10}.
jan@42491
  1027
\item[06] is a key into the tree of all specifications as presented to
jan@42491
  1028
the user (where some branches might be hidden by the dialog
jan@42491
  1029
component).
jan@42491
  1030
\item[07..10] are the specification with input, pre-condition, output
jan@42491
  1031
and post-condition respectively; the post-condition is not handled in
jan@42491
  1032
the prototype presently. (Follow up Remark~\ref{rm:postcond})
jan@42491
  1033
\item[11] creates a term rewriting system (abbreviated \textit{rls} in
jan@42491
  1034
{\sisac}) which evaluates the pre-condition for the actual input data.
jan@42491
  1035
Only if the evaluation yields \textit{True}, a program con be started.
jan@42491
  1036
\item[12]\textit{NONE:} could be \textit{SOME ``solve ...''} for a
jan@42491
  1037
problem associated to a function from Computer Algebra (like an
jan@42491
  1038
equation solver) which is not the case here.
jan@42491
  1039
\item[13] is the specific key into the tree of programs addressing a
jan@42491
  1040
method which is able to find a solution which satiesfies the
jan@42491
  1041
post-condition of the specification.
jan@42491
  1042
\end{description}
jan@42491
  1043
jan@42491
  1044
jan@42491
  1045
%WN die folgenden Erkl"arungen finden sich durch "grep -r 'datatype pbt' *"
jan@42491
  1046
%WN ...
jan@42491
  1047
%  type pbt = 
jan@42491
  1048
%     {guh  : guh,         (*unique within this isac-knowledge*)
jan@42491
  1049
%      mathauthors: string list, (*copyright*)
jan@42491
  1050
%      init  : pblID,      (*to start refinement with*)
jan@42491
  1051
%      thy   : theory,     (* which allows to compile that pbt
jan@42491
  1052
%			  TODO: search generalized for subthy (ref.p.69*)
jan@42491
  1053
%      (*^^^ WN050912 NOT used during application of the problem,
jan@42491
  1054
%       because applied terms may be from 'subthy' as well as from super;
jan@42491
  1055
%       thus we take 'maxthy'; see match_ags !*)
jan@42491
  1056
%      cas   : term option,(*'CAS-command'*)
jan@42491
  1057
%      prls  : rls,        (* for preds in where_*)
jan@42491
  1058
%      where_: term list,  (* where - predicates*)
jan@42491
  1059
%      ppc   : pat list,
jan@42491
  1060
%      (*this is the model-pattern; 
jan@42491
  1061
%       it contains "#Given","#Where","#Find","#Relate"-patterns
jan@42491
  1062
%       for constraints on identifiers see "fun cpy_nam"*)
jan@42491
  1063
%      met   : metID list}; (* methods solving the pbt*)
jan@42491
  1064
%
jan@42491
  1065
%WN weil dieser Code sehr unaufger"aumt ist, habe ich die Erkl"arungen
jan@42491
  1066
%WN oben selbst geschrieben.
jan@42491
  1067
jan@42491
  1068
jan@42491
  1069
jan@42491
  1070
jan@42491
  1071
%WN das w"urde ich in \sec\label{progr} verschieben und
jan@42491
  1072
%WN das SubProblem partial fractions zum Erkl"aren verwenden.
jan@42491
  1073
% Such a specification is checked before the execution of a program is
jan@42491
  1074
% started, the same applies for sub-programs. In the following example
jan@42491
  1075
% (Example~\ref{eg:subprob}) shows the call of such a subproblem:
jan@42491
  1076
% 
jan@42491
  1077
% \vbox{
jan@42491
  1078
%   \begin{example}
jan@42491
  1079
%   \label{eg:subprob}
jan@42491
  1080
%   \hfill \\
jan@42491
  1081
%   {\ttfamily \begin{tabbing}
jan@42491
  1082
%   ``(L\_L::bool list) = (\=SubProblem (\=Test','' \\
jan@42491
  1083
%   ``\>\>[linear,univariate,equation,test],'' \\
jan@42491
  1084
%   ``\>\>[Test,solve\_linear])'' \\
jan@42491
  1085
%   ``\>[BOOL equ, REAL z])'' \\
jan@42491
  1086
%   \end{tabbing}
jan@42491
  1087
%   }
jan@42491
  1088
%   {\small\textit{
jan@42491
  1089
%     \noindent If a program requires a result which has to be
jan@42491
  1090
% calculated first we can use a subproblem to do so. In our specific
jan@42491
  1091
% case we wanted to calculate the zeros of a fraction and used a
jan@42491
  1092
% subproblem to calculate the zeros of the denominator polynom.
jan@42491
  1093
%     }}
jan@42491
  1094
%   \end{example}
jan@42491
  1095
% }
jan@42491
  1096
jan@42491
  1097
\subsection{Implementation of the Method}\label{meth}
jan@42491
  1098
jan@42494
  1099
\paragraph{After specifieing the problem} we start to implement the method(s) of
jan@42494
  1100
the problem. The methods represent the different ways a problem can be solved,
jan@42494
  1101
this can include different mathematical tactics as well as different tactics
jan@42494
  1102
taught in different courses.
jan@42491
  1103
jan@42494
  1104
jan@42491
  1105
\begin{verbatim}
jan@42491
  1106
01 store_met
jan@42494
  1107
02  (prep_met thy "SP_InverseZTransformation_classic" [] e_metID
jan@42491
  1108
03  (["SignalProcessing", "Z_Transform", "Inverse"], 
jan@42491
  1109
04   [("#Given" ,["filterExpression (X_eq::bool)"]),
jan@42491
  1110
05    ("#Find"  ,["stepResponse (n_eq::bool)"])],
jan@42491
  1111
06   {rew_ord'="tless_true",
jan@42491
  1112
07    rls'= e_rls, 
jan@42491
  1113
08    calc = [],
jan@42491
  1114
09    srls = e_rls,
jan@42491
  1115
10    prls = e_rls,
jan@42491
  1116
11    crls = e_rls,
jan@42491
  1117
12    errpats = [],
jan@42491
  1118
13    nrls = e_rls},
jan@42494
  1119
14   "empty_programm"
jan@42491
  1120
15  ));
jan@42491
  1121
\end{verbatim}
jan@42494
  1122
jan@42494
  1123
The above code is again very technical and goes hard in detail. But to document
jan@42494
  1124
and present the neccessary steps follow up the description of the above code:
jan@42494
  1125
jan@42494
  1126
\begin{description}
jan@42494
  1127
jan@42494
  1128
\item[01-02] this to lines store the method with the given name into the system
jan@42494
  1129
\item[03] here, the path is specifiet; which capitel this method is belonging to
jan@42494
  1130
\item[04-05] as the requirements for different methods can be different we 
jan@42494
  1131
specify again the \emph{given} and the \emph{find} element.
jan@42494
  1132
\item[06]
jan@42494
  1133
\item[07]
jan@42494
  1134
\item[08]
jan@42494
  1135
\item[09]
jan@42494
  1136
\item[10]
jan@42494
  1137
\item[11]
jan@42494
  1138
\item[12]
jan@42494
  1139
\item[13]
jan@42494
  1140
\item[14] for this time we don't specify the programm itself and keep it empty.
jan@42494
  1141
Follow up \S\ref{progr} for informations on how to implement this \textit{main}
jan@42494
  1142
part.
