src/HOL/Tools/Sledgehammer/sledgehammer_atp_translate.ML
author blanchet
Thu, 12 May 2011 15:29:19 +0200
changeset 43612 f132d13fcf75
parent 43607 369dfc819056
child 43615 c8b1d9ee3758
permissions -rw-r--r--
use the same code for extensionalization in Metis and Sledgehammer and generalize that code so that it gracefully handles negations (e.g. negated conjecture), formulas of the form (%x. t) = u, etc.
blanchet@40358
     1
(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_atp_translate.ML
blanchet@38506
     2
    Author:     Fabian Immler, TU Muenchen
blanchet@38506
     3
    Author:     Makarius
blanchet@38506
     4
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@38506
     5
blanchet@39734
     6
Translation of HOL to FOL for Sledgehammer.
blanchet@38506
     7
*)
blanchet@38506
     8
blanchet@40249
     9
signature SLEDGEHAMMER_ATP_TRANSLATE =
blanchet@38506
    10
sig
blanchet@43088
    11
  type 'a fo_term = 'a ATP_Problem.fo_term
blanchet@43580
    12
  type formula_kind = ATP_Problem.formula_kind
blanchet@38506
    13
  type 'a problem = 'a ATP_Problem.problem
blanchet@43511
    14
  type locality = Sledgehammer_Filter.locality
blanchet@43484
    15
blanchet@43484
    16
  datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
blanchet@43484
    17
  datatype type_level =
blanchet@43484
    18
    All_Types | Nonmonotonic_Types | Finite_Types | Const_Arg_Types | No_Types
blanchet@43484
    19
blanchet@43484
    20
  datatype type_system =
blanchet@43587
    21
    Simple_Types of type_level |
blanchet@43484
    22
    Preds of polymorphism * type_level |
blanchet@43484
    23
    Tags of polymorphism * type_level
blanchet@43484
    24
blanchet@40358
    25
  type translated_formula
blanchet@38506
    26
blanchet@43517
    27
  val readable_names : bool Config.T
blanchet@40445
    28
  val fact_prefix : string
blanchet@38506
    29
  val conjecture_prefix : string
blanchet@43439
    30
  val predicator_base : string
blanchet@43415
    31
  val explicit_app_base : string
blanchet@43420
    32
  val type_pred_base : string
blanchet@43433
    33
  val tff_type_prefix : string
blanchet@43484
    34
  val type_sys_from_string : string -> type_system
blanchet@43484
    35
  val polymorphism_of_type_sys : type_system -> polymorphism
blanchet@43484
    36
  val level_of_type_sys : type_system -> type_level
blanchet@43484
    37
  val is_type_sys_virtually_sound : type_system -> bool
blanchet@43484
    38
  val is_type_sys_fairly_sound : type_system -> bool
blanchet@41384
    39
  val num_atp_type_args : theory -> type_system -> string -> int
blanchet@43413
    40
  val unmangled_const : string -> string * string fo_term list
blanchet@41336
    41
  val translate_atp_fact :
blanchet@43511
    42
    Proof.context -> bool -> (string * locality) * thm
blanchet@43511
    43
    -> translated_formula option * ((string * locality) * thm)
blanchet@40240
    44
  val prepare_atp_problem :
blanchet@43580
    45
    Proof.context -> formula_kind -> formula_kind -> type_system -> bool
blanchet@43580
    46
    -> term list -> term
blanchet@41339
    47
    -> (translated_formula option * ((string * 'a) * thm)) list
blanchet@43412
    48
    -> string problem * string Symtab.table * int * int
blanchet@43412
    49
       * (string * 'a) list vector
blanchet@41561
    50
  val atp_problem_weights : string problem -> (string * real) list
blanchet@38506
    51
end;
blanchet@38506
    52
blanchet@41388
    53
structure Sledgehammer_ATP_Translate : SLEDGEHAMMER_ATP_TRANSLATE =
blanchet@38506
    54
struct
blanchet@38506
    55
blanchet@38506
    56
open ATP_Problem
blanchet@39734
    57
open Metis_Translate
blanchet@38506
    58
open Sledgehammer_Util
blanchet@43511
    59
open Sledgehammer_Filter
blanchet@43511
    60
blanchet@43511
    61
(* experimental *)
blanchet@43511
    62
val generate_useful_info = false
blanchet@38506
    63
