doc-src/isac/jrocnik/eJMT-paper/jrocnik_eJMT.tex
author Walther Neuper <neuper@ist.tugraz.at>
Mon, 10 Sep 2012 15:52:44 +0200
changeset 42492 7e4deb0d71a9
parent 42488 52798adec50e
child 42493 55d74481379b
permissions -rwxr-xr-x
jrocnik: eJMT conclusion
jan@42463
     1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
     2
% Electronic Journal of Mathematics and Technology (eJMT) %
jan@42463
     3
% style sheet for LaTeX.  Please do not modify sections   %
jan@42463
     4
% or commands marked 'eJMT'.                              %
jan@42463
     5
%                                                         %
jan@42463
     6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
     7
%                                                         %
jan@42463
     8
% eJMT commands                                           %
jan@42463
     9
%                                                         %
jan@42463
    10
\documentclass[12pt,a4paper]{article}%                    %
jan@42463
    11
\usepackage{times}                                        %
jan@42463
    12
\usepackage{amsfonts,amsmath,amssymb}                     %
jan@42463
    13
\usepackage[a4paper]{geometry}                            %
jan@42463
    14
\usepackage{fancyhdr}                                     %
jan@42463
    15
\usepackage{color}                                        %
jan@42463
    16
\usepackage[pdftex]{hyperref} % see note below            %
jan@42463
    17
\usepackage{graphicx}%                                    %
jan@42463
    18
\hypersetup{                                              %
jan@42463
    19
    a4paper,                                              %
jan@42463
    20
    breaklinks                                            %
jan@42463
    21
}                                                         %
jan@42463
    22
%                                                         %
jan@42463
    23
\newtheorem{theorem}{Theorem}                             %
jan@42463
    24
\newtheorem{acknowledgement}[theorem]{Acknowledgement}    %
jan@42463
    25
\newtheorem{algorithm}[theorem]{Algorithm}                %
jan@42463
    26
\newtheorem{axiom}[theorem]{Axiom}                        %
jan@42463
    27
\newtheorem{case}[theorem]{Case}                          %
jan@42463
    28
\newtheorem{claim}[theorem]{Claim}                        %
jan@42463
    29
\newtheorem{conclusion}[theorem]{Conclusion}              %
jan@42463
    30
\newtheorem{condition}[theorem]{Condition}                %
jan@42463
    31
\newtheorem{conjecture}[theorem]{Conjecture}              %
jan@42463
    32
\newtheorem{corollary}[theorem]{Corollary}                %
jan@42463
    33
\newtheorem{criterion}[theorem]{Criterion}                %
jan@42463
    34
\newtheorem{definition}[theorem]{Definition}              %
jan@42463
    35
\newtheorem{example}[theorem]{Example}                    %
jan@42463
    36
\newtheorem{exercise}[theorem]{Exercise}                  %
jan@42463
    37
\newtheorem{lemma}[theorem]{Lemma}                        %
jan@42463
    38
\newtheorem{notation}[theorem]{Notation}                  %
jan@42463
    39
\newtheorem{problem}[theorem]{Problem}                    %
jan@42463
    40
\newtheorem{proposition}[theorem]{Proposition}            %
jan@42463
    41
\newtheorem{remark}[theorem]{Remark}                      %
jan@42463
    42
\newtheorem{solution}[theorem]{Solution}                  %
jan@42463
    43
\newtheorem{summary}[theorem]{Summary}                    %
jan@42463
    44
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }  %
jan@42463
    45
{\ \rule{0.5em}{0.5em}}                                   %
jan@42463
    46
%                                                         %
jan@42463
    47
% eJMT page dimensions                                    %
jan@42463
    48
%                                                         %
jan@42463
    49
\geometry{left=2cm,right=2cm,top=3.2cm,bottom=4cm}        %
jan@42463
    50
%                                                         %
jan@42463
    51
% eJMT header & footer                                    %
jan@42463
    52
%                                                         %
jan@42463
    53
\newcounter{ejmtFirstpage}                                %
jan@42463
    54
\setcounter{ejmtFirstpage}{1}                             %
jan@42463
    55
\pagestyle{empty}                                         %
jan@42463
    56
\setlength{\headheight}{14pt}                             %
jan@42463
    57
\geometry{left=2cm,right=2cm,top=3.2cm,bottom=4cm}        %
jan@42463
    58
\pagestyle{fancyplain}                                    %
jan@42463
    59
\fancyhf{}                                                %
jan@42463
    60
\fancyhead[c]{\small The Electronic Journal of Mathematics%
jan@42463
    61
\ and Technology, Volume 1, Number 1, ISSN 1933-2823}     %
jan@42463
    62
\cfoot{%                                                  %
jan@42463
    63
  \ifnum\value{ejmtFirstpage}=0%                          %
jan@42463
    64
    {\vtop to\hsize{\hrule\vskip .2cm\thepage}}%          %
jan@42463
    65
  \else\setcounter{ejmtFirstpage}{0}\fi%                  %
jan@42463
    66
}                                                         %
jan@42463
    67
%                                                         %
jan@42463
    68
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
    69
%
jan@42463
    70
% Please place your own definitions here
jan@42463
    71
%
jan@42463
    72
\def\isac{${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$}
jan@42463
    73
\def\sisac{\footnotesize${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$}
jan@42463
    74
jan@42463
    75
\usepackage{color}
jan@42463
    76
\definecolor{lgray}{RGB}{238,238,238}
jan@42463
    77
jan@42463
    78
%
jan@42463
    79
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
    80
%                                                         %
jan@42463
    81
% How to use hyperref                                     %
jan@42463
    82
% -------------------                                     %
jan@42463
    83
%                                                         %
jan@42463
    84
% Probably the only way you will need to use the hyperref %
jan@42463
    85
% package is as follows.  To make some text, say          %
jan@42463
    86
% "My Text Link", into a link to the URL                  %
jan@42463
    87
% http://something.somewhere.com/mystuff, use             %
jan@42463
    88
%                                                         %
jan@42463
    89
% \href{http://something.somewhere.com/mystuff}{My Text Link}
jan@42463
    90
%                                                         %
jan@42463
    91
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
    92
%
jan@42463
    93
\begin{document}
jan@42463
    94
%
jan@42463
    95
% document title
jan@42463
    96
%
neuper@42464
    97
\title{Trials with TP-based Programming
neuper@42464
    98
\\
neuper@42464
    99
for Interactive Course Material}%
jan@42463
   100
%
jan@42463
   101
% Single author.  Please supply at least your name,
jan@42463
   102
% email address, and affiliation here.
jan@42463
   103
%
jan@42463
   104
\author{\begin{tabular}{c}
jan@42463
   105
\textit{Jan Ro\v{c}nik} \\
jan@42463
   106
jan.rocnik@student.tugraz.at \\
jan@42463
   107
IST, SPSC\\
neuper@42464
   108
Graz University of Technologie\\
jan@42463
   109
Austria\end{tabular}
jan@42463
   110
}%
jan@42463
   111
%
jan@42463
   112
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
   113
%                                                         %
jan@42463
   114
% eJMT commands - do not change these                     %
jan@42463
   115
%                                                         %
jan@42463
   116
\date{}                                                   %
jan@42463
   117
\maketitle                                                %
jan@42463
   118
%                                                         %
jan@42463
   119
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
   120
%
jan@42463
   121
% abstract
jan@42463
   122
%
jan@42463
   123
\begin{abstract}
jan@42463
   124
jan@42463
   125
Traditional course material in engineering disciplines lacks an
jan@42463
   126
important component, interactive support for step-wise problem
neuper@42464
   127
solving. Theorem-Proving (TP) technology is appropriate for one part
jan@42463
   128
of such support, in checking user-input. For the other part of such
jan@42463
   129
support, guiding the learner towards a solution, another kind of
jan@42463
   130
technology is required. %TODO ... connect to prototype ...
jan@42463
   131
jan@42463
   132
A prototype combines TP with a programming language, the latter
jan@42463
   133
interpreted in a specific way: certain statements in a program, called
jan@42463
   134
tactics, are treated as breakpoints where control is handed over to
jan@42463
   135
the user. An input formula is checked by TP (using logical context
jan@42463
   136
built up by the interpreter); and if a learner gets stuck, a program
jan@42463
   137
describing the steps towards a solution of a problem ``knows the next
jan@42463
   138
step''. This kind of interpretation is called Lucas-Interpretation for
jan@42463
   139
\emph{TP-based programming languages}.
jan@42463
   140
jan@42463
   141
This paper describes the prototype's TP-based programming language
jan@42463
   142
within a case study creating interactive material for an advanced
jan@42463
   143
course in Signal Processing: implementation of definitions and
jan@42463
   144
theorems in TP, formal specification of a problem and step-wise
jan@42463
   145
development of the program solving the problem. Experiences with the
neuper@42464
   146
ork flow in iterative development with testing and identifying errors
jan@42463
   147
are described, too. The description clarifies the components missing
jan@42463
   148
in the prototype's language as well as deficiencies experienced during
jan@42463
   149
programming.
jan@42463
   150
\par
jan@42463
   151
These experiences are particularly notable, because the author is the
jan@42463
   152
first programmer using the language beyond the core team which
jan@42463
   153
developed the prototype's TP-based language interpreter.
jan@42463
   154
%
jan@42463
   155
\end{abstract}%
jan@42463
   156
%
jan@42463
   157
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
   158
%                                                         %
jan@42463
   159
% eJMT command                                            %
jan@42463
   160
%                                                         %
jan@42463
   161
\thispagestyle{fancy}                                     %
jan@42463
   162
%                                                         %
jan@42463
   163
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jan@42463
   164
%
jan@42463
   165
% Please use the following to indicate sections, subsections,
jan@42463
   166
% etc.  Please also use \subsubsection{...}, \paragraph{...}
jan@42463
   167
% and \subparagraph{...} as necessary.
jan@42463
   168
%
jan@42463
   169
neuper@42464
   170
\section{Introduction}\label{intro}
jan@42463
   171
jan@42466
   172
% \paragraph{Didactics of mathematics} 
jan@42466
   173
%WN: wenn man in einem high-quality paper von 'didactics' spricht, 
jan@42466
   174
%WN muss man am state-of-the-art ankn"upfen -- siehe
jan@42466
   175
%WN W.Neuper, On the Emergence of TP-based Educational Math Assistants
neuper@42464
   176
% faces a specific issue, a gap
neuper@42464
   177
% between (1) introduction of math concepts and skills and (2)
neuper@42464
   178
% application of these concepts and skills, which usually are separated
neuper@42464
   179
% into different units in curricula (for good reasons). For instance,
neuper@42464
   180
% (1) teaching partial fraction decomposition is separated from (2)
neuper@42464
   181
% application for inverse Z-transform in signal processing.
neuper@42464
   182
% 
neuper@42464
   183
% \par This gap is an obstacle for applying math as an fundamental
neuper@42464
   184
% thinking technology in engineering: In (1) motivation is lacking
neuper@42464
   185
% because the question ``What is this stuff good for?'' cannot be
neuper@42464
   186
% treated sufficiently, and in (2) the ``stuff'' is not available to
neuper@42464
   187
% students in higher semesters as widespread experience shows.
neuper@42464
   188
% 
neuper@42464
   189
% \paragraph{Motivation} taken by this didactic issue on the one hand,
neuper@42464
   190
% and ongoing research and development on a novel kind of educational
neuper@42464
   191
% mathematics assistant at Graz University of
neuper@42464
   192
% Technology~\footnote{http://www.ist.tugraz.at/isac/} promising to
neuper@42464
   193
% scope with this issue on the other hand, several institutes are
neuper@42464
   194
% planning to join their expertise: the Institute for Information
neuper@42464
   195
% Systems and Computer Media (IICM), the Institute for Software
neuper@42464
   196
% Technology (IST), the Institutes for Mathematics, the Institute for
neuper@42464
   197
% Signal Processing and Speech Communication (SPSC), the Institute for
neuper@42464
   198
% Structural Analysis and the Institute of Electrical Measurement and
neuper@42464
   199
% Measurement Signal Processing.
jan@42466
   200
%WN diese Information ist f"ur das Paper zu spezielle, zu aktuell 
jan@42466
   201
%WN und damit zu verg"anglich.
neuper@42464
   202
% \par This thesis is the first attempt to tackle the above mentioned
neuper@42464
   203
% issue, it focuses on Telematics, because these specific studies focus
neuper@42464
   204
% on mathematics in \emph{STEOP}, the introductory orientation phase in
neuper@42464
   205
% Austria. \emph{STEOP} is considered an opportunity to investigate the
neuper@42464
   206
% impact of {\sisac}'s prototype on the issue and others.
neuper@42464
   207
% 
jan@42466
   208
jan@42466
   209
\paragraph{Traditional course material} in engineering disciplines lacks an
neuper@42464
   210
important component, interactive support for step-wise problem
neuper@42464
   211
solving. Theorem-Proving (TP) technology can provide such support by
neuper@42464
   212
specific services. An important part of such services is called
neuper@42464
   213
``next-step-guidance'', generated by a specific kind of ``TP-based
neuper@42464
   214
programming language''. In the
neuper@42464
   215
{\sisac}-project~\footnote{http://www.ist.tugraz.at/projects/isac/} such
neuper@42464
   216
a language is prototyped in line with~\cite{plmms10} and built upon
neuper@42464
   217
the theorem prover
neuper@42464
   218
Isabelle~\cite{Nipkow-Paulson-Wenzel:2002}\footnote{http://isabelle.in.tum.de/}.
neuper@42464
   219
The TP services are coordinated by a specific interpreter for the
neuper@42464
   220
programming language, called
neuper@42464
   221
Lucas-Interpreter~\cite{wn:lucas-interp-12}. The language and the
neuper@42464
   222
interpreter will be briefly re-introduced in order to make the paper
neuper@42464
   223
self-contained.
jan@42463
   224
jan@42466
   225
\subparagraph{The main part} of the paper is an account of first experiences
neuper@42464
   226
with programming in this TP-based language. The experience was gained
neuper@42464
   227
in a case study by the author. The author was considered an ideal
neuper@42464
   228
candidate for this study for the following reasons: as a student in
neuper@42464
   229
Telematics (computer science with focus on Signal Processing) he had
neuper@42464
   230
general knowledge in programming as well as specific domain knowledge
neuper@42464
   231
in Signal Processing; and he was not involved in the development of
neuper@42464
   232
{\sisac}'s programming language and interpeter, thus a novice to the
neuper@42464
   233
language.
jan@42463
   234
jan@42466
   235
\subparagraph{The goal} of the case study was (1) some TP-based programs for
neuper@42464
   236
interactive course material for a specific ``Adavanced Signal
neuper@42464
   237
Processing Lab'' in a higher semester, (2) respective program
neuper@42464
   238
development with as little advice from the {\sisac}-team and (3) records
neuper@42464
   239
and comments for the main steps of development in an Isabelle theory;
neuper@42464
   240
this theory should provide guidelines for future programmers. An
neuper@42464
   241
excerpt from this theory is the main part of this paper.