jan@42494
  1143
jan@42494
  1144
jan@42494
  1145
\end{description}
jan@42491
  1146
neuper@42478
  1147
\subsection{Implementation of the TP-based Program}\label{progr} 
neuper@42480
  1148
So finally all the prerequisites are described and the very topic can
neuper@42480
  1149
be addressed. The program below comes back to the running example: it
neuper@42480
  1150
computes a solution for the problem from Fig.\ref{fig-interactive} on
neuper@42480
  1151
p.\pageref{fig-interactive}. The reader is reminded of
neuper@42480
  1152
\S\ref{PL-isab}, the introduction of the programming language:
neuper@42482
  1153
{\small\it\label{s:impl}
neuper@42482
  1154
\begin{tabbing}
neuper@42478
  1155
123l\=123\=123\=123\=123\=123\=123\=((x\=123\=(x \=123\=123\=\kill
neuper@42480
  1156
\>{\rm 00}\>val program =\\
neuper@42480
  1157
\>{\rm 01}\>  "{\tt Program} InverseZTransform (X\_eq::bool) =   \\
neuper@42482
  1158
\>{\rm 02}\>\>  {\tt let}                                       \\
neuper@42468
  1159
\>{\rm 03}\>\>\>  X\_eq = {\tt Take} X\_eq ;   \\
neuper@42468
  1160
\>{\rm 04}\>\>\>  X\_eq = {\tt Rewrite} ruleZY X\_eq ; \\
neuper@42468
  1161
\>{\rm 05}\>\>\>  (X\_z::real) = lhs X\_eq ;       \\ %no inside-out evaluation
neuper@42468
  1162
\>{\rm 06}\>\>\>  (z::real) = argument\_in X\_z; \\
neuper@42468
  1163
\>{\rm 07}\>\>\>  (part\_frac::real) = {\tt SubProblem} \\
neuper@42478
  1164
\>{\rm 08}\>\>\>\>\>\>\>\>  ( Isac, [partial\_fraction, rational, simplification], [] )\\
neuper@42478
  1165
%\>{\rm 10}\>\>\>\>\>\>\>\>\>  [simplification, of\_rationals, to\_partial\_fraction] ) \\
neuper@42478
  1166
\>{\rm 09}\>\>\>\>\>\>\>\>  [ (rhs X\_eq)::real, z::real ]; \\
neuper@42478
  1167
\>{\rm 10}\>\>\>  (X'\_eq::bool) = {\tt Take} ((X'::real =$>$ bool) z = ZZ\_1 part\_frac) ; \\
neuper@42478
  1168
\>{\rm 11}\>\>\>  X'\_eq = (({\tt Rewrite\_Set} ruleYZ) @@   \\
neuper@42478
  1169
\>{\rm 12}\>\>\>\>\>  $\;\;$ ({\tt Rewrite\_Set} inverse\_z)) X'\_eq \\
neuper@42482
  1170
\>{\rm 13}\>\>  {\tt in } \\
neuper@42480
  1171
\>{\rm 14}\>\>\>  X'\_eq"
neuper@42478
  1172
\end{tabbing}}
neuper@42468
  1173
% ORIGINAL FROM Inverse_Z_Transform.thy
neuper@42468
  1174
% "Script InverseZTransform (X_eq::bool) =            "^(*([], Frm), Problem (Isac, [Inverse, Z_Transform, SignalProcessing])*)
neuper@42468
  1175
% "(let X = Take X_eq;                                "^(*([1], Frm), X z = 3 / (z - 1 / 4 + -1 / 8 * (1 / z))*)
neuper@42468
  1176
% "  X' = Rewrite ruleZY False X;                     "^(*([1], Res), ?X' z = 3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))*)
neuper@42468
  1177
% "  (X'_z::real) = lhs X';                           "^(*            ?X' z*)
neuper@42468
  1178
% "  (zzz::real) = argument_in X'_z;                  "^(*            z *)
neuper@42468
  1179
% "  (funterm::real) = rhs X';                        "^(*            3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))*)
neuper@42468
  1180
%
neuper@42468
  1181
% "  (pbz::real) = (SubProblem (Isac',                "^(**)
neuper@42468
  1182
% "    [partial_fraction,rational,simplification],    "^
neuper@42468
  1183
% "    [simplification,of_rationals,to_partial_fraction]) "^
neuper@42468
  1184
% "    [REAL funterm, REAL zzz]);                     "^(*([2], Res), 4 / (z - 1 / 2) + -4 / (z - -1 / 4)*)
neuper@42468
  1185
%
neuper@42468
  1186
% "  (pbz_eq::bool) = Take (X'_z = pbz);              "^(*([3], Frm), ?X' z = 4 / (z - 1 / 2) + -4 / (z - -1 / 4)*)
neuper@42468
  1187
% "  pbz_eq = Rewrite ruleYZ False pbz_eq;            "^(*([3], Res), ?X' z = 4 * (?z / (z - 1 / 2)) + -4 * (?z / (z - -1 / 4))*)
neuper@42468
  1188
% "  pbz_eq = drop_questionmarks pbz_eq;              "^(*               4 * (z / (z - 1 / 2)) + -4 * (z / (z - -1 / 4))*)
neuper@42468
  1189
% "  (X_zeq::bool) = Take (X_z = rhs pbz_eq);         "^(*([4], Frm), X_z = 4 * (z / (z - 1 / 2)) + -4 * (z / (z - -1 / 4))*)
neuper@42468
  1190
% "  n_eq = (Rewrite_Set inverse_z False) X_zeq;      "^(*([4], Res), X_z = 4 * (1 / 2) ^^^ ?n * ?u [?n] + -4 * (-1 / 4) ^^^ ?n * ?u [?n]*)
neuper@42468
  1191
% "  n_eq = drop_questionmarks n_eq                   "^(*            X_z = 4 * (1 / 2) ^^^ n * u [n] + -4 * (-1 / 4) ^^^ n * u [n]*)
neuper@42468
  1192
% "in n_eq)"                                            (*([], Res), X_z = 4 * (1 / 2) ^^^ n * u [n] + -4 * (-1 / 4) ^^^ n * u [n]*)
neuper@42480
  1193
The program is represented as a string and part of the method in
neuper@42480
  1194
\S\ref{meth}.  As mentioned in \S\ref{PL} the program is purely
neuper@42480
  1195
functional and lacks any input statements and output statements. So
neuper@42480
  1196
the steps of calculation towards a solution (and interactive tutoring
neuper@42480
  1197
in step-wise problem solving) are created as a side-effect by
neuper@42480
  1198
Lucas-Interpretation.  The side-effects are triggered by the tactics
neuper@42482
  1199
\texttt{Take}, \texttt{Rewrite}, \texttt{SubProblem} and
neuper@42482
  1200
\texttt{Rewrite\_Set} in the above lines {\rm 03, 04, 07, 10, 11} and
neuper@42480
  1201
{\rm 12} respectively. These tactics produce the lines in the
neuper@42480
  1202
calculation on p.\pageref{flow-impl}.
neuper@42478
  1203
neuper@42480
  1204
The above lines {\rm 05, 06} do not contain a tactics, so they do not
neuper@42480
  1205
immediately contribute to the calculation on p.\pageref{flow-impl};
neuper@42482
  1206
rather, they compute actual arguments for the \texttt{SubProblem} in
neuper@42480
  1207
line {\rm 09}~\footnote{The tactics also are break-points for the
neuper@42480
  1208
interpreter, where control is handed over to the user in interactive
neuper@42482
  1209
tutoring.}. Line {\rm 11} contains tactical \textit{@@}.
neuper@42480
  1210
neuper@42480
  1211
\medskip The above program also indicates the dominant role of interactive
neuper@42478
  1212
selection of knowledge in the three-dimensional universe of
neuper@42478
  1213
mathematics as depicted in Fig.\ref{fig:mathuni} on
neuper@42482
  1214
p.\pageref{fig:mathuni}, The \texttt{SubProblem} in the above lines
neuper@42478
  1215
{\rm 07..09} is more than a function call with the actual arguments
neuper@42478
  1216
\textit{[ (rhs X\_eq)::real, z::real ]}. The programmer has to determine
neuper@42478
  1217
three items:
neuper@42480
  1218
neuper@42478
  1219
\begin{enumerate}
neuper@42478
  1220
\item the theory, in the example \textit{Isac} because different
neuper@42478
  1221
methods can be selected in Pt.3 below, which are defined in different
neuper@42478
  1222
theories with \textit{Isac} collecting them.
neuper@42480
  1223
\item the specification identified by \textit{[partial\_fraction,
neuper@42480
  1224
rational, simplification]} in the tree of specifications; this
neuper@42480
  1225
specification is analogous to the specification of the main program
neuper@42480
  1226
described in \S\ref{spec}; the problem is to find a ``partial fraction
neuper@42480
  1227
decomposition'' for a univariate rational polynomial.
neuper@42480
  1228
\item the method in the above example is \textit{[ ]}, i.e. empty,
neuper@42480
  1229
which supposes the interpreter to select one of the methods predefined
neuper@42480
  1230
in the specification, for instance in line {\rm 13} in the running
neuper@42480
  1231
example's specification on p.\pageref{exp-spec}~\footnote{The freedom
neuper@42480
  1232
(or obligation) for selection carries over to the student in
neuper@42480
  1233
interactive tutoring.}.
