doc-src/isac/jrocnik/eJMT-paper/jrocnik_eJMT.tex
author Jan Rocnik <jan.rocnik@student.tugraz.at>
Tue, 11 Sep 2012 09:32:57 +0200
changeset 42494 887ecee74dce
parent 42491 a9cee7518066
child 42495 f9669d38b631
permissions -rwxr-xr-x
jrocnik: paper: reserved space for 3.5
jan@42463
     1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
     2
% Electronic Journal of Mathematics and Technology (eJMT) %
jan@42463
     3
% style sheet for LaTeX.  Please do not modify sections   %
jan@42463
     4
% or commands marked 'eJMT'.                              %
jan@42463
     5
%                                                         %
jan@42463
     6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
     7
%                                                         %
jan@42463
     8
% eJMT commands                                           %
jan@42463
     9
%                                                         %
jan@42463
    10
\documentclass[12pt,a4paper]{article}%                    %
jan@42463
    11
\usepackage{times}                                        %
jan@42463
    12
\usepackage{amsfonts,amsmath,amssymb}                     %
jan@42463
    13
\usepackage[a4paper]{geometry}                            %
jan@42463
    14
\usepackage{fancyhdr}                                     %
jan@42463
    15
\usepackage{color}                                        %
jan@42463
    16
\usepackage[pdftex]{hyperref} % see note below            %
jan@42463
    17
\usepackage{graphicx}%                                    %
jan@42463
    18
\hypersetup{                                              %
jan@42463
    19
    a4paper,                                              %
jan@42463
    20
    breaklinks                                            %
jan@42463
    21
}                                                         %
jan@42463
    22
%                                                         %
jan@42463
    23
\newtheorem{theorem}{Theorem}                             %
jan@42463
    24
\newtheorem{acknowledgement}[theorem]{Acknowledgement}    %
jan@42463
    25
\newtheorem{algorithm}[theorem]{Algorithm}                %
jan@42463
    26
\newtheorem{axiom}[theorem]{Axiom}                        %
jan@42463
    27
\newtheorem{case}[theorem]{Case}                          %
jan@42463
    28
\newtheorem{claim}[theorem]{Claim}                        %
jan@42463
    29
\newtheorem{conclusion}[theorem]{Conclusion}              %
jan@42463
    30
\newtheorem{condition}[theorem]{Condition}                %
jan@42463
    31
\newtheorem{conjecture}[theorem]{Conjecture}              %
jan@42463
    32
\newtheorem{corollary}[theorem]{Corollary}                %
jan@42463
    33
\newtheorem{criterion}[theorem]{Criterion}                %
jan@42463
    34
\newtheorem{definition}[theorem]{Definition}              %
jan@42463
    35
\newtheorem{example}[theorem]{Example}                    %
jan@42463
    36
\newtheorem{exercise}[theorem]{Exercise}                  %
jan@42463
    37
\newtheorem{lemma}[theorem]{Lemma}                        %
jan@42463
    38
\newtheorem{notation}[theorem]{Notation}                  %
jan@42463
    39
\newtheorem{problem}[theorem]{Problem}                    %
jan@42463
    40
\newtheorem{proposition}[theorem]{Proposition}            %
jan@42463
    41
\newtheorem{remark}[theorem]{Remark}                      %
jan@42463
    42
\newtheorem{solution}[theorem]{Solution}                  %
jan@42463
    43
\newtheorem{summary}[theorem]{Summary}                    %
jan@42463
    44
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }  %
jan@42463
    45
{\ \rule{0.5em}{0.5em}}                                   %
jan@42463
    46
%                                                         %
jan@42463
    47
% eJMT page dimensions                                    %
jan@42463
    48
%                                                         %
jan@42463
    49
\geometry{left=2cm,right=2cm,top=3.2cm,bottom=4cm}        %
jan@42463
    50
%                                                         %
jan@42463
    51
% eJMT header & footer                                    %
jan@42463
    52
%                                                         %
jan@42463
    53
\newcounter{ejmtFirstpage}                                %
jan@42463
    54
\setcounter{ejmtFirstpage}{1}                             %
jan@42463
    55
\pagestyle{empty}                                         %
jan@42463
    56
\setlength{\headheight}{14pt}                             %
jan@42463
    57
\geometry{left=2cm,right=2cm,top=3.2cm,bottom=4cm}        %
jan@42463
    58
\pagestyle{fancyplain}                                    %
jan@42463
    59
\fancyhf{}                                                %
jan@42463
    60
\fancyhead[c]{\small The Electronic Journal of Mathematics%
jan@42463
    61
\ and Technology, Volume 1, Number 1, ISSN 1933-2823}     %
jan@42463
    62
\cfoot{%                                                  %
jan@42463
    63
  \ifnum\value{ejmtFirstpage}=0%                          %
jan@42463
    64
    {\vtop to\hsize{\hrule\vskip .2cm\thepage}}%          %
jan@42463
    65
  \else\setcounter{ejmtFirstpage}{0}\fi%                  %
jan@42463
    66
}                                                         %
jan@42463
    67
%                                                         %
jan@42463
    68
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
    69
%
jan@42463
    70
% Please place your own definitions here
jan@42463
    71
%
jan@42463
    72
\def\isac{${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$}
jan@42463
    73
\def\sisac{\footnotesize${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$}
jan@42463
    74
jan@42463
    75
\usepackage{color}
jan@42463
    76
\definecolor{lgray}{RGB}{238,238,238}
jan@42463
    77
jan@42463
    78
%
jan@42463
    79
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
    80
%                                                         %
jan@42463
    81
% How to use hyperref                                     %
jan@42463
    82
% -------------------                                     %
jan@42463
    83
%                                                         %
jan@42463
    84
% Probably the only way you will need to use the hyperref %
jan@42463
    85
% package is as follows.  To make some text, say          %
jan@42463
    86
% "My Text Link", into a link to the URL                  %
jan@42463
    87
% http://something.somewhere.com/mystuff, use             %
jan@42463
    88
%                                                         %
jan@42463
    89
% \href{http://something.somewhere.com/mystuff}{My Text Link}
jan@42463
    90
%                                                         %
jan@42463
    91
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
    92
%
jan@42463
    93
\begin{document}
jan@42463
    94
%
jan@42463
    95
% document title
jan@42463
    96
%
neuper@42464
    97
\title{Trials with TP-based Programming
neuper@42464
    98
\\
neuper@42464
    99
for Interactive Course Material}%
jan@42463
   100
%
jan@42463
   101
% Single author.  Please supply at least your name,
jan@42463
   102
% email address, and affiliation here.
jan@42463
   103
%
jan@42463
   104
\author{\begin{tabular}{c}
jan@42463
   105
\textit{Jan Ro\v{c}nik} \\
jan@42463
   106
jan.rocnik@student.tugraz.at \\
jan@42463
   107
IST, SPSC\\
neuper@42464
   108
Graz University of Technologie\\
jan@42463
   109
Austria\end{tabular}
jan@42463
   110
}%
jan@42463
   111
%
jan@42463
   112
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
   113
%                                                         %
jan@42463
   114
% eJMT commands - do not change these                     %
jan@42463
   115
%                                                         %
jan@42463
   116
\date{}                                                   %
jan@42463
   117
\maketitle                                                %
jan@42463
   118
%                                                         %
jan@42463
   119
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
   120
%
jan@42463
   121
% abstract
jan@42463
   122
%
jan@42463
   123
\begin{abstract}
jan@42463
   124
jan@42463
   125
Traditional course material in engineering disciplines lacks an
jan@42463
   126
important component, interactive support for step-wise problem
neuper@42464
   127
solving. Theorem-Proving (TP) technology is appropriate for one part
jan@42463
   128
of such support, in checking user-input. For the other part of such
jan@42463
   129
support, guiding the learner towards a solution, another kind of
jan@42463
   130
technology is required. %TODO ... connect to prototype ...
jan@42463
   131
jan@42463
   132
A prototype combines TP with a programming language, the latter
jan@42463
   133
interpreted in a specific way: certain statements in a program, called
jan@42463
   134
tactics, are treated as breakpoints where control is handed over to
jan@42463
   135
the user. An input formula is checked by TP (using logical context
jan@42463
   136
built up by the interpreter); and if a learner gets stuck, a program
jan@42463
   137
describing the steps towards a solution of a problem ``knows the next
jan@42463
   138
step''. This kind of interpretation is called Lucas-Interpretation for
jan@42463
   139
\emph{TP-based programming languages}.
jan@42463
   140
jan@42463
   141
This paper describes the prototype's TP-based programming language
jan@42463
   142
within a case study creating interactive material for an advanced
jan@42463
   143
course in Signal Processing: implementation of definitions and
jan@42463
   144
theorems in TP, formal specification of a problem and step-wise
jan@42463
   145
development of the program solving the problem. Experiences with the
neuper@42464
   146
ork flow in iterative development with testing and identifying errors
jan@42463
   147
are described, too. The description clarifies the components missing
jan@42463
   148
in the prototype's language as well as deficiencies experienced during
jan@42463
   149
programming.
jan@42463
   150
\par
jan@42463
   151
These experiences are particularly notable, because the author is the
jan@42463
   152
first programmer using the language beyond the core team which
jan@42463
   153
developed the prototype's TP-based language interpreter.
jan@42463
   154
%
jan@42463
   155
\end{abstract}%
jan@42463
   156
%
jan@42463
   157
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
   158
%                                                         %
jan@42463
   159
% eJMT command                                            %
jan@42463
   160
%                                                         %
jan@42463
   161
\thispagestyle{fancy}                                     %
jan@42463
   162
%                                                         %
jan@42463
   163
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
   164
%
jan@42463
   165
% Please use the following to indicate sections, subsections,
jan@42463
   166
% etc.  Please also use \subsubsection{...}, \paragraph{...}
jan@42463
   167
% and \subparagraph{...} as necessary.
jan@42463
   168
%
jan@42463
   169
neuper@42464
   170
\section{Introduction}\label{intro}
jan@42463
   171
jan@42466
   172
% \paragraph{Didactics of mathematics} 
jan@42466
   173
%WN: wenn man in einem high-quality paper von 'didactics' spricht, 
jan@42466
   174
%WN muss man am state-of-the-art ankn"upfen -- siehe
jan@42466
   175
%WN W.Neuper, On the Emergence of TP-based Educational Math Assistants
neuper@42464
   176
% faces a specific issue, a gap
neuper@42464
   177
% between (1) introduction of math concepts and skills and (2)
neuper@42464
   178
% application of these concepts and skills, which usually are separated
neuper@42464
   179
% into different units in curricula (for good reasons). For instance,
neuper@42464
   180
% (1) teaching partial fraction decomposition is separated from (2)
neuper@42464
   181
% application for inverse Z-transform in signal processing.
neuper@42464
   182
% 
neuper@42464
   183
% \par This gap is an obstacle for applying math as an fundamental
neuper@42464
   184
% thinking technology in engineering: In (1) motivation is lacking
neuper@42464
   185
% because the question ``What is this stuff good for?'' cannot be
neuper@42464
   186
% treated sufficiently, and in (2) the ``stuff'' is not available to
neuper@42464
   187
% students in higher semesters as widespread experience shows.
neuper@42464
   188
% 
neuper@42464
   189
% \paragraph{Motivation} taken by this didactic issue on the one hand,
neuper@42464
   190
% and ongoing research and development on a novel kind of educational
neuper@42464
   191
% mathematics assistant at Graz University of
neuper@42464
   192
% Technology~\footnote{http://www.ist.tugraz.at/isac/} promising to
neuper@42464
   193
% scope with this issue on the other hand, several institutes are
neuper@42464
   194
% planning to join their expertise: the Institute for Information
neuper@42464
   195
% Systems and Computer Media (IICM), the Institute for Software
neuper@42464
   196
% Technology (IST), the Institutes for Mathematics, the Institute for
neuper@42464
   197
% Signal Processing and Speech Communication (SPSC), the Institute for
neuper@42464
   198
% Structural Analysis and the Institute of Electrical Measurement and
neuper@42464
   199
% Measurement Signal Processing.
jan@42466
   200
%WN diese Information ist f"ur das Paper zu spezielle, zu aktuell 
jan@42466
   201
%WN und damit zu verg"anglich.
neuper@42464
   202
% \par This thesis is the first attempt to tackle the above mentioned
neuper@42464
   203
% issue, it focuses on Telematics, because these specific studies focus
neuper@42464
   204
% on mathematics in \emph{STEOP}, the introductory orientation phase in
neuper@42464
   205
% Austria. \emph{STEOP} is considered an opportunity to investigate the
neuper@42464
   206
% impact of {\sisac}'s prototype on the issue and others.
neuper@42464
   207
% 
jan@42466
   208
jan@42466
   209
\paragraph{Traditional course material} in engineering disciplines lacks an
neuper@42464
   210
important component, interactive support for step-wise problem
neuper@42464
   211
solving. Theorem-Proving (TP) technology can provide such support by
neuper@42464
   212
specific services. An important part of such services is called
neuper@42464
   213
``next-step-guidance'', generated by a specific kind of ``TP-based
neuper@42464
   214
programming language''. In the
neuper@42464
   215
{\sisac}-project~\footnote{http://www.ist.tugraz.at/projects/isac/} such
neuper@42464
   216
a language is prototyped in line with~\cite{plmms10} and built upon
neuper@42464
   217
the theorem prover
neuper@42464
   218
Isabelle~\cite{Nipkow-Paulson-Wenzel:2002}\footnote{http://isabelle.in.tum.de/}.
neuper@42464
   219
The TP services are coordinated by a specific interpreter for the
neuper@42464
   220
programming language, called
neuper@42464
   221
Lucas-Interpreter~\cite{wn:lucas-interp-12}. The language and the
neuper@42464
   222
interpreter will be briefly re-introduced in order to make the paper
neuper@42464
   223
self-contained.
jan@42463
   224
jan@42466
   225
\subparagraph{The main part} of the paper is an account of first experiences
neuper@42464
   226
with programming in this TP-based language. The experience was gained
neuper@42464
   227
in a case study by the author. The author was considered an ideal
neuper@42464
   228
candidate for this study for the following reasons: as a student in
neuper@42464
   229
Telematics (computer science with focus on Signal Processing) he had
neuper@42464
   230
general knowledge in programming as well as specific domain knowledge
neuper@42464
   231
in Signal Processing; and he was not involved in the development of
neuper@42464
   232
{\sisac}'s programming language and interpeter, thus a novice to the
neuper@42464
   233
language.
jan@42463
   234
jan@42466
   235
\subparagraph{The goal} of the case study was (1) some TP-based programs for
neuper@42464
   236
interactive course material for a specific ``Adavanced Signal
neuper@42464
   237
Processing Lab'' in a higher semester, (2) respective program
neuper@42464
   238
development with as little advice from the {\sisac}-team and (3) records
neuper@42464
   239
and comments for the main steps of development in an Isabelle theory;
neuper@42464
   240
this theory should provide guidelines for future programmers. An
neuper@42464
   241
excerpt from this theory is the main part of this paper.