jan@42466
   242
\par
jan@42466
   243
The paper will use the problem in Fig.\ref{fig-interactive} as a
jan@42463
   244
running example:
jan@42463
   245
\begin{figure} [htb]
jan@42463
   246
\begin{center}
neuper@42468
   247
\includegraphics[width=140mm]{fig/isac-Ztrans-math-3}
neuper@42468
   248
%\includegraphics[width=140mm]{fig/isac-Ztrans-math}
jan@42463
   249
\caption{Step-wise problem solving guided by the TP-based program}
jan@42463
   250
\label{fig-interactive}
jan@42463
   251
\end{center}
jan@42463
   252
\end{figure}
jan@42466
   253
jan@42466
   254
\paragraph{The problem is} from the domain of Signal Processing and requests to
neuper@42464
   255
determine the inverse Z-transform for a given term. Fig.\ref{fig-interactive}
neuper@42464
   256
also shows the beginning of the interactive construction of a solution
neuper@42464
   257
for the problem. This construction is done in the right window named
neuper@42464
   258
``Worksheet''.
jan@42466
   259
\par
neuper@42464
   260
User-interaction on the Worksheet is {\em checked} and {\em guided} by
neuper@42464
   261
TP services:
neuper@42464
   262
\begin{enumerate}
neuper@42464
   263
\item Formulas input by the user are {\em checked} by TP: such a
neuper@42464
   264
formula establishes a proof situation --- the prover has to derive the
neuper@42464
   265
formula from the logical context. The context is built up from the
neuper@42464
   266
formal specification of the problem (here hidden from the user) by the
neuper@42464
   267
Lucas-Interpreter.
neuper@42464
   268
\item If the user gets stuck, the program developed below in this
neuper@42464
   269
paper ``knows the next step'' from behind the scenes. How the latter
neuper@42464
   270
TP-service is exploited by dialogue authoring is out of scope of this
neuper@42464
   271
paper and can be studied in~\cite{gdaroczy-EP-13}.
neuper@42464
   272
\end{enumerate} It should be noted that the programmer using the
neuper@42464
   273
TP-based language is not concerned with interaction at all; we will
neuper@42464
   274
see that the program contains neither input-statements nor
neuper@42464
   275
output-statements. Rather, interaction is handled by services
neuper@42464
   276
generated automatically.
jan@42466
   277
\par
jan@42466
   278
So there is a clear separation of concerns: Dialogues are
neuper@42464
   279
adapted by dialogue authors (in Java-based tools), using automatically
neuper@42464
   280
generated TP services, while the TP-based program is written by
neuper@42464
   281
mathematics experts (in Isabelle/ML). The latter is concern of this
neuper@42464
   282
paper.
jan@42466
   283
jan@42466
   284
\paragraph{The paper is structed} as follows: The introduction
neuper@42464
   285
\S\ref{intro} is followed by a brief re-introduction of the TP-based
neuper@42464
   286
programming language in \S\ref{PL}, which extends the executable
neuper@42464
   287
fragment of Isabelle's language (\S\ref{PL-isab}) by tactics which
neuper@42464
   288
play a specific role in Lucas-Interpretation and in providing the TP
neuper@42464
   289
services (\S\ref{PL-tacs}). The main part in \S\ref{trial} describes
neuper@42464
   290
the main steps in developing the program for the running example:
neuper@42464
   291
prepare domain knowledge, implement the formal specification of the
neuper@42464
   292
problem, prepare the environment for the program, implement the
neuper@42464
   293
program. The workflow of programming, debugging and testing is
neuper@42464
   294
described in \S\ref{workflow}. The conclusion \S\ref{conclusion} will
neuper@42464
   295
give directions identified for future development. 
neuper@42464
   296
jan@42463
   297
jan@42463
   298
\section{\isac's Prototype for a Programming Language}\label{PL} 
jan@42463
   299
The prototype's language extends the executable fragment in the
jan@42463
   300
language of the theorem prover
jan@42463
   301
Isabelle~\cite{Nipkow-Paulson-Wenzel:2002}\footnote{http://isabelle.in.tum.de/}
jan@42463
   302
by tactics which have a specific role in Lucas-Interpretation.
jan@42463
   303
jan@42463
   304
\subsection{The Executable Fragment of Isabelle's Language}\label{PL-isab}
jan@42463
   305
The executable fragment consists of data-type and function
jan@42463
   306
definitions.  It's usability even suggests that fragment for
jan@42463
   307
introductory courses \cite{nipkow-prog-prove}. HOL is a typed logic
jan@42463
   308
whose type system resembles that of functional programming
jan@42463
   309
languages. Thus there are
jan@42463
   310
\begin{description}
jan@42463
   311
\item[base types,] in particular \textit{bool}, the type of truth
jan@42463
   312
values, \textit{nat}, \textit{int}, \textit{complex}, and the types of
jan@42463
   313
natural, integer and complex numbers respectively in mathematics.
jan@42463
   314
\item[type constructors] allow to define arbitrary types, from
jan@42463
   315
\textit{set}, \textit{list} to advanced data-structures like
jan@42463
   316
\textit{trees}, red-black-trees etc.
jan@42463
   317
\item[function types,] denoted by $\Rightarrow$.
jan@42463
   318
\item[type variables,] denoted by $^\prime a, ^\prime b$ etc, provide
jan@42463
   319
type polymorphism. Isabelle automatically computes the type of each
jan@42463
   320
variable in a term by use of Hindley-Milner type inference
jan@42463
   321
\cite{pl:hind97,Milner-78}.
jan@42463
   322
\end{description}
jan@42463
   323
jan@42463
   324
\textbf{Terms} are formed as in functional programming by applying
jan@42463
   325
functions to arguments. If $f$ is a function of type
jan@42463
   326
$\tau_1\Rightarrow \tau_2$ and $t$ is a term of type $\tau_1$ then
jan@42463
   327
$f\;t$ is a term of type~$\tau_2$. $t\;::\;\tau$ means that term $t$
jan@42463
   328
has type $\tau$. There are many predefined infix symbols like $+$ and
jan@42463
   329
$\leq$ most of which are overloaded for various types.
jan@42463
   330
jan@42463
   331
HOL also supports some basic constructs from functional programming:
jan@42463
   332
{\it\label{isabelle-stmts}
jan@42463
   333
\begin{tabbing} 123\=\kill
jan@42463
   334
\>$( \; {\tt if} \; b \; {\tt then} \; t_1 \; {\tt else} \; t_2 \;)$\\
jan@42463
   335
\>$( \; {\tt let} \; x=t \; {\tt in} \; u \; )$\\
jan@42463
   336
\>$( \; {\tt case} \; t \; {\tt of} \; {\it pat}_1
jan@42463
   337
  \Rightarrow t_1 \; |\dots| \; {\it pat}_n\Rightarrow t_n \; )$
jan@42463
   338
\end{tabbing} }
neuper@42482
   339
\noindent The running example's program uses some of these elements
neuper@42482
   340
(marked by {\tt tt-font} on p.\pageref{s:impl}): for instance {\tt
neuper@42482
   341
let}\dots{\tt in} in lines {\rm 02} \dots {\rm 13}. In fact, the whole program
neuper@42482
   342
is an Isabelle term with specific function constants like {\tt
neuper@42482
   343
program}, {\tt Take}, {\tt Rewrite}, {\tt Subproblem} and {\tt
neuper@42482
   344
Rewrite\_Set} in lines {\rm 01, 03. 04, 07, 10} and {\rm 11, 12}
neuper@42482
   345
respectively.
jan@42463
   346
jan@42463
   347
% Terms may also contain $\lambda$-abstractions. For example, $\lambda
jan@42463
   348
% x. \; x$ is the identity function.
jan@42463
   349
neuper@42467
   350
%JR warum auskommentiert? WN2...
neuper@42467
   351
%WN2 weil ein Punkt wie dieser in weiteren Zusammenh"angen innerhalb
neuper@42467
   352
%WN2 des Papers auftauchen m"usste; nachdem ich einen solchen
neuper@42467
   353
%WN2 Zusammenhang _noch_ nicht sehe, habe ich den Punkt _noch_ nicht
neuper@42467
   354
%WN2 gel"oscht.
neuper@42467
   355
%WN2 Wenn der Punkt nicht weiter gebraucht wird, nimmt er nur wertvollen
neuper@42467
   356
%WN2 Platz f"ur Anderes weg.
jan@42466
   357
neuper@42464
   358
\textbf{Formulae} are terms of type \textit{bool}. There are the basic
jan@42463
   359
constants \textit{True} and \textit{False} and the usual logical
jan@42463
   360
connectives (in decreasing order of precedence): $\neg, \land, \lor,
jan@42463
   361
\rightarrow$.
jan@42463
   362
neuper@42464
   363
\textbf{Equality} is available in the form of the infix function $=$
neuper@42464
   364
of type $a \Rightarrow a \Rightarrow {\it bool}$. It also works for
neuper@42464
   365
formulas, where it means ``if and only if''.
jan@42463
   366
jan@42463
   367
\textbf{Quantifiers} are written $\forall x. \; P$ and $\exists x. \;
jan@42463
   368
P$.  Quantifiers lead to non-executable functions, so functions do not
jan@42463
   369
always correspond to programs, for instance, if comprising \\$(
jan@42463
   370
\;{\it if} \; \exists x.\;P \; {\it then} \; e_1 \; {\it else} \; e_2
jan@42463
   371
\;)$.
jan@42463
   372
jan@42463
   373
\subsection{\isac's Tactics for Lucas-Interpretation}\label{PL-tacs}
jan@42463
   374
The prototype extends Isabelle's language by specific statements
neuper@42464
   375
called tactics~\footnote{{\sisac}'s tactics are different from
jan@42463
   376
Isabelle's tactics: the former concern steps in a calculation, the
jan@42463
   377
latter concern proof steps.}  and tacticals. For the programmer these
jan@42463
   378
statements are functions with the following signatures:
jan@42463
   379
jan@42463
   380
\begin{description}
jan@42463
   381
\item[Rewrite:] ${\it theorem}\Rightarrow{\it term}\Rightarrow{\it
jan@42463
   382
term} * {\it term}\;{\it list}$:
jan@42463
   383
this tactic appplies {\it theorem} to a {\it term} yielding a {\it
jan@42463
   384
term} and a {\it term list}, the list are assumptions generated by
jan@42463
   385
conditional rewriting. For instance, the {\it theorem}
jan@42463
   386
$b\not=0\land c\not=0\Rightarrow\frac{a\cdot c}{b\cdot c}=\frac{a}{b}$
jan@42463
   387
applied to the {\it term} $\frac{2\cdot x}{3\cdot x}$ yields
jan@42463
   388
$(\frac{2}{3}, [x\not=0])$.
jan@42463
   389
jan@42463
   390
\item[Rewrite\_Set:] ${\it ruleset}\Rightarrow{\it
jan@42463
   391
term}\Rightarrow{\it term} * {\it term}\;{\it list}$:
jan@42463
   392
this tactic appplies {\it ruleset} to a {\it term}; {\it ruleset} is
jan@42463
   393
a confluent and terminating term rewrite system, in general. If
jan@42463
   394
none of the rules ({\it theorem}s) is applicable on interpretation
jan@42463
   395
of this tactic, an exception is thrown.
jan@42463
   396
jan@42463
   397
% \item[Rewrite\_Inst:] ${\it substitution}\Rightarrow{\it
jan@42463
   398
% theorem}\Rightarrow{\it term}\Rightarrow{\it term} * {\it term}\;{\it
jan@42463
   399
% list}$:
jan@42463
   400
% 
jan@42463
   401
% \item[Rewrite\_Set\_Inst:] ${\it substitution}\Rightarrow{\it
jan@42463
   402
% ruleset}\Rightarrow{\it term}\Rightarrow{\it term} * {\it term}\;{\it
jan@42463
   403
% list}$:
jan@42463
   404
jan@42463
   405
\item[Substitute:] ${\it substitution}\Rightarrow{\it
neuper@42482
   406
term}\Rightarrow{\it term}$: allows to access sub-terms.
jan@42463
   407
jan@42463
   408
\item[Take:] ${\it term}\Rightarrow{\it term}$:
jan@42463
   409
this tactic has no effect in the program; but it creates a side-effect
jan@42463
   410
by Lucas-Interpretation (see below) and writes {\it term} to the
jan@42463
   411
Worksheet.
jan@42463
   412
jan@42463
   413
\item[Subproblem:] ${\it theory} * {\it specification} * {\it
jan@42463
   414
method}\Rightarrow{\it argument}\;{\it list}\Rightarrow{\it term}$:
neuper@42482
   415
this tactic is a generalisation of a function call: it takes an
neuper@42482
   416
\textit{argument list} as usual, and additionally a triple consisting
neuper@42482
   417
of an Isabelle \textit{theory}, an implicit \textit{specification} of the
neuper@42482
   418
program and a \textit{method} containing data for Lucas-Interpretation,
neuper@42482
   419
last not least a program (as an explicit specification)~\footnote{In
neuper@42482
   420
interactive tutoring these three items can be determined explicitly
neuper@42482
   421
by the user.}.
jan@42463
   422
\end{description}
jan@42463
   423
The tactics play a specific role in
jan@42463
   424
Lucas-Interpretation~\cite{wn:lucas-interp-12}: they are treated as
neuper@42482
   425
break-points where, as a side-effect, a line is added to a calculation
neuper@42483
   426
as a protocol for proceeding towards a solution in step-wise problem
neuper@42483
   427
solving. At the same points Lucas-Interpretation serves interactive
neuper@42483
   428
tutoring and control is handed over to the user. The user is free to
neuper@42483
   429
investigate underlying knowledge, applicable theorems, etc.  And the
neuper@42483
   430
user can proceed constructing a solution by input of a tactic to be
neuper@42483
   431
applied or by input of a formula; in the latter case the
jan@42463
   432
Lucas-Interpreter has built up a logical context (initialised with the
jan@42463
   433
precondition of the formal specification) such that Isabelle can
jan@42463
   434
derive the formula from this context --- or give feedback, that no
jan@42463
   435
derivation can be found.
jan@42463
   436
jan@42463
   437
\subsection{Tacticals for Control of Interpretation}
jan@42463
   438
The flow of control in a program can be determined by {\tt if then else}
jan@42463
   439
and {\tt case of} as mentioned on p.\pageref{isabelle-stmts} and also
jan@42463
   440
by additional tacticals:
jan@42463
   441
\begin{description}
jan@42463
   442
\item[Repeat:] ${\it tactic}\Rightarrow{\it term}\Rightarrow{\it
jan@42463
   443
term}$: iterates over tactics which take a {\it term} as argument as
neuper@42482
   444
long as a tactic is applicable (for instance, {\tt Rewrite\_Set} might
jan@42463
   445
not be applicable).
jan@42463
   446
jan@42463
   447
\item[Try:] ${\it tactic}\Rightarrow{\it term}\Rightarrow{\it term}$:
jan@42463
   448
if {\it tactic} is applicable, then it is applied to {\it term},
neuper@42483
   449
otherwise {\it term} is passed on without changes.