neuper@42478
  1234
\end{enumerate}
neuper@42478
  1235
neuper@42480
  1236
The program code, above presented as a string, is parsed by Isabelle's
neuper@42480
  1237
parser --- the program is an Isabelle term. This fact is expected to
neuper@42480
  1238
simplify verification tasks in the future; on the other hand, this
neuper@42480
  1239
fact causes troubles in error detectetion which are discussed as part
neuper@42480
  1240
of the workflow in the subsequent section.
neuper@42467
  1241
jan@42463
  1242
\section{Workflow of Programming in the Prototype}\label{workflow}
neuper@42498
  1243
The new prover IDE Isabelle/jEdit~\cite{makar-jedit-12} is a great
neuper@42498
  1244
step forward for interactive theory and proof development. The
neuper@42498
  1245
{\sisac}-prototype re-uses this IDE as a programming environment.  The
neuper@42498
  1246
experiences from this re-use show, that the essential components are
neuper@42498
  1247
available from Isabelle/jEdit. However, additional tools and features
neuper@42498
  1248
are required to acchieve acceptable usability.
neuper@42498
  1249
neuper@42498
  1250
So notable experiences are reported here, also as a requirement
neuper@42498
  1251
capture for further development of TP-based languages and respective
neuper@42498
  1252
IDEs.
neuper@42468
  1253
jan@42466
  1254
\subsection{Preparations and Trials}\label{flow-prep}
neuper@42499
  1255
The many sub-tasks to be accomplished {\em before} the first line of
neuper@42499
  1256
program code can be written and tested suggest an approach which
neuper@42499
  1257
step-wise establishes the prerequisites. The case study underlying
neuper@42499
  1258
this paper~\cite{jrocnik-bakk} documents the approach in a separate
neuper@42499
  1259
Isabelle theory,
neuper@42499
  1260
\textit{Build\_Inverse\_Z\_Transform.thy}~\footnote{http://www.ist.tugraz.at/projects/isac/publ/Build\_Inverse\_Z\_Transform.thy}. Part
neuper@42499
  1261
II in the study comprises this theory, \LaTeX ed from the theory by
neuper@42499
  1262
use of Isabelle's document preparation system. This paper resembles
neuper@42499
  1263
the approach in \S\ref{isabisac} to \S\ref{meth}, which in actual
neuper@42499
  1264
implementation work involves several iterations.
neuper@42498
  1265
neuper@42499
  1266
\bigskip For instance, only the last step, implementing the program
neuper@42499
  1267
described in \S\ref{meth}, reveals details required. Let us assume,
neuper@42499
  1268
this is the ML-function \textit{argument\_in} required in line {\rm 06}
neuper@42499
  1269
of the example program on p.\pageref{s:impl}; how this function needs
neuper@42499
  1270
to be implemented in the prototype has been discussed in \S\ref{funs}
neuper@42499
  1271
already.
neuper@42498
  1272
neuper@42499
  1273
Now let us assume, that calling this function from the program code
neuper@42499
  1274
does not work; so testing this function is required in order to find out
neuper@42499
  1275
the reason: type errors, a missing entry of the function somewhere or
neuper@42499
  1276
even more nasty technicalities \dots
neuper@42498
  1277
neuper@42499
  1278
{\footnotesize
neuper@42482
  1279
\begin{verbatim}
neuper@42482
  1280
   ML {*
neuper@42499
  1281
     val SOME t = parseNEW ctxt "argument_in (X (z::real))";
neuper@42499
  1282
     val SOME (str, t') = eval_argument_in "" 
neuper@42499
  1283
       "Build_Inverse_Z_Transform.argument'_in" t 0;
neuper@42482
  1284
   *}
neuper@42499
  1285
   ML {*
neuper@42499
  1286
     term2str t';
neuper@42499
  1287
   *}
neuper@42499
  1288
   val it = "(argument_in X z) = z": string
neuper@42482
  1289
\end{verbatim}}
neuper@42499
  1290
neuper@42499
  1291
\noindent So, this works: we get an ad-hoc theorem, which used in
neuper@42499
  1292
rewriting would reduce \texttt{argument\_in X z} to \texttt{z}. Now we check this
neuper@42499
  1293
reduction and create a rule-set \texttt{rls} for that purpose:
neuper@42499
  1294
neuper@42499
  1295
{\footnotesize
neuper@42482
  1296
\begin{verbatim}
neuper@42482
  1297
   ML {*
neuper@42499
  1298
     val rls = append_rls "test" e_rls 
neuper@42499
  1299
       [Calc ("Build_Inverse_Z_Transform.argument'_in", eval_argument_in "")]
neuper@42482
  1300
   *}
neuper@42499
  1301
   ML {*
neuper@42499
  1302
     val SOME (t', asm) = rewrite_set_ @{theory} rls t;
neuper@42499
  1303
   *}
neuper@42499
  1304
   val t' = Free ("z", "RealDef.real"): term
neuper@42499
  1305
   val asm = []: term list
neuper@42482
  1306
\end{verbatim}}
neuper@42499
  1307
neuper@42499
  1308
\noindent The resulting term \texttt{t'} is \texttt{Free ("z",
neuper@42499
  1309
"RealDef.real")}, i.e the variable \texttt{z}, so all is
neuper@42499
  1310
perfect. Probably we have forgotten to store this function correctly~?
neuper@42499
  1311
We review the respective \texttt{calclist} (again an
neuper@42499
  1312
\textit{Unsynchronized.ref} to be removed in order to adjust to
neuper@42499
  1313
IsabelleIsar's asyncronous document model):
neuper@42499
  1314
neuper@42499
  1315
{\footnotesize
neuper@42499
  1316
\begin{verbatim}
neuper@42499
  1317
   calclist:= overwritel (! calclist, 
neuper@42499
  1318
    [("argument_in",("Build_Inverse_Z_Transform.argument'_in", eval_argument_in "")),
neuper@42499
  1319
     ...
neuper@42499
  1320
     ]);
neuper@42499
  1321
\end{verbatim}}
neuper@42499
  1322
neuper@42499
  1323
\noindent The entry is perfect. So what is the reason~? Ah, probably there
neuper@42499
  1324
is something messed up with the many rule-sets in the method, see \S\ref{meth} ---
neuper@42499
  1325
right, the function \texttt{argument\_in} is not contained in the respective
neuper@42499
  1326
rule-set \textit{srls} \dots this just as an example of the intricacies in
neuper@42499
  1327
debugging a program in the present state of the prototype.
neuper@42499
  1328
neuper@42499
  1329
\subsection{Implementation in Isabelle/{\isac}}\label{flow-impl}
neuper@42499
  1330
Given all the prerequisites from \S\ref{isabisac} to \S\ref{meth},
neuper@42499
  1331
usually developed within several iterations, the program can be
neuper@42499
  1332
assembled; on p.\pageref{s:impl} there is the complete program of the
neuper@42499
  1333
running example.
neuper@42499
  1334
neuper@42499
  1335
The completion of this program required efforts for several weeks
neuper@42499
  1336
(after some months of familiarisation with {\sisac}), caused by the
neuper@42499
  1337
abundance of intricacies indicated above. Also writing the program is
neuper@42499
  1338
not pleasant, given Isabelle/Isar/ without add-ons for
neuper@42499
  1339
programming. Already writing and parsing a few lines of program code
neuper@42499
  1340
is a challenge: the program is an Isabelle term; Isabelle's parser,
neuper@42499
  1341
however, is not meant for huge terms like the program of the running
neuper@42499
  1342
example. So reading out the specific error (usually type errors) from
neuper@42499
  1343
Isabelle's message is difficult.
neuper@42499
  1344
neuper@42499
  1345
\medskip Testing the evaluation of the program has to rely on very
neuper@42499
  1346
simple tools. Step-wise execution is modelled by a function
neuper@42499
  1347
\texttt{me}, short for mathematics-engine~\footnote{The interface used
neuper@42499
  1348
by the fron-end which created the calculation on
neuper@42499
  1349
p.\pageref{fig-interactive} is different from this function}:
neuper@42499
  1350
%the following is a simplification of the actual function 
neuper@42499
  1351
neuper@42499
  1352
{\footnotesize
neuper@42499
  1353
\begin{verbatim}
neuper@42499
  1354
   ML {* me; *}
neuper@42499
  1355
   val it = tac -> ctree * pos -> mout * tac * ctree * pos
neuper@42499
  1356
\end{verbatim}} 
neuper@42499
  1357
neuper@42499
  1358
\noindent This function takes as arguments a tactic \texttt{tac} which
neuper@42499
  1359
determines the next step, the step applied to the interpreter-state
neuper@42499
  1360
\texttt{ctree * pos} as last argument taken. The interpreter-state is
neuper@42499
  1361
a pair of a tree \texttt{ctree} representing the calculation created
neuper@42499
  1362
(see the example below) and a position \texttt{pos} in the
neuper@42499
  1363
calculation. The function delivers a quadrupel, beginning with the new
neuper@42499
  1364
formula \texttt{mout} and the next tactic followed by the new
neuper@42499
  1365
interpreter-state.