jan@42466
   242
\par
jan@42466
   243
The paper will use the problem in Fig.\ref{fig-interactive} as a
jan@42463
   244
running example:
jan@42463
   245
\begin{figure} [htb]
jan@42463
   246
\begin{center}
neuper@42468
   247
\includegraphics[width=140mm]{fig/isac-Ztrans-math-3}
neuper@42468
   248
%\includegraphics[width=140mm]{fig/isac-Ztrans-math}
jan@42463
   249
\caption{Step-wise problem solving guided by the TP-based program}
jan@42463
   250
\label{fig-interactive}
jan@42463
   251
\end{center}
jan@42463
   252
\end{figure}
jan@42466
   253
jan@42466
   254
\paragraph{The problem is} from the domain of Signal Processing and requests to
neuper@42464
   255
determine the inverse Z-transform for a given term. Fig.\ref{fig-interactive}
neuper@42464
   256
also shows the beginning of the interactive construction of a solution
neuper@42464
   257
for the problem. This construction is done in the right window named
neuper@42464
   258
``Worksheet''.
jan@42466
   259
\par
neuper@42464
   260
User-interaction on the Worksheet is {\em checked} and {\em guided} by
neuper@42464
   261
TP services:
neuper@42464
   262
\begin{enumerate}
neuper@42464
   263
\item Formulas input by the user are {\em checked} by TP: such a
neuper@42464
   264
formula establishes a proof situation --- the prover has to derive the
neuper@42464
   265
formula from the logical context. The context is built up from the
neuper@42464
   266
formal specification of the problem (here hidden from the user) by the
neuper@42464
   267
Lucas-Interpreter.
neuper@42464
   268
\item If the user gets stuck, the program developed below in this
neuper@42464
   269
paper ``knows the next step'' from behind the scenes. How the latter
neuper@42464
   270
TP-service is exploited by dialogue authoring is out of scope of this
neuper@42464
   271
paper and can be studied in~\cite{gdaroczy-EP-13}.
neuper@42464
   272
\end{enumerate} It should be noted that the programmer using the
neuper@42464
   273
TP-based language is not concerned with interaction at all; we will
neuper@42464
   274
see that the program contains neither input-statements nor
neuper@42464
   275
output-statements. Rather, interaction is handled by services
neuper@42464
   276
generated automatically.
jan@42466
   277
\par
jan@42466
   278
So there is a clear separation of concerns: Dialogues are
neuper@42464
   279
adapted by dialogue authors (in Java-based tools), using automatically
neuper@42464
   280
generated TP services, while the TP-based program is written by
neuper@42464
   281
mathematics experts (in Isabelle/ML). The latter is concern of this
neuper@42464
   282
paper.
jan@42466
   283
jan@42466
   284
\paragraph{The paper is structed} as follows: The introduction
neuper@42464
   285
\S\ref{intro} is followed by a brief re-introduction of the TP-based
neuper@42464
   286
programming language in \S\ref{PL}, which extends the executable
neuper@42464
   287
fragment of Isabelle's language (\S\ref{PL-isab}) by tactics which
neuper@42464
   288
play a specific role in Lucas-Interpretation and in providing the TP
neuper@42464
   289
services (\S\ref{PL-tacs}). The main part in \S\ref{trial} describes
neuper@42464
   290
the main steps in developing the program for the running example:
neuper@42464
   291
prepare domain knowledge, implement the formal specification of the
neuper@42464
   292
problem, prepare the environment for the program, implement the
neuper@42464
   293
program. The workflow of programming, debugging and testing is
neuper@42464
   294
described in \S\ref{workflow}. The conclusion \S\ref{conclusion} will
neuper@42464
   295
give directions identified for future development. 
neuper@42464
   296
jan@42463
   297
jan@42463
   298
\section{\isac's Prototype for a Programming Language}\label{PL} 
jan@42463
   299
The prototype's language extends the executable fragment in the
jan@42463
   300
language of the theorem prover
jan@42463
   301
Isabelle~\cite{Nipkow-Paulson-Wenzel:2002}\footnote{http://isabelle.in.tum.de/}
jan@42463
   302
by tactics which have a specific role in Lucas-Interpretation.
jan@42463
   303
jan@42463
   304
\subsection{The Executable Fragment of Isabelle's Language}\label{PL-isab}
jan@42463
   305
The executable fragment consists of data-type and function
jan@42463
   306
definitions.  It's usability even suggests that fragment for
jan@42463
   307
introductory courses \cite{nipkow-prog-prove}. HOL is a typed logic
jan@42463
   308
whose type system resembles that of functional programming
jan@42463
   309
languages. Thus there are
jan@42463
   310
\begin{description}
jan@42463
   311
\item[base types,] in particular \textit{bool}, the type of truth
jan@42463
   312
values, \textit{nat}, \textit{int}, \textit{complex}, and the types of
jan@42463
   313
natural, integer and complex numbers respectively in mathematics.
jan@42463
   314
\item[type constructors] allow to define arbitrary types, from
jan@42463
   315
\textit{set}, \textit{list} to advanced data-structures like
jan@42463
   316
\textit{trees}, red-black-trees etc.
jan@42463
   317
\item[function types,] denoted by $\Rightarrow$.
jan@42463
   318
\item[type variables,] denoted by $^\prime a, ^\prime b$ etc, provide
jan@42463
   319
type polymorphism. Isabelle automatically computes the type of each
jan@42463
   320
variable in a term by use of Hindley-Milner type inference
jan@42463
   321
\cite{pl:hind97,Milner-78}.
jan@42463
   322
\end{description}
jan@42463
   323
jan@42463
   324
\textbf{Terms} are formed as in functional programming by applying
jan@42463
   325
functions to arguments. If $f$ is a function of type
jan@42463
   326
$\tau_1\Rightarrow \tau_2$ and $t$ is a term of type $\tau_1$ then
jan@42463
   327
$f\;t$ is a term of type~$\tau_2$. $t\;::\;\tau$ means that term $t$
jan@42463
   328
has type $\tau$. There are many predefined infix symbols like $+$ and
jan@42463
   329
$\leq$ most of which are overloaded for various types.
jan@42463
   330
jan@42463
   331
HOL also supports some basic constructs from functional programming:
jan@42463
   332
{\it\label{isabelle-stmts}
jan@42463
   333
\begin{tabbing} 123\=\kill
jan@42463
   334
\>$( \; {\tt if} \; b \; {\tt then} \; t_1 \; {\tt else} \; t_2 \;)$\\
jan@42463
   335
\>$( \; {\tt let} \; x=t \; {\tt in} \; u \; )$\\
jan@42463
   336
\>$( \; {\tt case} \; t \; {\tt of} \; {\it pat}_1
jan@42463
   337
  \Rightarrow t_1 \; |\dots| \; {\it pat}_n\Rightarrow t_n \; )$
jan@42463
   338
\end{tabbing} }
neuper@42482
   339
\noindent The running example's program uses some of these elements
neuper@42482
   340
(marked by {\tt tt-font} on p.\pageref{s:impl}): for instance {\tt
neuper@42482
   341
let}\dots{\tt in} in lines {\rm 02} \dots {\rm 13}. In fact, the whole program
neuper@42482
   342
is an Isabelle term with specific function constants like {\tt
neuper@42482
   343
program}, {\tt Take}, {\tt Rewrite}, {\tt Subproblem} and {\tt
neuper@42482
   344
Rewrite\_Set} in lines {\rm 01, 03. 04, 07, 10} and {\rm 11, 12}
neuper@42482
   345
respectively.
jan@42463
   346
jan@42463
   347
% Terms may also contain $\lambda$-abstractions. For example, $\lambda
jan@42463
   348
% x. \; x$ is the identity function.
jan@42463
   349
neuper@42467
   350
%JR warum auskommentiert? WN2...
neuper@42467
   351
%WN2 weil ein Punkt wie dieser in weiteren Zusammenh"angen innerhalb
neuper@42467
   352
%WN2 des Papers auftauchen m"usste; nachdem ich einen solchen
neuper@42467
   353
%WN2 Zusammenhang _noch_ nicht sehe, habe ich den Punkt _noch_ nicht
neuper@42467
   354
%WN2 gel"oscht.
neuper@42467
   355
%WN2 Wenn der Punkt nicht weiter gebraucht wird, nimmt er nur wertvollen
neuper@42467
   356
%WN2 Platz f"ur Anderes weg.
jan@42466
   357
neuper@42464
   358
\textbf{Formulae} are terms of type \textit{bool}. There are the basic
jan@42463
   359
constants \textit{True} and \textit{False} and the usual logical
jan@42463
   360
connectives (in decreasing order of precedence): $\neg, \land, \lor,
jan@42463
   361
\rightarrow$.
jan@42463
   362
neuper@42464
   363
\textbf{Equality} is available in the form of the infix function $=$
neuper@42464
   364
of type $a \Rightarrow a \Rightarrow {\it bool}$. It also works for
neuper@42464
   365
formulas, where it means ``if and only if''.
jan@42463
   366
jan@42463
   367
\textbf{Quantifiers} are written $\forall x. \; P$ and $\exists x. \;
jan@42463
   368
P$.  Quantifiers lead to non-executable functions, so functions do not
jan@42463
   369
always correspond to programs, for instance, if comprising \\$(
jan@42463
   370
\;{\it if} \; \exists x.\;P \; {\it then} \; e_1 \; {\it else} \; e_2
jan@42463
   371
\;)$.
jan@42463
   372
jan@42463
   373
\subsection{\isac's Tactics for Lucas-Interpretation}\label{PL-tacs}
jan@42463
   374
The prototype extends Isabelle's language by specific statements
neuper@42464
   375
called tactics~\footnote{{\sisac}'s tactics are different from
jan@42463
   376
Isabelle's tactics: the former concern steps in a calculation, the
jan@42463
   377
latter concern proof steps.}  and tacticals. For the programmer these
jan@42463
   378
statements are functions with the following signatures:
jan@42463
   379
jan@42463
   380
\begin{description}
jan@42463
   381
\item[Rewrite:] ${\it theorem}\Rightarrow{\it term}\Rightarrow{\it
jan@42463
   382
term} * {\it term}\;{\it list}$:
jan@42463
   383
this tactic appplies {\it theorem} to a {\it term} yielding a {\it
jan@42463
   384
term} and a {\it term list}, the list are assumptions generated by
jan@42463
   385
conditional rewriting. For instance, the {\it theorem}
jan@42463
   386
$b\not=0\land c\not=0\Rightarrow\frac{a\cdot c}{b\cdot c}=\frac{a}{b}$
jan@42463
   387
applied to the {\it term} $\frac{2\cdot x}{3\cdot x}$ yields
jan@42463
   388
$(\frac{2}{3}, [x\not=0])$.
jan@42463
   389
jan@42463
   390
\item[Rewrite\_Set:] ${\it ruleset}\Rightarrow{\it
jan@42463
   391
term}\Rightarrow{\it term} * {\it term}\;{\it list}$:
jan@42463
   392
this tactic appplies {\it ruleset} to a {\it term}; {\it ruleset} is
jan@42463
   393
a confluent and terminating term rewrite system, in general. If
jan@42463
   394
none of the rules ({\it theorem}s) is applicable on interpretation
jan@42463
   395
of this tactic, an exception is thrown.
jan@42463
   396
jan@42463
   397
% \item[Rewrite\_Inst:] ${\it substitution}\Rightarrow{\it
jan@42463
   398
% theorem}\Rightarrow{\it term}\Rightarrow{\it term} * {\it term}\;{\it
jan@42463
   399
% list}$:
jan@42463
   400
% 
jan@42463
   401
% \item[Rewrite\_Set\_Inst:] ${\it substitution}\Rightarrow{\it
jan@42463
   402
% ruleset}\Rightarrow{\it term}\Rightarrow{\it term} * {\it term}\;{\it
jan@42463
   403
% list}$:
jan@42463
   404
jan@42463
   405
\item[Substitute:] ${\it substitution}\Rightarrow{\it
neuper@42482
   406
term}\Rightarrow{\it term}$: allows to access sub-terms.
jan@42463
   407
jan@42463
   408
\item[Take:] ${\it term}\Rightarrow{\it term}$:
jan@42463
   409
this tactic has no effect in the program; but it creates a side-effect
jan@42463
   410
by Lucas-Interpretation (see below) and writes {\it term} to the
jan@42463
   411
Worksheet.
jan@42463
   412
jan@42463
   413
\item[Subproblem:] ${\it theory} * {\it specification} * {\it
jan@42463
   414
method}\Rightarrow{\it argument}\;{\it list}\Rightarrow{\it term}$:
neuper@42482
   415
this tactic is a generalisation of a function call: it takes an
neuper@42482
   416
\textit{argument list} as usual, and additionally a triple consisting
neuper@42482
   417
of an Isabelle \textit{theory}, an implicit \textit{specification} of the
neuper@42482
   418
program and a \textit{method} containing data for Lucas-Interpretation,
neuper@42482
   419
last not least a program (as an explicit specification)~\footnote{In
neuper@42482
   420
interactive tutoring these three items can be determined explicitly
neuper@42482
   421
by the user.}.
jan@42463
   422
\end{description}
jan@42463
   423
The tactics play a specific role in
jan@42463
   424
Lucas-Interpretation~\cite{wn:lucas-interp-12}: they are treated as
neuper@42482
   425
break-points where, as a side-effect, a line is added to a calculation
neuper@42483
   426
as a protocol for proceeding towards a solution in step-wise problem
neuper@42483
   427
solving. At the same points Lucas-Interpretation serves interactive
neuper@42483
   428
tutoring and control is handed over to the user. The user is free to
neuper@42483
   429
investigate underlying knowledge, applicable theorems, etc.  And the
neuper@42483
   430
user can proceed constructing a solution by input of a tactic to be
neuper@42483
   431
applied or by input of a formula; in the latter case the
jan@42463
   432
Lucas-Interpreter has built up a logical context (initialised with the
jan@42463
   433
precondition of the formal specification) such that Isabelle can
jan@42463
   434
derive the formula from this context --- or give feedback, that no
jan@42463
   435
derivation can be found.
jan@42463
   436
jan@42463
   437
\subsection{Tacticals for Control of Interpretation}
jan@42463
   438
The flow of control in a program can be determined by {\tt if then else}
jan@42463
   439
and {\tt case of} as mentioned on p.\pageref{isabelle-stmts} and also
jan@42463
   440
by additional tacticals:
jan@42463
   441
\begin{description}
jan@42463
   442
\item[Repeat:] ${\it tactic}\Rightarrow{\it term}\Rightarrow{\it
jan@42463
   443
term}$: iterates over tactics which take a {\it term} as argument as
neuper@42482
   444
long as a tactic is applicable (for instance, {\tt Rewrite\_Set} might
jan@42463
   445
not be applicable).
jan@42463
   446
jan@42463
   447
\item[Try:] ${\it tactic}\Rightarrow{\it term}\Rightarrow{\it term}$:
jan@42463
   448
if {\it tactic} is applicable, then it is applied to {\it term},
neuper@42483
   449
otherwise {\it term} is passed on without changes.