blanchet@43439
    64
(* Readable names are often much shorter, especially if types are mangled in
blanchet@43460
    65
   names. Also, the logic for generating legal SNARK sort names is only
blanchet@43460
    66
   implemented for readable names. Finally, readable names are, well, more
blanchet@43460
    67
   readable. For these reason, they are enabled by default. *)
blanchet@43517
    68
val readable_names =
blanchet@43517
    69
  Attrib.setup_config_bool @{binding sledgehammer_atp_readable_names} (K true)
blanchet@43439
    70
blanchet@43414
    71
val type_decl_prefix = "type_"
blanchet@43414
    72
val sym_decl_prefix = "sym_"
blanchet@40445
    73
val fact_prefix = "fact_"
blanchet@38506
    74
val conjecture_prefix = "conj_"
blanchet@38506
    75
val helper_prefix = "help_"
blanchet@43414
    76
val class_rel_clause_prefix = "crel_";
blanchet@38506
    77
val arity_clause_prefix = "arity_"
blanchet@40156
    78
val tfree_prefix = "tfree_"
blanchet@38506
    79
blanchet@43439
    80
val predicator_base = "hBOOL"
blanchet@43415
    81
val explicit_app_base = "hAPP"
blanchet@43413
    82
val type_pred_base = "is"
blanchet@43433
    83
val tff_type_prefix = "ty_"
blanchet@43402
    84
blanchet@43433
    85
fun make_tff_type s = tff_type_prefix ^ ascii_of s
blanchet@43402
    86
blanchet@38506
    87
(* Freshness almost guaranteed! *)
blanchet@38506
    88
val sledgehammer_weak_prefix = "Sledgehammer:"
blanchet@38506
    89
blanchet@43484
    90
datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
blanchet@43484
    91
datatype type_level =
blanchet@43484
    92
  All_Types | Nonmonotonic_Types | Finite_Types | Const_Arg_Types | No_Types
blanchet@43484
    93
blanchet@43484
    94
datatype type_system =
blanchet@43587
    95
  Simple_Types of type_level |
blanchet@43484
    96
  Preds of polymorphism * type_level |
blanchet@43484
    97
  Tags of polymorphism * type_level
blanchet@43484
    98
blanchet@43559
    99
fun try_unsuffixes ss s =
blanchet@43559
   100
  fold (fn s' => fn NONE => try (unsuffix s') s | some => some) ss NONE
blanchet@43559
   101
blanchet@43484
   102
fun type_sys_from_string s =
blanchet@43587
   103
  (case try (unprefix "poly_") s of
blanchet@43587
   104
     SOME s => (SOME Polymorphic, s)
blanchet@43484
   105
   | NONE =>
blanchet@43484
   106
     case try (unprefix "mono_") s of
blanchet@43587
   107
       SOME s => (SOME Monomorphic, s)
blanchet@43587
   108
     | NONE =>
blanchet@43587
   109
       case try (unprefix "mangled_") s of
blanchet@43587
   110
         SOME s => (SOME Mangled_Monomorphic, s)
blanchet@43587
   111
       | NONE => (NONE, s))
blanchet@43484
   112
  ||> (fn s =>
blanchet@43559
   113
          (* "_query" and "_bang" are for the ASCII-challenged Mirabelle. *)
blanchet@43559
   114
          case try_unsuffixes ["?", "_query"] s of
blanchet@43484
   115
            SOME s => (Nonmonotonic_Types, s)
blanchet@43484
   116
          | NONE =>
blanchet@43559
   117
            case try_unsuffixes ["!", "_bang"] s of
blanchet@43484
   118
              SOME s => (Finite_Types, s)
blanchet@43484
   119
            | NONE => (All_Types, s))
blanchet@43587
   120
  |> (fn (poly, (level, core)) =>
blanchet@43587
   121
         case (core, (poly, level)) of
blanchet@43587
   122
           ("simple_types", (NONE, level)) => Simple_Types level
blanchet@43587
   123
         | ("preds", (SOME poly, level)) => Preds (poly, level)
blanchet@43587
   124
         | ("tags", (SOME poly, level)) => Tags (poly, level)
blanchet@43587
   125
         | ("args", (SOME poly, All_Types (* naja *))) =>
blanchet@43587
   126
           Preds (poly, Const_Arg_Types)
blanchet@43587
   127
         | ("erased", (NONE, All_Types (* naja *))) =>
blanchet@43587
   128
           Preds (Polymorphic, No_Types)
blanchet@43484
   129
         | _ => error ("Unknown type system: " ^ quote s ^ "."))