neuper@42499
  1366
neuper@42499
  1367
This function allows to stepwise check the program:
neuper@42499
  1368
neuper@42499
  1369
{\footnotesize
neuper@42482
  1370
\begin{verbatim}
neuper@42482
  1371
   ML {*
neuper@42499
  1372
     val fmz =
neuper@42499
  1373
       ["filterExpression (X z = 3 / ((z::real) + 1/10 - 1/50*(1/z)))",
neuper@42499
  1374
        "stepResponse (x[n::real]::bool)"];     
neuper@42499
  1375
     val (dI,pI,mI) =
neuper@42499
  1376
       ("Isac", 
neuper@42499
  1377
        ["Inverse", "Z_Transform", "SignalProcessing"], 
neuper@42499
  1378
        ["SignalProcessing","Z_Transform","Inverse"]);
neuper@42499
  1379
                
neuper@42499
  1380
     val (mout, tac, ctree, pos)  = CalcTreeTEST [(fmz, (dI, pI, mI))];
neuper@42499
  1381
     val (mout, tac, ctree, pos)  = me tac (ctree, pos);
neuper@42499
  1382
     val (mout, tac, ctree, pos)  = me tac (ctree, pos);
neuper@42499
  1383
     val (mout, tac, ctree, pos)  = me tac (ctree, pos);
neuper@42499
  1384
     ...
neuper@42499
  1385
\end{verbatim}} 
neuper@42481
  1386
neuper@42499
  1387
\noindent Several douzens of calls for \texttt{me} are required to
neuper@42499
  1388
create the lines in the calculation below (including the sub-problems
neuper@42499
  1389
not shown). When an error occurs, the reason might be located
neuper@42499
  1390
many steps before: if evaluation by rewriting, as done by the prototype,
neuper@42499
  1391
fails, then first nothing happens --- the effects come later and
neuper@42499
  1392
cause unpleasant checks.
neuper@42481
  1393
neuper@42499
  1394
The checks comprise watching the rewrite-engine for many different
neuper@42499
  1395
kinds of rule-sets (see \S\ref{meth}), the interpreter-state, in
neuper@42499
  1396
particular the environment and the context at the states position ---
neuper@42499
  1397
all checks have to rely on simple functions accessing the
neuper@42499
  1398
\texttt{ctree}. So getting the calculation below (which resembles the
neuper@42499
  1399
calculation in Fig.\ref{fig-interactive} on p.\pageref{fig-interactive})
neuper@42499
  1400
finished successfully is a relief:
jan@42469
  1401
neuper@42498
  1402
{\small\it\label{exp-calc}
neuper@42468
  1403
\begin{tabbing}
neuper@42468
  1404
123l\=123\=123\=123\=123\=123\=123\=123\=123\=123\=123\=123\=\kill
neuper@42468
  1405
\>{\rm 01}\> $\bullet$  \> {\tt Problem } (Inverse\_Z\_Transform, [Inverse, Z\_Transform, SignalProcessing])       \`\\
neuper@42468
  1406
\>{\rm 02}\>\> $\vdash\;\;X z = \frac{3}{z - \frac{1}{4} - \frac{1}{8} \cdot z^{-1}}$       \`{\footnotesize {\tt Take} X\_eq}\\
neuper@42468
  1407
\>{\rm 03}\>\> $X z = \frac{3}{z + \frac{-1}{4} + \frac{-1}{8} \cdot \frac{1}{z}}$          \`{\footnotesize {\tt Rewrite} ruleZY X\_eq}\\
neuper@42468
  1408
\>{\rm 04}\>\> $\bullet$\> {\tt Problem } [partial\_fraction,rational,simplification]        \`{\footnotesize {\tt SubProblem} \dots}\\
neuper@42468
  1409
\>{\rm 05}\>\>\>  $\vdash\;\;\frac{3}{z + \frac{-1}{4} + \frac{-1}{8} \cdot \frac{1}{z}}=$    \`- - -\\
neuper@42468
  1410
\>{\rm 06}\>\>\>  $\frac{24}{-1 + -2 \cdot z + 8 \cdot z^2}$                                   \`- - -\\
neuper@42468
  1411
\>{\rm 07}\>\>\>  $\bullet$\> solve ($-1 + -2 \cdot z + 8 \cdot z^2,\;z$ )                      \`- - -\\
neuper@42468
  1412
\>{\rm 08}\>\>\>\>   $\vdash$ \> $\frac{3}{z + \frac{-1}{4} + \frac{-1}{8} \cdot \frac{1}{z}}=0$ \`- - -\\
neuper@42468
  1413
\>{\rm 09}\>\>\>\>   $z = \frac{2+\sqrt{-4+8}}{16}\;\lor\;z = \frac{2-\sqrt{-4+8}}{16}$           \`- - -\\
neuper@42468
  1414
\>{\rm 10}\>\>\>\>   $z = \frac{1}{2}\;\lor\;z =$ \_\_\_                                           \`- - -\\
neuper@42468
  1415
\>        \>\>\>\>   \_\_\_                                                                        \`- - -\\
neuper@42468
  1416
\>{\rm 11}\>\> \dots\> $\frac{4}{z - \frac{1}{2}} + \frac{-4}{z - \frac{-1}{4}}$                   \`\\
neuper@42468
  1417
\>{\rm 12}\>\> $X^\prime z = {\cal Z}^{-1} (\frac{4}{z - \frac{1}{2}} + \frac{-4}{z - \frac{-1}{4}})$ \`{\footnotesize {\tt Take} ((X'::real =$>$ bool) z = ZZ\_1 part\_frac)}\\
neuper@42468
  1418
\>{\rm 13}\>\> $X^\prime z = {\cal Z}^{-1} (4\cdot\frac{z}{z - \frac{1}{2}} + -4\cdot\frac{z}{z - \frac{-1}{4}})$ \`{\footnotesize{\tt Rewrite\_Set} ruleYZ X'\_eq }\\
neuper@42468
  1419
\>{\rm 14}\>\> $X^\prime z = 4\cdot(\frac{1}{2})^n \cdot u [n] + -4\cdot(\frac{-1}{4})^n \cdot u [n]$  \`{\footnotesize {\tt Rewrite\_Set} inverse\_z X'\_eq}\\
neuper@42468
  1420
\>{\rm 15}\> \dots\> $X^\prime z = 4\cdot(\frac{1}{2})^n \cdot u [n] + -4\cdot(\frac{-1}{4})^n \cdot u [n]$ \`{\footnotesize {\tt Check\_Postcond}}
neuper@42468
  1421
\end{tabbing}}
neuper@42468
  1422
% ORIGINAL FROM Inverse_Z_Transform.thy
neuper@42468
  1423
%    "Script InverseZTransform (X_eq::bool) =            "^(*([], Frm), Problem (Isac, [Inverse, Z_Transform, SignalProcessing])*)
neuper@42468
  1424
%    "(let X = Take X_eq;                                "^(*([1], Frm), X z = 3 / (z - 1 / 4 + -1 / 8 * (1 / z))*)
neuper@42468
  1425
%    "  X' = Rewrite ruleZY False X;                     "^(*([1], Res), ?X' z = 3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))*)
neuper@42468
  1426
%    "  (X'_z::real) = lhs X';                           "^(*            ?X' z*)
neuper@42468
  1427
%    "  (zzz::real) = argument_in X'_z;                  "^(*            z *)
neuper@42468
  1428
%    "  (funterm::real) = rhs X';                        "^(*            3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))*)
neuper@42468
  1429
% 
neuper@42468
  1430
%    "  (pbz::real) = (SubProblem (Isac',                "^(**)
neuper@42468
  1431
%    "    [partial_fraction,rational,simplification],    "^
neuper@42468
  1432
%    "    [simplification,of_rationals,to_partial_fraction]) "^
neuper@42468
  1433
%    "    [REAL funterm, REAL zzz]);                     "^(*([2], Res), 4 / (z - 1 / 2) + -4 / (z - -1 / 4)*)
neuper@42468
  1434
% 
neuper@42468
  1435
%    "  (pbz_eq::bool) = Take (X'_z = pbz);              "^(*([3], Frm), ?X' z = 4 / (z - 1 / 2) + -4 / (z - -1 / 4)*)
neuper@42468
  1436
%    "  pbz_eq = Rewrite ruleYZ False pbz_eq;            "^(*([3], Res), ?X' z = 4 * (?z / (z - 1 / 2)) + -4 * (?z / (z - -1 / 4))*)
neuper@42468
  1437
%    "  pbz_eq = drop_questionmarks pbz_eq;              "^(*               4 * (z / (z - 1 / 2)) + -4 * (z / (z - -1 / 4))*)
neuper@42468
  1438
%    "  (X_zeq::bool) = Take (X_z = rhs pbz_eq);         "^(*([4], Frm), X_z = 4 * (z / (z - 1 / 2)) + -4 * (z / (z - -1 / 4))*)
neuper@42468
  1439
%    "  n_eq = (Rewrite_Set inverse_z False) X_zeq;      "^(*([4], Res), X_z = 4 * (1 / 2) ^^^ ?n * ?u [?n] + -4 * (-1 / 4) ^^^ ?n * ?u [?n]*)
neuper@42468
  1440