jan@42463
   450
jan@42463
   451
\item[Or:] ${\it tactic}\Rightarrow{\it tactic}\Rightarrow{\it
neuper@42483
   452
term}\Rightarrow{\it term}$: If the first {\it tactic} is applicable,
neuper@42483
   453
it is applied to the first {\it term} yielding another {\it term},
neuper@42483
   454
otherwise the second {\it tactic} is applied; if none is applicable an
neuper@42483
   455
exception is raised.
jan@42463
   456
jan@42463
   457
\item[@@:] ${\it tactic}\Rightarrow{\it tactic}\Rightarrow{\it
neuper@42483
   458
term}\Rightarrow{\it term}$: applies the first {\it tactic} to the
neuper@42483
   459
first {\it term} yielding an intermediate term (not appearing in the
neuper@42483
   460
signature) to which the second {\it tactic} is applied.
jan@42463
   461
jan@42463
   462
\item[While:] ${\it term::bool}\Rightarrow{\it tactic}\Rightarrow{\it
neuper@42483
   463
term}\Rightarrow{\it term}$: if the first {\it term} is true, then the
neuper@42483
   464
{\it tactic} is applied to the first {\it term} yielding an
neuper@42483
   465
intermediate term (not appearing in the signature); the intermediate
neuper@42483
   466
term is added to the environment the first {\it term} is evaluated in
neuper@42483
   467
etc as long as the first {\it term} is true.
jan@42463
   468
\end{description}
neuper@42483
   469
The tacticals are not treated as break-points by Lucas-Interpretation
neuper@42483
   470
and thus do not contribute to the calculation nor to interaction.
jan@42463
   471
jan@42466
   472
\section{Development of a Program on Trial}\label{trial} 
jan@42466
   473
As mentioned above, {\sisac} is an experimental system for a proof of
jan@42466
   474
concept for Lucas-Interpretation~\cite{wn:lucas-interp-12}.  The
jan@42466
   475
latter interprets a specific kind of TP-based programming language,
jan@42466
   476
which is as experimental as the whole prototype --- so programming in
jan@42466
   477
this language can be only ``on trial'', presently.  However, as a
jan@42466
   478
prototype, the language addresses essentials described below.
jan@42466
   479
jan@42466
   480
\subsection{Mechanization of Math --- Domain Engineering}\label{isabisac}
jan@42466
   481
neuper@42467
   482
%WN was Fachleute unter obigem Titel interessiert findet sich
jan@42466
   483
%WN unterhalb des auskommentierten Textes.
jan@42466
   484
jan@42466
   485
%WN der Text unten spricht Benutzer-Aspekte anund ist nicht speziell
jan@42466
   486
%WN auf Computer-Mathematiker fokussiert.
neuper@42464
   487
% \paragraph{As mentioned in the introduction,} a prototype of an
neuper@42464
   488
% educational math assistant called
neuper@42464
   489
% {{\sisac}}\footnote{{{\sisac}}=\textbf{Isa}belle for
neuper@42464
   490
% \textbf{C}alculations, see http://www.ist.tugraz.at/isac/.} bridges
neuper@42464
   491
% the gap between (1) introducation and (2) application of mathematics:
neuper@42464
   492
% {{\sisac}} is based on Computer Theorem Proving (TP), a technology which
neuper@42464
   493
% requires each fact and each action justified by formal logic, so
neuper@42464
   494
% {{{\sisac}{}}} makes justifications transparent to students in
neuper@42464
   495
% interactive step-wise problem solving. By that way {{\sisac}} already
neuper@42464
   496
% can serve both:
neuper@42464
   497
% \begin{enumerate}
neuper@42464
   498
%   \item Introduction of math stuff (in e.g. partial fraction
neuper@42464
   499
% decomposition) by stepwise explaining and exercising respective
neuper@42464
   500
% symbolic calculations with ``next step guidance (NSG)'' and rigorously
neuper@42464
   501
% checking steps freely input by students --- this also in context with
neuper@42464
   502
% advanced applications (where the stuff to be taught in higher
neuper@42464
   503
% semesters can be skimmed through by NSG), and
neuper@42464
   504
%   \item Application of math stuff in advanced engineering courses
neuper@42464
   505
% (e.g. problems to be solved by inverse Z-transform in a Signal
neuper@42464
   506
% Processing Lab) and now without much ado about basic math techniques
neuper@42464
   507
% (like partial fraction decomposition): ``next step guidance'' supports
neuper@42464
   508
% students in independently (re-)adopting such techniques.
neuper@42464
   509
% \end{enumerate} 
neuper@42464
   510
% Before the question is answers, how {{\sisac}}
neuper@42464
   511
% accomplishes this task from a technical point of view, some remarks on
neuper@42464
   512
% the state-of-the-art is given, therefor follow up Section~\ref{emas}.
neuper@42464
   513
% 
neuper@42464
   514
% \subsection{Educational Mathematics Assistants (EMAs)}\label{emas}
neuper@42464
   515
% 
jan@42466
   516
% \paragraph{Educational software in mathematics} is, if at all, based
jan@42466
   517
% on Computer Algebra Systems (CAS, for instance), Dynamic Geometry
jan@42466
   518
% Systems (DGS, for instance \footnote{GeoGebra http://www.geogebra.org}
jan@42466
   519
% \footnote{Cinderella http://www.cinderella.de/}\footnote{GCLC
jan@42466
   520
% http://poincare.matf.bg.ac.rs/~janicic/gclc/}) or spread-sheets. These
jan@42466
   521
% base technologies are used to program math lessons and sometimes even
jan@42466
   522
% exercises. The latter are cumbersome: the steps towards a solution of
jan@42466
   523
% such an interactive exercise need to be provided with feedback, where
jan@42466
   524
% at each step a wide variety of possible input has to be foreseen by
jan@42466
   525
% the programmer - so such interactive exercises either require high
neuper@42464
   526
% development efforts or the exercises constrain possible inputs.
neuper@42464
   527
% 
jan@42466
   528
% \subparagraph{A new generation} of educational math assistants (EMAs)
jan@42466
   529
% is emerging presently, which is based on Theorem Proving (TP). TP, for
jan@42466
   530
% instance Isabelle and Coq, is a technology which requires each fact
jan@42466
   531
% and each action justified by formal logic. Pushed by demands for
jan@42466
   532
% \textit{proven} correctness of safety-critical software TP advances
jan@42466
   533
% into software engineering; from these advancements computer
jan@42466
   534
% mathematics benefits in general, and math education in particular. Two
neuper@42464
   535
% features of TP are immediately beneficial for learning:
neuper@42464
   536
% 
jan@42466
   537
% \paragraph{TP have knowledge in human readable format,} that is in
jan@42466
   538
% standard predicate calculus. TP following the LCF-tradition have that
jan@42466
   539
% knowledge down to the basic definitions of set, equality,
jan@42466
   540
% etc~\footnote{http://isabelle.in.tum.de/dist/library/HOL/HOL.html};
jan@42466
   541
% following the typical deductive development of math, natural numbers
jan@42466
   542
% are defined and their properties
jan@42466
   543
% proven~\footnote{http://isabelle.in.tum.de/dist/library/HOL/Number\_Theory/Primes.html},
jan@42466
   544
% etc. Present knowledge mechanized in TP exceeds high-school
jan@42466
   545
% mathematics by far, however by knowledge required in software
neuper@42464
   546
% technology, and not in other engineering sciences.
neuper@42464
   547
% 
jan@42466
   548
% \paragraph{TP can model the whole problem solving process} in
jan@42466
   549
% mathematical problem solving {\em within} a coherent logical
jan@42466
   550
% framework. This is already being done by three projects, by
neuper@42464
   551
% Ralph-Johan Back, by ActiveMath and by Carnegie Mellon Tutor.
neuper@42464
   552
% \par
jan@42466
   553
% Having the whole problem solving process within a logical coherent
jan@42466
   554
% system, such a design guarantees correctness of intermediate steps and
jan@42466
   555
% of the result (which seems essential for math software); and the
jan@42466
   556
% second advantage is that TP provides a wealth of theories which can be
jan@42466
   557
% exploited for mechanizing other features essential for educational
neuper@42464
   558
% software.
neuper@42464
   559
% 
neuper@42464
   560
% \subsubsection{Generation of User Guidance in EMAs}\label{user-guid}
neuper@42464
   561
% 
jan@42466
   562
% One essential feature for educational software is feedback to user
neuper@42464
   563
% input and assistance in coming to a solution.
neuper@42464
   564
% 
jan@42466
   565
% \paragraph{Checking user input} by ATP during stepwise problem solving
jan@42466
   566
% is being accomplished by the three projects mentioned above
jan@42466
   567
% exclusively. They model the whole problem solving process as mentioned
jan@42466
   568
% above, so all what happens between formalized assumptions (or formal
jan@42466
   569
% specification) and goal (or fulfilled postcondition) can be
jan@42466
   570
% mechanized. Such mechanization promises to greatly extend the scope of
neuper@42464
   571
% educational software in stepwise problem solving.
neuper@42464
   572
% 
jan@42466
   573
% \paragraph{NSG (Next step guidance)} comprises the system's ability to
jan@42466
   574
% propose a next step; this is a challenge for TP: either a radical
jan@42466
   575
% restriction of the search space by restriction to very specific
jan@42466
   576
% problem classes is required, or much care and effort is required in
jan@42466
   577
% designing possible variants in the process of problem solving
neuper@42464
   578
% \cite{proof-strategies-11}.
neuper@42464
   579
% \par
jan@42466
   580
% Another approach is restricted to problem solving in engineering
jan@42466
   581
% domains, where a problem is specified by input, precondition, output
jan@42466
   582
% and postcondition, and where the postcondition is proven by ATP behind
jan@42466
   583
% the scenes: Here the possible variants in the process of problem
jan@42466
   584
% solving are provided with feedback {\em automatically}, if the problem
jan@42466
   585
% is described in a TP-based programing language: \cite{plmms10} the
jan@42466
   586
% programmer only describes the math algorithm without caring about
jan@42466
   587
% interaction (the respective program is functional and even has no
jan@42466
   588
% input or output statements!); interaction is generated as a
jan@42466
   589
% side-effect by the interpreter --- an efficient separation of concern
jan@42466
   590
% between math programmers and dialog designers promising application
neuper@42464
   591
% all over engineering disciplines.
neuper@42464
   592
% 
neuper@42464
   593
% 
neuper@42464
   594
% \subsubsection{Math Authoring in Isabelle/ISAC\label{math-auth}}
jan@42466
   595
% Authoring new mathematics knowledge in {{\sisac}} can be compared with
jan@42466
   596
% ``application programing'' of engineering problems; most of such
jan@42466
   597
% programing uses CAS-based programing languages (CAS = Computer Algebra
neuper@42464
   598
% Systems; e.g. Mathematica's or Maple's programing language).
neuper@42464
   599
% 
jan@42466
   600
% \paragraph{A novel type of TP-based language} is used by {{\sisac}{}}
jan@42466
   601
% \cite{plmms10} for describing how to construct a solution to an
jan@42466
   602
% engineering problem and for calling equation solvers, integration,
jan@42466
   603
% etc~\footnote{Implementation of CAS-like functionality in TP is not
jan@42466
   604
% primarily concerned with efficiency, but with a didactic question:
jan@42466
   605
% What to decide for: for high-brow algorithms at the state-of-the-art
jan@42466
   606
% or for elementary algorithms comprehensible for students?} within TP;
jan@42466
   607
% TP can ensure ``systems that never make a mistake'' \cite{casproto} -
neuper@42464
   608
% are impossible for CAS which have no logics underlying.
neuper@42464
   609
% 
jan@42466
   610
% \subparagraph{Authoring is perfect} by writing such TP based programs;
jan@42466
   611
% the application programmer is not concerned with interaction or with
jan@42466
   612
% user guidance: this is concern of a novel kind of program interpreter
jan@42466
   613
% called Lucas-Interpreter. This interpreter hands over control to a
jan@42466
   614
% dialog component at each step of calculation (like a debugger at
jan@42466
   615
% breakpoints) and calls automated TP to check user input following
neuper@42464
   616
% personalized strategies according to a feedback module.
neuper@42464
   617
% \par
jan@42466
   618
% However ``application programing with TP'' is not done with writing a
jan@42466
   619
% program: according to the principles of TP, each step must be
jan@42466
   620
% justified. Such justifications are given by theorems. So all steps
jan@42466
   621
% must be related to some theorem, if there is no such theorem it must
jan@42466
   622
% be added to the existing knowledge, which is organized in so-called
jan@42466
   623
% \textbf{theories} in Isabelle. A theorem must be proven; fortunately
jan@42466
   624
% Isabelle comprises a mechanism (called ``axiomatization''), which
jan@42466
   625
% allows to omit proofs. Such a theorem is shown in
neuper@42464
   626
% Example~\ref{eg:neuper1}.
jan@42466
   627
jan@42466
   628
The running example, introduced by Fig.\ref{fig-interactive} on
jan@42466
   629
p.\pageref{fig-interactive}, requires to determine the inverse $\cal
jan@42466
   630
Z$-transform for a class of functions. The domain of Signal Processing
jan@42466
   631
is accustomed to specific notation for the resulting functions, which
jan@42466
   632
are absolutely summable and are called TODO: $u[n]$, where $u$ is the
jan@42466
   633
function, $n$ is the argument and the brackets indicate that the
jan@42466
   634
arguments are TODO. Surprisingly, Isabelle accepts the rules for
jan@42466
   635
${\cal Z}^{-1}$ in this traditional notation~\footnote{Isabelle
jan@42466
   636
experts might be particularly surprised, that the brackets do not
jan@42466
   637
cause errors in typing (as lists).}:
neuper@42464
   638
%\vbox{
neuper@42464
   639
% \begin{example}
jan@42463
   640
  \label{eg:neuper1}
jan@42463
   641
  {\small\begin{tabbing}
jan@42463
   642
  123\=123\=123\=123\=\kill
jan@42463
   643
  \hfill \\
jan@42463
   644
  \>axiomatization where \\
neuper@42464
   645
  \>\>  rule1: ``${\cal Z}^{-1}\;1 = \delta [n]$'' and\\
neuper@42464
   646
  \>\>  rule2: ``$\vert\vert z \vert\vert > 1 \Rightarrow {\cal Z}^{-1}\;z / (z - 1) = u [n]$'' and\\
jan@42466
   647
  \>\>  rule3: ``$\vert\vert$ z $\vert\vert$ < 1 ==> z / (z - 1) = -u [-n - 1]'' and \\
jan@42466
   648
%TODO
jan@42466
   649
  \>\>  rule4: ``$\vert\vert$ z $\vert\vert$ > $\vert\vert$ $\alpha$ $\vert\vert$ ==> z / (z - $\alpha$) = $\alpha^n$ $\cdot$ u [n]'' and\\
jan@42466
   650
%TODO
jan@42466
   651
  \>\>  rule5: ``$\vert\vert$ z $\vert\vert$ < $\vert\vert$ $\alpha$ $\vert\vert$ ==> z / (z - $\alpha$) = -($\alpha^n$) $\cdot$ u [-n - 1]'' and\\
jan@42466
   652
%TODO
jan@42466
   653
  \>\>  rule6: ``$\vert\vert$ z $\vert\vert$ > 1 ==> z/(z - 1)$^2$ = n $\cdot$ u [n]''\\
jan@42466
   654
%TODO
jan@42463
   655
  \end{tabbing}
jan@42463
   656
  }
neuper@42464
   657
% \end{example}
jan@42466
   658
%}
jan@42466
   659
These 6 rules can be used as conditional rewrite rules, depending on
jan@42466
   660
the respective convergence radius. Satisfaction from accordance with traditional notation
jan@42466
   661
contrasts with the above word {\em axiomatization}: As TP-based, the
jan@42466
   662
programming language expects these rules as {\em proved} theorems, and
jan@42466
   663
not as axioms implemented in the above brute force manner; otherwise
jan@42466
   664
all the verification efforts envisaged (like proof of the
jan@42466
   665
post-condition, see below) would be meaningless.