blanchet@43484
   130
blanchet@43587
   131
fun polymorphism_of_type_sys (Simple_Types _) = Mangled_Monomorphic
blanchet@43484
   132
  | polymorphism_of_type_sys (Preds (poly, _)) = poly
blanchet@43484
   133
  | polymorphism_of_type_sys (Tags (poly, _)) = poly
blanchet@43484
   134
blanchet@43587
   135
fun level_of_type_sys (Simple_Types level) = level
blanchet@43484
   136
  | level_of_type_sys (Preds (_, level)) = level
blanchet@43484
   137
  | level_of_type_sys (Tags (_, level)) = level
blanchet@43484
   138
blanchet@43557
   139
fun is_type_level_virtually_sound level =
blanchet@43557
   140
  level = All_Types orelse level = Nonmonotonic_Types
blanchet@43484
   141
val is_type_sys_virtually_sound =
blanchet@43484
   142
  is_type_level_virtually_sound o level_of_type_sys
blanchet@43484
   143
blanchet@43484
   144
fun is_type_level_fairly_sound level =
blanchet@43484
   145
  is_type_level_virtually_sound level orelse level = Finite_Types
blanchet@43484
   146
val is_type_sys_fairly_sound = is_type_level_fairly_sound o level_of_type_sys
blanchet@43484
   147
blanchet@43557
   148
fun is_type_level_partial level =
blanchet@43557
   149
  level = Nonmonotonic_Types orelse level = Finite_Types
blanchet@43557
   150
blanchet@43444
   151
fun formula_map f (AQuant (q, xs, phi)) = AQuant (q, xs, formula_map f phi)
blanchet@43444
   152
  | formula_map f (AConn (c, phis)) = AConn (c, map (formula_map f) phis)
blanchet@43444
   153
  | formula_map f (AAtom tm) = AAtom (f tm)
blanchet@43444
   154
blanchet@43550
   155
fun formula_fold pos f =
blanchet@43547
   156
  let
blanchet@43547
   157
    fun aux pos (AQuant (_, _, phi)) = aux pos phi
blanchet@43550
   158
      | aux pos (AConn (ANot, [phi])) = aux (Option.map not pos) phi
blanchet@43547
   159
      | aux pos (AConn (AImplies, [phi1, phi2])) =
blanchet@43550
   160
        aux (Option.map not pos) phi1 #> aux pos phi2
blanchet@43550
   161
      | aux pos (AConn (AAnd, phis)) = fold (aux pos) phis
blanchet@43550
   162
      | aux pos (AConn (AOr, phis)) = fold (aux pos) phis
blanchet@43550
   163
      | aux _ (AConn (_, phis)) = fold (aux NONE) phis
blanchet@43547
   164
      | aux pos (AAtom tm) = f pos tm
blanchet@43550
   165
  in aux (SOME pos) end
blanchet@43444
   166
blanchet@40358
   167
type translated_formula =
blanchet@38991
   168
  {name: string,
blanchet@43511
   169
   locality: locality,
blanchet@43396
   170
   kind: formula_kind,
blanchet@43433
   171
   combformula: (name, typ, combterm) formula,
blanchet@43433
   172
   atomic_types: typ list}
blanchet@38506
   173
blanchet@43511
   174
fun update_combformula f ({name, locality, kind, combformula, atomic_types}
blanchet@43511
   175
                          : translated_formula) =
blanchet@43511
   176
  {name = name, locality = locality, kind = kind, combformula = f combformula,
blanchet@43433
   177
   atomic_types = atomic_types} : translated_formula
blanchet@43413
   178
blanchet@43429
   179
fun fact_lift f ({combformula, ...} : translated_formula) = f combformula
blanchet@43429
   180
blanchet@43443
   181
val boring_consts = [explicit_app_base, @{const_name Metis.fequal}]
blanchet@43443
   182
blanchet@43443
   183
fun should_omit_type_args type_sys s =
blanchet@43460
   184
  s <> type_pred_base andalso s <> type_tag_name andalso
blanchet@43460
   185
  (s = @{const_name HOL.eq} orelse level_of_type_sys type_sys = No_Types orelse
blanchet@43460
   186
   (case type_sys of
blanchet@43460
   187
      Tags (_, All_Types) => true
blanchet@43460
   188
    | _ => polymorphism_of_type_sys type_sys <> Mangled_Monomorphic andalso
blanchet@43460
   189
           member (op =) boring_consts s))
blanchet@43547
   190
blanchet@43460
   191
datatype type_arg_policy = No_Type_Args | Explicit_Type_Args | Mangled_Type_Args
blanchet@41384
   192
blanchet@43460
   193
fun general_type_arg_policy type_sys =
blanchet@43460