%    "  n_eq = drop_questionmarks n_eq                   "^(*            X_z = 4 * (1 / 2) ^^^ n * u [n] + -4 * (-1 / 4) ^^^ n * u [n]*)
neuper@42468
  1441
%    "in n_eq)"                                            (*([], Res), X_z = 4 * (1 / 2) ^^^ n * u [n] + -4 * (-1 / 4) ^^^ n * u [n]*)
neuper@42468
  1442
neuper@42499
  1443
\subsection{Transfer into the Isabelle/{\isac} Knowledge}\label{flow-trans}
neuper@42499
  1444
Finally \textit{Build\_Inverse\_Z\_Transform.thy} has got the job done
neuper@42499
  1445
and the knowledge accumulated in it can be distributed to appropriate
neuper@42499
  1446
theories: the program to \textit{Inverse\_Z\_Transform.thy}, the
neuper@42499
  1447
sub-problem accomplishing the partial fraction decomposition to
neuper@42499
  1448
\textit{Partial\_Fractions.thy}. Since there are hacks into Isabelle's
neuper@42499
  1449
internals, this kind of distribution is not trivial. For instance, the
neuper@42499
  1450
function \texttt{argument\_in} in \S\ref{funs} explicitly contains a
neuper@42499
  1451
string with the theory it has been defined in, so this string needs to
neuper@42499
  1452
be updated from \texttt{Build\_Inverse\_Z\_Transform} to
neuper@42499
  1453
\texttt{Atools} if that function is transferred to theory
neuper@42499
  1454
\textit{Atools.thy}.
neuper@42468
  1455
neuper@42499
  1456
In order to obtain the functionality presented in Fig.\ref{fig-interactive} on p.\pageref{fig-interactive} data must be exported from SML-structures to XML.
neuper@42499
  1457
This process is also rather bare-bones without authoring tools and is
neuper@42499
  1458
described in detail in the {\sisac} wiki~\footnote{http://www.ist.tugraz.at/isac/index.php/Generate\_representations\_for\_ISAC\_Knowledge}.
neuper@42468
  1459
neuper@42478
  1460
% \newpage
neuper@42478
  1461
% -------------------------------------------------------------------
neuper@42478
  1462
% 
neuper@42478
  1463
% Material, falls noch Platz bleibt ...
neuper@42478
  1464
% 
neuper@42478
  1465
% -------------------------------------------------------------------
neuper@42478
  1466
% 
neuper@42478
  1467
% 
neuper@42478
  1468
% \subsubsection{Trials on Notation and Termination}
neuper@42478
  1469
% 
neuper@42478
  1470
% \paragraph{Technical notations} are a big problem for our piece of software,
neuper@42478
  1471
% but the reason for that isn't a fault of the software itself, one of the
neuper@42478
  1472
% troubles comes out of the fact that different technical subtopics use different
neuper@42478
  1473
% symbols and notations for a different purpose. The most famous example for such
neuper@42478
  1474
% a symbol is the complex number $i$ (in cassique math) or $j$ (in technical
neuper@42478
  1475
% math). In the specific part of signal processing one of this notation issues is
neuper@42478
  1476
% the use of brackets --- we use round brackets for analoge signals and squared
neuper@42478
  1477
% brackets for digital samples. Also if there is no problem for us to handle this
neuper@42478
  1478
% fact, we have to tell the machine what notation leads to wich meaning and that
neuper@42478
  1479
% this purpose seperation is only valid for this special topic - signal
neuper@42478
  1480
% processing.
neuper@42478
  1481
% \subparagraph{In the programming language} itself it is not possible to declare
neuper@42478
  1482
% fractions, exponents, absolutes and other operators or remarks in a way to make
neuper@42478
  1483
% them pretty to read; our only posssiblilty were ASCII characters and a handfull
neuper@42478
  1484
% greek symbols like: $\alpha, \beta, \gamma, \phi,\ldots$.
neuper@42478
  1485
% \par
neuper@42478
  1486
% With the upper collected knowledge it is possible to check if we were able to
neuper@42478
  1487
% donate all required terms and expressions.
neuper@42478
  1488
% 
neuper@42478
  1489
% \subsubsection{Definition and Usage of Rules}
neuper@42478
  1490
% 
neuper@42478
  1491
% \paragraph{The core} of our implemented problem is the Z-Transformation, due
neuper@42478
  1492
% the fact that the transformation itself would require higher math which isn't
neuper@42478
  1493
% yet avaible in our system we decided to choose the way like it is applied in
neuper@42478
  1494
% labratory and problem classes at our university - by applying transformation
neuper@42478
  1495
% rules (collected in transformation tables).
neuper@42478
  1496
% \paragraph{Rules,} in {\sisac{}}'s programming language can be designed by the
neuper@42478
  1497
% use of axiomatizations like shown in Example~\ref{eg:ruledef}
neuper@42478
  1498
% 
neuper@42478
  1499
% \begin{example}
neuper@42478
  1500
%   \label{eg:ruledef}
neuper@42478
  1501
%   \hfill\\
neuper@42478
  1502
%   \begin{verbatim}
neuper@42478
  1503
%   axiomatization where
neuper@42478
  1504
%     rule1: ``1 = $\delta$[n]'' and
neuper@42478
  1505
%     rule2: ``|| z || > 1 ==> z / (z - 1) = u [n]'' and
neuper@42478
  1506
%     rule3: ``|| z || < 1 ==> z / (z - 1) = -u [-n - 1]''
neuper@42478
  1507
%   \end{verbatim}
neuper@42478
  1508
% \end{example}
neuper@42478
  1509
% 
neuper@42478
  1510
% This rules can be collected in a ruleset and applied to a given expression as
neuper@42478
  1511
% follows in Example~\ref{eg:ruleapp}.
neuper@42478
  1512
% 
neuper@42478
  1513
% \begin{example}
neuper@42478
  1514
%   \hfill\\
neuper@42478
  1515
%   \label{eg:ruleapp}
neuper@42478
  1516
%   \begin{enumerate}
neuper@42478
  1517
%   \item Store rules in ruleset:
neuper@42478
  1518
%   \begin{verbatim}
neuper@42478
  1519
%   val inverse_Z = append_rls "inverse_Z" e_rls
neuper@42478
  1520
%     [ Thm ("rule1",num_str @{thm rule1}),
neuper@42478
  1521
%       Thm ("rule2",num_str @{thm rule2}),
neuper@42478
  1522
%       Thm ("rule3",num_str @{thm rule3})
neuper@42478
  1523
%     ];\end{verbatim}
neuper@42478
  1524
%   \item Define exression:
neuper@42478
  1525
%   \begin{verbatim}
neuper@42478
  1526
%   val sample_term = str2term "z/(z-1)+z/(z-</delta>)+1";\end{verbatim}
neuper@42478
  1527
%   \item Apply ruleset:
neuper@42478
  1528
%   \begin{verbatim}
neuper@42478
  1529
%   val SOME (sample_term', asm) = 
neuper@42478
  1530
%     rewrite_set_ thy true inverse_Z sample_term;\end{verbatim}
neuper@42478
  1531
%   \end{enumerate}
neuper@42478
  1532
% \end{example}
neuper@42478
  1533
% 
neuper@42478
  1534
% The use of rulesets makes it much easier to develop our designated applications,
neuper@42478
  1535
% but the programmer has to be careful and patient. When applying rulesets
neuper@42478
  1536
% two important issues have to be mentionend:
neuper@42478
  1537
% \subparagraph{How often} the rules have to be applied? In case of
neuper@42478
  1538
% transformations it is quite clear that we use them once but other fields
neuper@42478
  1539
% reuqire to apply rules until a special condition is reached (e.g.