jan@42466
   666
jan@42466
   667
Isabelle provides a large body of knowledge, rigorously proven from
jan@42466
   668
the basic axioms of mathematics~\footnote{This way of rigorously
jan@42466
   669
deriving all knowledge from first principles is called the
jan@42466
   670
LCF-paradigm in TP.}. In the case of the Z-Transform the most advanced
jan@42466
   671
knowledge can be found in the theoris on Multivariate
jan@42466
   672
Analysis~\footnote{http://isabelle.in.tum.de/dist/library/HOL/HOL-Multivariate\_Analysis}. However,
jan@42466
   673
building up knowledge such that a proof for the above rules would be
jan@42466
   674
reasonably short and easily comprehensible, still requires lots of
jan@42466
   675
work (and is definitely out of scope of our case study).
jan@42466
   676
neuper@42487
   677
At the state-of-the-art in mechanization of knowledge in engineering
neuper@42487
   678
sciences, the process does not stop with the mechanization of
neuper@42487
   679
mathematics traditionally used in these sciences. Rather, ``Formal
neuper@42487
   680
Methods''~\cite{ fm-03} are expected to proceed to formal and explicit
neuper@42487
   681
description of physical items.  Signal Processing, for instance is
neuper@42487
   682
concerned with physical devices for signal acquisition and
neuper@42487
   683
reconstruction, which involve measuring a physical signal, storing it,
neuper@42487
   684
and possibly later rebuilding the original signal or an approximation
neuper@42487
   685
thereof. For digital systems, this typically includes sampling and
neuper@42487
   686
quantization; devices for signal compression, including audio
neuper@42487
   687
compression, image compression, and video compression, etc.  ``Domain
neuper@42487
   688
engineering''\cite{db:dom-eng} is concerned with {\em specification}
neuper@42487
   689
of these devices' components and features; this part in the process of
neuper@42487
   690
mechanization is only at the beginning in domains like Signal
neuper@42487
   691
Processing.
jan@42466
   692
neuper@42487
   693
TP-based programming, concern of this paper, is determined to
jan@42466
   694
add ``algorithmic knowledge'' in Fig.\ref{fig:mathuni} on
jan@42466
   695
p.\pageref{fig:mathuni}.  As we shall see below, TP-based programming
jan@42466
   696
starts with a formal {\em specification} of the problem to be solved.
neuper@42478
   697
\begin{figure}
neuper@42478
   698
  \begin{center}
jan@42494
   699
    %\includegraphics[width=110mm]{fig/math-universe-small}
neuper@42487
   700
    \caption{The three-dimensional universe of mathematics knowledge}
neuper@42478
   701
    \label{fig:mathuni}
neuper@42478
   702
  \end{center}
neuper@42478
   703
\end{figure}
neuper@42487
   704
The language for both axes is defined in the axis at the bottom, deductive
neuper@42487
   705
knowledge, in {\sisac} represented by Isabelle's theories.
jan@42466
   706
jan@42489
   707
\subsection{Preparation of Simplifiers for the Program}\label{simp}
jan@42489
   708
jan@42489
   709
\paragraph{If it is clear} how the later calculation should look like and when
jan@42489
   710
which mathematic rule should be applied, it can be started to find ways of
jan@42489
   711
simplifications. This includes in e.g. the simplification of reational 
jan@42489
   712
expressions or also rewrites of an expession.
jan@42489
   713
\subparagraph{Obligate is the use} of the function \texttt{drop\_questionmarks} 
jan@42489
   714
which excludes irrelevant symbols out of the expression. (Irrelevant symbols may 
jan@42489
   715
be result out of the system during the calculation. The function has to be
jan@42489
   716
applied for two reasons. First two make every placeholder in a expression 
jan@42489
   717
useable as a constant and second to provide a better view at the frontend.) 
jan@42489
   718
\subparagraph{Most rewrites are represented} through rulesets this
jan@42489
   719
rulesets tell the machine which terms have to be rewritten into which
jan@42489
   720
representation. In the upcoming programm a rewrite can be applied only in using
jan@42489
   721
such rulesets on existing terms.
jan@42489
   722
\paragraph{The core} of our implemented problem is the Z-Transformation
jan@42489
   723
(remember the description of the running example, introduced by
jan@42489
   724
Fig.\ref{fig-interactive} on p.\pageref{fig-interactive}) due the fact that the
jan@42489
   725
transformation itself would require higher math which isn't yet avaible in our system we decided to choose the way like it is applied in labratory and problem classes at our university - by applying transformation rules (collected in
jan@42489
   726
transformation tables).
jan@42489
   727
\paragraph{Rules,} in {\sisac{}}'s programming language can be designed by the
jan@42489
   728
use of axiomatizations like shown in Example~\ref{eg:ruledef}. This rules can be
jan@42489
   729
collected in a ruleset (collection of rules) and applied to a given expression
jan@42494
   730
as follows in the next example code.
jan@42489
   731
jan@42494
   732
%\begin{example}
jan@42489
   733
  \label{eg:ruledef}
jan@42489
   734
  \hfill\\
jan@42489
   735
  \begin{verbatim}
jan@42489
   736
  axiomatization where
jan@42489
   737
    rule1: ``1 = $\delta$[n]'' and
jan@42489
   738
    rule2: ``|| z || > 1 ==> z / (z - 1) = u [n]'' and
jan@42489
   739
    rule3: ``|| z || < 1 ==> z / (z - 1) = -u [-n - 1]''
jan@42489
   740
  \end{verbatim}
jan@42494
   741
%\end{example}
jan@42489
   742
jan@42494
   743
%\begin{example}
jan@42489
   744
  \hfill\\
jan@42489
   745
  \label{eg:ruleapp}
jan@42489
   746
  \begin{enumerate}
jan@42489
   747
  \item Store rules in ruleset:
jan@42489
   748
  \begin{verbatim}
jan@42489
   749
  val inverse_Z = append_rls "inverse_Z" e_rls
jan@42489
   750
    [ Thm ("rule1",num_str @{thm rule1}),
jan@42489
   751
      Thm ("rule2",num_str @{thm rule2}),
jan@42489
   752
      Thm ("rule3",num_str @{thm rule3})
jan@42489
   753
    ];\end{verbatim}
jan@42489
   754
  \item Define exression:
jan@42489
   755
  \begin{verbatim}
jan@42489
   756
  val sample_term = str2term "z/(z-1)+z/(z-</delta>)+1";\end{verbatim}
jan@42489
   757
  \item Apply ruleset:
jan@42489
   758
  \begin{verbatim}
jan@42489
   759
  val SOME (sample_term', asm) = 
jan@42489
   760
    rewrite_set_ thy true inverse_Z sample_term;\end{verbatim}
jan@42489
   761
  \end{enumerate}
jan@42494
   762
%\end{example}
jan@42489
   763
 
jan@42489
   764
The use of rulesets makes it much easier to develop our designated applications,
jan@42489
   765
but the programmer has to be careful and patient. When applying rulesets
jan@42489
   766
two important issues have to be mentionend:
jan@42489
   767
\subparagraph{How often} the rules have to be applied? In case of
jan@42489
   768
transformations it is quite clear that we use them once but other fields
jan@42489
   769
reuqire to apply rules until a special condition is reached (e.g.
jan@42489
   770
a simplification is finished when there is nothing to be done left).
jan@42489
   771
\subparagraph{The order} in which rules are applied often takes a big effect
jan@42489
   772
and has to be evaluated for each purpose once again.
jan@42489
   773
\par
jan@42489
   774
In our special case of Signal Processing and the rules defined in
jan@42489
   775
Example~\ref{eg:ruledef} we have to apply rule~1 first of all to transform all
jan@42489
   776
constants. After this step has been done it no mather which rule fit's next.
jan@42469
   777
jan@42466
   778
\subsection{Preparation of ML-Functions}\label{funs}
jan@42469
   779
jan@42469
   780
\paragraph{Explicit Problems} require explicit methods to solve them, and within
jan@42469
   781
this methods we have some explicit steps to do. This steps can be unique for
jan@42469
   782
a special problem or refindable in other problems. No mather what case, such
jan@42469
   783
steps often require some technical functions behind. For the solving process
jan@42469
   784
of the Inverse Z Transformation and the corresponding partial fraction it was
jan@42469
   785
neccessary to build helping functions like \texttt{get\_denominator},
jan@42469
   786
\texttt{get\_numerator} or \texttt{argument\_in}. First two functions help us
jan@42473
   787
to filter the denominator or numerator out of a fraction, last one helps us to
jan@42469
   788
get to know the bound variable in a equation.
jan@42469
   789
\par
jan@42473
   790
By taking \texttt{get\_denominator} as an example, we want to explain how to 
jan@42473
   791
implement new functions into the existing system and how we can later use them
jan@42473
   792
in our program.
jan@42469
   793
jan@42469
   794
\subsubsection{Find a place to Store the Function}
jan@42473
   795
jan@42469
   796
The whole system builds up on a well defined structure of Knowledge. This
jan@42473
   797
Knowledge sets up at the Path:
jan@42473
   798
\begin{center}\ttfamily src/Tools/isac/Knowledge\normalfont\end{center}
jan@42470
   799
For implementing the Function \texttt{get\_denominator} (which let us extract
jan@42470
   800
the denominator out of a fraction) we have choosen the Theory (file)
jan@42469
   801
\texttt{Rational.thy}.
jan@42469
   802
jan@42469
   803
\subsubsection{Write down the new Function}
jan@42473
   804
jan@42470
   805
In upper Theory we now define the new function and its purpose:
jan@42470
   806
\begin{verbatim}
jan@42470
   807
  get_denominator :: "real => real"
jan@42470
   808
\end{verbatim}
jan@42470
   809
This command tells the machine that a function with the name
jan@42470
   810
\texttt{get\_denominator} exists which gets a real expression as argument and
jan@42473
   811
returns once again a real expression. Now we are able to implement the function
jan@42494
   812
itself, upcoming example now shows the implementation of
jan@42473
   813
\texttt{get\_denominator}.
jan@42469
   814
jan@42494
   815
%\begin{example}
jan@42470
   816
  \label{eg:getdenom}
jan@42470
   817
  \begin{verbatim}
jan@42469
   818
jan@42470
   819
01  (*
jan@42470
   820
02   *("get_denominator",
jan@42470
   821
03   *  ("Rational.get_denominator", eval_get_denominator ""))
jan@42470
   822
04   *)
jan@42470
   823
05  fun eval_get_denominator (thmid:string) _ 
jan@42470
   824
06            (t as Const ("Rational.get_denominator", _) $
jan@42470
   825
07                (Const ("Rings.inverse_class.divide", _) $num 
jan@42470
   826
08                  $denom)) thy = 
jan@42470
   827
09          SOME (mk_thmid thmid "" 
jan@42470
   828
10              (Print_Mode.setmp [] 
jan@42470
   829
11                (Syntax.string_of_term (thy2ctxt thy)) denom) "", 
jan@42470
   830
12              Trueprop $ (mk_equality (t, denom)))
jan@42470
   831
13    | eval_get_denominator _ _ _ _ = NONE;\end{verbatim}
jan@42494
   832
%\end{example}
jan@42469
   833
jan@42470
   834
Line \texttt{07} and \texttt{08} are describing the mode of operation the best -
jan@42470
   835
there is a fraction\\ (\ttfamily Rings.inverse\_class.divide\normalfont) 
jan@42470
   836
splittet
jan@42473
   837
into its two parts (\texttt{\$num \$denom}). The lines before are additionals
jan@42470
   838
commands for declaring the function and the lines after are modeling and 
jan@42470
   839
returning a real variable out of \texttt{\$denom}.
jan@42469
   840
jan@42469
   841
\subsubsection{Add a test for the new Function}
jan@42469
   842
jan@42473
   843
\paragraph{Everytime when adding} a new function it is essential also to add
jan@42473
   844
a test for it. Tests for all functions are sorted in the same structure as the
jan@42473
   845
knowledge it self and can be found up from the path:
jan@42473
   846
\begin{center}\ttfamily test/Tools/isac/Knowledge\normalfont\end{center}
jan@42473
   847
This tests are nothing very special, as a first prototype the functionallity
jan@42473
   848
of a function can be checked by evaluating the result of a simple expression
jan@42473
   849
passed to the function. Example~\ref{eg:getdenomtest} shows the test for our
jan@42473
   850
\textit{just} created function \texttt{get\_denominator}.
jan@42469
   851
jan@42494
   852
%\begin{example}
jan@42473
   853
\label{eg:getdenomtest}
jan@42473
   854
\begin{verbatim}
jan@42473
   855
jan@42473
   856
01 val thy = @{theory Isac};
jan@42473
   857
02 val t = term_of (the (parse thy "get_denominator ((a +x)/b)"));
jan@42473
   858
03 val SOME (_, t') = eval_get_denominator "" 0 t thy;
jan@42473
   859
04 if term2str t' = "get_denominator ((a + x) / b) = b" then ()
jan@42473
   860
05 else error "get_denominator ((a + x) / b) = b" \end{verbatim}
jan@42494
   861
%\end{example}
jan@42473
   862
jan@42473
   863
\begin{description}
jan@42473
   864
\item[01] checks if the proofer set up on our {\sisac{}} System.
jan@42473
   865
\item[02] passes a simple expression (fraction) to our suddenly created
jan@42473
   866
          function.
jan@42473
   867
\item[04] checks if the resulting variable is the correct one (in this case
jan@42473
   868
          ``b'' the denominator) and returns.
jan@42473
   869
\item[05] handels the error case and reports that the function is not able to
jan@42473
   870
          solve the given problem.
jan@42473
   871
\end{description}
jan@42469
   872
jan@42491
   873
\subsection{Specification of the Problem}\label{spec}
jan@42491
   874
%WN <--> \chapter 7 der Thesis
jan@42491
   875
%WN die Argumentation unten sollte sich NUR auf Verifikation beziehen..
jan@42491
   876
jan@42491
   877
The problem of the running example is textually described in
jan@42491
   878
Fig.\ref{fig-interactive} on p.\pageref{fig-interactive}. The {\em
jan@42491
   879
formal} specification of this problem, in traditional mathematical
jan@42491
   880
notation, could look like is this:
jan@42491
   881
jan@42491
   882
%WN Hier brauchen wir die Spezifikation des 'running example' ...