   194
  if level_of_type_sys type_sys = No_Types then
blanchet@43460
   195
    No_Type_Args
blanchet@43460
   196
  else if polymorphism_of_type_sys type_sys = Mangled_Monomorphic then
blanchet@43460
   197
    Mangled_Type_Args
blanchet@43460
   198
  else
blanchet@43460
   199
    Explicit_Type_Args
blanchet@43434
   200
blanchet@43395
   201
fun type_arg_policy type_sys s =
blanchet@43443
   202
  if should_omit_type_args type_sys s then No_Type_Args
blanchet@43434
   203
  else general_type_arg_policy type_sys
blanchet@43088
   204
blanchet@41384
   205
fun num_atp_type_args thy type_sys s =
blanchet@43428
   206
  if type_arg_policy type_sys s = Explicit_Type_Args then num_type_args thy s
blanchet@43428
   207
  else 0
blanchet@41384
   208
blanchet@43224
   209
fun atp_type_literals_for_types type_sys kind Ts =
blanchet@43460
   210
  if level_of_type_sys type_sys = No_Types then
blanchet@43224
   211
    []
blanchet@43224
   212
  else
blanchet@43224
   213
    Ts |> type_literals_for_types
blanchet@43224
   214
       |> filter (fn TyLitVar _ => kind <> Conjecture
blanchet@43224
   215
                   | TyLitFree _ => kind = Conjecture)
blanchet@41385
   216
blanchet@43580
   217
fun mk_anot phi = AConn (ANot, [phi])
blanchet@38506
   218
fun mk_aconn c phi1 phi2 = AConn (c, [phi1, phi2])
blanchet@43405
   219
fun mk_aconns c phis =
blanchet@43405
   220
  let val (phis', phi') = split_last phis in
blanchet@43405
   221
    fold_rev (mk_aconn c) phis' phi'
blanchet@43405
   222
  end
blanchet@38506
   223
fun mk_ahorn [] phi = phi
blanchet@43405
   224
  | mk_ahorn phis psi = AConn (AImplies, [mk_aconns AAnd phis, psi])
blanchet@43393
   225
fun mk_aquant _ [] phi = phi
blanchet@43393
   226
  | mk_aquant q xs (phi as AQuant (q', xs', phi')) =
blanchet@43393
   227
    if q = q' then AQuant (q, xs @ xs', phi') else AQuant (q, xs, phi)
blanchet@43393
   228
  | mk_aquant q xs phi = AQuant (q, xs, phi)
blanchet@38506
   229
blanchet@43393
   230
fun close_universally atom_vars phi =
blanchet@41393
   231
  let
blanchet@41393
   232
    fun formula_vars bounds (AQuant (_, xs, phi)) =
blanchet@43397
   233
        formula_vars (map fst xs @ bounds) phi
blanchet@41393
   234
      | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
blanchet@43393
   235
      | formula_vars bounds (AAtom tm) =
blanchet@43397
   236
        union (op =) (atom_vars tm []
blanchet@43397
   237
                      |> filter_out (member (op =) bounds o fst))
blanchet@43393
   238
  in mk_aquant AForall (formula_vars [] phi []) phi end
blanchet@43393
   239
blanchet@43402
   240
fun combterm_vars (CombApp (tm1, tm2)) = fold combterm_vars [tm1, tm2]
blanchet@43393
   241
  | combterm_vars (CombConst _) = I
blanchet@43445
   242
  | combterm_vars (CombVar (name, T)) = insert (op =) (name, SOME T)
blanchet@43545
   243
fun close_combformula_universally phi = close_universally combterm_vars phi
blanchet@43393
   244
blanchet@43393
   245
fun term_vars (ATerm (name as (s, _), tms)) =
blanchet@43402
   246
  is_atp_variable s ? insert (op =) (name, NONE)
blanchet@43397
   247
  #> fold term_vars tms
blanchet@43545
   248
fun close_formula_universally phi = close_universally term_vars phi
blanchet@41393
   249
blanchet@43433
   250
fun fo_term_from_typ (Type (s, Ts)) =
blanchet@43433
   251
    ATerm (`make_fixed_type_const s, map fo_term_from_typ Ts)
blanchet@43433
   252
  | fo_term_from_typ (TFree (s, _)) =
blanchet@43433
   253
    ATerm (`make_fixed_type_var s, [])
blanchet@43433
   254
  | fo_term_from_typ (TVar ((x as (s, _)), _)) =
blanchet@43433
   255
    ATerm ((make_schematic_type_var x, s), [])
blanchet@43433
   256
blanchet@43433
   257
(* This shouldn't clash with anything else. *)
blanchet@43413
   258
val mangled_type_sep = "\000"
blanchet@43413
   259
blanchet@43433
   260
fun generic_mangled_type_name f (ATerm (name, [])) = f name