neuper@42478
  1540
% a simplification is finished when there is nothing to be done left).
neuper@42478
  1541
% \subparagraph{The order} in which rules are applied often takes a big effect
neuper@42478
  1542
% and has to be evaluated for each purpose once again.
neuper@42478
  1543
% \par
neuper@42478
  1544
% In our special case of Signal Processing and the rules defined in
neuper@42478
  1545
% Example~\ref{eg:ruledef} we have to apply rule~1 first of all to transform all
neuper@42478
  1546
% constants. After this step has been done it no mather which rule fit's next.
neuper@42478
  1547
% 
neuper@42478
  1548
% \subsubsection{Helping Functions}
neuper@42478
  1549
% 
neuper@42478
  1550
% \paragraph{New Programms require,} often new ways to get through. This new ways
neuper@42478
  1551
% means that we handle functions that have not been in use yet, they can be 
neuper@42478
  1552
% something special and unique for a programm or something famous but unneeded in
neuper@42478
  1553
% the system yet. In our dedicated example it was for example neccessary to split
neuper@42478
  1554
% a fraction into numerator and denominator; the creation of such function and
neuper@42478
  1555
% even others is described in upper Sections~\ref{simp} and \ref{funs}.
neuper@42478
  1556
% 
neuper@42478
  1557
% \subsubsection{Trials on equation solving}
neuper@42478
  1558
% %simple eq and problem with double fractions/negative exponents
neuper@42478
  1559
% \paragraph{The Inverse Z-Transformation} makes it neccessary to solve
neuper@42478
  1560
% equations degree one and two. Solving equations in the first degree is no 
neuper@42478
  1561
% problem, wether for a student nor for our machine; but even second degree
neuper@42478
  1562
% equations can lead to big troubles. The origin of this troubles leads from
neuper@42478
  1563
% the build up process of our equation solving functions; they have been
neuper@42478
  1564
% implemented some time ago and of course they are not as good as we want them to
neuper@42478
  1565
% be. Wether or not following we only want to show how cruel it is to build up new
neuper@42478
  1566
% work on not well fundamentials.
neuper@42478
  1567
% \subparagraph{A simple equation solving,} can be set up as shown in the next
neuper@42478
  1568
% example:
neuper@42478
  1569
% 
neuper@42478
  1570
% \begin{example}
neuper@42478
  1571
% \begin{verbatim}
neuper@42478
  1572
%   
neuper@42478
  1573
%   val fmz =
neuper@42478
  1574
%     ["equality (-1 + -2 * z + 8 * z ^^^ 2 = (0::real))",
neuper@42478
  1575
%      "solveFor z",
neuper@42478
  1576
%      "solutions L"];                                    
neuper@42478
  1577
% 
neuper@42478
  1578
%   val (dI',pI',mI') =
neuper@42478
  1579
%     ("Isac", 
neuper@42478
  1580
%       ["abcFormula","degree_2","polynomial","univariate","equation"],
neuper@42478
  1581
%       ["no_met"]);\end{verbatim}
neuper@42478
  1582
% \end{example}
neuper@42478
  1583
% 
neuper@42478
  1584
% Here we want to solve the equation: $-1+-2\cdot z+8\cdot z^{2}=0$. (To give
neuper@42478
  1585
% a short overview on the commands; at first we set up the equation and tell the
neuper@42478
  1586
% machine what's the bound variable and where to store the solution. Second step 
neuper@42478
  1587
% is to define the equation type and determine if we want to use a special method
neuper@42478
  1588
% to solve this type.) Simple checks tell us that the we will get two results for
neuper@42478
  1589
% this equation and this results will be real.
neuper@42478
  1590
% So far it is easy for us and for our machine to solve, but
neuper@42478
  1591
% mentioned that a unvariate equation second order can have three different types
neuper@42478
  1592
% of solutions it is getting worth.
neuper@42478
  1593
% \subparagraph{The solving of} all this types of solutions is not yet supported.
neuper@42478
  1594
% Luckily it was needed for us; but something which has been needed in this 
neuper@42478
  1595
% context, would have been the solving of an euation looking like:
neuper@42478
  1596
% $-z^{-2}+-2\cdot z^{-1}+8=0$ which is basically the same equation as mentioned
neuper@42478
  1597
% before (remember that befor it was no problem to handle for the machine) but
neuper@42478
  1598
% now, after a simple equivalent transformation, we are not able to solve
neuper@42478
  1599
% it anymore.
neuper@42478
  1600
% \subparagraph{Error messages} we get when we try to solve something like upside
neuper@42478
  1601
% were very confusing and also leads us to no special hint about a problem.
neuper@42478
  1602
% \par The fault behind is, that we have no well error handling on one side and
neuper@42478
  1603
% no sufficient formed equation solving on the other side. This two facts are
neuper@42478
  1604
% making the implemention of new material very difficult.
neuper@42478
  1605
% 
neuper@42478
  1606
% \subsection{Formalization of missing knowledge in Isabelle}
neuper@42478
  1607
% 
neuper@42478
  1608
% \paragraph{A problem} behind is the mechanization of mathematic
neuper@42478
  1609
% theories in TP-bases languages. There is still a huge gap between
neuper@42478
  1610
% these algorithms and this what we want as a solution - in Example
neuper@42478
  1611
% Signal Processing. 
neuper@42478
  1612
% 
neuper@42478
  1613
% \vbox{
neuper@42478
  1614
%   \begin{example}
neuper@42478
  1615
%     \label{eg:gap}
neuper@42478
  1616
%     \[
neuper@42478
  1617
%       X\cdot(a+b)+Y\cdot(c+d)=aX+bX+cY+dY
neuper@42478
  1618
%     \]
neuper@42478
  1619
%     {\small\textit{
neuper@42478
  1620
%       \noindent A very simple example on this what we call gap is the
neuper@42478
  1621
% simplification above. It is needles to say that it is correct and also
neuper@42478
  1622
% Isabelle for fills it correct - \emph{always}. But sometimes we don't
neuper@42478
  1623
% want expand such terms, sometimes we want another structure of
neuper@42478
  1624
% them. Think of a problem were we now would need only the coefficients
neuper@42478
  1625
% of $X$ and $Y$. This is what we call the gap between mechanical
neuper@42478
  1626
% simplification and the solution.
neuper@42478
  1627
%     }}
neuper@42478
  1628
%   \end{example}
neuper@42478
  1629
% }
neuper@42478
  1630
% 
neuper@42478
  1631
% \paragraph{We are not able to fill this gap,} until we have to live
neuper@42478
  1632
% with it but first have a look on the meaning of this statement:
neuper@42478
  1633
% Mechanized math starts from mathematical models and \emph{hopefully}
neuper@42478
  1634
% proceeds to match physics. Academic engineering starts from physics
neuper@42478
  1635
% (experimentation, measurement) and then proceeds to mathematical
neuper@42478
  1636
% modeling and formalization. The process from a physical observance to
neuper@42478
  1637
% a mathematical theory is unavoidable bound of setting up a big
neuper@42478
  1638
% collection of standards, rules, definition but also exceptions. These
neuper@42478
  1639
% are the things making mechanization that difficult.
neuper@42478
  1640
% 
neuper@42478
  1641
% \vbox{
neuper@42478
  1642
%   \begin{example}
neuper@42478
  1643
%     \label{eg:units}
neuper@42478
  1644
%     \[
neuper@42478
  1645
%       m,\ kg,\ s,\ldots
neuper@42478
  1646
%     \]
neuper@42478
  1647
%     {\small\textit{
neuper@42478
  1648
%       \noindent Think about some units like that one's above. Behind
neuper@42478
  1649
% each unit there is a discerning and very accurate definition: One
neuper@42478
  1650
% Meter is the distance the light travels, in a vacuum, through the time
neuper@42478
  1651
% of 1 / 299.792.458 second; one kilogram is the weight of a
neuper@42478
  1652
% platinum-iridium cylinder in paris; and so on. But are these
neuper@42478
  1653
% definitions usable in a computer mechanized world?!