jan@42491
   883
%JR Habe input, output und precond vom Beispiel eingefügt brauche aber Hilfe bei
jan@42491
   884
%JR der post condition - die existiert für uns ja eigentlich nicht aka
jan@42491
   885
%JR haben sie bis jetzt nicht beachtet WN...
jan@42491
   886
%WN2 Mein Vorschlag ist, das TODO zu lassen und deutlich zu kommentieren.
jan@42491
   887
%JR2 done
jan@42491
   888
jan@42491
   889
  \label{eg:neuper2}
jan@42491
   890
  {\small\begin{tabbing}
jan@42491
   891
  123,\=postcond \=: \= $\forall \,A^\prime\, u^\prime \,v^\prime.\,$\=\kill
jan@42491
   892
  \hfill \\
jan@42491
   893
  Specification:\\
jan@42491
   894
    \>input    \>: filterExpression $X=\frac{3}{(z-\frac{1}{4}+-\frac{1}{8}*\frac{1}{z}}$\\
jan@42491
   895
  \>precond  \>: filterExpression continius on $\mathbb{R}$ \\
jan@42491
   896
  \>output   \>: stepResponse $x[n]$ \\
jan@42491
   897
  \>postcond \>: TODO - (Mind the following remark)\\ \end{tabbing}}
jan@42491
   898
jan@42491
   899
\begin{remark}
jan@42491
   900
   Defining the postcondition requires a high amount mathematical 
jan@42491
   901
   knowledge, the difficult part in our case is not to set up this condition 
jan@42491
   902
   nor it is more to define it in a way the interpreter is able to handle it. 
jan@42491
   903
   Due the fact that implementing that mechanisms is quite the same amount as 
jan@42491
   904
   creating the programm itself, it is not avaible in our prototype.
jan@42491
   905
   \label{rm:postcond}
jan@42491
   906
\end{remark}
jan@42491
   907
jan@42491
   908
\paragraph{The implementation} of the formal specification in the present
jan@42491
   909
prototype, still bar-bones without support for authoring:
jan@42491
   910
%WN Kopie von Inverse_Z_Transform.thy, leicht versch"onert:
jan@42491
   911
{\footnotesize\label{exp-spec}
jan@42491
   912
\begin{verbatim}
jan@42491
   913
   01  store_specification
jan@42491
   914
   02    (prepare_specification
jan@42491
   915
   03      ["Jan Rocnik"]
jan@42491
   916
   04      "pbl_SP_Ztrans_inv"
jan@42491
   917
   05      thy
jan@42491
   918
   06      ( ["Inverse", "Z_Transform", "SignalProcessing"],
jan@42491
   919
   07        [ ("#Given", ["filterExpression X_eq"]),
jan@42491
   920
   08          ("#Pre"  , ["X_eq is_continuous"]),
jan@42494
   921
   09          ("#Find" , ["stepResponse n_eq"]),
jan@42491
   922
   10          ("#Post" , [" TODO "])],
jan@42491
   923
   11        append_rls Erls [Calc ("Atools.is_continuous", eval_is_continuous)], 
jan@42491
   924
   12        NONE, 
jan@42491
   925
   13        [["SignalProcessing","Z_Transform","Inverse"]]));
jan@42491
   926
\end{verbatim}}
jan@42491
   927
Although the above details are partly very technical, we explain them
jan@42491
   928
in order to document some intricacies of TP-based programming in the
jan@42491
   929
present state of the {\sisac} prototype:
jan@42491
   930
\begin{description}
jan@42491
   931
\item[01..02]\textit{store\_specification:} stores the result of the
jan@42491
   932
function \textit{prep\_specification} in a global reference
jan@42491
   933
\textit{Unsynchronized.ref}, which causes principal conflicts with
jan@42491
   934
Isabelle's asyncronous document model~\cite{Wenzel-11:doc-orient} and
jan@42491
   935
parallel execution~\cite{Makarius-09:parall-proof} and is under
jan@42491
   936
reconstruction already.
jan@42491
   937
jan@42491
   938
\textit{prep\_pbt:} translates the specification to an internal format
jan@42491
   939
which allows efficient processing; see for instance line {\rm 07}
jan@42491
   940
below.
jan@42491
   941
\item[03..04] are the ``mathematics author'' holding the copy-rights
jan@42491
   942
and a unique identifier for the specification within {\sisac},
jan@42491
   943
complare line {\rm 06}.
jan@42491
   944
\item[05] is the Isabelle \textit{theory} required to parse the
jan@42491
   945
specification in lines {\rm 07..10}.
jan@42491
   946
\item[06] is a key into the tree of all specifications as presented to
jan@42491
   947
the user (where some branches might be hidden by the dialog
jan@42491
   948
component).
jan@42491
   949
\item[07..10] are the specification with input, pre-condition, output
jan@42491
   950
and post-condition respectively; the post-condition is not handled in
jan@42491
   951
the prototype presently. (Follow up Remark~\ref{rm:postcond})
jan@42491
   952
\item[11] creates a term rewriting system (abbreviated \textit{rls} in
jan@42491
   953
{\sisac}) which evaluates the pre-condition for the actual input data.
jan@42491
   954
Only if the evaluation yields \textit{True}, a program con be started.
jan@42491
   955
\item[12]\textit{NONE:} could be \textit{SOME ``solve ...''} for a
jan@42491
   956
problem associated to a function from Computer Algebra (like an
jan@42491
   957
equation solver) which is not the case here.
jan@42491
   958
\item[13] is the specific key into the tree of programs addressing a
jan@42491
   959
method which is able to find a solution which satiesfies the
jan@42491
   960
post-condition of the specification.
jan@42491
   961
\end{description}
jan@42491
   962
jan@42491
   963
jan@42491
   964
%WN die folgenden Erkl"arungen finden sich durch "grep -r 'datatype pbt' *"
jan@42491
   965
%WN ...
jan@42491
   966
%  type pbt = 
jan@42491
   967
%     {guh  : guh,         (*unique within this isac-knowledge*)
jan@42491
   968
%      mathauthors: string list, (*copyright*)
jan@42491
   969
%      init  : pblID,      (*to start refinement with*)
jan@42491
   970
%      thy   : theory,     (* which allows to compile that pbt
jan@42491
   971
%			  TODO: search generalized for subthy (ref.p.69*)
jan@42491
   972
%      (*^^^ WN050912 NOT used during application of the problem,
jan@42491
   973
%       because applied terms may be from 'subthy' as well as from super;
jan@42491
   974
%       thus we take 'maxthy'; see match_ags !*)
jan@42491
   975
%      cas   : term option,(*'CAS-command'*)
jan@42491
   976
%      prls  : rls,        (* for preds in where_*)
jan@42491
   977
%      where_: term list,  (* where - predicates*)
jan@42491
   978
%      ppc   : pat list,
jan@42491
   979
%      (*this is the model-pattern; 
jan@42491
   980
%       it contains "#Given","#Where","#Find","#Relate"-patterns
jan@42491
   981
%       for constraints on identifiers see "fun cpy_nam"*)
jan@42491
   982
%      met   : metID list}; (* methods solving the pbt*)
jan@42491
   983
%
jan@42491
   984
%WN weil dieser Code sehr unaufger"aumt ist, habe ich die Erkl"arungen
jan@42491
   985
%WN oben selbst geschrieben.
jan@42491
   986
jan@42491
   987
jan@42491
   988
jan@42491
   989
jan@42491
   990
%WN das w"urde ich in \sec\label{progr} verschieben und
jan@42491
   991
%WN das SubProblem partial fractions zum Erkl"aren verwenden.
jan@42491
   992
% Such a specification is checked before the execution of a program is
jan@42491
   993
% started, the same applies for sub-programs. In the following example
jan@42491
   994
% (Example~\ref{eg:subprob}) shows the call of such a subproblem:
jan@42491
   995
% 
jan@42491
   996
% \vbox{
jan@42491
   997
%   \begin{example}
jan@42491
   998
%   \label{eg:subprob}
jan@42491
   999
%   \hfill \\
jan@42491
  1000
%   {\ttfamily \begin{tabbing}
jan@42491
  1001
%   ``(L\_L::bool list) = (\=SubProblem (\=Test','' \\
jan@42491
  1002
%   ``\>\>[linear,univariate,equation,test],'' \\
jan@42491
  1003
%   ``\>\>[Test,solve\_linear])'' \\
jan@42491
  1004
%   ``\>[BOOL equ, REAL z])'' \\
jan@42491
  1005
%   \end{tabbing}
jan@42491
  1006
%   }
jan@42491
  1007
%   {\small\textit{
jan@42491
  1008
%     \noindent If a program requires a result which has to be
jan@42491
  1009
% calculated first we can use a subproblem to do so. In our specific
jan@42491
  1010
% case we wanted to calculate the zeros of a fraction and used a
jan@42491
  1011
% subproblem to calculate the zeros of the denominator polynom.
jan@42491
  1012
%     }}
jan@42491
  1013
%   \end{example}
jan@42491
  1014
% }
jan@42491
  1015
jan@42491
  1016
\subsection{Implementation of the Method}\label{meth}
jan@42491
  1017
jan@42494
  1018
\paragraph{After specifieing the problem} we start to implement the method(s) of
jan@42494
  1019
the problem. The methods represent the different ways a problem can be solved,
jan@42494
  1020
this can include different mathematical tactics as well as different tactics
jan@42494
  1021
taught in different courses.
jan@42491
  1022
jan@42494
  1023
jan@42491
  1024
\begin{verbatim}
jan@42491
  1025
01 store_met
jan@42494
  1026
02  (prep_met thy "SP_InverseZTransformation_classic" [] e_metID
jan@42491
  1027
03  (["SignalProcessing", "Z_Transform", "Inverse"], 
jan@42491
  1028
04   [("#Given" ,["filterExpression (X_eq::bool)"]),
jan@42491
  1029
05    ("#Find"  ,["stepResponse (n_eq::bool)"])],
jan@42491
  1030
06   {rew_ord'="tless_true",
jan@42491
  1031
07    rls'= e_rls, 
jan@42491
  1032
08    calc = [],
jan@42491
  1033
09    srls = e_rls,
jan@42491
  1034
10    prls = e_rls,
jan@42491
  1035
11    crls = e_rls,
jan@42491
  1036
12    errpats = [],
jan@42491
  1037
13    nrls = e_rls},
jan@42494
  1038
14   "empty_programm"
jan@42491
  1039
15  ));
jan@42491
  1040
\end{verbatim}
jan@42494
  1041
jan@42494
  1042
The above code is again very technical and goes hard in detail. But to document
jan@42494
  1043
and present the neccessary steps follow up the description of the above code:
jan@42494
  1044
jan@42494
  1045
\begin{description}
jan@42494
  1046
jan@42494
  1047
\item[01-02] this to lines store the method with the given name into the system
jan@42494
  1048
\item[03] here, the path is specifiet; which capitel this method is belonging to
jan@42494
  1049
\item[04-05] as the requirements for different methods can be different we 
jan@42494
  1050
specify again the \emph{given} and the \emph{find} element.
jan@42494
  1051
\item[06]
jan@42494
  1052
\item[07]
jan@42494
  1053
\item[08]
jan@42494
  1054
\item[09]
jan@42494
  1055
\item[10]
jan@42494
  1056
\item[11]
jan@42494
  1057
\item[12]
jan@42494
  1058
\item[13]
jan@42494
  1059
\item[14] for this time we don't specify the programm itself and keep it empty.
jan@42494
  1060
Follow up \S\ref{progr} for informations on how to implement this \textit{main}
jan@42494
  1061
part.
jan@42494
  1062
jan@42494
  1063
jan@42494
  1064
\end{description}
jan@42491
  1065
neuper@42478
  1066
\subsection{Implementation of the TP-based Program}\label{progr} 
neuper@42480
  1067
So finally all the prerequisites are described and the very topic can
neuper@42480
  1068
be addressed. The program below comes back to the running example: it
neuper@42480
  1069
computes a solution for the problem from Fig.\ref{fig-interactive} on
neuper@42480
  1070
p.\pageref{fig-interactive}. The reader is reminded of
neuper@42480
  1071
\S\ref{PL-isab}, the introduction of the programming language:
neuper@42482
  1072
{\small\it\label{s:impl}
neuper@42482
  1073
\begin{tabbing}
neuper@42478
  1074
123l\=123\=123\=123\=123\=123\=123\=((x\=123\=(x \=123\=123\=\kill
neuper@42480
  1075
\>{\rm 00}\>val program =\\
neuper@42480
  1076
\>{\rm 01}\>  "{\tt Program} InverseZTransform (X\_eq::bool) =   \\
neuper@42482
  1077
\>{\rm 02}\>\>  {\tt let}                                       \\
neuper@42468
  1078
\>{\rm 03}\>\>\>  X\_eq = {\tt Take} X\_eq ;   \\
neuper@42468
  1079
\>{\rm 04}\>\>\>  X\_eq = {\tt Rewrite} ruleZY X\_eq ; \\
neuper@42468
  1080
\>{\rm 05}\>\>\>  (X\_z::real) = lhs X\_eq ;       \\ %no inside-out evaluation
neuper@42468
  1081
\>{\rm 06}\>\>\>  (z::real) = argument\_in X\_z; \\
neuper@42468
  1082
\>{\rm 07}\>\>\>  (part\_frac::real) = {\tt SubProblem} \\
neuper@42478
  1083
\>{\rm 08}\>\>\>\>\>\>\>\>  ( Isac, [partial\_fraction, rational, simplification], [] )\\
neuper@42478
  1084
%\>{\rm 10}\>\>\>\>\>\>\>\>\>  [simplification, of\_rationals, to\_partial\_fraction] ) \\
neuper@42478
  1085
\>{\rm 09}\>\>\>\>\>\>\>\>  [ (rhs X\_eq)::real, z::real ]; \\
neuper@42478
  1086
\>{\rm 10}\>\>\>  (X'\_eq::bool) = {\tt Take} ((X'::real =$>$ bool) z = ZZ\_1 part\_frac) ; \\
neuper@42478
  1087
\>{\rm 11}\>\>\>  X'\_eq = (({\tt Rewrite\_Set} ruleYZ) @@   \\
neuper@42478
  1088
\>{\rm 12}\>\>\>\>\>  $\;\;$ ({\tt Rewrite\_Set} inverse\_z)) X'\_eq \\
neuper@42482
  1089
\>{\rm 13}\>\>  {\tt in } \\
neuper@42480
  1090
\>{\rm 14}\>\>\>  X'\_eq"
neuper@42478
  1091
\end{tabbing}}
neuper@42468
  1092
% ORIGINAL FROM Inverse_Z_Transform.thy
neuper@42468
  1093
% "Script InverseZTransform (X_eq::bool) =            "^(*([], Frm), Problem (Isac, [Inverse, Z_Transform, SignalProcessing])*)
neuper@42468
  1094
% "(let X = Take X_eq;                                "^(*([1], Frm), X z = 3 / (z - 1 / 4 + -1 / 8 * (1 / z))*)
neuper@42468
  1095
% "  X' = Rewrite ruleZY False X;                     "^(*([1], Res), ?X' z = 3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))*)
neuper@42468
  1096
% "  (X'_z::real) = lhs X';                           "^(*            ?X' z*)
neuper@42468
  1097
% "  (zzz::real) = argument_in X'_z;                  "^(*            z *)
neuper@42468
  1098
% "  (funterm::real) = rhs X';                        "^(*            3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))*)
neuper@42468
  1099
%
neuper@42468
  1100
% "  (pbz::real) = (SubProblem (Isac',                "^(**)
neuper@42468
  1101
% "    [partial_fraction,rational,simplification],    "^
neuper@42468
  1102
% "    [simplification,of_rationals,to_partial_fraction]) "^
neuper@42468
  1103
% "    [REAL funterm, REAL zzz]);                     "^(*([2], Res), 4 / (z - 1 / 2) + -4 / (z - -1 / 4)*)
neuper@42468
  1104
%
neuper@42468
  1105
% "  (pbz_eq::bool) = Take (X'_z = pbz);              "^(*([3], Frm), ?X' z = 4 / (z - 1 / 2) + -4 / (z - -1 / 4)*)
neuper@42468
  1106
% "  pbz_eq = Rewrite ruleYZ False pbz_eq;            "^(*([3], Res), ?X' z = 4 * (?z / (z - 1 / 2)) + -4 * (?z / (z - -1 / 4))*)
neuper@42468
  1107
% "  pbz_eq = drop_questionmarks pbz_eq;              "^(*               4 * (z / (z - 1 / 2)) + -4 * (z / (z - -1 / 4))*)
neuper@42468
  1108
% "  (X_zeq::bool) = Take (X_z = rhs pbz_eq);         "^(*([4], Frm), X_z = 4 * (z / (z - 1 / 2)) + -4 * (z / (z - -1 / 4))*)
neuper@42468
  1109
% "  n_eq = (Rewrite_Set inverse_z False) X_zeq;      "^(*([4], Res), X_z = 4 * (1 / 2) ^^^ ?n * ?u [?n] + -4 * (-1 / 4) ^^^ ?n * ?u [?n]*)
neuper@42468
  1110
% "  n_eq = drop_questionmarks n_eq                   "^(*            X_z = 4 * (1 / 2) ^^^ n * u [n] + -4 * (-1 / 4) ^^^ n * u [n]*)
neuper@42468
  1111
% "in n_eq)"                                            (*([], Res), X_z = 4 * (1 / 2) ^^^ n * u [n] + -4 * (-1 / 4) ^^^ n * u [n]*)
neuper@42480
  1112
The program is represented as a string and part of the method in
neuper@42480
  1113
\S\ref{meth}.  As mentioned in \S\ref{PL} the program is purely
neuper@42480
  1114
functional and lacks any input statements and output statements. So
neuper@42480
  1115
the steps of calculation towards a solution (and interactive tutoring
neuper@42480
  1116
in step-wise problem solving) are created as a side-effect by
neuper@42480
  1117
Lucas-Interpretation.  The side-effects are triggered by the tactics
neuper@42482
  1118
\texttt{Take}, \texttt{Rewrite}, \texttt{SubProblem} and
neuper@42482
  1119
\texttt{Rewrite\_Set} in the above lines {\rm 03, 04, 07, 10, 11} and
neuper@42480
  1120
{\rm 12} respectively. These tactics produce the lines in the
neuper@42480
  1121
calculation on p.\pageref{flow-impl}.