jan@42463
   450
jan@42463
   451
\item[Or:] ${\it tactic}\Rightarrow{\it tactic}\Rightarrow{\it
neuper@42483
   452
term}\Rightarrow{\it term}$: If the first {\it tactic} is applicable,
neuper@42483
   453
it is applied to the first {\it term} yielding another {\it term},
neuper@42483
   454
otherwise the second {\it tactic} is applied; if none is applicable an
neuper@42483
   455
exception is raised.
jan@42463
   456
jan@42463
   457
\item[@@:] ${\it tactic}\Rightarrow{\it tactic}\Rightarrow{\it
neuper@42483
   458
term}\Rightarrow{\it term}$: applies the first {\it tactic} to the
neuper@42483
   459
first {\it term} yielding an intermediate term (not appearing in the
neuper@42483
   460
signature) to which the second {\it tactic} is applied.
jan@42463
   461
jan@42463
   462
\item[While:] ${\it term::bool}\Rightarrow{\it tactic}\Rightarrow{\it
neuper@42483
   463
term}\Rightarrow{\it term}$: if the first {\it term} is true, then the
neuper@42483
   464
{\it tactic} is applied to the first {\it term} yielding an
neuper@42483
   465
intermediate term (not appearing in the signature); the intermediate
neuper@42483
   466
term is added to the environment the first {\it term} is evaluated in
neuper@42483
   467
etc as long as the first {\it term} is true.
jan@42463
   468
\end{description}
neuper@42483
   469
The tacticals are not treated as break-points by Lucas-Interpretation
neuper@42483
   470
and thus do not contribute to the calculation nor to interaction.
jan@42463
   471
jan@42466
   472
\section{Development of a Program on Trial}\label{trial} 
jan@42466
   473
As mentioned above, {\sisac} is an experimental system for a proof of
jan@42466
   474
concept for Lucas-Interpretation~\cite{wn:lucas-interp-12}.  The
jan@42466
   475
latter interprets a specific kind of TP-based programming language,
jan@42466
   476
which is as experimental as the whole prototype --- so programming in
jan@42466
   477
this language can be only ``on trial'', presently.  However, as a
jan@42466
   478
prototype, the language addresses essentials described below.
jan@42466
   479
jan@42466
   480
\subsection{Mechanization of Math --- Domain Engineering}\label{isabisac}
jan@42466
   481
neuper@42467
   482
%WN was Fachleute unter obigem Titel interessiert findet sich
jan@42466
   483
%WN unterhalb des auskommentierten Textes.
jan@42466
   484
jan@42466
   485
%WN der Text unten spricht Benutzer-Aspekte anund ist nicht speziell
jan@42466
   486
%WN auf Computer-Mathematiker fokussiert.
neuper@42464
   487
% \paragraph{As mentioned in the introduction,} a prototype of an
neuper@42464
   488
% educational math assistant called
neuper@42464
   489
% {{\sisac}}\footnote{{{\sisac}}=\textbf{Isa}belle for
neuper@42464
   490
% \textbf{C}alculations, see http://www.ist.tugraz.at/isac/.} bridges
neuper@42464
   491
% the gap between (1) introducation and (2) application of mathematics:
neuper@42464
   492
% {{\sisac}} is based on Computer Theorem Proving (TP), a technology which
neuper@42464
   493
% requires each fact and each action justified by formal logic, so
neuper@42464
   494
% {{{\sisac}{}}} makes justifications transparent to students in
neuper@42464
   495
% interactive step-wise problem solving. By that way {{\sisac}} already
neuper@42464
   496
% can serve both:
neuper@42464
   497
% \begin{enumerate}
neuper@42464
   498
%   \item Introduction of math stuff (in e.g. partial fraction
neuper@42464
   499
% decomposition) by stepwise explaining and exercising respective
neuper@42464
   500
% symbolic calculations with ``next step guidance (NSG)'' and rigorously
neuper@42464
   501
% checking steps freely input by students --- this also in context with
neuper@42464
   502
% advanced applications (where the stuff to be taught in higher
neuper@42464
   503
% semesters can be skimmed through by NSG), and
neuper@42464
   504
%   \item Application of math stuff in advanced engineering courses
neuper@42464
   505
% (e.g. problems to be solved by inverse Z-transform in a Signal
neuper@42464
   506
% Processing Lab) and now without much ado about basic math techniques
neuper@42464
   507
% (like partial fraction decomposition): ``next step guidance'' supports
neuper@42464
   508
% students in independently (re-)adopting such techniques.
neuper@42464
   509
% \end{enumerate} 
neuper@42464
   510
% Before the question is answers, how {{\sisac}}
neuper@42464
   511
% accomplishes this task from a technical point of view, some remarks on
neuper@42464
   512
% the state-of-the-art is given, therefor follow up Section~\ref{emas}.
neuper@42464
   513
% 
neuper@42464
   514
% \subsection{Educational Mathematics Assistants (EMAs)}\label{emas}
neuper@42464
   515
% 
jan@42466
   516
% \paragraph{Educational software in mathematics} is, if at all, based
jan@42466
   517
% on Computer Algebra Systems (CAS, for instance), Dynamic Geometry
jan@42466
   518
% Systems (DGS, for instance \footnote{GeoGebra http://www.geogebra.org}
jan@42466
   519
% \footnote{Cinderella http://www.cinderella.de/}\footnote{GCLC
jan@42466
   520
% http://poincare.matf.bg.ac.rs/~janicic/gclc/}) or spread-sheets. These
jan@42466
   521
% base technologies are used to program math lessons and sometimes even
jan@42466
   522
% exercises. The latter are cumbersome: the steps towards a solution of
jan@42466
   523
% such an interactive exercise need to be provided with feedback, where
jan@42466
   524
% at each step a wide variety of possible input has to be foreseen by
jan@42466
   525
% the programmer - so such interactive exercises either require high
neuper@42464
   526
% development efforts or the exercises constrain possible inputs.
neuper@42464
   527
% 
jan@42466
   528
% \subparagraph{A new generation} of educational math assistants (EMAs)
jan@42466
   529
% is emerging presently, which is based on Theorem Proving (TP). TP, for
jan@42466
   530
% instance Isabelle and Coq, is a technology which requires each fact
jan@42466
   531
% and each action justified by formal logic. Pushed by demands for
jan@42466
   532
% \textit{proven} correctness of safety-critical software TP advances
jan@42466
   533
% into software engineering; from these advancements computer
jan@42466
   534
% mathematics benefits in general, and math education in particular. Two
neuper@42464
   535
% features of TP are immediately beneficial for learning:
neuper@42464
   536
% 
jan@42466
   537
% \paragraph{TP have knowledge in human readable format,} that is in
jan@42466
   538
% standard predicate calculus. TP following the LCF-tradition have that
jan@42466
   539
% knowledge down to the basic definitions of set, equality,
jan@42466
   540
% etc~\footnote{http://isabelle.in.tum.de/dist/library/HOL/HOL.html};
jan@42466
   541
% following the typical deductive development of math, natural numbers
jan@42466
   542
% are defined and their properties
jan@42466
   543
% proven~\footnote{http://isabelle.in.tum.de/dist/library/HOL/Number\_Theory/Primes.html},
jan@42466
   544
% etc. Present knowledge mechanized in TP exceeds high-school
jan@42466
   545
% mathematics by far, however by knowledge required in software
neuper@42464
   546
% technology, and not in other engineering sciences.
neuper@42464
   547
% 
jan@42466
   548
% \paragraph{TP can model the whole problem solving process} in
jan@42466
   549
% mathematical problem solving {\em within} a coherent logical
jan@42466
   550
% framework. This is already being done by three projects, by
neuper@42464
   551
% Ralph-Johan Back, by ActiveMath and by Carnegie Mellon Tutor.
neuper@42464
   552
% \par
jan@42466
   553
% Having the whole problem solving process within a logical coherent
jan@42466
   554
% system, such a design guarantees correctness of intermediate steps and
jan@42466
   555
% of the result (which seems essential for math software); and the
jan@42466
   556
% second advantage is that TP provides a wealth of theories which can be
jan@42466
   557
% exploited for mechanizing other features essential for educational
neuper@42464
   558
% software.
neuper@42464
   559
% 
neuper@42464
   560
% \subsubsection{Generation of User Guidance in EMAs}\label{user-guid}
neuper@42464
   561
% 
jan@42466
   562
% One essential feature for educational software is feedback to user
neuper@42464
   563
% input and assistance in coming to a solution.
neuper@42464
   564
% 
jan@42466
   565
% \paragraph{Checking user input} by ATP during stepwise problem solving
jan@42466
   566
% is being accomplished by the three projects mentioned above
jan@42466
   567
% exclusively. They model the whole problem solving process as mentioned
jan@42466
   568
% above, so all what happens between formalized assumptions (or formal
jan@42466
   569
% specification) and goal (or fulfilled postcondition) can be
jan@42466
   570
% mechanized. Such mechanization promises to greatly extend the scope of
neuper@42464
   571
% educational software in stepwise problem solving.
neuper@42464
   572
% 
jan@42466
   573
% \paragraph{NSG (Next step guidance)} comprises the system's ability to
jan@42466
   574
% propose a next step; this is a challenge for TP: either a radical
jan@42466
   575
% restriction of the search space by restriction to very specific
jan@42466
   576
% problem classes is required, or much care and effort is required in
jan@42466
   577
% designing possible variants in the process of problem solving
neuper@42464
   578
% \cite{proof-strategies-11}.
neuper@42464
   579
% \par
jan@42466
   580
% Another approach is restricted to problem solving in engineering
jan@42466
   581
% domains, where a problem is specified by input, precondition, output
jan@42466
   582
% and postcondition, and where the postcondition is proven by ATP behind
jan@42466
   583
% the scenes: Here the possible variants in the process of problem
jan@42466
   584
% solving are provided with feedback {\em automatically}, if the problem
jan@42466
   585
% is described in a TP-based programing language: \cite{plmms10} the
jan@42466
   586
% programmer only describes the math algorithm without caring about
jan@42466
   587
% interaction (the respective program is functional and even has no
jan@42466
   588
% input or output statements!); interaction is generated as a
jan@42466
   589
% side-effect by the interpreter --- an efficient separation of concern
jan@42466
   590
% between math programmers and dialog designers promising application
neuper@42464
   591
% all over engineering disciplines.
neuper@42464
   592
% 
neuper@42464
   593
% 
neuper@42464
   594
% \subsubsection{Math Authoring in Isabelle/ISAC\label{math-auth}}
jan@42466
   595
% Authoring new mathematics knowledge in {{\sisac}} can be compared with
jan@42466
   596
% ``application programing'' of engineering problems; most of such
jan@42466
   597
% programing uses CAS-based programing languages (CAS = Computer Algebra
neuper@42464
   598
% Systems; e.g. Mathematica's or Maple's programing language).
neuper@42464
   599
% 
jan@42466
   600
% \paragraph{A novel type of TP-based language} is used by {{\sisac}{}}
jan@42466
   601
% \cite{plmms10} for describing how to construct a solution to an
jan@42466
   602
% engineering problem and for calling equation solvers, integration,
jan@42466
   603
% etc~\footnote{Implementation of CAS-like functionality in TP is not
jan@42466
   604
% primarily concerned with efficiency, but with a didactic question:
jan@42466
   605
% What to decide for: for high-brow algorithms at the state-of-the-art
jan@42466
   606
% or for elementary algorithms comprehensible for students?} within TP;
jan@42466
   607
% TP can ensure ``systems that never make a mistake'' \cite{casproto} -
neuper@42464
   608
% are impossible for CAS which have no logics underlying.
neuper@42464
   609
% 
jan@42466
   610
% \subparagraph{Authoring is perfect} by writing such TP based programs;
jan@42466
   611
% the application programmer is not concerned with interaction or with
jan@42466
   612
% user guidance: this is concern of a novel kind of program interpreter
jan@42466
   613
% called Lucas-Interpreter. This interpreter hands over control to a
jan@42466
   614
% dialog component at each step of calculation (like a debugger at
jan@42466
   615
% breakpoints) and calls automated TP to check user input following
neuper@42464
   616
% personalized strategies according to a feedback module.
neuper@42464
   617
% \par
jan@42466
   618
% However ``application programing with TP'' is not done with writing a
jan@42466
   619
% program: according to the principles of TP, each step must be
jan@42466
   620
% justified. Such justifications are given by theorems. So all steps
jan@42466
   621
% must be related to some theorem, if there is no such theorem it must
jan@42466
   622
% be added to the existing knowledge, which is organized in so-called
jan@42466
   623
% \textbf{theories} in Isabelle. A theorem must be proven; fortunately
jan@42466
   624
% Isabelle comprises a mechanism (called ``axiomatization''), which
jan@42466
   625
% allows to omit proofs. Such a theorem is shown in
neuper@42464
   626
% Example~\ref{eg:neuper1}.
jan@42466
   627
jan@42466
   628
The running example, introduced by Fig.\ref{fig-interactive} on
jan@42466
   629
p.\pageref{fig-interactive}, requires to determine the inverse $\cal
jan@42466
   630
Z$-transform for a class of functions. The domain of Signal Processing
jan@42466
   631
is accustomed to specific notation for the resulting functions, which
jan@42466
   632
are absolutely summable and are called TODO: $u[n]$, where $u$ is the
jan@42466
   633
function, $n$ is the argument and the brackets indicate that the
jan@42466
   634
arguments are TODO. Surprisingly, Isabelle accepts the rules for
jan@42466
   635
${\cal Z}^{-1}$ in this traditional notation~\footnote{Isabelle
jan@42466
   636
experts might be particularly surprised, that the brackets do not
jan@42466
   637
cause errors in typing (as lists).}:
neuper@42464
   638
%\vbox{
neuper@42464
   639
% \begin{example}
jan@42463
   640
  \label{eg:neuper1}
jan@42463
   641
  {\small\begin{tabbing}
jan@42463
   642
  123\=123\=123\=123\=\kill
jan@42463
   643
  \hfill \\
jan@42463
   644
  \>axiomatization where \\
neuper@42464
   645
  \>\>  rule1: ``${\cal Z}^{-1}\;1 = \delta [n]$'' and\\
neuper@42464
   646
  \>\>  rule2: ``$\vert\vert z \vert\vert > 1 \Rightarrow {\cal Z}^{-1}\;z / (z - 1) = u [n]$'' and\\
jan@42466
   647
  \>\>  rule3: ``$\vert\vert$ z $\vert\vert$ < 1 ==> z / (z - 1) = -u [-n - 1]'' and \\
jan@42466
   648
%TODO
jan@42466
   649
  \>\>  rule4: ``$\vert\vert$ z $\vert\vert$ > $\vert\vert$ $\alpha$ $\vert\vert$ ==> z / (z - $\alpha$) = $\alpha^n$ $\cdot$ u [n]'' and\\
jan@42466
   650
%TODO
jan@42466
   651
  \>\>  rule5: ``$\vert\vert$ z $\vert\vert$ < $\vert\vert$ $\alpha$ $\vert\vert$ ==> z / (z - $\alpha$) = -($\alpha^n$) $\cdot$ u [-n - 1]'' and\\
jan@42466
   652
%TODO
jan@42466
   653
  \>\>  rule6: ``$\vert\vert$ z $\vert\vert$ > 1 ==> z/(z - 1)$^2$ = n $\cdot$ u [n]''\\
jan@42466
   654
%TODO
jan@42463
   655
  \end{tabbing}
jan@42463
   656
  }
neuper@42464
   657
% \end{example}
jan@42466
   658
%}
jan@42466
   659
These 6 rules can be used as conditional rewrite rules, depending on
jan@42466
   660
the respective convergence radius. Satisfaction from accordance with traditional notation
jan@42466
   661
contrasts with the above word {\em axiomatization}: As TP-based, the
jan@42466
   662
programming language expects these rules as {\em proved} theorems, and
jan@42466
   663
not as axioms implemented in the above brute force manner; otherwise
jan@42466
   664
all the verification efforts envisaged (like proof of the
jan@42466
   665
post-condition, see below) would be meaningless.