neuper@42478
  1654
%     }}
neuper@42478
  1655
%   \end{example}
neuper@42478
  1656
% }
neuper@42478
  1657
% 
neuper@42478
  1658
% \paragraph{A computer} or a TP-System builds on programs with
neuper@42478
  1659
% predefined logical rules and does not know any mathematical trick
neuper@42478
  1660
% (follow up example \ref{eg:trick}) or recipe to walk around difficult
neuper@42478
  1661
% expressions. 
neuper@42478
  1662
% 
neuper@42478
  1663
% \vbox{
neuper@42478
  1664
%   \begin{example}
neuper@42478
  1665
%     \label{eg:trick}
neuper@42478
  1666
%   \[ \frac{1}{j\omega}\cdot\left(e^{-j\omega}-e^{j3\omega}\right)= \]
neuper@42478
  1667
%   \[ \frac{1}{j\omega}\cdot e^{-j2\omega}\cdot\left(e^{j\omega}-e^{-j\omega}\right)=
neuper@42478
  1668
%      \frac{1}{\omega}\, e^{-j2\omega}\cdot\colorbox{lgray}{$\frac{1}{j}\,\left(e^{j\omega}-e^{-j\omega}\right)$}= \]
neuper@42478
  1669
%   \[ \frac{1}{\omega}\, e^{-j2\omega}\cdot\colorbox{lgray}{$2\, sin(\omega)$} \]
neuper@42478
  1670
%     {\small\textit{
neuper@42478
  1671
%       \noindent Sometimes it is also useful to be able to apply some
neuper@42478
  1672
% \emph{tricks} to get a beautiful and particularly meaningful result,
neuper@42478
  1673
% which we are able to interpret. But as seen in this example it can be
neuper@42478
  1674
% hard to find out what operations have to be done to transform a result
neuper@42478
  1675
% into a meaningful one.
neuper@42478
  1676
%     }}
neuper@42478
  1677
%   \end{example}
neuper@42478
  1678
% }
neuper@42478
  1679
% 
neuper@42478
  1680
% \paragraph{The only possibility,} for such a system, is to work
neuper@42478
  1681
% through its known definitions and stops if none of these
neuper@42478
  1682
% fits. Specified on Signal Processing or any other application it is
neuper@42478
  1683
% often possible to walk through by doing simple creases. This creases
neuper@42478
  1684
% are in general based on simple math operational but the challenge is
neuper@42478
  1685
% to teach the machine \emph{all}\footnote{Its pride to call it
neuper@42478
  1686
% \emph{all}.} of them. Unfortunately the goal of TP Isabelle is to
neuper@42478
  1687
% reach a high level of \emph{all} but it in real it will still be a
neuper@42478
  1688
% survey of knowledge which links to other knowledge and {{\sisac}{}} a
neuper@42478
  1689
% trainer and helper but no human compensating calculator. 
neuper@42478
  1690
% \par
neuper@42478
  1691
% {{{\sisac}{}}} itself aims to adds \emph{Algorithmic Knowledge} (formal
neuper@42478
  1692
% specifications of problems out of topics from Signal Processing, etc.)
neuper@42478
  1693
% and \emph{Application-oriented Knowledge} to the \emph{deductive} axis of
neuper@42478
  1694
% physical knowledge. The result is a three-dimensional universe of
neuper@42478
  1695
% mathematics seen in Figure~\ref{fig:mathuni}.
neuper@42478
  1696
% 
neuper@42478
  1697
% \begin{figure}
neuper@42478
  1698
%   \begin{center}
neuper@42478
  1699
%     \includegraphics{fig/universe}
neuper@42478
  1700
%     \caption{Didactic ``Math-Universe'': Algorithmic Knowledge (Programs) is
neuper@42478
  1701
%              combined with Application-oriented Knowledge (Specifications) and Deductive Knowledge (Axioms, Definitions, Theorems). The Result
neuper@42478
  1702
%              leads to a three dimensional math universe.\label{fig:mathuni}}
neuper@42478
  1703
%   \end{center}
neuper@42478
  1704
% \end{figure}
neuper@42478
  1705
% 
neuper@42478
  1706
% %WN Deine aktuelle Benennung oben wird Dir kein Fachmann abnehmen;
neuper@42478
  1707
% %WN bitte folgende Bezeichnungen nehmen:
neuper@42478
  1708
% %WN 
neuper@42478
  1709
% %WN axis 1: Algorithmic Knowledge (Programs)
neuper@42478
  1710
% %WN axis 2: Application-oriented Knowledge (Specifications)
neuper@42478
  1711
% %WN axis 3: Deductive Knowledge (Axioms, Definitions, Theorems)
neuper@42478
  1712
% %WN 
neuper@42478
  1713
% %WN und bitte die R"ander von der Grafik wegschneiden (was ich f"ur *.pdf
neuper@42478
  1714
% %WN nicht hinkriege --- weshalb ich auch die eJMT-Forderung nicht ganz
neuper@42478
  1715
% %WN verstehe, separierte PDFs zu schicken; ich w"urde *.png schicken)
neuper@42478
  1716
% 
neuper@42478
  1717
% %JR Ränder und beschriftung geändert. Keine Ahnung warum eJMT sich pdf's
neuper@42478
  1718
% %JR wünschen, würde ebenfalls png oder ähnliches verwenden, aber wenn pdf's
neuper@42478
  1719
% %JR gefordert werden WN2...
neuper@42478
  1720
% %WN2 meiner Meinung nach hat sich eJMT unklar ausgedr"uckt (z.B. kann
neuper@42478
  1721
% %WN2 man meines Wissens pdf-figures nicht auf eine bestimmte Gr"osse
neuper@42478
  1722
% %WN2 zusammenschneiden um die R"ander weg zu bekommen)
neuper@42478
  1723
% %WN2 Mein Vorschlag ist, in umserem tex-file bei *.png zu bleiben und
neuper@42478
  1724
% %WN2 png + pdf figures mitzuschicken.
neuper@42478
  1725
% 
neuper@42478
  1726
% \subsection{Notes on Problems with Traditional Notation}
neuper@42478
  1727
% 
neuper@42478
  1728
% \paragraph{During research} on these topic severely problems on
neuper@42478
  1729
% traditional notations have been discovered. Some of them have been
neuper@42478
  1730
% known in computer science for many years now and are still unsolved,
neuper@42478
  1731
% one of them aggregates with the so called \emph{Lambda Calculus},
neuper@42478
  1732
% Example~\ref{eg:lamda} provides a look on the problem that embarrassed
neuper@42478
  1733
% us.
neuper@42478
  1734
% 
neuper@42478
  1735
% \vbox{
neuper@42478
  1736
%   \begin{example}
neuper@42478
  1737
%     \label{eg:lamda}
neuper@42478
  1738
% 
neuper@42478
  1739
%   \[ f(x)=\ldots\;  \quad R \rightarrow \quad R \]
neuper@42478
  1740
% 
neuper@42478
  1741
% 
neuper@42478
  1742
%   \[ f(p)=\ldots\;  p \in \quad R \]
neuper@42478
  1743
% 
neuper@42478
  1744
%     {\small\textit{
neuper@42478
  1745
%       \noindent Above we see two equations. The first equation aims to
neuper@42478
  1746
% be a mapping of an function from the reel range to the reel one, but
neuper@42478
  1747
% when we change only one letter we get the second equation which
neuper@42478
  1748
% usually aims to insert a reel point $p$ into the reel function. In
neuper@42478
  1749
% computer science now we have the problem to tell the machine (TP) the
neuper@42478
  1750
% difference between this two notations. This Problem is called
neuper@42478
  1751
% \emph{Lambda Calculus}.