neuper@42478
  1122
neuper@42480
  1123
The above lines {\rm 05, 06} do not contain a tactics, so they do not
neuper@42480
  1124
immediately contribute to the calculation on p.\pageref{flow-impl};
neuper@42482
  1125
rather, they compute actual arguments for the \texttt{SubProblem} in
neuper@42480
  1126
line {\rm 09}~\footnote{The tactics also are break-points for the
neuper@42480
  1127
interpreter, where control is handed over to the user in interactive
neuper@42482
  1128
tutoring.}. Line {\rm 11} contains tactical \textit{@@}.
neuper@42480
  1129
neuper@42480
  1130
\medskip The above program also indicates the dominant role of interactive
neuper@42478
  1131
selection of knowledge in the three-dimensional universe of
neuper@42478
  1132
mathematics as depicted in Fig.\ref{fig:mathuni} on
neuper@42482
  1133
p.\pageref{fig:mathuni}, The \texttt{SubProblem} in the above lines
neuper@42478
  1134
{\rm 07..09} is more than a function call with the actual arguments
neuper@42478
  1135
\textit{[ (rhs X\_eq)::real, z::real ]}. The programmer has to determine
neuper@42478
  1136
three items:
neuper@42480
  1137
neuper@42478
  1138
\begin{enumerate}
neuper@42478
  1139
\item the theory, in the example \textit{Isac} because different
neuper@42478
  1140
methods can be selected in Pt.3 below, which are defined in different
neuper@42478
  1141
theories with \textit{Isac} collecting them.
neuper@42480
  1142
\item the specification identified by \textit{[partial\_fraction,
neuper@42480
  1143
rational, simplification]} in the tree of specifications; this
neuper@42480
  1144
specification is analogous to the specification of the main program
neuper@42480
  1145
described in \S\ref{spec}; the problem is to find a ``partial fraction
neuper@42480
  1146
decomposition'' for a univariate rational polynomial.
neuper@42480
  1147
\item the method in the above example is \textit{[ ]}, i.e. empty,
neuper@42480
  1148
which supposes the interpreter to select one of the methods predefined
neuper@42480
  1149
in the specification, for instance in line {\rm 13} in the running
neuper@42480
  1150
example's specification on p.\pageref{exp-spec}~\footnote{The freedom
neuper@42480
  1151
(or obligation) for selection carries over to the student in
neuper@42480
  1152
interactive tutoring.}.
neuper@42478
  1153
\end{enumerate}
neuper@42478
  1154
neuper@42480
  1155
The program code, above presented as a string, is parsed by Isabelle's
neuper@42480
  1156
parser --- the program is an Isabelle term. This fact is expected to
neuper@42480
  1157
simplify verification tasks in the future; on the other hand, this
neuper@42480
  1158
fact causes troubles in error detectetion which are discussed as part
neuper@42480
  1159
of the workflow in the subsequent section.
neuper@42467
  1160
jan@42463
  1161
\section{Workflow of Programming in the Prototype}\label{workflow}
neuper@42480
  1162
The previous section presented all the duties and tasks to be accomplished by
neuper@42481
  1163
programmers of TP-based languages. Some tasks are interrelated and comprehensive,
neuper@42481
  1164
so first experiences with the workflow in programming are noted below. The notes
neuper@42481
  1165
also capture requirements for future language development.
neuper@42468
  1166
jan@42466
  1167
\subsection{Preparations and Trials}\label{flow-prep}
neuper@42481
  1168
% Build\_Inverse\_Z\_Transform.thy ... ``imports PolyEq DiffApp Partial\_Fractions''
neuper@42481
  1169
The new graphical user-interface of Isabelle~\cite{makar-jedit-12} is a great
neuper@42481
  1170
step forward for interactive theory and proof development --- and so it is for
neuper@42481
  1171
interactive program development; the specific requirements raised by interactive
neuper@42481
  1172
programming will be mentioned separately.
neuper@42481
  1173
neuper@42481
  1174
The development in the {\sisac}-prototype was done in a separate
neuper@42481
  1175
theory~\footnote{http://www.ist.tugraz.at/projects/isac/publ/Build\_Inverse\_Z\_Transform.thy}.
neuper@42481
  1176
The workflow tackled the tasks more or less following the order of the
neuper@42482
  1177
above sections from \S\ref{isabisac} to \S\ref{funs}. At each stage
neuper@42482
  1178
the interactivity of Isabelle/jEdit is very supportive. For instance,
neuper@42482
  1179
as soon as the theorems for the Z-transform are established (see
neuper@42482
  1180
\S\ref{isabisac}) it is tempting to see them at work: First we need
neuper@42482
  1181
technical prerequisites not worth to mention and parse a string to a
neuper@42482
  1182
term using {\sisac}'s function \textit{str2term}:
neuper@42482
  1183
{\footnotesize\label{exp-spec}
neuper@42482
  1184
\begin{verbatim}
neuper@42482
  1185
   ML {*
neuper@42482
  1186
     val (thy, ro, er) = (@{theory}, tless_true, eval_rls);
neuper@42482
  1187
     val t = str2term "z / (z - 1) + z / (z - \<alpha>) + 1";
neuper@42482
  1188
   *}
neuper@42482
  1189
\end{verbatim}}
neuper@42482
  1190
Then we call {\sisac}'s rewrite-engine directly by \textit{rewrite\_} (instead via Lucas-Interpreter by \textit{Rewrite}) and yield
neuper@42482
  1191
a rewritten term \textit{t'} together with assumptions:
neuper@42482
  1192
{\footnotesize\label{exp-spec}
neuper@42482
  1193
\begin{verbatim}
neuper@42482
  1194
   ML {*
neuper@42482
  1195
     val SOME (t', asm) = rewrite_ thy ro er true (num_str @{thm rule3}) t;
neuper@42482
  1196
   *}
neuper@42482
  1197
\end{verbatim}}
neuper@42482
  1198
And any evaluation of an \texttt{ML} section immediately responds with the
neuper@42482
  1199
values computed, for instance with the result of the rewrites, which above
neuper@42482
  1200
have been returned in the internal term representation --- here are the more
neuper@42482
  1201
readable string representations:
neuper@42482
  1202
{\footnotesize\label{exp-spec}
neuper@42482
  1203
\begin{verbatim}
neuper@42482
  1204
   ML {*
neuper@42482
  1205
     term2str t';
neuper@42482
  1206
     terms2str (asm);
neuper@42482
  1207
   *}
neuper@42482
  1208
   val it = "- ?u [- ?n - 1] + z / (z - α) + 1": string
neuper@42482
  1209
   val it = "[|| z || < 1]": string
neuper@42482
  1210
\end{verbatim}}
neuper@42482
  1211
Looking at the last line shows how the system will reliably handle
neuper@42482
  1212
assumptions like the convergence radius.
neuper@42482
  1213
%WN gerne w"urde ich oben das Beispiel aus subsection {*Apply Rules*}
neuper@42482
  1214
%WN aus http://www.ist.tugraz.at/projects/isac/publ/Build_Inverse_Z_Transform.thy.
neuper@42482
  1215
%WN Leider bekomme ich einen Fehler --- siehst Du eine schnelle Korrektur ?
neuper@42481
  1216
neuper@42481
  1217
neuper@42482
  1218
.\\.\\.\\
neuper@42482
  1219
neuper@42482
  1220
TODO test the function \textit{argument\_of} which is embedded in the
neuper@42482
  1221
ruleset which is used to evaluate the program by the Lucas-Interpreter.
neuper@42481
  1222
neuper@42468
  1223
.\\.\\.\\
neuper@42468
  1224
jan@42469
  1225
%JR: Hier sollte eigentlich stehen was nun bei 4.3.1 ist. Habe das erst kürzlich
jan@42469
  1226
%JR: eingefügt; das war der beinn unserer Arbeit in
jan@42469
  1227
%JR: Build_Inverse_Z_Transformation und beschreibt die meiner Meinung nach bei
jan@42469
  1228
%JR: jedem neuen Programm nötigen Schritte.
jan@42469
  1229
neuper@42468
  1230
\subsection{Implementation in Isabelle/{\isac}}\label{flow-impl}
neuper@42468
  1231
jan@42469
  1232
\paragraph{At the beginning} of the implementation it is good to decide on one
jan@42469
  1233
way the problem should be solved. We also did this for our Z-Transformation
jan@42469
  1234
Problem and have choosen the way it is also thaugt in the Signal Processing
jan@42469
  1235
Problem classes.
jan@42469
  1236
\subparagraph{By writing down} each of this neccesarry steps we are describing
jan@42469
  1237
one line of our upcoming program. In the following example we show the 
jan@42469
  1238
Calculation on the left and on the right the tactics in the program which
jan@42469
  1239
created the respective formula on the left.