jan@42466
   666
jan@42466
   667
Isabelle provides a large body of knowledge, rigorously proven from
jan@42466
   668
the basic axioms of mathematics~\footnote{This way of rigorously
jan@42466
   669
deriving all knowledge from first principles is called the
jan@42466
   670
LCF-paradigm in TP.}. In the case of the Z-Transform the most advanced
jan@42466
   671
knowledge can be found in the theoris on Multivariate
jan@42466
   672
Analysis~\footnote{http://isabelle.in.tum.de/dist/library/HOL/HOL-Multivariate\_Analysis}. However,
jan@42466
   673
building up knowledge such that a proof for the above rules would be
jan@42466
   674
reasonably short and easily comprehensible, still requires lots of
jan@42466
   675
work (and is definitely out of scope of our case study).
jan@42466
   676
neuper@42487
   677
At the state-of-the-art in mechanization of knowledge in engineering
neuper@42487
   678
sciences, the process does not stop with the mechanization of
neuper@42487
   679
mathematics traditionally used in these sciences. Rather, ``Formal
neuper@42487
   680
Methods''~\cite{ fm-03} are expected to proceed to formal and explicit
neuper@42487
   681
description of physical items.  Signal Processing, for instance is
neuper@42487
   682
concerned with physical devices for signal acquisition and
neuper@42487
   683
reconstruction, which involve measuring a physical signal, storing it,
neuper@42487
   684
and possibly later rebuilding the original signal or an approximation
neuper@42487
   685
thereof. For digital systems, this typically includes sampling and
neuper@42487
   686
quantization; devices for signal compression, including audio
neuper@42487
   687
compression, image compression, and video compression, etc.  ``Domain
neuper@42487
   688
engineering''\cite{db:dom-eng} is concerned with {\em specification}
neuper@42487
   689
of these devices' components and features; this part in the process of
neuper@42487
   690
mechanization is only at the beginning in domains like Signal
neuper@42487
   691
Processing.
jan@42466
   692
neuper@42487
   693
TP-based programming, concern of this paper, is determined to
jan@42466
   694
add ``algorithmic knowledge'' in Fig.\ref{fig:mathuni} on
jan@42466
   695
p.\pageref{fig:mathuni}.  As we shall see below, TP-based programming
jan@42466
   696
starts with a formal {\em specification} of the problem to be solved.
neuper@42478
   697
\begin{figure}
neuper@42478
   698
  \begin{center}
neuper@42483
   699
    \includegraphics[width=110mm]{fig/math-universe-small}
neuper@42487
   700
    \caption{The three-dimensional universe of mathematics knowledge}
neuper@42478
   701
    \label{fig:mathuni}
neuper@42478
   702
  \end{center}
neuper@42478
   703
\end{figure}
neuper@42487
   704
The language for both axes is defined in the axis at the bottom, deductive
neuper@42487
   705
knowledge, in {\sisac} represented by Isabelle's theories.
jan@42466
   706
jan@42466
   707
\subsection{Specification of the Problem}\label{spec}
jan@42466
   708
%WN <--> \chapter 7 der Thesis
jan@42466
   709
%WN die Argumentation unten sollte sich NUR auf Verifikation beziehen..
jan@42466
   710
jan@42466
   711
The problem of the running example is textually described in
jan@42466
   712
Fig.\ref{fig-interactive} on p.\pageref{fig-interactive}. The {\em
jan@42466
   713
formal} specification of this problem, in traditional mathematical
jan@42469
   714
notation, could look like is this:
jan@42466
   715
jan@42466
   716
%WN Hier brauchen wir die Spezifikation des 'running example' ...
jan@42466
   717
%JR Habe input, output und precond vom Beispiel eingefügt brauche aber Hilfe bei
jan@42466
   718
%JR der post condition - die existiert für uns ja eigentlich nicht aka
neuper@42467
   719
%JR haben sie bis jetzt nicht beachtet WN...
neuper@42467
   720
%WN2 Mein Vorschlag ist, das TODO zu lassen und deutlich zu kommentieren.
jan@42473
   721
%JR2 done
jan@42466
   722
jan@42463
   723
  \label{eg:neuper2}
jan@42463
   724
  {\small\begin{tabbing}
jan@42463
   725
  123,\=postcond \=: \= $\forall \,A^\prime\, u^\prime \,v^\prime.\,$\=\kill
jan@42463
   726
  \hfill \\
neuper@42465
   727
  Specification:\\
jan@42466
   728
    \>input    \>: filterExpression $X=\frac{3}{(z-\frac{1}{4}+-\frac{1}{8}*\frac{1}{z}}$\\
jan@42470
   729
  \>precond  \>: filterExpression continius on $\mathbb{R}$ \\
jan@42466
   730
  \>output   \>: stepResponse $x[n]$ \\
jan@42469
   731
  \>postcond \>: TODO - (Mind the following remark)\\ \end{tabbing}}
jan@42466
   732
jan@42473
   733
\begin{remark}
jan@42473
   734
   Defining the postcondition requires a high amount mathematical 
jan@42473
   735
   knowledge, the difficult part in our case is not to set up this condition 
jan@42473
   736
   nor it is more to define it in a way the interpreter is able to handle it. 
jan@42473
   737
   Due the fact that implementing that mechanisms is quite the same amount as 
jan@42473
   738
   creating the programm itself, it is not avaible in our prototype.
jan@42473
   739
   \label{rm:postcond}
jan@42473
   740
\end{remark}
jan@42469
   741
jan@42469
   742
\paragraph{The implementation} of the formal specification in the present
jan@42466
   743
prototype, still bar-bones without support for authoring:
jan@42466
   744
%WN Kopie von Inverse_Z_Transform.thy, leicht versch"onert:
neuper@42480
   745
{\footnotesize\label{exp-spec}
jan@42466
   746
\begin{verbatim}
jan@42466
   747
   01  store_specification
jan@42466
   748
   02    (prepare_specification
jan@42466
   749
   03      ["Jan Rocnik"]
jan@42466
   750
   04      "pbl_SP_Ztrans_inv"
jan@42466
   751
   05      thy
jan@42466
   752
   06      ( ["Inverse", "Z_Transform", "SignalProcessing"],
jan@42466
   753
   07        [ ("#Given", ["filterExpression X_eq"]),
jan@42466
   754
   08          ("#Pre"  , ["X_eq is_continuous"]),
jan@42466
   755
   19          ("#Find" , ["stepResponse n_eq"]),
jan@42466
   756
   10          ("#Post" , [" TODO "])],
jan@42466
   757
   11        append_rls Erls [Calc ("Atools.is_continuous", eval_is_continuous)], 
jan@42466
   758
   12        NONE, 
jan@42466
   759
   13        [["SignalProcessing","Z_Transform","Inverse"]]));
jan@42466
   760
\end{verbatim}}
jan@42466
   761
Although the above details are partly very technical, we explain them
jan@42466
   762
in order to document some intricacies of TP-based programming in the
jan@42466
   763
present state of the {\sisac} prototype:
jan@42466
   764
\begin{description}
jan@42466
   765
\item[01..02]\textit{store\_specification:} stores the result of the
jan@42466
   766
function \textit{prep\_specification} in a global reference
jan@42466
   767
\textit{Unsynchronized.ref}, which causes principal conflicts with
jan@42466
   768
Isabelle's asyncronous document model~\cite{Wenzel-11:doc-orient} and
jan@42466
   769
parallel execution~\cite{Makarius-09:parall-proof} and is under
jan@42466
   770
reconstruction already.
jan@42466
   771
jan@42466
   772
\textit{prep\_pbt:} translates the specification to an internal format
jan@42466
   773
which allows efficient processing; see for instance line {\rm 07}
jan@42466
   774
below.
jan@42466
   775
\item[03..04] are the ``mathematics author'' holding the copy-rights
jan@42466
   776
and a unique identifier for the specification within {\sisac},
jan@42466
   777
complare line {\rm 06}.
jan@42466
   778
\item[05] is the Isabelle \textit{theory} required to parse the
jan@42466
   779
specification in lines {\rm 07..10}.
jan@42466
   780
\item[06] is a key into the tree of all specifications as presented to
jan@42466
   781
the user (where some branches might be hidden by the dialog
jan@42466
   782
component).
jan@42466
   783
\item[07..10] are the specification with input, pre-condition, output
jan@42466
   784
and post-condition respectively; the post-condition is not handled in
jan@42473
   785
the prototype presently. (Follow up Remark~\ref{rm:postcond})
jan@42466
   786
\item[11] creates a term rewriting system (abbreviated \textit{rls} in
jan@42466
   787
{\sisac}) which evaluates the pre-condition for the actual input data.
jan@42466
   788
Only if the evaluation yields \textit{True}, a program con be started.
jan@42466
   789
\item[12]\textit{NONE:} could be \textit{SOME ``solve ...''} for a
jan@42466
   790
problem associated to a function from Computer Algebra (like an
jan@42466
   791
equation solver) which is not the case here.
jan@42466
   792
\item[13] is the specific key into the tree of programs addressing a
jan@42466
   793
method which is able to find a solution which satiesfies the
jan@42466
   794
post-condition of the specification.
jan@42466
   795
\end{description}
jan@42466
   796
jan@42466
   797
jan@42466
   798
%WN die folgenden Erkl"arungen finden sich durch "grep -r 'datatype pbt' *"
jan@42466
   799
%WN ...
jan@42466
   800
%  type pbt = 
jan@42466
   801
%     {guh  : guh,         (*unique within this isac-knowledge*)
jan@42466
   802
%      mathauthors: string list, (*copyright*)
jan@42466
   803
%      init  : pblID,      (*to start refinement with*)
jan@42466
   804
%      thy   : theory,     (* which allows to compile that pbt
jan@42466
   805
%			  TODO: search generalized for subthy (ref.p.69*)
jan@42466
   806
%      (*^^^ WN050912 NOT used during application of the problem,
jan@42466
   807
%       because applied terms may be from 'subthy' as well as from super;
jan@42466
   808
%       thus we take 'maxthy'; see match_ags !*)
jan@42466
   809
%      cas   : term option,(*'CAS-command'*)
jan@42466
   810
%      prls  : rls,        (* for preds in where_*)
jan@42466
   811
%      where_: term list,  (* where - predicates*)
jan@42466
   812
%      ppc   : pat list,
jan@42466
   813
%      (*this is the model-pattern; 
jan@42466
   814
%       it contains "#Given","#Where","#Find","#Relate"-patterns
jan@42466
   815
%       for constraints on identifiers see "fun cpy_nam"*)
jan@42466
   816
%      met   : metID list}; (* methods solving the pbt*)
jan@42466
   817
%
jan@42466
   818
%WN weil dieser Code sehr unaufger"aumt ist, habe ich die Erkl"arungen
jan@42466
   819
%WN oben selbst geschrieben.
jan@42466
   820
jan@42466
   821
jan@42466
   822
jan@42466
   823
jan@42466
   824
%WN das w"urde ich in \sec\label{progr} verschieben und
jan@42466
   825
%WN das SubProblem partial fractions zum Erkl"aren verwenden.
jan@42466
   826
% Such a specification is checked before the execution of a program is
jan@42466
   827
% started, the same applies for sub-programs. In the following example
neuper@42465
   828
% (Example~\ref{eg:subprob}) shows the call of such a subproblem:
neuper@42465
   829
% 
neuper@42465
   830
% \vbox{
neuper@42465
   831
%   \begin{example}
neuper@42465
   832
%   \label{eg:subprob}
neuper@42465
   833
%   \hfill \\
neuper@42465
   834
%   {\ttfamily \begin{tabbing}
neuper@42465
   835
%   ``(L\_L::bool list) = (\=SubProblem (\=Test','' \\
neuper@42465
   836
%   ``\>\>[linear,univariate,equation,test],'' \\
neuper@42465
   837
%   ``\>\>[Test,solve\_linear])'' \\
neuper@42465
   838
%   ``\>[BOOL equ, REAL z])'' \\
neuper@42465
   839
%   \end{tabbing}
neuper@42465
   840
%   }
neuper@42465
   841
%   {\small\textit{
jan@42466
   842
%     \noindent If a program requires a result which has to be
jan@42466
   843
% calculated first we can use a subproblem to do so. In our specific
jan@42466
   844
% case we wanted to calculate the zeros of a fraction and used a
neuper@42465
   845
% subproblem to calculate the zeros of the denominator polynom.
neuper@42465
   846
%     }}
neuper@42465
   847
%   \end{example}
neuper@42465
   848
% }
jan@42466
   849
jan@42466
   850
\subsection{Implementation of the Method}\label{meth}
jan@42466
   851
%WN <--> \chapter 7 der Thesis
jan@42466
   852
TODO
jan@42466
   853
\subsection{Preparation of Simplifiers for the Program}\label{simp}
jan@42469
   854
neuper@42480
   855
\paragraph{After collecting} informations about the problem 
neuper@42480
   856
%WN4 welche 'informations' ?
neuper@42480
   857
%WN4 Wenn das welche sind, die oben NICHT vorgekommen sind, dann anf"uhren
neuper@42480
   858
%WN4 Wenn das welche sind, die oben SCHON vorgekommen sind, dann weglassen
neuper@42480
   859
%WN4                       und Platz sparen.
neuper@42480
   860
%WN4 
neuper@42480
   861
%WN4 Wenn wir diese Bemerkung hier weglassen (sie m"usste eigentlich an jedem
neuper@42480
   862
%WN4 Beginn von 3.* stehen), dann kommt sie gleich an den Anfang
neuper@42480
   863
%WN4 nach der "Uberschrift von 3.
neuper@42480
   864
and reviewing the calculations, 
neuper@42480
   865
%WN4 welche 'calculations', ist von solchen bisher schon die Rede gewesen ?
neuper@42480
   866
the programm may be seem hard and heavy, therefor we can set up
jan@42475
   867
some simplifications, for e.g. is the simplification of reational expressions
neuper@42480
   868
already provided in the {\sisac{}} system. 