blanchet@43433
   261
  | generic_mangled_type_name f (ATerm (name, tys)) =
blanchet@43433
   262
    f name ^ "(" ^ commas (map (generic_mangled_type_name f) tys) ^ ")"
blanchet@43433
   263
val mangled_type_name =
blanchet@43433
   264
  fo_term_from_typ
blanchet@43433
   265
  #> (fn ty => (make_tff_type (generic_mangled_type_name fst ty),
blanchet@43433
   266
                generic_mangled_type_name snd ty))
blanchet@43413
   267
blanchet@43445
   268
fun generic_mangled_type_suffix f g Ts =
blanchet@43413
   269
  fold_rev (curry (op ^) o g o prefix mangled_type_sep
blanchet@43445
   270
            o generic_mangled_type_name f) Ts ""
blanchet@43433
   271
fun mangled_const_name T_args (s, s') =
blanchet@43433
   272
  let val ty_args = map fo_term_from_typ T_args in
blanchet@43433
   273
    (s ^ generic_mangled_type_suffix fst ascii_of ty_args,
blanchet@43433
   274
     s' ^ generic_mangled_type_suffix snd I ty_args)
blanchet@43433
   275
  end
blanchet@43413
   276
blanchet@43413
   277
val parse_mangled_ident =
blanchet@43413
   278
  Scan.many1 (not o member (op =) ["(", ")", ","]) >> implode
blanchet@43413
   279
blanchet@43413
   280
fun parse_mangled_type x =
blanchet@43413
   281
  (parse_mangled_ident
blanchet@43413
   282
   -- Scan.optional ($$ "(" |-- Scan.optional parse_mangled_types [] --| $$ ")")
blanchet@43413
   283
                    [] >> ATerm) x
blanchet@43413
   284
and parse_mangled_types x =
blanchet@43413
   285
  (parse_mangled_type ::: Scan.repeat ($$ "," |-- parse_mangled_type)) x
blanchet@43413
   286
blanchet@43413
   287
fun unmangled_type s =
blanchet@43413
   288
  s |> suffix ")" |> raw_explode
blanchet@43413
   289
    |> Scan.finite Symbol.stopper
blanchet@43413
   290
           (Scan.error (!! (fn _ => raise Fail ("unrecognized mangled type " ^
blanchet@43413
   291
                                                quote s)) parse_mangled_type))
blanchet@43413
   292
    |> fst
blanchet@43413
   293
blanchet@43432
   294
val unmangled_const_name = space_explode mangled_type_sep #> hd
blanchet@43413
   295
fun unmangled_const s =
blanchet@43413
   296
  let val ss = space_explode mangled_type_sep s in
blanchet@43413
   297
    (hd ss, map unmangled_type (tl ss))
blanchet@43413
   298
  end
blanchet@43413
   299
blanchet@43545
   300
fun introduce_proxies tm =
blanchet@43439
   301
  let
blanchet@43439
   302
    fun aux top_level (CombApp (tm1, tm2)) =
blanchet@43439
   303
        CombApp (aux top_level tm1, aux false tm2)
blanchet@43445
   304
      | aux top_level (CombConst (name as (s, s'), T, T_args)) =
blanchet@43441
   305
        (case proxify_const s of
blanchet@43439
   306
           SOME proxy_base =>
blanchet@43439
   307
           if top_level then
blanchet@43439
   308
             (case s of
blanchet@43439
   309
                "c_False" => (tptp_false, s')
blanchet@43439
   310
              | "c_True" => (tptp_true, s')
blanchet@43439
   311
              | _ => name, [])
blanchet@43440
   312
           else
blanchet@43445
   313
             (proxy_base |>> prefix const_prefix, T_args)
blanchet@43445
   314
          | NONE => (name, T_args))
blanchet@43445
   315
        |> (fn (name, T_args) => CombConst (name, T, T_args))
blanchet@43439
   316
      | aux _ tm = tm
blanchet@43545
   317
  in aux true tm end
blanchet@43439
   318
blanchet@43433
   319
fun combformula_from_prop thy eq_as_iff =
blanchet@38506
   320
  let
blanchet@43439
   321
    fun do_term bs t atomic_types =
blanchet@41388
   322
      combterm_from_term thy bs (Envir.eta_contract t)
blanchet@43439
   323
      |>> (introduce_proxies #> AAtom)
blanchet@43439
   324
      ||> union (op =) atomic_types
blanchet@38506
   325
    fun do_quant bs q s T t' =
blanchet@38743
   326
      let val s = Name.variant (map fst bs) s in
blanchet@38743
   327
        do_formula ((s, T) :: bs) t'
blanchet@43433
   328