jan@42469
  1240
jan@42469
  1241
\begin{example}
jan@42469
  1242
\hfill\\
neuper@42468
  1243
{\small\it
neuper@42468
  1244
\begin{tabbing}
neuper@42468
  1245
123l\=123\=123\=123\=123\=123\=123\=123\=123\=123\=123\=123\=\kill
neuper@42468
  1246
\>{\rm 01}\> $\bullet$  \> {\tt Problem } (Inverse\_Z\_Transform, [Inverse, Z\_Transform, SignalProcessing])       \`\\
neuper@42468
  1247
\>{\rm 02}\>\> $\vdash\;\;X z = \frac{3}{z - \frac{1}{4} - \frac{1}{8} \cdot z^{-1}}$       \`{\footnotesize {\tt Take} X\_eq}\\
neuper@42468
  1248
\>{\rm 03}\>\> $X z = \frac{3}{z + \frac{-1}{4} + \frac{-1}{8} \cdot \frac{1}{z}}$          \`{\footnotesize {\tt Rewrite} ruleZY X\_eq}\\
neuper@42468
  1249
\>{\rm 04}\>\> $\bullet$\> {\tt Problem } [partial\_fraction,rational,simplification]        \`{\footnotesize {\tt SubProblem} \dots}\\
neuper@42468
  1250
\>{\rm 05}\>\>\>  $\vdash\;\;\frac{3}{z + \frac{-1}{4} + \frac{-1}{8} \cdot \frac{1}{z}}=$    \`- - -\\
neuper@42468
  1251
\>{\rm 06}\>\>\>  $\frac{24}{-1 + -2 \cdot z + 8 \cdot z^2}$                                   \`- - -\\
neuper@42468
  1252
\>{\rm 07}\>\>\>  $\bullet$\> solve ($-1 + -2 \cdot z + 8 \cdot z^2,\;z$ )                      \`- - -\\
neuper@42468
  1253
\>{\rm 08}\>\>\>\>   $\vdash$ \> $\frac{3}{z + \frac{-1}{4} + \frac{-1}{8} \cdot \frac{1}{z}}=0$ \`- - -\\
neuper@42468
  1254
\>{\rm 09}\>\>\>\>   $z = \frac{2+\sqrt{-4+8}}{16}\;\lor\;z = \frac{2-\sqrt{-4+8}}{16}$           \`- - -\\
neuper@42468
  1255
\>{\rm 10}\>\>\>\>   $z = \frac{1}{2}\;\lor\;z =$ \_\_\_                                           \`- - -\\
neuper@42468
  1256
\>        \>\>\>\>   \_\_\_                                                                        \`- - -\\
neuper@42468
  1257
\>{\rm 11}\>\> \dots\> $\frac{4}{z - \frac{1}{2}} + \frac{-4}{z - \frac{-1}{4}}$                   \`\\
neuper@42468
  1258
\>{\rm 12}\>\> $X^\prime z = {\cal Z}^{-1} (\frac{4}{z - \frac{1}{2}} + \frac{-4}{z - \frac{-1}{4}})$ \`{\footnotesize {\tt Take} ((X'::real =$>$ bool) z = ZZ\_1 part\_frac)}\\
neuper@42468
  1259
\>{\rm 13}\>\> $X^\prime z = {\cal Z}^{-1} (4\cdot\frac{z}{z - \frac{1}{2}} + -4\cdot\frac{z}{z - \frac{-1}{4}})$ \`{\footnotesize{\tt Rewrite\_Set} ruleYZ X'\_eq }\\
neuper@42468
  1260
\>{\rm 14}\>\> $X^\prime z = 4\cdot(\frac{1}{2})^n \cdot u [n] + -4\cdot(\frac{-1}{4})^n \cdot u [n]$  \`{\footnotesize {\tt Rewrite\_Set} inverse\_z X'\_eq}\\
neuper@42468
  1261
\>{\rm 15}\> \dots\> $X^\prime z = 4\cdot(\frac{1}{2})^n \cdot u [n] + -4\cdot(\frac{-1}{4})^n \cdot u [n]$ \`{\footnotesize {\tt Check\_Postcond}}
neuper@42468
  1262
\end{tabbing}}
jan@42469
  1263
jan@42469
  1264
\end{example}
jan@42469
  1265
neuper@42468
  1266
% ORIGINAL FROM Inverse_Z_Transform.thy
neuper@42468
  1267
%    "Script InverseZTransform (X_eq::bool) =            "^(*([], Frm), Problem (Isac, [Inverse, Z_Transform, SignalProcessing])*)
neuper@42468
  1268
%    "(let X = Take X_eq;                                "^(*([1], Frm), X z = 3 / (z - 1 / 4 + -1 / 8 * (1 / z))*)
neuper@42468
  1269
%    "  X' = Rewrite ruleZY False X;                     "^(*([1], Res), ?X' z = 3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))*)
neuper@42468
  1270
%    "  (X'_z::real) = lhs X';                           "^(*            ?X' z*)
neuper@42468
  1271
%    "  (zzz::real) = argument_in X'_z;                  "^(*            z *)
neuper@42468
  1272
%    "  (funterm::real) = rhs X';                        "^(*            3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))*)
neuper@42468
  1273
% 
neuper@42468
  1274
%    "  (pbz::real) = (SubProblem (Isac',                "^(**)
neuper@42468
  1275
%    "    [partial_fraction,rational,simplification],    "^
neuper@42468
  1276
%    "    [simplification,of_rationals,to_partial_fraction]) "^
neuper@42468
  1277
%    "    [REAL funterm, REAL zzz]);                     "^(*([2], Res), 4 / (z - 1 / 2) + -4 / (z - -1 / 4)*)
neuper@42468
  1278
% 
neuper@42468
  1279
%    "  (pbz_eq::bool) = Take (X'_z = pbz);              "^(*([3], Frm), ?X' z = 4 / (z - 1 / 2) + -4 / (z - -1 / 4)*)
neuper@42468
  1280
%    "  pbz_eq = Rewrite ruleYZ False pbz_eq;            "^(*([3], Res), ?X' z = 4 * (?z / (z - 1 / 2)) + -4 * (?z / (z - -1 / 4))*)
neuper@42468
  1281
%    "  pbz_eq = drop_questionmarks pbz_eq;              "^(*               4 * (z / (z - 1 / 2)) + -4 * (z / (z - -1 / 4))*)
neuper@42468
  1282
%    "  (X_zeq::bool) = Take (X_z = rhs pbz_eq);         "^(*([4], Frm), X_z = 4 * (z / (z - 1 / 2)) + -4 * (z / (z - -1 / 4))*)
neuper@42468
  1283
%    "  n_eq = (Rewrite_Set inverse_z False) X_zeq;      "^(*([4], Res), X_z = 4 * (1 / 2) ^^^ ?n * ?u [?n] + -4 * (-1 / 4) ^^^ ?n * ?u [?n]*)
neuper@42468
  1284
%    "  n_eq = drop_questionmarks n_eq                   "^(*            X_z = 4 * (1 / 2) ^^^ n * u [n] + -4 * (-1 / 4) ^^^ n * u [n]*)
neuper@42468
  1285
%    "in n_eq)"                                            (*([], Res), X_z = 4 * (1 / 2) ^^^ n * u [n] + -4 * (-1 / 4) ^^^ n * u [n]*)
neuper@42468
  1286
neuper@42468
  1287
.\\.\\.\\
neuper@42468
  1288
neuper@42468
  1289
\subsection{Transfer into the Isabelle/{\isac} Knowledge}\label{flow-trans}
neuper@42468
  1290
TODO http://www.ist.tugraz.at/isac/index.php/Extend\_ISAC\_Knowledge\#Add\_an\_example ?
neuper@42468
  1291
neuper@42468
  1292
neuper@42481
  1293
http://www.ist.tugraz.at/projects/isac/publ/Inverse\_Z\_Transform.thy
neuper@42468
  1294
neuper@42478
  1295
% \newpage
neuper@42478
  1296
% -------------------------------------------------------------------
neuper@42478
  1297
% 
neuper@42478
  1298
% Material, falls noch Platz bleibt ...
neuper@42478
  1299
% 
neuper@42478
  1300
% -------------------------------------------------------------------
neuper@42478
  1301
% 
neuper@42478
  1302
% 
neuper@42478
  1303
% \subsubsection{Trials on Notation and Termination}
neuper@42478
  1304
% 
neuper@42478
  1305
% \paragraph{Technical notations} are a big problem for our piece of software,
neuper@42478
  1306
% but the reason for that isn't a fault of the software itself, one of the
neuper@42478
  1307
% troubles comes out of the fact that different technical subtopics use different
neuper@42478
  1308
% symbols and notations for a different purpose. The most famous example for such
neuper@42478
  1309
% a symbol is the complex number $i$ (in cassique math) or $j$ (in technical
neuper@42478
  1310
% math). In the specific part of signal processing one of this notation issues is
neuper@42478
  1311
% the use of brackets --- we use round brackets for analoge signals and squared
neuper@42478
  1312
% brackets for digital samples. Also if there is no problem for us to handle this
neuper@42478
  1313
% fact, we have to tell the machine what notation leads to wich meaning and that
neuper@42478
  1314
% this purpose seperation is only valid for this special topic - signal
neuper@42478
  1315
% processing.
neuper@42478
  1316
% \subparagraph{In the programming language} itself it is not possible to declare
neuper@42478
  1317
% fractions, exponents, absolutes and other operators or remarks in a way to make
neuper@42478
  1318
% them pretty to read; our only posssiblilty were ASCII characters and a handfull
neuper@42478
  1319
% greek symbols like: $\alpha, \beta, \gamma, \phi,\ldots$.
neuper@42478
  1320
% \par
neuper@42478
  1321
% With the upper collected knowledge it is possible to check if we were able to
neuper@42478
  1322
% donate all required terms and expressions.
neuper@42478
  1323
% 
neuper@42478
  1324
% \subsubsection{Definition and Usage of Rules}
neuper@42478
  1325
% 
neuper@42478
  1326
% \paragraph{The core} of our implemented problem is the Z-Transformation, due
neuper@42478
  1327
% the fact that the transformation itself would require higher math which isn't
neuper@42478
  1328
% yet avaible in our system we decided to choose the way like it is applied in
neuper@42478
  1329
% labratory and problem classes at our university - by applying transformation
neuper@42478
  1330
% rules (collected in transformation tables).
neuper@42478
  1331
% \paragraph{Rules,} in {\sisac{}}'s programming language can be designed by the
neuper@42478
  1332
% use of axiomatizations like shown in Example~\ref{eg:ruledef}
neuper@42478
  1333
% 
neuper@42478
  1334
% \begin{example}
neuper@42478
  1335
%   \label{eg:ruledef}
neuper@42478
  1336
%   \hfill\\
neuper@42478
  1337
%   \begin{verbatim}
neuper@42478
  1338
%   axiomatization where
neuper@42478
  1339
%     rule1: ``1 = $\delta$[n]'' and
neuper@42478
  1340
%     rule2: ``|| z || > 1 ==> z / (z - 1) = u [n]'' and
neuper@42478
  1341
%     rule3: ``|| z || < 1 ==> z / (z - 1) = -u [-n - 1]''
neuper@42478
  1342
%   \end{verbatim}
neuper@42478
  1343
% \end{example}
neuper@42478
  1344
% 
neuper@42478
  1345
% This rules can be collected in a ruleset and applied to a given expression as
neuper@42478
  1346
% follows in Example~\ref{eg:ruleapp}.
neuper@42478
  1347
% 
neuper@42478
  1348
% \begin{example}
neuper@42478
  1349
%   \hfill\\
neuper@42478
  1350
%   \label{eg:ruleapp}
neuper@42478
  1351
%   \begin{enumerate}
neuper@42478
  1352
%   \item Store rules in ruleset:
neuper@42478
  1353
%   \begin{verbatim}
neuper@42478
  1354
%   val inverse_Z = append_rls "inverse_Z" e_rls
neuper@42478
  1355
%     [ Thm ("rule1",num_str @{thm rule1}),
neuper@42478
  1356
%       Thm ("rule2",num_str @{thm rule2}),
neuper@42478
  1357
%       Thm ("rule3",num_str @{thm rule3})
neuper@42478
  1358
%     ];\end{verbatim}
neuper@42478
  1359
%   \item Define exression:
neuper@42478
  1360
%   \begin{verbatim}
neuper@42478
  1361
%   val sample_term = str2term "z/(z-1)+z/(z-</delta>)+1";\end{verbatim}
neuper@42478
  1362
%   \item Apply ruleset:
neuper@42478
  1363
%   \begin{verbatim}
neuper@42478
  1364
%   val SOME (sample_term', asm) = 
neuper@42478
  1365
%     rewrite_set_ thy true inverse_Z sample_term;\end{verbatim}
neuper@42478
  1366
%   \end{enumerate}
neuper@42478
  1367
% \end{example}
neuper@42478
  1368
% 
neuper@42478
  1369
% The use of rulesets makes it much easier to develop our designated applications,
neuper@42478
  1370
% but the programmer has to be careful and patient. When applying rulesets
neuper@42478
  1371
% two important issues have to be mentionend:
neuper@42478
  1372
% \subparagraph{How often} the rules have to be applied? In case of
neuper@42478
  1373
% transformations it is quite clear that we use them once but other fields
neuper@42478
  1374
% reuqire to apply rules until a special condition is reached (e.g.
neuper@42478
  1375
% a simplification is finished when there is nothing to be done left).
neuper@42478
  1376
% \subparagraph{The order} in which rules are applied often takes a big effect
neuper@42478
  1377
% and has to be evaluated for each purpose once again.
neuper@42478
  1378
% \par
neuper@42478
  1379
% In our special case of Signal Processing and the rules defined in
neuper@42478
  1380
% Example~\ref{eg:ruledef} we have to apply rule~1 first of all to transform all
neuper@42478
  1381
% constants. After this step has been done it no mather which rule fit's next.
neuper@42478
  1382
% 
neuper@42478
  1383
% \subsubsection{Helping Functions}
neuper@42478
  1384
% 
neuper@42478
  1385
% \paragraph{New Programms require,} often new ways to get through. This new ways
neuper@42478
  1386
% means that we handle functions that have not been in use yet, they can be 
neuper@42478
  1387
% something special and unique for a programm or something famous but unneeded in
neuper@42478
  1388
% the system yet. In our dedicated example it was for example neccessary to split
neuper@42478
  1389
% a fraction into numerator and denominator; the creation of such function and
neuper@42478
  1390
% even others is described in upper Sections~\ref{simp} and \ref{funs}.
neuper@42478
  1391
% 
neuper@42478
  1392
% \subsubsection{Trials on equation solving}
neuper@42478
  1393
% %simple eq and problem with double fractions/negative exponents
neuper@42478
  1394
% \paragraph{The Inverse Z-Transformation} makes it neccessary to solve
neuper@42478
  1395
% equations degree one and two. Solving equations in the first degree is no 
neuper@42478
  1396
% problem, wether for a student nor for our machine; but even second degree
neuper@42478
  1397
% equations can lead to big troubles. The origin of this troubles leads from
neuper@42478
  1398
% the build up process of our equation solving functions; they have been
neuper@42478
  1399
% implemented some time ago and of course they are not as good as we want them to
neuper@42478
  1400
% be. Wether or not following we only want to show how cruel it is to build up new
neuper@42478
  1401
% work on not well fundamentials.
neuper@42478
  1402
% \subparagraph{A simple equation solving,} can be set up as shown in the next
neuper@42478
  1403
% example:
neuper@42478
  1404
% 
neuper@42478
  1405
% \begin{example}
neuper@42478
  1406
% \begin{verbatim}
neuper@42478
  1407
%   
neuper@42478
  1408
%   val fmz =
neuper@42478
  1409
%     ["equality (-1 + -2 * z + 8 * z ^^^ 2 = (0::real))",
neuper@42478
  1410
%      "solveFor z",
neuper@42478
  1411
%      "solutions L"];                                    
neuper@42478
  1412
% 
neuper@42478
  1413
%   val (dI',pI',mI') =
neuper@42478
  1414
%     ("Isac", 
neuper@42478
  1415
%       ["abcFormula","degree_2","polynomial","univariate","equation"],
neuper@42478
  1416
%       ["no_met"]);\end{verbatim}
neuper@42478
  1417
% \end{example}
neuper@42478
  1418
% 
neuper@42478
  1419
% Here we want to solve the equation: $-1+-2\cdot z+8\cdot z^{2}=0$. (To give
neuper@42478
  1420
% a short overview on the commands; at first we set up the equation and tell the
neuper@42478
  1421
% machine what's the bound variable and where to store the solution. Second step 
neuper@42478
  1422
% is to define the equation type and determine if we want to use a special method
neuper@42478
  1423
% to solve this type.) Simple checks tell us that the we will get two results for
neuper@42478
  1424
% this equation and this results will be real.
neuper@42478
  1425
% So far it is easy for us and for our machine to solve, but
neuper@42478
  1426
% mentioned that a unvariate equation second order can have three different types
neuper@42478
  1427
% of solutions it is getting worth.
neuper@42478
  1428
% \subparagraph{The solving of} all this types of solutions is not yet supported.
neuper@42478
  1429
% Luckily it was needed for us; but something which has been needed in this 
neuper@42478
  1430
% context, would have been the solving of an euation looking like:
neuper@42478
  1431
% $-z^{-2}+-2\cdot z^{-1}+8=0$ which is basically the same equation as mentioned
neuper@42478
  1432
% before (remember that befor it was no problem to handle for the machine) but
neuper@42478
  1433
% now, after a simple equivalent transformation, we are not able to solve
neuper@42478
  1434
% it anymore.
neuper@42478
  1435
% \subparagraph{Error messages} we get when we try to solve something like upside
neuper@42478
  1436
% were very confusing and also leads us to no special hint about a problem.
neuper@42478
  1437
% \par The fault behind is, that we have no well error handling on one side and
neuper@42478
  1438
% no sufficient formed equation solving on the other side. This two facts are
neuper@42478
  1439
% making the implemention of new material very difficult.