neuper@42480
   869
%WN4 
neuper@42480
   870
Also obligate is the use of the 
jan@42475
   871
function \texttt{drop\_questionmarks} which excludes irrelevant symbols out of
jan@42475
   872
the expression. (Irrelevant symbols may be result out of the system during the
jan@42475
   873
calculation.)
jan@42475
   874
jan@42475
   875
\subparagraph{Simplifiers often are represented} through rulesets\footnote{More
jan@42475
   876
information about rulesets can be found in \S\ref{sec:rules}}, this rulesets
jan@42475
   877
tell the machine which terms should be simplified into which representation. In
jan@42475
   878
the upcoming programm a simplification is applied only in using such rulesets
jan@42475
   879
on existing terms.
jan@42475
   880
\par
jan@42475
   881
Following example line was taken out of a finished programm and shows how
jan@42475
   882
an rational expression can be simplified.
jan@42475
   883
jan@42475
   884
\begin{example}
jan@42475
   885
\begin{verbatim}
jan@42475
   886
jan@42475
   887
  "expression = (Rewrite_Set norm_Rational False) expression;"^\end{verbatim}
jan@42475
   888
\end{example}
jan@42475
   889
jan@42475
   890
\subparagraph{If other} methods for use in term with simplification are needed
jan@42475
   891
\S\ref{funs} gives informations about new ML-Functions can be prepared.
jan@42469
   892
jan@42466
   893
\subsection{Preparation of ML-Functions}\label{funs}
jan@42469
   894
jan@42469
   895
\paragraph{Explicit Problems} require explicit methods to solve them, and within
jan@42469
   896
this methods we have some explicit steps to do. This steps can be unique for
jan@42469
   897
a special problem or refindable in other problems. No mather what case, such
jan@42469
   898
steps often require some technical functions behind. For the solving process
jan@42469
   899
of the Inverse Z Transformation and the corresponding partial fraction it was
jan@42469
   900
neccessary to build helping functions like \texttt{get\_denominator},
jan@42469
   901
\texttt{get\_numerator} or \texttt{argument\_in}. First two functions help us
jan@42473
   902
to filter the denominator or numerator out of a fraction, last one helps us to
jan@42469
   903
get to know the bound variable in a equation.
jan@42469
   904
\par
jan@42473
   905
By taking \texttt{get\_denominator} as an example, we want to explain how to 
jan@42473
   906
implement new functions into the existing system and how we can later use them
jan@42473
   907
in our program.
jan@42469
   908
jan@42469
   909
\subsubsection{Find a place to Store the Function}
jan@42473
   910
jan@42469
   911
The whole system builds up on a well defined structure of Knowledge. This
jan@42473
   912
Knowledge sets up at the Path:
jan@42473
   913
\begin{center}\ttfamily src/Tools/isac/Knowledge\normalfont\end{center}
jan@42470
   914
For implementing the Function \texttt{get\_denominator} (which let us extract
jan@42470
   915
the denominator out of a fraction) we have choosen the Theory (file)
jan@42469
   916
\texttt{Rational.thy}.
jan@42469
   917
jan@42469
   918
\subsubsection{Write down the new Function}
jan@42473
   919
jan@42470
   920
In upper Theory we now define the new function and its purpose:
jan@42470
   921
\begin{verbatim}
jan@42470
   922
  get_denominator :: "real => real"
jan@42470
   923
\end{verbatim}
jan@42470
   924
This command tells the machine that a function with the name
jan@42470
   925
\texttt{get\_denominator} exists which gets a real expression as argument and
jan@42473
   926
returns once again a real expression. Now we are able to implement the function
jan@42473
   927
itself, Example~\ref{eg:getdenom} now shows the implementation of
jan@42473
   928
\texttt{get\_denominator}.
jan@42469
   929
jan@42469
   930
\begin{example}
jan@42470
   931
  \label{eg:getdenom}
jan@42470
   932
  \begin{verbatim}
jan@42469
   933
jan@42470
   934
01  (*
jan@42470
   935
02   *("get_denominator",
jan@42470
   936
03   *  ("Rational.get_denominator", eval_get_denominator ""))
jan@42470
   937
04   *)
jan@42470
   938
05  fun eval_get_denominator (thmid:string) _ 
jan@42470
   939
06            (t as Const ("Rational.get_denominator", _) $
jan@42470
   940
07                (Const ("Rings.inverse_class.divide", _) $num 
jan@42470
   941
08                  $denom)) thy = 
jan@42470
   942
09          SOME (mk_thmid thmid "" 
jan@42470
   943
10              (Print_Mode.setmp [] 
jan@42470
   944
11                (Syntax.string_of_term (thy2ctxt thy)) denom) "", 
jan@42470
   945
12              Trueprop $ (mk_equality (t, denom)))
jan@42470
   946
13    | eval_get_denominator _ _ _ _ = NONE;\end{verbatim}
jan@42469
   947
\end{example}
jan@42469
   948
jan@42470
   949
Line \texttt{07} and \texttt{08} are describing the mode of operation the best -
jan@42470
   950
there is a fraction\\ (\ttfamily Rings.inverse\_class.divide\normalfont) 
jan@42470
   951
splittet
jan@42473
   952
into its two parts (\texttt{\$num \$denom}). The lines before are additionals
jan@42470
   953
commands for declaring the function and the lines after are modeling and 
jan@42470
   954
returning a real variable out of \texttt{\$denom}.
jan@42469
   955
jan@42469
   956
\subsubsection{Add a test for the new Function}
jan@42469
   957
jan@42473
   958
\paragraph{Everytime when adding} a new function it is essential also to add
jan@42473
   959
a test for it. Tests for all functions are sorted in the same structure as the
jan@42473
   960
knowledge it self and can be found up from the path:
jan@42473
   961
\begin{center}\ttfamily test/Tools/isac/Knowledge\normalfont\end{center}
jan@42473
   962
This tests are nothing very special, as a first prototype the functionallity
jan@42473
   963
of a function can be checked by evaluating the result of a simple expression
jan@42473
   964
passed to the function. Example~\ref{eg:getdenomtest} shows the test for our
jan@42473
   965
\textit{just} created function \texttt{get\_denominator}.
jan@42469
   966
jan@42473
   967
\begin{example}
jan@42473
   968
\label{eg:getdenomtest}
jan@42473
   969
\begin{verbatim}
jan@42473
   970
jan@42473
   971
01 val thy = @{theory Isac};
jan@42473
   972
02 val t = term_of (the (parse thy "get_denominator ((a +x)/b)"));
jan@42473
   973
03 val SOME (_, t') = eval_get_denominator "" 0 t thy;
jan@42473
   974
04 if term2str t' = "get_denominator ((a + x) / b) = b" then ()
jan@42473
   975
05 else error "get_denominator ((a + x) / b) = b" \end{verbatim}
jan@42473
   976
\end{example}
jan@42473
   977
jan@42473
   978
\begin{description}
jan@42473
   979
\item[01] checks if the proofer set up on our {\sisac{}} System.
jan@42473
   980
\item[02] passes a simple expression (fraction) to our suddenly created
jan@42473
   981
          function.
jan@42473
   982
\item[04] checks if the resulting variable is the correct one (in this case
jan@42473
   983
          ``b'' the denominator) and returns.
jan@42473
   984
\item[05] handels the error case and reports that the function is not able to
jan@42473
   985
          solve the given problem.
jan@42473
   986
\end{description}
jan@42469
   987
neuper@42478
   988
\subsection{Implementation of the TP-based Program}\label{progr} 
neuper@42480
   989
So finally all the prerequisites are described and the very topic can
neuper@42480
   990
be addressed. The program below comes back to the running example: it
neuper@42480
   991
computes a solution for the problem from Fig.\ref{fig-interactive} on
neuper@42480
   992
p.\pageref{fig-interactive}. The reader is reminded of
neuper@42480
   993
\S\ref{PL-isab}, the introduction of the programming language:
neuper@42482
   994
{\small\it\label{s:impl}
neuper@42482
   995
\begin{tabbing}
neuper@42478
   996
123l\=123\=123\=123\=123\=123\=123\=((x\=123\=(x \=123\=123\=\kill
neuper@42480
   997
\>{\rm 00}\>val program =\\
neuper@42480
   998
\>{\rm 01}\>  "{\tt Program} InverseZTransform (X\_eq::bool) =   \\
neuper@42482
   999
\>{\rm 02}\>\>  {\tt let}                                       \\
neuper@42468
  1000
\>{\rm 03}\>\>\>  X\_eq = {\tt Take} X\_eq ;   \\
neuper@42468
  1001
\>{\rm 04}\>\>\>  X\_eq = {\tt Rewrite} ruleZY X\_eq ; \\
neuper@42468
  1002
\>{\rm 05}\>\>\>  (X\_z::real) = lhs X\_eq ;       \\ %no inside-out evaluation
neuper@42468
  1003
\>{\rm 06}\>\>\>  (z::real) = argument\_in X\_z; \\
neuper@42468
  1004
\>{\rm 07}\>\>\>  (part\_frac::real) = {\tt SubProblem} \\
neuper@42478
  1005
\>{\rm 08}\>\>\>\>\>\>\>\>  ( Isac, [partial\_fraction, rational, simplification], [] )\\
neuper@42478
  1006
%\>{\rm 10}\>\>\>\>\>\>\>\>\>  [simplification, of\_rationals, to\_partial\_fraction] ) \\
neuper@42478
  1007
\>{\rm 09}\>\>\>\>\>\>\>\>  [ (rhs X\_eq)::real, z::real ]; \\
neuper@42478
  1008
\>{\rm 10}\>\>\>  (X'\_eq::bool) = {\tt Take} ((X'::real =$>$ bool) z = ZZ\_1 part\_frac) ; \\
neuper@42478
  1009
\>{\rm 11}\>\>\>  X'\_eq = (({\tt Rewrite\_Set} ruleYZ) @@   \\
neuper@42478
  1010
\>{\rm 12}\>\>\>\>\>  $\;\;$ ({\tt Rewrite\_Set} inverse\_z)) X'\_eq \\
neuper@42482
  1011
\>{\rm 13}\>\>  {\tt in } \\
neuper@42480
  1012
\>{\rm 14}\>\>\>  X'\_eq"
neuper@42478
  1013
\end{tabbing}}
neuper@42468
  1014
% ORIGINAL FROM Inverse_Z_Transform.thy
neuper@42468
  1015
% "Script InverseZTransform (X_eq::bool) =            "^(*([], Frm), Problem (Isac, [Inverse, Z_Transform, SignalProcessing])*)
neuper@42468
  1016
% "(let X = Take X_eq;                                "^(*([1], Frm), X z = 3 / (z - 1 / 4 + -1 / 8 * (1 / z))*)
neuper@42468
  1017
% "  X' = Rewrite ruleZY False X;                     "^(*([1], Res), ?X' z = 3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))*)
neuper@42468
  1018
% "  (X'_z::real) = lhs X';                           "^(*            ?X' z*)
neuper@42468
  1019
% "  (zzz::real) = argument_in X'_z;                  "^(*            z *)
neuper@42468
  1020
% "  (funterm::real) = rhs X';                        "^(*            3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))*)
neuper@42468
  1021
%
neuper@42468
  1022
% "  (pbz::real) = (SubProblem (Isac',                "^(**)
neuper@42468
  1023
% "    [partial_fraction,rational,simplification],    "^
neuper@42468
  1024
% "    [simplification,of_rationals,to_partial_fraction]) "^
neuper@42468
  1025
% "    [REAL funterm, REAL zzz]);                     "^(*([2], Res), 4 / (z - 1 / 2) + -4 / (z - -1 / 4)*)
neuper@42468
  1026
%
neuper@42468
  1027
% "  (pbz_eq::bool) = Take (X'_z = pbz);              "^(*([3], Frm), ?X' z = 4 / (z - 1 / 2) + -4 / (z - -1 / 4)*)
neuper@42468
  1028
% "  pbz_eq = Rewrite ruleYZ False pbz_eq;            "^(*([3], Res), ?X' z = 4 * (?z / (z - 1 / 2)) + -4 * (?z / (z - -1 / 4))*)
neuper@42468
  1029
% "  pbz_eq = drop_questionmarks pbz_eq;              "^(*               4 * (z / (z - 1 / 2)) + -4 * (z / (z - -1 / 4))*)
neuper@42468
  1030
% "  (X_zeq::bool) = Take (X_z = rhs pbz_eq);         "^(*([4], Frm), X_z = 4 * (z / (z - 1 / 2)) + -4 * (z / (z - -1 / 4))*)
neuper@42468
  1031
% "  n_eq = (Rewrite_Set inverse_z False) X_zeq;      "^(*([4], Res), X_z = 4 * (1 / 2) ^^^ ?n * ?u [?n] + -4 * (-1 / 4) ^^^ ?n * ?u [?n]*)
neuper@42468
  1032
% "  n_eq = drop_questionmarks n_eq                   "^(*            X_z = 4 * (1 / 2) ^^^ n * u [n] + -4 * (-1 / 4) ^^^ n * u [n]*)
neuper@42468
  1033
% "in n_eq)"                                            (*([], Res), X_z = 4 * (1 / 2) ^^^ n * u [n] + -4 * (-1 / 4) ^^^ n * u [n]*)
neuper@42480
  1034
The program is represented as a string and part of the method in
neuper@42480
  1035
\S\ref{meth}.  As mentioned in \S\ref{PL} the program is purely
neuper@42480
  1036
functional and lacks any input statements and output statements. So
neuper@42480
  1037
the steps of calculation towards a solution (and interactive tutoring
neuper@42480
  1038
in step-wise problem solving) are created as a side-effect by
neuper@42480
  1039
Lucas-Interpretation.  The side-effects are triggered by the tactics
neuper@42482
  1040
\texttt{Take}, \texttt{Rewrite}, \texttt{SubProblem} and
neuper@42482
  1041
\texttt{Rewrite\_Set} in the above lines {\rm 03, 04, 07, 10, 11} and
neuper@42480
  1042
{\rm 12} respectively. These tactics produce the lines in the
neuper@42480
  1043
calculation on p.\pageref{flow-impl}.
neuper@42478
  1044
neuper@42480
  1045
The above lines {\rm 05, 06} do not contain a tactics, so they do not
neuper@42480
  1046
immediately contribute to the calculation on p.\pageref{flow-impl};
neuper@42482
  1047
rather, they compute actual arguments for the \texttt{SubProblem} in
neuper@42480
  1048
line {\rm 09}~\footnote{The tactics also are break-points for the
neuper@42480
  1049
interpreter, where control is handed over to the user in interactive
neuper@42482
  1050
tutoring.}. Line {\rm 11} contains tactical \textit{@@}.