        #>> mk_aquant q [(`make_bound_var s, SOME T)]
blanchet@38743
   329
      end
blanchet@38506
   330
    and do_conn bs c t1 t2 =
blanchet@38506
   331
      do_formula bs t1 ##>> do_formula bs t2
blanchet@43402
   332
      #>> uncurry (mk_aconn c)
blanchet@38506
   333
    and do_formula bs t =
blanchet@38506
   334
      case t of
blanchet@43402
   335
        @{const Not} $ t1 => do_formula bs t1 #>> mk_anot
blanchet@38506
   336
      | Const (@{const_name All}, _) $ Abs (s, T, t') =>
blanchet@38506
   337
        do_quant bs AForall s T t'
blanchet@38506
   338
      | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
blanchet@38506
   339
        do_quant bs AExists s T t'
haftmann@39028
   340
      | @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd t1 t2
haftmann@39028
   341
      | @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr t1 t2
haftmann@39019
   342
      | @{const HOL.implies} $ t1 $ t2 => do_conn bs AImplies t1 t2
haftmann@39093
   343
      | Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
blanchet@41388
   344
        if eq_as_iff then do_conn bs AIff t1 t2 else do_term bs t
blanchet@41388
   345
      | _ => do_term bs t
blanchet@38506
   346
  in do_formula [] end
blanchet@38506
   347
blanchet@38841
   348
val presimplify_term = prop_of o Meson.presimplify oo Skip_Proof.make_thm
blanchet@38506
   349
wenzelm@41739
   350
fun concealed_bound_name j = sledgehammer_weak_prefix ^ string_of_int j
blanchet@38506
   351
fun conceal_bounds Ts t =
blanchet@38506
   352
  subst_bounds (map (Free o apfst concealed_bound_name)
blanchet@38506
   353
                    (0 upto length Ts - 1 ~~ Ts), t)
blanchet@38506
   354
fun reveal_bounds Ts =
blanchet@38506
   355
  subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
blanchet@38506
   356
                    (0 upto length Ts - 1 ~~ Ts))
blanchet@38506
   357
blanchet@43612
   358
fun extensionalize_term ctxt t =
blanchet@43612
   359
  let val thy = Proof_Context.theory_of ctxt in
blanchet@43612
   360
    t |> cterm_of thy |> Meson.extensionalize_conv ctxt
blanchet@43612
   361
      |> prop_of |> Logic.dest_equals |> snd
blanchet@43612
   362
  end
blanchet@38831
   363
blanchet@38506
   364
fun introduce_combinators_in_term ctxt kind t =
wenzelm@43232
   365
  let val thy = Proof_Context.theory_of ctxt in
blanchet@38716
   366
    if Meson.is_fol_term thy t then
blanchet@38716
   367
      t
blanchet@38716
   368
    else
blanchet@38716
   369
      let
blanchet@38716
   370
        fun aux Ts t =
blanchet@38716
   371
          case t of
blanchet@38716
   372
            @{const Not} $ t1 => @{const Not} $ aux Ts t1
blanchet@38716
   373
          | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
blanchet@38716
   374
            t0 $ Abs (s, T, aux (T :: Ts) t')
blanchet@38890
   375
          | (t0 as Const (@{const_name All}, _)) $ t1 =>
blanchet@38890
   376
            aux Ts (t0 $ eta_expand Ts t1 1)
blanchet@38716
   377
          | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
blanchet@38716
   378
            t0 $ Abs (s, T, aux (T :: Ts) t')
blanchet@38890
   379
          | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
blanchet@38890
   380
            aux Ts (t0 $ eta_expand Ts t1 1)
haftmann@39028
   381
          | (t0 as @{const HOL.conj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
haftmann@39028
   382
          | (t0 as @{const HOL.disj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
haftmann@39019
   383
          | (t0 as @{const HOL.implies}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
haftmann@39093
   384
          | (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
blanchet@38716
   385
              $ t1 $ t2 =>
blanchet@38716
   386
            t0 $ aux Ts t1 $ aux Ts t2
blanchet@38716
   387
          | _ => if not (exists_subterm (fn Abs _ => true | _ => false) t) then
blanchet@38716