neuper@42478
  1440
% 
neuper@42478
  1441
% \subsection{Formalization of missing knowledge in Isabelle}
neuper@42478
  1442
% 
neuper@42478
  1443
% \paragraph{A problem} behind is the mechanization of mathematic
neuper@42478
  1444
% theories in TP-bases languages. There is still a huge gap between
neuper@42478
  1445
% these algorithms and this what we want as a solution - in Example
neuper@42478
  1446
% Signal Processing. 
neuper@42478
  1447
% 
neuper@42478
  1448
% \vbox{
neuper@42478
  1449
%   \begin{example}
neuper@42478
  1450
%     \label{eg:gap}
neuper@42478
  1451
%     \[
neuper@42478
  1452
%       X\cdot(a+b)+Y\cdot(c+d)=aX+bX+cY+dY
neuper@42478
  1453
%     \]
neuper@42478
  1454
%     {\small\textit{
neuper@42478
  1455
%       \noindent A very simple example on this what we call gap is the
neuper@42478
  1456
% simplification above. It is needles to say that it is correct and also
neuper@42478
  1457
% Isabelle for fills it correct - \emph{always}. But sometimes we don't
neuper@42478
  1458
% want expand such terms, sometimes we want another structure of
neuper@42478
  1459
% them. Think of a problem were we now would need only the coefficients
neuper@42478
  1460
% of $X$ and $Y$. This is what we call the gap between mechanical
neuper@42478
  1461
% simplification and the solution.
neuper@42478
  1462
%     }}
neuper@42478
  1463
%   \end{example}
neuper@42478
  1464
% }
neuper@42478
  1465
% 
neuper@42478
  1466
% \paragraph{We are not able to fill this gap,} until we have to live
neuper@42478
  1467
% with it but first have a look on the meaning of this statement:
neuper@42478
  1468
% Mechanized math starts from mathematical models and \emph{hopefully}
neuper@42478
  1469
% proceeds to match physics. Academic engineering starts from physics
neuper@42478
  1470
% (experimentation, measurement) and then proceeds to mathematical
neuper@42478
  1471
% modeling and formalization. The process from a physical observance to
neuper@42478
  1472
% a mathematical theory is unavoidable bound of setting up a big
neuper@42478
  1473
% collection of standards, rules, definition but also exceptions. These
neuper@42478
  1474
% are the things making mechanization that difficult.
neuper@42478
  1475
% 
neuper@42478
  1476
% \vbox{
neuper@42478
  1477
%   \begin{example}
neuper@42478
  1478
%     \label{eg:units}
neuper@42478
  1479
%     \[
neuper@42478
  1480
%       m,\ kg,\ s,\ldots
neuper@42478
  1481
%     \]
neuper@42478
  1482
%     {\small\textit{
neuper@42478
  1483
%       \noindent Think about some units like that one's above. Behind
neuper@42478
  1484
% each unit there is a discerning and very accurate definition: One
neuper@42478
  1485
% Meter is the distance the light travels, in a vacuum, through the time
neuper@42478
  1486
% of 1 / 299.792.458 second; one kilogram is the weight of a
neuper@42478
  1487
% platinum-iridium cylinder in paris; and so on. But are these
neuper@42478
  1488
% definitions usable in a computer mechanized world?!
neuper@42478
  1489
%     }}
neuper@42478
  1490
%   \end{example}
neuper@42478
  1491
% }
neuper@42478
  1492
% 
neuper@42478
  1493
% \paragraph{A computer} or a TP-System builds on programs with
neuper@42478
  1494
% predefined logical rules and does not know any mathematical trick
neuper@42478
  1495
% (follow up example \ref{eg:trick}) or recipe to walk around difficult
neuper@42478
  1496
% expressions. 
neuper@42478
  1497
% 
neuper@42478
  1498
% \vbox{
neuper@42478
  1499
%   \begin{example}
neuper@42478
  1500
%     \label{eg:trick}
neuper@42478
  1501
%   \[ \frac{1}{j\omega}\cdot\left(e^{-j\omega}-e^{j3\omega}\right)= \]
neuper@42478
  1502
%   \[ \frac{1}{j\omega}\cdot e^{-j2\omega}\cdot\left(e^{j\omega}-e^{-j\omega}\right)=
neuper@42478
  1503
%      \frac{1}{\omega}\, e^{-j2\omega}\cdot\colorbox{lgray}{$\frac{1}{j}\,\left(e^{j\omega}-e^{-j\omega}\right)$}= \]
neuper@42478
  1504
%   \[ \frac{1}{\omega}\, e^{-j2\omega}\cdot\colorbox{lgray}{$2\, sin(\omega)$} \]
neuper@42478
  1505
%     {\small\textit{
neuper@42478
  1506
%       \noindent Sometimes it is also useful to be able to apply some
neuper@42478
  1507
% \emph{tricks} to get a beautiful and particularly meaningful result,
neuper@42478
  1508
% which we are able to interpret. But as seen in this example it can be
neuper@42478
  1509
% hard to find out what operations have to be done to transform a result
neuper@42478
  1510
% into a meaningful one.
neuper@42478
  1511
%     }}
neuper@42478
  1512
%   \end{example}
neuper@42478
  1513
% }
neuper@42478
  1514
% 
neuper@42478
  1515
% \paragraph{The only possibility,} for such a system, is to work
neuper@42478
  1516
% through its known definitions and stops if none of these
neuper@42478
  1517
% fits. Specified on Signal Processing or any other application it is
neuper@42478
  1518
% often possible to walk through by doing simple creases. This creases
neuper@42478
  1519
% are in general based on simple math operational but the challenge is
neuper@42478
  1520
% to teach the machine \emph{all}\footnote{Its pride to call it
neuper@42478
  1521
% \emph{all}.} of them. Unfortunately the goal of TP Isabelle is to
neuper@42478
  1522
% reach a high level of \emph{all} but it in real it will still be a
neuper@42478
  1523
% survey of knowledge which links to other knowledge and {{\sisac}{}} a
neuper@42478
  1524
% trainer and helper but no human compensating calculator. 
neuper@42478
  1525
% \par
neuper@42478
  1526
% {{{\sisac}{}}} itself aims to adds \emph{Algorithmic Knowledge} (formal
neuper@42478
  1527
% specifications of problems out of topics from Signal Processing, etc.)
neuper@42478
  1528
% and \emph{Application-oriented Knowledge} to the \emph{deductive} axis of
neuper@42478
  1529
% physical knowledge. The result is a three-dimensional universe of
neuper@42478
  1530
% mathematics seen in Figure~\ref{fig:mathuni}.
neuper@42478
  1531
% 
neuper@42478
  1532
% \begin{figure}
neuper@42478
  1533
%   \begin{center}
neuper@42478
  1534
%     \includegraphics{fig/universe}
neuper@42478
  1535
%     \caption{Didactic ``Math-Universe'': Algorithmic Knowledge (Programs) is
neuper@42478
  1536
%              combined with Application-oriented Knowledge (Specifications) and Deductive Knowledge (Axioms, Definitions, Theorems). The Result
neuper@42478
  1537
%              leads to a three dimensional math universe.\label{fig:mathuni}}
neuper@42478
  1538
%   \end{center}
neuper@42478
  1539
% \end{figure}
neuper@42478
  1540
% 
neuper@42478
  1541
% %WN Deine aktuelle Benennung oben wird Dir kein Fachmann abnehmen;
neuper@42478
  1542
% %WN bitte folgende Bezeichnungen nehmen:
neuper@42478
  1543
% %WN 
neuper@42478
  1544
% %WN axis 1: Algorithmic Knowledge (Programs)
neuper@42478
  1545
% %WN axis 2: Application-oriented Knowledge (Specifications)
neuper@42478
  1546
% %WN axis 3: Deductive Knowledge (Axioms, Definitions, Theorems)
neuper@42478
  1547
% %WN 
neuper@42478
  1548
% %WN und bitte die R"ander von der Grafik wegschneiden (was ich f"ur *.pdf
neuper@42478
  1549
% %WN nicht hinkriege --- weshalb ich auch die eJMT-Forderung nicht ganz
neuper@42478
  1550
% %WN verstehe, separierte PDFs zu schicken; ich w"urde *.png schicken)
neuper@42478
  1551
% 
neuper@42478
  1552
% %JR Ränder und beschriftung geändert. Keine Ahnung warum eJMT sich pdf's
neuper@42478
  1553
% %JR wünschen, würde ebenfalls png oder ähnliches verwenden, aber wenn pdf's
neuper@42478
  1554
% %JR gefordert werden WN2...
neuper@42478
  1555
% %WN2 meiner Meinung nach hat sich eJMT unklar ausgedr"uckt (z.B. kann
neuper@42478
  1556
% %WN2 man meines Wissens pdf-figures nicht auf eine bestimmte Gr"osse
neuper@42478
  1557
% %WN2 zusammenschneiden um die R"ander weg zu bekommen)
neuper@42478
  1558
% %WN2 Mein Vorschlag ist, in umserem tex-file bei *.png zu bleiben und
neuper@42478
  1559
% %WN2 png + pdf figures mitzuschicken.
neuper@42478
  1560
% 
neuper@42478
  1561
% \subsection{Notes on Problems with Traditional Notation}
neuper@42478
  1562
% 
neuper@42478
  1563
% \paragraph{During research} on these topic severely problems on
neuper@42478
  1564
% traditional notations have been discovered. Some of them have been
neuper@42478
  1565
% known in computer science for many years now and are still unsolved,
neuper@42478
  1566
% one of them aggregates with the so called \emph{Lambda Calculus},
neuper@42478
  1567
% Example~\ref{eg:lamda} provides a look on the problem that embarrassed
neuper@42478
  1568
% us.
neuper@42478
  1569
% 
neuper@42478
  1570
% \vbox{
neuper@42478
  1571
%   \begin{example}
neuper@42478
  1572
%     \label{eg:lamda}
neuper@42478
  1573
% 
neuper@42478
  1574
%   \[ f(x)=\ldots\;  \quad R \rightarrow \quad R \]
neuper@42478
  1575
% 
neuper@42478
  1576
% 
neuper@42478
  1577
%   \[ f(p)=\ldots\;  p \in \quad R \]
neuper@42478
  1578
% 
neuper@42478
  1579
%     {\small\textit{
neuper@42478
  1580
%       \noindent Above we see two equations. The first equation aims to
neuper@42478
  1581
% be a mapping of an function from the reel range to the reel one, but
neuper@42478
  1582
% when we change only one letter we get the second equation which
neuper@42478
  1583
% usually aims to insert a reel point $p$ into the reel function. In
neuper@42478
  1584
% computer science now we have the problem to tell the machine (TP) the
neuper@42478
  1585
% difference between this two notations. This Problem is called
neuper@42478
  1586
% \emph{Lambda Calculus}.
neuper@42478
  1587
%     }}
neuper@42478
  1588
%   \end{example}
neuper@42478
  1589
% }
neuper@42478
  1590
% 
neuper@42478
  1591
% \paragraph{An other problem} is that terms are not full simplified in
neuper@42478
  1592
% traditional notations, in {{\sisac}} we have to simplify them complete
neuper@42478
  1593
% to check weather results are compatible or not. in e.g. the solutions
neuper@42478
  1594
% of an second order linear equation is an rational in {{\sisac}} but in
neuper@42478
  1595
% tradition we keep fractions as long as possible and as long as they
neuper@42478
  1596
% aim to be \textit{beautiful} (1/8, 5/16,...).
neuper@42478
  1597
% \subparagraph{The math} which should be mechanized in Computer Theorem
neuper@42478
  1598
% Provers (\emph{TP}) has (almost) a problem with traditional notations
neuper@42478
  1599
% (predicate calculus) for axioms, definitions, lemmas, theorems as a
neuper@42478
  1600
% computer program or script is not able to interpret every Greek or
neuper@42478
  1601
% Latin letter and every Greek, Latin or whatever calculations
neuper@42478
  1602
% symbol. Also if we would be able to handle these symbols we still have
neuper@42478
  1603
% a problem to interpret them at all. (Follow up \hbox{Example
neuper@42478
  1604
% \ref{eg:symbint1}})
neuper@42478
  1605
% 
neuper@42478
  1606
% \vbox{
neuper@42478
  1607
%   \begin{example}
neuper@42478
  1608
%     \label{eg:symbint1}
neuper@42478
  1609
%     \[
neuper@42478
  1610
%       u\left[n\right] \ \ldots \ unitstep
neuper@42478
  1611
%     \]
neuper@42478
  1612
%     {\small\textit{
neuper@42478
  1613
%       \noindent The unitstep is something we need to solve Signal
neuper@42478
  1614
% Processing problem classes. But in {{{\sisac}{}}} the rectangular
neuper@42478
  1615
% brackets have a different meaning. So we abuse them for our
neuper@42478
  1616
% requirements. We get something which is not defined, but usable. The
neuper@42478
  1617
% Result is syntax only without semantic.
neuper@42478
  1618
%     }}
neuper@42478
  1619
%   \end{example}
neuper@42478
  1620
% }
neuper@42478
  1621
% 
neuper@42478
  1622
% In different problems, symbols and letters have different meanings and
neuper@42478
  1623
% ask for different ways to get through. (Follow up \hbox{Example
neuper@42478
  1624
% \ref{eg:symbint2}}) 
neuper@42478
  1625
% 
neuper@42478
  1626
% \vbox{
neuper@42478
  1627
%   \begin{example}
neuper@42478
  1628
%     \label{eg:symbint2}
neuper@42478
  1629
%     \[
neuper@42478
  1630
%       \widehat{\ }\ \widehat{\ }\ \widehat{\ } \  \ldots \  exponent
neuper@42478
  1631
%     \]
neuper@42478
  1632
%     {\small\textit{
neuper@42478
  1633
%     \noindent For using exponents the three \texttt{widehat} symbols
neuper@42478
  1634
% are required. The reason for that is due the development of
neuper@42478
  1635
% {{{\sisac}{}}} the single \texttt{widehat} and also the double were
neuper@42478
  1636
% already in use for different operations.
neuper@42478
  1637
%     }}
neuper@42478
  1638
%   \end{example}
neuper@42478
  1639
% }
neuper@42478
  1640
% 
neuper@42478
  1641
% \paragraph{Also the output} can be a problem. We are familiar with a
neuper@42478
  1642
% specified notations and style taught in university but a computer
neuper@42478
  1643
% program has no knowledge of the form proved by a professor and the
neuper@42478
  1644
% machines themselves also have not yet the possibilities to print every
neuper@42478
  1645
% symbol (correct) Recent developments provide proofs in a human
neuper@42478
  1646
% readable format but according to the fact that there is no money for
neuper@42478
  1647
% good working formal editors yet, the style is one thing we have to
neuper@42478
  1648
% live with.
neuper@42478
  1649
% 
neuper@42478
  1650
% \section{Problems rising out of the Development Environment}
neuper@42478
  1651
% 
neuper@42478
  1652
% fehlermeldungen! TODO
jan@42463
  1653
neuper@42464
  1654
\section{Conclusion}\label{conclusion}
jan@42463
  1655
jan@42463
  1656
TODO
jan@42463
  1657
jan@42463
  1658
\bibliographystyle{alpha}
jan@42463
  1659
\bibliography{references}
jan@42463
  1660
jan@42463
  1661
\end{document}