neuper@42480
  1051
neuper@42480
  1052
\medskip The above program also indicates the dominant role of interactive
neuper@42478
  1053
selection of knowledge in the three-dimensional universe of
neuper@42478
  1054
mathematics as depicted in Fig.\ref{fig:mathuni} on
neuper@42482
  1055
p.\pageref{fig:mathuni}, The \texttt{SubProblem} in the above lines
neuper@42478
  1056
{\rm 07..09} is more than a function call with the actual arguments
neuper@42478
  1057
\textit{[ (rhs X\_eq)::real, z::real ]}. The programmer has to determine
neuper@42478
  1058
three items:
neuper@42480
  1059
neuper@42478
  1060
\begin{enumerate}
neuper@42478
  1061
\item the theory, in the example \textit{Isac} because different
neuper@42478
  1062
methods can be selected in Pt.3 below, which are defined in different
neuper@42478
  1063
theories with \textit{Isac} collecting them.
neuper@42480
  1064
\item the specification identified by \textit{[partial\_fraction,
neuper@42480
  1065
rational, simplification]} in the tree of specifications; this
neuper@42480
  1066
specification is analogous to the specification of the main program
neuper@42480
  1067
described in \S\ref{spec}; the problem is to find a ``partial fraction
neuper@42480
  1068
decomposition'' for a univariate rational polynomial.
neuper@42480
  1069
\item the method in the above example is \textit{[ ]}, i.e. empty,
neuper@42480
  1070
which supposes the interpreter to select one of the methods predefined
neuper@42480
  1071
in the specification, for instance in line {\rm 13} in the running
neuper@42480
  1072
example's specification on p.\pageref{exp-spec}~\footnote{The freedom
neuper@42480
  1073
(or obligation) for selection carries over to the student in
neuper@42480
  1074
interactive tutoring.}.
neuper@42478
  1075
\end{enumerate}
neuper@42478
  1076
neuper@42480
  1077
The program code, above presented as a string, is parsed by Isabelle's
neuper@42480
  1078
parser --- the program is an Isabelle term. This fact is expected to
neuper@42480
  1079
simplify verification tasks in the future; on the other hand, this
neuper@42480
  1080
fact causes troubles in error detectetion which are discussed as part
neuper@42480
  1081
of the workflow in the subsequent section.
neuper@42467
  1082
jan@42463
  1083
\section{Workflow of Programming in the Prototype}\label{workflow}
neuper@42480
  1084
The previous section presented all the duties and tasks to be accomplished by
neuper@42481
  1085
programmers of TP-based languages. Some tasks are interrelated and comprehensive,
neuper@42481
  1086
so first experiences with the workflow in programming are noted below. The notes
neuper@42481
  1087
also capture requirements for future language development.
neuper@42468
  1088
jan@42466
  1089
\subsection{Preparations and Trials}\label{flow-prep}
neuper@42481
  1090
% Build\_Inverse\_Z\_Transform.thy ... ``imports PolyEq DiffApp Partial\_Fractions''
neuper@42481
  1091
The new graphical user-interface of Isabelle~\cite{makar-jedit-12} is a great
neuper@42481
  1092
step forward for interactive theory and proof development --- and so it is for
neuper@42481
  1093
interactive program development; the specific requirements raised by interactive
neuper@42481
  1094
programming will be mentioned separately.
neuper@42481
  1095
neuper@42481
  1096
The development in the {\sisac}-prototype was done in a separate
neuper@42481
  1097
theory~\footnote{http://www.ist.tugraz.at/projects/isac/publ/Build\_Inverse\_Z\_Transform.thy}.
neuper@42481
  1098
The workflow tackled the tasks more or less following the order of the
neuper@42482
  1099
above sections from \S\ref{isabisac} to \S\ref{funs}. At each stage
neuper@42482
  1100
the interactivity of Isabelle/jEdit is very supportive. For instance,
neuper@42482
  1101
as soon as the theorems for the Z-transform are established (see
neuper@42482
  1102
\S\ref{isabisac}) it is tempting to see them at work: First we need
neuper@42482
  1103
technical prerequisites not worth to mention and parse a string to a
neuper@42482
  1104
term using {\sisac}'s function \textit{str2term}:
neuper@42482
  1105
{\footnotesize\label{exp-spec}
neuper@42482
  1106
\begin{verbatim}
neuper@42482
  1107
   ML {*
neuper@42482
  1108
     val (thy, ro, er) = (@{theory}, tless_true, eval_rls);
neuper@42482
  1109
     val t = str2term "z / (z - 1) + z / (z - \<alpha>) + 1";
neuper@42482
  1110
   *}
neuper@42482
  1111
\end{verbatim}}
neuper@42482
  1112
Then we call {\sisac}'s rewrite-engine directly by \textit{rewrite\_} (instead via Lucas-Interpreter by \textit{Rewrite}) and yield
neuper@42482
  1113
a rewritten term \textit{t'} together with assumptions:
neuper@42482
  1114
{\footnotesize\label{exp-spec}
neuper@42482
  1115
\begin{verbatim}
neuper@42482
  1116
   ML {*
neuper@42482
  1117
     val SOME (t', asm) = rewrite_ thy ro er true (num_str @{thm rule3}) t;
neuper@42482
  1118
   *}
neuper@42482
  1119
\end{verbatim}}
neuper@42482
  1120
And any evaluation of an \texttt{ML} section immediately responds with the
neuper@42482
  1121
values computed, for instance with the result of the rewrites, which above
neuper@42482
  1122
have been returned in the internal term representation --- here are the more
neuper@42482
  1123
readable string representations:
neuper@42482
  1124
{\footnotesize\label{exp-spec}
neuper@42482
  1125
\begin{verbatim}
neuper@42482
  1126
   ML {*
neuper@42482
  1127
     term2str t';
neuper@42482
  1128
     terms2str (asm);
neuper@42482
  1129
   *}
neuper@42482
  1130
   val it = "- ?u [- ?n - 1] + z / (z - α) + 1": string
neuper@42482
  1131
   val it = "[|| z || < 1]": string
neuper@42482
  1132
\end{verbatim}}
neuper@42482
  1133
Looking at the last line shows how the system will reliably handle
neuper@42482
  1134
assumptions like the convergence radius.
neuper@42482
  1135
%WN gerne w"urde ich oben das Beispiel aus subsection {*Apply Rules*}
neuper@42482
  1136
%WN aus http://www.ist.tugraz.at/projects/isac/publ/Build_Inverse_Z_Transform.thy.
neuper@42482
  1137
%WN Leider bekomme ich einen Fehler --- siehst Du eine schnelle Korrektur ?
neuper@42481
  1138
neuper@42481
  1139
neuper@42482
  1140
.\\.\\.\\
neuper@42482
  1141
neuper@42482
  1142
TODO test the function \textit{argument\_of} which is embedded in the
neuper@42482
  1143
ruleset which is used to evaluate the program by the Lucas-Interpreter.
neuper@42481
  1144
neuper@42468
  1145
.\\.\\.\\
neuper@42468
  1146
jan@42469
  1147
%JR: Hier sollte eigentlich stehen was nun bei 4.3.1 ist. Habe das erst kürzlich
jan@42469
  1148
%JR: eingefügt; das war der beinn unserer Arbeit in
jan@42469
  1149
%JR: Build_Inverse_Z_Transformation und beschreibt die meiner Meinung nach bei
jan@42469
  1150
%JR: jedem neuen Programm nötigen Schritte.
jan@42469
  1151
neuper@42468
  1152
\subsection{Implementation in Isabelle/{\isac}}\label{flow-impl}
neuper@42468
  1153
jan@42469
  1154
\paragraph{At the beginning} of the implementation it is good to decide on one
jan@42469
  1155
way the problem should be solved. We also did this for our Z-Transformation
jan@42469
  1156
Problem and have choosen the way it is also thaugt in the Signal Processing
jan@42469
  1157
Problem classes.
jan@42469
  1158
\subparagraph{By writing down} each of this neccesarry steps we are describing
jan@42469
  1159
one line of our upcoming program. In the following example we show the 
jan@42469
  1160
Calculation on the left and on the right the tactics in the program which
jan@42469
  1161
created the respective formula on the left.
jan@42469
  1162
jan@42469
  1163
\begin{example}
jan@42469
  1164
\hfill\\
neuper@42468
  1165
{\small\it
neuper@42468
  1166
\begin{tabbing}
neuper@42468
  1167
123l\=123\=123\=123\=123\=123\=123\=123\=123\=123\=123\=123\=\kill
neuper@42468
  1168
\>{\rm 01}\> $\bullet$  \> {\tt Problem } (Inverse\_Z\_Transform, [Inverse, Z\_Transform, SignalProcessing])       \`\\
neuper@42468
  1169
\>{\rm 02}\>\> $\vdash\;\;X z = \frac{3}{z - \frac{1}{4} - \frac{1}{8} \cdot z^{-1}}$       \`{\footnotesize {\tt Take} X\_eq}\\
neuper@42468
  1170
\>{\rm 03}\>\> $X z = \frac{3}{z + \frac{-1}{4} + \frac{-1}{8} \cdot \frac{1}{z}}$          \`{\footnotesize {\tt Rewrite} ruleZY X\_eq}\\
neuper@42468
  1171
\>{\rm 04}\>\> $\bullet$\> {\tt Problem } [partial\_fraction,rational,simplification]        \`{\footnotesize {\tt SubProblem} \dots}\\
neuper@42468
  1172
\>{\rm 05}\>\>\>  $\vdash\;\;\frac{3}{z + \frac{-1}{4} + \frac{-1}{8} \cdot \frac{1}{z}}=$    \`- - -\\
neuper@42468
  1173
\>{\rm 06}\>\>\>  $\frac{24}{-1 + -2 \cdot z + 8 \cdot z^2}$                                   \`- - -\\
neuper@42468
  1174
\>{\rm 07}\>\>\>  $\bullet$\> solve ($-1 + -2 \cdot z + 8 \cdot z^2,\;z$ )                      \`- - -\\
neuper@42468
  1175
\>{\rm 08}\>\>\>\>   $\vdash$ \> $\frac{3}{z + \frac{-1}{4} + \frac{-1}{8} \cdot \frac{1}{z}}=0$ \`- - -\\
neuper@42468
  1176
\>{\rm 09}\>\>\>\>   $z = \frac{2+\sqrt{-4+8}}{16}\;\lor\;z = \frac{2-\sqrt{-4+8}}{16}$           \`- - -\\
neuper@42468
  1177
\>{\rm 10}\>\>\>\>   $z = \frac{1}{2}\;\lor\;z =$ \_\_\_                                           \`- - -\\
neuper@42468
  1178
\>        \>\>\>\>   \_\_\_                                                                        \`- - -\\
neuper@42468
  1179
\>{\rm 11}\>\> \dots\> $\frac{4}{z - \frac{1}{2}} + \frac{-4}{z - \frac{-1}{4}}$                   \`\\
neuper@42468
  1180
\>{\rm 12}\>\> $X^\prime z = {\cal Z}^{-1} (\frac{4}{z - \frac{1}{2}} + \frac{-4}{z - \frac{-1}{4}})$ \`{\footnotesize {\tt Take} ((X'::real =$>$ bool) z = ZZ\_1 part\_frac)}\\
neuper@42468
  1181
\>{\rm 13}\>\> $X^\prime z = {\cal Z}^{-1} (4\cdot\frac{z}{z - \frac{1}{2}} + -4\cdot\frac{z}{z - \frac{-1}{4}})$ \`{\footnotesize{\tt Rewrite\_Set} ruleYZ X'\_eq }\\
neuper@42468
  1182
\>{\rm 14}\>\> $X^\prime z = 4\cdot(\frac{1}{2})^n \cdot u [n] + -4\cdot(\frac{-1}{4})^n \cdot u [n]$  \`{\footnotesize {\tt Rewrite\_Set} inverse\_z X'\_eq}\\
neuper@42468
  1183
\>{\rm 15}\> \dots\> $X^\prime z = 4\cdot(\frac{1}{2})^n \cdot u [n] + -4\cdot(\frac{-1}{4})^n \cdot u [n]$ \`{\footnotesize {\tt Check\_Postcond}}
neuper@42468
  1184
\end{tabbing}}
jan@42469
  1185
jan@42469
  1186
\end{example}
jan@42469
  1187
neuper@42468
  1188
% ORIGINAL FROM Inverse_Z_Transform.thy
neuper@42468
  1189
%    "Script InverseZTransform (X_eq::bool) =            "^(*([], Frm), Problem (Isac, [Inverse, Z_Transform, SignalProcessing])*)
neuper@42468
  1190
%    "(let X = Take X_eq;                                "^(*([1], Frm), X z = 3 / (z - 1 / 4 + -1 / 8 * (1 / z))*)
neuper@42468
  1191
%    "  X' = Rewrite ruleZY False X;                     "^(*([1], Res), ?X' z = 3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))*)
neuper@42468
  1192
%    "  (X'_z::real) = lhs X';                           "^(*            ?X' z*)
neuper@42468
  1193
%    "  (zzz::real) = argument_in X'_z;                  "^(*            z *)
neuper@42468
  1194
%    "  (funterm::real) = rhs X';                        "^(*            3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))*)
neuper@42468
  1195
% 
neuper@42468
  1196
%    "  (pbz::real) = (SubProblem (Isac',                "^(**)
neuper@42468
  1197
%    "    [partial_fraction,rational,simplification],    "^
neuper@42468
  1198
%    "    [simplification,of_rationals,to_partial_fraction]) "^
neuper@42468
  1199
%    "    [REAL funterm, REAL zzz]);                     "^(*([2], Res), 4 / (z - 1 / 2) + -4 / (z - -1 / 4)*)
neuper@42468
  1200
% 
neuper@42468
  1201
%    "  (pbz_eq::bool) = Take (X'_z = pbz);              "^(*([3], Frm), ?X' z = 4 / (z - 1 / 2) + -4 / (z - -1 / 4)*)
neuper@42468
  1202
%    "  pbz_eq = Rewrite ruleYZ False pbz_eq;            "^(*([3], Res), ?X' z = 4 * (?z / (z - 1 / 2)) + -4 * (?z / (z - -1 / 4))*)
neuper@42468
  1203
%    "  pbz_eq = drop_questionmarks pbz_eq;              "^(*               4 * (z / (z - 1 / 2)) + -4 * (z / (z - -1 / 4))*)
neuper@42468
  1204
%    "  (X_zeq::bool) = Take (X_z = rhs pbz_eq);         "^(*([4], Frm), X_z = 4 * (z / (z - 1 / 2)) + -4 * (z / (z - -1 / 4))*)
neuper@42468
  1205
%    "  n_eq = (Rewrite_Set inverse_z False) X_zeq;      "^(*([4], Res), X_z = 4 * (1 / 2) ^^^ ?n * ?u [?n] + -4 * (-1 / 4) ^^^ ?n * ?u [?n]*)
neuper@42468
  1206
%    "  n_eq = drop_questionmarks n_eq                   "^(*            X_z = 4 * (1 / 2) ^^^ n * u [n] + -4 * (-1 / 4) ^^^ n * u [n]*)
neuper@42468
  1207
%    "in n_eq)"                                            (*([], Res), X_z = 4 * (1 / 2) ^^^ n * u [n] + -4 * (-1 / 4) ^^^ n * u [n]*)
neuper@42468
  1208
neuper@42468
  1209
.\\.\\.\\
neuper@42468
  1210
neuper@42468
  1211
\subsection{Transfer into the Isabelle/{\isac} Knowledge}\label{flow-trans}
neuper@42468
  1212
TODO http://www.ist.tugraz.at/isac/index.php/Extend\_ISAC\_Knowledge\#Add\_an\_example ?