   388
                   t
blanchet@38716
   389
                 else
blanchet@38716
   390
                   t |> conceal_bounds Ts
blanchet@38716
   391
                     |> Envir.eta_contract
blanchet@38716
   392
                     |> cterm_of thy
blanchet@40071
   393
                     |> Meson_Clausify.introduce_combinators_in_cterm
blanchet@38716
   394
                     |> prop_of |> Logic.dest_equals |> snd
blanchet@38716
   395
                     |> reveal_bounds Ts
blanchet@39616
   396
        val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
blanchet@38716
   397
      in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
blanchet@38716
   398
      handle THM _ =>
blanchet@38716
   399
             (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@38836
   400
             if kind = Conjecture then HOLogic.false_const
blanchet@38836
   401
             else HOLogic.true_const
blanchet@38716
   402
  end
blanchet@38506
   403
blanchet@38506
   404
(* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
blanchet@43224
   405
   same in Sledgehammer to prevent the discovery of unreplayable proofs. *)
blanchet@38506
   406
fun freeze_term t =
blanchet@38506
   407
  let
blanchet@38506
   408
    fun aux (t $ u) = aux t $ aux u
blanchet@38506
   409
      | aux (Abs (s, T, t)) = Abs (s, T, aux t)
blanchet@38506
   410
      | aux (Var ((s, i), T)) =
blanchet@38506
   411
        Free (sledgehammer_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
blanchet@38506
   412
      | aux t = t
blanchet@38506
   413
  in t |> exists_subterm is_Var t ? aux end
blanchet@38506
   414
blanchet@40445
   415
(* making fact and conjecture formulas *)
blanchet@43511
   416
fun make_formula ctxt eq_as_iff presimp name loc kind t =
blanchet@38506
   417
  let
wenzelm@43232
   418
    val thy = Proof_Context.theory_of ctxt
blanchet@38831
   419
    val t = t |> Envir.beta_eta_contract
blanchet@38890
   420
              |> transform_elim_term
blanchet@41459
   421
              |> Object_Logic.atomize_term thy
blanchet@43434
   422
    val need_trueprop = (fastype_of t = @{typ bool})
blanchet@38890
   423
    val t = t |> need_trueprop ? HOLogic.mk_Trueprop
blanchet@43607
   424
              |> Raw_Simplifier.rewrite_term thy
blanchet@43607
   425
                     (Meson.unfold_set_const_simps ctxt) []
blanchet@43612
   426
              |> extensionalize_term ctxt
blanchet@38506
   427
              |> presimp ? presimplify_term thy
blanchet@38506
   428
              |> perhaps (try (HOLogic.dest_Trueprop))
blanchet@38506
   429
              |> introduce_combinators_in_term ctxt kind
blanchet@38836
   430
              |> kind <> Axiom ? freeze_term
blanchet@43433
   431
    val (combformula, atomic_types) =
blanchet@43433
   432
      combformula_from_prop thy eq_as_iff t []
blanchet@38506
   433
  in
blanchet@43511
   434
    {name = name, locality = loc, kind = kind, combformula = combformula,
blanchet@43433
   435
     atomic_types = atomic_types}
blanchet@38506
   436
  end
blanchet@38506
   437
blanchet@43511
   438
fun make_fact ctxt keep_trivial eq_as_iff presimp ((name, loc), t) =
blanchet@43511
   439
  case (keep_trivial, make_formula ctxt eq_as_iff presimp name loc Axiom t) of
blanchet@42861
   440
    (false, {combformula = AAtom (CombConst (("c_True", _), _, _)), ...}) =>
blanchet@42861
   441
    NONE
blanchet@42861
   442
  | (_, formula) => SOME formula
blanchet@43432
   443
blanchet@43580
   444
fun make_conjecture ctxt prem_kind ts =
blanchet@38836
   445
  let val last = length ts - 1 in
blanchet@43580
   446
    map2 (fn j => fn t =>
blanchet@43580
   447
             let
blanchet@43580
   448
               val (kind, maybe_negate) =
blanchet@43580
   449
                 if j = last then
blanchet@43580
   450
                   (Conjecture, I)
blanchet@43580
   451
                 else