neuper@42478
  1752
%     }}
neuper@42478
  1753
%   \end{example}
neuper@42478
  1754
% }
neuper@42478
  1755
% 
neuper@42478
  1756
% \paragraph{An other problem} is that terms are not full simplified in
neuper@42478
  1757
% traditional notations, in {{\sisac}} we have to simplify them complete
neuper@42478
  1758
% to check weather results are compatible or not. in e.g. the solutions
neuper@42478
  1759
% of an second order linear equation is an rational in {{\sisac}} but in
neuper@42478
  1760
% tradition we keep fractions as long as possible and as long as they
neuper@42478
  1761
% aim to be \textit{beautiful} (1/8, 5/16,...).
neuper@42478
  1762
% \subparagraph{The math} which should be mechanized in Computer Theorem
neuper@42478
  1763
% Provers (\emph{TP}) has (almost) a problem with traditional notations
neuper@42478
  1764
% (predicate calculus) for axioms, definitions, lemmas, theorems as a
neuper@42478
  1765
% computer program or script is not able to interpret every Greek or
neuper@42478
  1766
% Latin letter and every Greek, Latin or whatever calculations
neuper@42478
  1767
% symbol. Also if we would be able to handle these symbols we still have
neuper@42478
  1768
% a problem to interpret them at all. (Follow up \hbox{Example
neuper@42478
  1769
% \ref{eg:symbint1}})
neuper@42478
  1770
% 
neuper@42478
  1771
% \vbox{
neuper@42478
  1772
%   \begin{example}
neuper@42478
  1773
%     \label{eg:symbint1}
neuper@42478
  1774
%     \[
neuper@42478
  1775
%       u\left[n\right] \ \ldots \ unitstep
neuper@42478
  1776
%     \]
neuper@42478
  1777
%     {\small\textit{
neuper@42478
  1778
%       \noindent The unitstep is something we need to solve Signal
neuper@42478
  1779
% Processing problem classes. But in {{{\sisac}{}}} the rectangular
neuper@42478
  1780
% brackets have a different meaning. So we abuse them for our
neuper@42478
  1781
% requirements. We get something which is not defined, but usable. The
neuper@42478
  1782
% Result is syntax only without semantic.
neuper@42478
  1783
%     }}
neuper@42478
  1784
%   \end{example}
neuper@42478
  1785
% }
neuper@42478
  1786
% 
neuper@42478
  1787
% In different problems, symbols and letters have different meanings and
neuper@42478
  1788
% ask for different ways to get through. (Follow up \hbox{Example
neuper@42478
  1789
% \ref{eg:symbint2}}) 
neuper@42478
  1790
% 
neuper@42478
  1791
% \vbox{
neuper@42478
  1792
%   \begin{example}
neuper@42478
  1793
%     \label{eg:symbint2}
neuper@42478
  1794
%     \[
neuper@42478
  1795
%       \widehat{\ }\ \widehat{\ }\ \widehat{\ } \  \ldots \  exponent
neuper@42478
  1796
%     \]
neuper@42478
  1797
%     {\small\textit{
neuper@42478
  1798
%     \noindent For using exponents the three \texttt{widehat} symbols
neuper@42478
  1799
% are required. The reason for that is due the development of
neuper@42478
  1800
% {{{\sisac}{}}} the single \texttt{widehat} and also the double were
neuper@42478
  1801
% already in use for different operations.
neuper@42478
  1802
%     }}
neuper@42478
  1803
%   \end{example}
neuper@42478
  1804
% }
neuper@42478
  1805
% 
neuper@42478
  1806
% \paragraph{Also the output} can be a problem. We are familiar with a
neuper@42478
  1807
% specified notations and style taught in university but a computer
neuper@42478
  1808
% program has no knowledge of the form proved by a professor and the
neuper@42478
  1809
% machines themselves also have not yet the possibilities to print every
neuper@42478
  1810
% symbol (correct) Recent developments provide proofs in a human
neuper@42478
  1811
% readable format but according to the fact that there is no money for
neuper@42478
  1812
% good working formal editors yet, the style is one thing we have to
neuper@42478
  1813
% live with.
neuper@42478
  1814
% 
neuper@42478
  1815
% \section{Problems rising out of the Development Environment}
neuper@42478
  1816
% 
neuper@42478
  1817
% fehlermeldungen! TODO
jan@42463
  1818
neuper@42492
  1819
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\end{verbatim}
neuper@42492
  1820
neuper@42464
  1821
\section{Conclusion}\label{conclusion}
neuper@42492
  1822
This paper gives a first experience report about programming with a
neuper@42492
  1823
TP-based programming language.
jan@42463
  1824
neuper@42492
  1825
\medskip A brief re-introduction of the novel kind of programming
neuper@42492
  1826
language by example of the {\sisac}-prototype makes the paper
neuper@42492
  1827
self-contained. The main section describes all the main concepts
neuper@42492
  1828
involved in TP-based programming and all the sub-tasks concerning
neuper@42492
  1829
respective implementation: mechanisation of mathematics and domain
neuper@42492
  1830
modelling, implementation of term rewriting systems for the
neuper@42492
  1831
rewriting-engine, formal (implicit) specification of the problem to be
neuper@42492
  1832
(explicitly) described by the program, implement the many components
neuper@42492
  1833
required for Lucas-Interpretation and finally implementation of the
neuper@42492
  1834
program itself.
neuper@42492
  1835
neuper@42492
  1836
The many concepts and sub-tasks involved in programming require a
neuper@42492
  1837
comprehensive workflow; first experiences with the workflow as
neuper@42492
  1838
supported by the present prototype are described as well: Isabelle +
neuper@42492
  1839
Isar + jEdit provide appropriate components for establishing an
neuper@42492
  1840
efficient development environment integrating computation and
neuper@42492
  1841
deduction. However, the present state of the prototype is far off a
neuper@42492
  1842
state appropriate for wide-spread use: the prototype of the program
neuper@42492
  1843
language lacks expressiveness and elegance, the prototype of the
neuper@42492
  1844
development environment is hardly usable: error messages still address
neuper@42492
  1845
the developer of the prototype's interpreter rather than the
neuper@42492
  1846
application programmer, implementation of the many settings for the
neuper@42492
  1847
Lucas-Interpreter is cumbersome.
neuper@42492
  1848
neuper@42492
  1849
From these experiences a successful proof of concept can be concluded:
neuper@42492
  1850
programming arbitrary problems from engineering sciences is possible,
neuper@42492
  1851
in principle even in the prototype. Furthermore the experiences allow
neuper@42492
  1852
to conclude detailed requirements for further development:
neuper@42492
  1853
\begin{itemize}
neuper@42492
  1854
\item Clarify underlying logics such that programming is smoothly
neuper@42492
  1855
integrated with verification of the program; the post-condition should
neuper@42492
  1856
be proved more or less automatically, otherwise working engineers
neuper@42492
  1857
would not encounter such programming.
neuper@42492
  1858
\item Combine the prototype's programming language with Isabelle's
neuper@42492
  1859
powerful function package and probably with more of SML's
neuper@42492
  1860
pattern-matching features; include parallel execution on multi-core
neuper@42492
  1861
machines into the language desing.
neuper@42492
  1862
\item Extend the prototype's Lucas-Interpreter such that it also
neuper@42492
  1863
handles functions defined by use of Isabelle's functions package; and
neuper@42492
  1864
generalize Isabelle's code generator such that efficient code for the
neuper@42492
  1865
whole of the defined programming language can be generated (for
neuper@42492
  1866
multi-core machines).
neuper@42492
  1867
\item Develop an efficient development environment with
neuper@42492
  1868
integration of programming and proving, with management not only of
neuper@42492
  1869
Isabelle theories, but also of large collections of specifications and
neuper@42492
  1870
of programs.
neuper@42492
  1871
\end{itemize} 
neuper@42492
  1872
Provided successful accomplishment, these points provide distinguished
neuper@42492
  1873
components for virtual workbenches appealing to practictioner of
neuper@42492
  1874
engineering in the near future.
neuper@42492
  1875
neuper@42492
  1876
\medskip And all programming with a TP-based language will
neuper@42492
  1877
subsequently create interactive tutoring as a side-effect:
neuper@42492
  1878
Lucas-Interpretation not only provides an interactive programming
neuper@42492
  1879
environment, Lucas-Interpretation also can provide TP-based services
neuper@42492
  1880
for a flexible dialog component with adaptive user guidance for
neuper@42492
  1881
independent and inquiry-based learning.
neuper@42492
  1882
jan@42463
  1883
jan@42463
  1884
\bibliographystyle{alpha}
jan@42463
  1885
\bibliography{references}
jan@42463
  1886
jan@42463
  1887
\end{document}