neuper@42468
  1213
neuper@42468
  1214
neuper@42481
  1215
http://www.ist.tugraz.at/projects/isac/publ/Inverse\_Z\_Transform.thy
neuper@42468
  1216
neuper@42478
  1217
% \newpage
neuper@42478
  1218
% -------------------------------------------------------------------
neuper@42478
  1219
% 
neuper@42478
  1220
% Material, falls noch Platz bleibt ...
neuper@42478
  1221
% 
neuper@42478
  1222
% -------------------------------------------------------------------
neuper@42478
  1223
% 
neuper@42478
  1224
% 
neuper@42478
  1225
% \subsubsection{Trials on Notation and Termination}
neuper@42478
  1226
% 
neuper@42478
  1227
% \paragraph{Technical notations} are a big problem for our piece of software,
neuper@42478
  1228
% but the reason for that isn't a fault of the software itself, one of the
neuper@42478
  1229
% troubles comes out of the fact that different technical subtopics use different
neuper@42478
  1230
% symbols and notations for a different purpose. The most famous example for such
neuper@42478
  1231
% a symbol is the complex number $i$ (in cassique math) or $j$ (in technical
neuper@42478
  1232
% math). In the specific part of signal processing one of this notation issues is
neuper@42478
  1233
% the use of brackets --- we use round brackets for analoge signals and squared
neuper@42478
  1234
% brackets for digital samples. Also if there is no problem for us to handle this
neuper@42478
  1235
% fact, we have to tell the machine what notation leads to wich meaning and that
neuper@42478
  1236
% this purpose seperation is only valid for this special topic - signal
neuper@42478
  1237
% processing.
neuper@42478
  1238
% \subparagraph{In the programming language} itself it is not possible to declare
neuper@42478
  1239
% fractions, exponents, absolutes and other operators or remarks in a way to make
neuper@42478
  1240
% them pretty to read; our only posssiblilty were ASCII characters and a handfull
neuper@42478
  1241
% greek symbols like: $\alpha, \beta, \gamma, \phi,\ldots$.
neuper@42478
  1242
% \par
neuper@42478
  1243
% With the upper collected knowledge it is possible to check if we were able to
neuper@42478
  1244
% donate all required terms and expressions.
neuper@42478
  1245
% 
neuper@42478
  1246
% \subsubsection{Definition and Usage of Rules}
neuper@42478
  1247
% 
neuper@42478
  1248
% \paragraph{The core} of our implemented problem is the Z-Transformation, due
neuper@42478
  1249
% the fact that the transformation itself would require higher math which isn't
neuper@42478
  1250
% yet avaible in our system we decided to choose the way like it is applied in
neuper@42478
  1251
% labratory and problem classes at our university - by applying transformation
neuper@42478
  1252
% rules (collected in transformation tables).
neuper@42478
  1253
% \paragraph{Rules,} in {\sisac{}}'s programming language can be designed by the
neuper@42478
  1254
% use of axiomatizations like shown in Example~\ref{eg:ruledef}
neuper@42478
  1255
% 
neuper@42478
  1256
% \begin{example}
neuper@42478
  1257
%   \label{eg:ruledef}
neuper@42478
  1258
%   \hfill\\
neuper@42478
  1259
%   \begin{verbatim}
neuper@42478
  1260
%   axiomatization where
neuper@42478
  1261
%     rule1: ``1 = $\delta$[n]'' and
neuper@42478
  1262
%     rule2: ``|| z || > 1 ==> z / (z - 1) = u [n]'' and
neuper@42478
  1263
%     rule3: ``|| z || < 1 ==> z / (z - 1) = -u [-n - 1]''
neuper@42478
  1264
%   \end{verbatim}
neuper@42478
  1265
% \end{example}
neuper@42478
  1266
% 
neuper@42478
  1267
% This rules can be collected in a ruleset and applied to a given expression as
neuper@42478
  1268
% follows in Example~\ref{eg:ruleapp}.
neuper@42478
  1269
% 
neuper@42478
  1270
% \begin{example}
neuper@42478
  1271
%   \hfill\\
neuper@42478
  1272
%   \label{eg:ruleapp}
neuper@42478
  1273
%   \begin{enumerate}
neuper@42478
  1274
%   \item Store rules in ruleset:
neuper@42478
  1275
%   \begin{verbatim}
neuper@42478
  1276
%   val inverse_Z = append_rls "inverse_Z" e_rls
neuper@42478
  1277
%     [ Thm ("rule1",num_str @{thm rule1}),
neuper@42478
  1278
%       Thm ("rule2",num_str @{thm rule2}),
neuper@42478
  1279
%       Thm ("rule3",num_str @{thm rule3})
neuper@42478
  1280
%     ];\end{verbatim}
neuper@42478
  1281
%   \item Define exression:
neuper@42478
  1282
%   \begin{verbatim}
neuper@42478
  1283
%   val sample_term = str2term "z/(z-1)+z/(z-</delta>)+1";\end{verbatim}
neuper@42478
  1284
%   \item Apply ruleset:
neuper@42478
  1285
%   \begin{verbatim}
neuper@42478
  1286
%   val SOME (sample_term', asm) = 
neuper@42478
  1287
%     rewrite_set_ thy true inverse_Z sample_term;\end{verbatim}
neuper@42478
  1288
%   \end{enumerate}
neuper@42478
  1289
% \end{example}
neuper@42478
  1290
% 
neuper@42478
  1291
% The use of rulesets makes it much easier to develop our designated applications,
neuper@42478
  1292
% but the programmer has to be careful and patient. When applying rulesets
neuper@42478
  1293
% two important issues have to be mentionend:
neuper@42478
  1294
% \subparagraph{How often} the rules have to be applied? In case of
neuper@42478
  1295
% transformations it is quite clear that we use them once but other fields
neuper@42478
  1296
% reuqire to apply rules until a special condition is reached (e.g.
neuper@42478
  1297
% a simplification is finished when there is nothing to be done left).
neuper@42478
  1298
% \subparagraph{The order} in which rules are applied often takes a big effect
neuper@42478
  1299
% and has to be evaluated for each purpose once again.
neuper@42478
  1300
% \par
neuper@42478
  1301
% In our special case of Signal Processing and the rules defined in
neuper@42478
  1302
% Example~\ref{eg:ruledef} we have to apply rule~1 first of all to transform all
neuper@42478
  1303
% constants. After this step has been done it no mather which rule fit's next.
neuper@42478
  1304
% 
neuper@42478
  1305
% \subsubsection{Helping Functions}
neuper@42478
  1306
% 
neuper@42478
  1307
% \paragraph{New Programms require,} often new ways to get through. This new ways
neuper@42478
  1308
% means that we handle functions that have not been in use yet, they can be 
neuper@42478
  1309
% something special and unique for a programm or something famous but unneeded in
neuper@42478
  1310
% the system yet. In our dedicated example it was for example neccessary to split
neuper@42478
  1311
% a fraction into numerator and denominator; the creation of such function and
neuper@42478
  1312
% even others is described in upper Sections~\ref{simp} and \ref{funs}.
neuper@42478
  1313
% 
neuper@42478
  1314
% \subsubsection{Trials on equation solving}
neuper@42478
  1315
% %simple eq and problem with double fractions/negative exponents
neuper@42478
  1316
% \paragraph{The Inverse Z-Transformation} makes it neccessary to solve
neuper@42478
  1317
% equations degree one and two. Solving equations in the first degree is no 
neuper@42478
  1318
% problem, wether for a student nor for our machine; but even second degree
neuper@42478
  1319
% equations can lead to big troubles. The origin of this troubles leads from
neuper@42478
  1320
% the build up process of our equation solving functions; they have been
neuper@42478
  1321
% implemented some time ago and of course they are not as good as we want them to
neuper@42478
  1322
% be. Wether or not following we only want to show how cruel it is to build up new
neuper@42478
  1323
% work on not well fundamentials.
neuper@42478
  1324
% \subparagraph{A simple equation solving,} can be set up as shown in the next
neuper@42478
  1325
% example:
neuper@42478
  1326
% 
neuper@42478
  1327
% \begin{example}
neuper@42478
  1328
% \begin{verbatim}
neuper@42478
  1329
%   
neuper@42478
  1330
%   val fmz =
neuper@42478
  1331
%     ["equality (-1 + -2 * z + 8 * z ^^^ 2 = (0::real))",
neuper@42478
  1332
%      "solveFor z",
neuper@42478
  1333
%      "solutions L"];                                    
neuper@42478
  1334
% 
neuper@42478
  1335
%   val (dI',pI',mI') =
neuper@42478
  1336
%     ("Isac", 
neuper@42478
  1337
%       ["abcFormula","degree_2","polynomial","univariate","equation"],
neuper@42478
  1338
%       ["no_met"]);\end{verbatim}
neuper@42478
  1339
% \end{example}
neuper@42478
  1340
% 
neuper@42478
  1341
% Here we want to solve the equation: $-1+-2\cdot z+8\cdot z^{2}=0$. (To give
neuper@42478
  1342
% a short overview on the commands; at first we set up the equation and tell the
neuper@42478
  1343
% machine what's the bound variable and where to store the solution. Second step 
neuper@42478
  1344
% is to define the equation type and determine if we want to use a special method
neuper@42478
  1345
% to solve this type.) Simple checks tell us that the we will get two results for
neuper@42478
  1346
% this equation and this results will be real.
neuper@42478
  1347
% So far it is easy for us and for our machine to solve, but
neuper@42478
  1348
% mentioned that a unvariate equation second order can have three different types
neuper@42478
  1349
% of solutions it is getting worth.
neuper@42478
  1350
% \subparagraph{The solving of} all this types of solutions is not yet supported.
neuper@42478
  1351
% Luckily it was needed for us; but something which has been needed in this 
neuper@42478
  1352
% context, would have been the solving of an euation looking like:
neuper@42478
  1353
% $-z^{-2}+-2\cdot z^{-1}+8=0$ which is basically the same equation as mentioned
neuper@42478
  1354
% before (remember that befor it was no problem to handle for the machine) but
neuper@42478
  1355
% now, after a simple equivalent transformation, we are not able to solve
neuper@42478
  1356
% it anymore.
neuper@42478
  1357
% \subparagraph{Error messages} we get when we try to solve something like upside
neuper@42478
  1358
% were very confusing and also leads us to no special hint about a problem.
neuper@42478
  1359
% \par The fault behind is, that we have no well error handling on one side and
neuper@42478
  1360
% no sufficient formed equation solving on the other side. This two facts are
neuper@42478
  1361
% making the implemention of new material very difficult.
neuper@42478
  1362
% 
neuper@42478
  1363
% \subsection{Formalization of missing knowledge in Isabelle}
neuper@42478
  1364
% 
neuper@42478
  1365
% \paragraph{A problem} behind is the mechanization of mathematic
neuper@42478
  1366
% theories in TP-bases languages. There is still a huge gap between
neuper@42478
  1367
% these algorithms and this what we want as a solution - in Example
neuper@42478
  1368
% Signal Processing. 
neuper@42478
  1369
% 
neuper@42478
  1370
% \vbox{
neuper@42478
  1371
%   \begin{example}
neuper@42478
  1372
%     \label{eg:gap}
neuper@42478
  1373
%     \[
neuper@42478
  1374
%       X\cdot(a+b)+Y\cdot(c+d)=aX+bX+cY+dY
neuper@42478
  1375
%     \]
neuper@42478
  1376
%     {\small\textit{
neuper@42478
  1377
%       \noindent A very simple example on this what we call gap is the
neuper@42478
  1378
% simplification above. It is needles to say that it is correct and also
neuper@42478
  1379
% Isabelle for fills it correct - \emph{always}. But sometimes we don't
neuper@42478
  1380
% want expand such terms, sometimes we want another structure of
neuper@42478
  1381
% them. Think of a problem were we now would need only the coefficients
neuper@42478
  1382
% of $X$ and $Y$. This is what we call the gap between mechanical
neuper@42478
  1383
% simplification and the solution.
neuper@42478
  1384
%     }}
neuper@42478
  1385
%   \end{example}
neuper@42478
  1386
% }
neuper@42478
  1387
% 
neuper@42478
  1388
% \paragraph{We are not able to fill this gap,} until we have to live
neuper@42478
  1389
% with it but first have a look on the meaning of this statement:
neuper@42478
  1390
% Mechanized math starts from mathematical models and \emph{hopefully}
neuper@42478
  1391
% proceeds to match physics. Academic engineering starts from physics
neuper@42478
  1392
% (experimentation, measurement) and then proceeds to mathematical
neuper@42478
  1393
% modeling and formalization. The process from a physical observance to
neuper@42478
  1394
% a mathematical theory is unavoidable bound of setting up a big
neuper@42478
  1395
% collection of standards, rules, definition but also exceptions. These
neuper@42478
  1396
% are the things making mechanization that difficult.
neuper@42478
  1397
% 
neuper@42478
  1398
% \vbox{
neuper@42478
  1399
%   \begin{example}
neuper@42478
  1400
%     \label{eg:units}
neuper@42478
  1401
%     \[
neuper@42478
  1402
%       m,\ kg,\ s,\ldots
neuper@42478
  1403
%     \]
neuper@42478
  1404
%     {\small\textit{
neuper@42478
  1405
%       \noindent Think about some units like that one's above. Behind
neuper@42478
  1406
% each unit there is a discerning and very accurate definition: One
neuper@42478
  1407
% Meter is the distance the light travels, in a vacuum, through the time
neuper@42478
  1408
% of 1 / 299.792.458 second; one kilogram is the weight of a
neuper@42478
  1409
% platinum-iridium cylinder in paris; and so on. But are these
neuper@42478
  1410
% definitions usable in a computer mechanized world?!
neuper@42478
  1411
%     }}
neuper@42478
  1412
%   \end{example}
neuper@42478
  1413
% }
neuper@42478
  1414
% 
neuper@42478
  1415
% \paragraph{A computer} or a TP-System builds on programs with
neuper@42478
  1416
% predefined logical rules and does not know any mathematical trick
neuper@42478
  1417
% (follow up example \ref{eg:trick}) or recipe to walk around difficult
neuper@42478
  1418
% expressions. 
neuper@42478
  1419
% 
neuper@42478
  1420
% \vbox{
neuper@42478
  1421
%   \begin{example}
neuper@42478
  1422
%     \label{eg:trick}
neuper@42478
  1423
%   \[ \frac{1}{j\omega}\cdot\left(e^{-j\omega}-e^{j3\omega}\right)= \]
neuper@42478
  1424
%   \[ \frac{1}{j\omega}\cdot e^{-j2\omega}\cdot\left(e^{j\omega}-e^{-j\omega}\right)=
neuper@42478
  1425
%      \frac{1}{\omega}\, e^{-j2\omega}\cdot\colorbox{lgray}{$\frac{1}{j}\,\left(e^{j\omega}-e^{-j\omega}\right)$}= \]
neuper@42478
  1426
%   \[ \frac{1}{\omega}\, e^{-j2\omega}\cdot\colorbox{lgray}{$2\, sin(\omega)$} \]
neuper@42478
  1427
%     {\small\textit{
neuper@42478
  1428
%       \noindent Sometimes it is also useful to be able to apply some
neuper@42478
  1429
% \emph{tricks} to get a beautiful and particularly meaningful result,
neuper@42478
  1430
% which we are able to interpret. But as seen in this example it can be
neuper@42478
  1431
% hard to find out what operations have to be done to transform a result
neuper@42478
  1432
% into a meaningful one.
neuper@42478
  1433
%     }}
neuper@42478
  1434
%   \end{example}
neuper@42478
  1435
% }
neuper@42478
  1436
% 
neuper@42478
  1437
% \paragraph{The only possibility,} for such a system, is to work
neuper@42478
  1438
% through its known definitions and stops if none of these
neuper@42478
  1439
% fits. Specified on Signal Processing or any other application it is
neuper@42478
  1440
% often possible to walk through by doing simple creases. This creases
neuper@42478
  1441
% are in general based on simple math operational but the challenge is
neuper@42478
  1442
% to teach the machine \emph{all}\footnote{Its pride to call it
neuper@42478
  1443
% \emph{all}.} of them. Unfortunately the goal of TP Isabelle is to
neuper@42478
  1444
% reach a high level of \emph{all} but it in real it will still be a
neuper@42478
  1445
% survey of knowledge which links to other knowledge and {{\sisac}{}} a
neuper@42478
  1446
% trainer and helper but no human compensating calculator. 
neuper@42478
  1447
% \par
neuper@42478
  1448
% {{{\sisac}{}}} itself aims to adds \emph{Algorithmic Knowledge} (formal
neuper@42478
  1449
% specifications of problems out of topics from Signal Processing, etc.)
neuper@42478
  1450
% and \emph{Application-oriented Knowledge} to the \emph{deductive} axis of
neuper@42478
  1451
% physical knowledge. The result is a three-dimensional universe of
neuper@42478
  1452
% mathematics seen in Figure~\ref{fig:mathuni}.
neuper@42478
  1453
% 
neuper@42478
  1454
% \begin{figure}
neuper@42478
  1455
%   \begin{center}
neuper@42478
  1456
%     \includegraphics{fig/universe}
neuper@42478
  1457
%     \caption{Didactic ``Math-Universe'': Algorithmic Knowledge (Programs) is
neuper@42478
  1458
%              combined with Application-oriented Knowledge (Specifications) and Deductive Knowledge (Axioms, Definitions, Theorems). The Result
neuper@42478
  1459
%              leads to a three dimensional math universe.\label{fig:mathuni}}
neuper@42478
  1460
%   \end{center}
neuper@42478
  1461
% \end{figure}
neuper@42478
  1462
% 
neuper@42478
  1463
% %WN Deine aktuelle Benennung oben wird Dir kein Fachmann abnehmen;
neuper@42478
  1464
% %WN bitte folgende Bezeichnungen nehmen:
neuper@42478
  1465
% %WN 
neuper@42478
  1466
% %WN axis 1: Algorithmic Knowledge (Programs)
neuper@42478
  1467
% %WN axis 2: Application-oriented Knowledge (Specifications)
neuper@42478
  1468
% %WN axis 3: Deductive Knowledge (Axioms, Definitions, Theorems)
neuper@42478
  1469
% %WN 
neuper@42478
  1470
% %WN und bitte die R"ander von der Grafik wegschneiden (was ich f"ur *.pdf
neuper@42478
  1471
% %WN nicht hinkriege --- weshalb ich auch die eJMT-Forderung nicht ganz
neuper@42478
  1472
% %WN verstehe, separierte PDFs zu schicken; ich w"urde *.png schicken)
neuper@42478
  1473
% 
neuper@42478
  1474
% %JR Ränder und beschriftung geändert. Keine Ahnung warum eJMT sich pdf's
neuper@42478
  1475
% %JR wünschen, würde ebenfalls png oder ähnliches verwenden, aber wenn pdf's
neuper@42478
  1476
% %JR gefordert werden WN2...
neuper@42478
  1477
% %WN2 meiner Meinung nach hat sich eJMT unklar ausgedr"uckt (z.B. kann
neuper@42478
  1478
% %WN2 man meines Wissens pdf-figures nicht auf eine bestimmte Gr"osse
neuper@42478
  1479
% %WN2 zusammenschneiden um die R"ander weg zu bekommen)
neuper@42478
  1480
% %WN2 Mein Vorschlag ist, in umserem tex-file bei *.png zu bleiben und
neuper@42478
  1481
% %WN2 png + pdf figures mitzuschicken.
neuper@42478
  1482
% 
neuper@42478
  1483
% \subsection{Notes on Problems with Traditional Notation}
neuper@42478
  1484
% 
neuper@42478
  1485
% \paragraph{During research} on these topic severely problems on
neuper@42478
  1486
% traditional notations have been discovered. Some of them have been
neuper@42478
  1487
% known in computer science for many years now and are still unsolved,
neuper@42478
  1488
% one of them aggregates with the so called \emph{Lambda Calculus},
neuper@42478
  1489
% Example~\ref{eg:lamda} provides a look on the problem that embarrassed
neuper@42478
  1490
% us.
neuper@42478
  1491
% 
neuper@42478
  1492
% \vbox{
neuper@42478
  1493
%   \begin{example}
neuper@42478
  1494
%     \label{eg:lamda}
neuper@42478
  1495
% 
neuper@42478
  1496
%   \[ f(x)=\ldots\;  \quad R \rightarrow \quad R \]
neuper@42478
  1497
% 
neuper@42478
  1498
% 
neuper@42478
  1499
%   \[ f(p)=\ldots\;  p \in \quad R \]
neuper@42478
  1500
% 
neuper@42478
  1501
%     {\small\textit{
neuper@42478
  1502
%       \noindent Above we see two equations. The first equation aims to
neuper@42478
  1503
% be a mapping of an function from the reel range to the reel one, but
neuper@42478
  1504
% when we change only one letter we get the second equation which
neuper@42478
  1505
% usually aims to insert a reel point $p$ into the reel function. In
neuper@42478
  1506
% computer science now we have the problem to tell the machine (TP) the
neuper@42478
  1507
% difference between this two notations. This Problem is called
neuper@42478
  1508
% \emph{Lambda Calculus}.
neuper@42478
  1509
%     }}
neuper@42478
  1510
%   \end{example}
neuper@42478
  1511
% }
neuper@42478
  1512
% 
neuper@42478
  1513
% \paragraph{An other problem} is that terms are not full simplified in
neuper@42478
  1514
% traditional notations, in {{\sisac}} we have to simplify them complete
neuper@42478
  1515
% to check weather results are compatible or not. in e.g. the solutions
neuper@42478
  1516
% of an second order linear equation is an rational in {{\sisac}} but in
neuper@42478
  1517
% tradition we keep fractions as long as possible and as long as they
neuper@42478
  1518
% aim to be \textit{beautiful} (1/8, 5/16,...).
neuper@42478
  1519
% \subparagraph{The math} which should be mechanized in Computer Theorem
neuper@42478
  1520
% Provers (\emph{TP}) has (almost) a problem with traditional notations
neuper@42478
  1521
% (predicate calculus) for axioms, definitions, lemmas, theorems as a
neuper@42478
  1522
% computer program or script is not able to interpret every Greek or
neuper@42478
  1523
% Latin letter and every Greek, Latin or whatever calculations
neuper@42478
  1524
% symbol. Also if we would be able to handle these symbols we still have
neuper@42478
  1525
% a problem to interpret them at all. (Follow up \hbox{Example
neuper@42478
  1526
% \ref{eg:symbint1}})
neuper@42478
  1527
% 
neuper@42478
  1528
% \vbox{
neuper@42478
  1529
%   \begin{example}
neuper@42478
  1530
%     \label{eg:symbint1}
neuper@42478
  1531
%     \[
neuper@42478
  1532
%       u\left[n\right] \ \ldots \ unitstep
neuper@42478
  1533
%     \]
neuper@42478
  1534
%     {\small\textit{
neuper@42478
  1535
%       \noindent The unitstep is something we need to solve Signal
neuper@42478
  1536
% Processing problem classes. But in {{{\sisac}{}}} the rectangular
neuper@42478
  1537
% brackets have a different meaning. So we abuse them for our
neuper@42478
  1538
% requirements. We get something which is not defined, but usable. The
neuper@42478
  1539
% Result is syntax only without semantic.
neuper@42478
  1540
%     }}
neuper@42478
  1541
%   \end{example}
neuper@42478
  1542
% }
neuper@42478
  1543
% 
neuper@42478
  1544
% In different problems, symbols and letters have different meanings and
neuper@42478
  1545
% ask for different ways to get through. (Follow up \hbox{Example
neuper@42478
  1546
% \ref{eg:symbint2}}) 
neuper@42478
  1547
% 
neuper@42478
  1548
% \vbox{
neuper@42478
  1549
%   \begin{example}
neuper@42478
  1550
%     \label{eg:symbint2}
neuper@42478
  1551
%     \[
neuper@42478
  1552
%       \widehat{\ }\ \widehat{\ }\ \widehat{\ } \  \ldots \  exponent
neuper@42478
  1553
%     \]
neuper@42478
  1554
%     {\small\textit{
neuper@42478
  1555
%     \noindent For using exponents the three \texttt{widehat} symbols
neuper@42478
  1556
% are required. The reason for that is due the development of
neuper@42478
  1557
% {{{\sisac}{}}} the single \texttt{widehat} and also the double were
neuper@42478
  1558
% already in use for different operations.
neuper@42478
  1559
%     }}
neuper@42478
  1560
%   \end{example}
neuper@42478
  1561
% }
neuper@42478
  1562
% 
neuper@42478
  1563
% \paragraph{Also the output} can be a problem. We are familiar with a
neuper@42478
  1564
% specified notations and style taught in university but a computer
neuper@42478
  1565
% program has no knowledge of the form proved by a professor and the
neuper@42478
  1566
% machines themselves also have not yet the possibilities to print every
neuper@42478
  1567
% symbol (correct) Recent developments provide proofs in a human
neuper@42478
  1568
% readable format but according to the fact that there is no money for
neuper@42478
  1569
% good working formal editors yet, the style is one thing we have to
neuper@42478
  1570
% live with.
neuper@42478
  1571
% 
neuper@42478
  1572
% \section{Problems rising out of the Development Environment}
neuper@42478
  1573
% 
neuper@42478
  1574
% fehlermeldungen! TODO
jan@42463
  1575
neuper@42492
  1576
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\end{verbatim}
neuper@42492
  1577
neuper@42464
  1578
\section{Conclusion}\label{conclusion}
neuper@42492
  1579
This paper gives a first experience report about programming with a
neuper@42492
  1580
TP-based programming language.
jan@42463
  1581
neuper@42492
  1582
\medskip A brief re-introduction of the novel kind of programming
neuper@42492
  1583
language by example of the {\sisac}-prototype makes the paper
neuper@42492
  1584
self-contained. The main section describes all the main concepts
neuper@42492
  1585
involved in TP-based programming and all the sub-tasks concerning
neuper@42492
  1586
respective implementation: mechanisation of mathematics and domain
neuper@42492
  1587
modelling, implementation of term rewriting systems for the
neuper@42492
  1588
rewriting-engine, formal (implicit) specification of the problem to be
neuper@42492
  1589
(explicitly) described by the program, implement the many components
neuper@42492
  1590
required for Lucas-Interpretation and finally implementation of the
neuper@42492
  1591
program itself.
neuper@42492
  1592
neuper@42492
  1593
The many concepts and sub-tasks involved in programming require a
neuper@42492
  1594
comprehensive workflow; first experiences with the workflow as
neuper@42492
  1595
supported by the present prototype are described as well: Isabelle +
neuper@42492
  1596
Isar + jEdit provide appropriate components for establishing an
neuper@42492
  1597
efficient development environment integrating computation and
neuper@42492
  1598
deduction. However, the present state of the prototype is far off a
neuper@42492
  1599
state appropriate for wide-spread use: the prototype of the program
neuper@42492
  1600
language lacks expressiveness and elegance, the prototype of the
neuper@42492
  1601
development environment is hardly usable: error messages still address
neuper@42492
  1602
the developer of the prototype's interpreter rather than the
neuper@42492
  1603
application programmer, implementation of the many settings for the
neuper@42492
  1604
Lucas-Interpreter is cumbersome.
neuper@42492
  1605
neuper@42492
  1606
From these experiences a successful proof of concept can be concluded:
neuper@42492
  1607
programming arbitrary problems from engineering sciences is possible,
neuper@42492
  1608
in principle even in the prototype. Furthermore the experiences allow
neuper@42492
  1609
to conclude detailed requirements for further development:
neuper@42492
  1610
\begin{itemize}
neuper@42492
  1611
\item Clarify underlying logics such that programming is smoothly
neuper@42492
  1612
integrated with verification of the program; the post-condition should
neuper@42492
  1613
be proved more or less automatically, otherwise working engineers
neuper@42492
  1614
would not encounter such programming.
neuper@42492
  1615
\item Combine the prototype's programming language with Isabelle's
neuper@42492
  1616
powerful function package and probably with more of SML's
neuper@42492
  1617
pattern-matching features; include parallel execution on multi-core
neuper@42492
  1618
machines into the language desing.
neuper@42492
  1619
\item Extend the prototype's Lucas-Interpreter such that it also
neuper@42492
  1620
handles functions defined by use of Isabelle's functions package; and
neuper@42492
  1621
generalize Isabelle's code generator such that efficient code for the
neuper@42492
  1622
whole of the defined programming language can be generated (for
neuper@42492
  1623
multi-core machines).
neuper@42492
  1624
\item Develop an efficient development environment with
neuper@42492
  1625
integration of programming and proving, with management not only of
neuper@42492
  1626
Isabelle theories, but also of large collections of specifications and
neuper@42492
  1627
of programs.
neuper@42492
  1628
\end{itemize} 
neuper@42492
  1629
Provided successful accomplishment, these points provide distinguished
neuper@42492
  1630
components for virtual workbenches appealing to practictioner of
neuper@42492
  1631
engineering in the near future.
neuper@42492
  1632
neuper@42492
  1633
\medskip And all programming with a TP-based language will
neuper@42492
  1634
subsequently create interactive tutoring as a side-effect:
neuper@42492
  1635
Lucas-Interpretation not only provides an interactive programming
neuper@42492
  1636
environment, Lucas-Interpretation also can provide TP-based services
neuper@42492
  1637
for a flexible dialog component with adaptive user guidance for
neuper@42492
  1638
independent and inquiry-based learning.
neuper@42492
  1639
jan@42463
  1640
jan@42463
  1641
\bibliographystyle{alpha}
jan@42463
  1642
\bibliography{references}
jan@42463
  1643
jan@42463
  1644
\end{document}