blanchet@43580
   452
                   (prem_kind,
blanchet@43580
   453
                    if prem_kind = Conjecture then update_combformula mk_anot
blanchet@43580
   454
                    else I)
blanchet@43580
   455
              in
blanchet@43580
   456
                make_formula ctxt true true (string_of_int j) Chained kind t
blanchet@43580
   457
                |> maybe_negate
blanchet@43580
   458
              end)
blanchet@38836
   459
         (0 upto last) ts
blanchet@38836
   460
  end
blanchet@38506
   461
blanchet@43552
   462
(** Finite and infinite type inference **)
blanchet@43552
   463
blanchet@43552
   464
(* Finite types such as "unit", "bool", "bool * bool", and "bool => bool" are
blanchet@43552
   465
   dangerous because their "exhaust" properties can easily lead to unsound ATP
blanchet@43552
   466
   proofs. On the other hand, all HOL infinite types can be given the same
blanchet@43552
   467
   models in first-order logic (via Löwenheim-Skolem). *)
blanchet@43552
   468
blanchet@43552
   469
fun should_encode_type _ _ All_Types _ = true
blanchet@43552
   470
  | should_encode_type ctxt _ Finite_Types T = is_type_surely_finite ctxt T
blanchet@43552
   471
  | should_encode_type _ nonmono_Ts Nonmonotonic_Types T =
blanchet@43552
   472
    exists (curry Type.raw_instance T) nonmono_Ts
blanchet@43552
   473
  | should_encode_type _ _ _ _ = false
blanchet@43552
   474
blanchet@43552
   475
fun should_predicate_on_type ctxt nonmono_Ts (Preds (_, level)) T =
blanchet@43552
   476
    should_encode_type ctxt nonmono_Ts level T
blanchet@43552
   477
  | should_predicate_on_type _ _ _ _ = false
blanchet@43552
   478
blanchet@43552
   479
fun should_tag_with_type ctxt nonmono_Ts (Tags (_, level)) T =
blanchet@43552
   480
    should_encode_type ctxt nonmono_Ts level T
blanchet@43552
   481
  | should_tag_with_type _ _ _ _ = false
blanchet@43552
   482
blanchet@43552
   483
val homo_infinite_T = @{typ ind} (* any infinite type *)
blanchet@43552
   484
blanchet@43552
   485
fun homogenized_type ctxt nonmono_Ts level T =
blanchet@43552
   486
  if should_encode_type ctxt nonmono_Ts level T then T else homo_infinite_T
blanchet@43552
   487
blanchet@43444
   488
(** "hBOOL" and "hAPP" **)
blanchet@41561
   489
blanchet@43445
   490
type sym_info =
blanchet@43434
   491
  {pred_sym : bool, min_ary : int, max_ary : int, typ : typ option}
blanchet@43434
   492
blanchet@43445
   493
fun add_combterm_syms_to_table explicit_apply =
blanchet@43429
   494
  let
blanchet@43429
   495
    fun aux top_level tm =
blanchet@43429
   496
      let val (head, args) = strip_combterm_comb tm in
blanchet@43429
   497
        (case head of
blanchet@43434
   498
           CombConst ((s, _), T, _) =>
blanchet@43429
   499
           if String.isPrefix bound_var_prefix s then
blanchet@43429
   500
             I
blanchet@43429
   501
           else
blanchet@43434
   502
             let val ary = length args in
blanchet@43429
   503
               Symtab.map_default
blanchet@43429
   504
                   (s, {pred_sym = true,
blanchet@43434
   505
                        min_ary = if explicit_apply then 0 else ary,
blanchet@43434
   506
                        max_ary = 0, typ = SOME T})
blanchet@43434
   507
                   (fn {pred_sym, min_ary, max_ary, typ} =>
blanchet@43429
   508
                       {pred_sym = pred_sym andalso top_level,
blanchet@43434
   509
                        min_ary = Int.min (ary, min_ary),
blanchet@43434
   510
                        max_ary = Int.max (ary, max_ary),
blanchet@43434
   511
                        typ = if typ = SOME T then typ else NONE})
blanchet@43429
   512
            end
blanchet@43429
   513
         | _ => I)
blanchet@43429
   514
        #> fold (aux false) args
blanchet@43429
   515
      end
blanchet@43429
   516
  in aux true end
blanchet@43545
   517
fun add_fact_syms_to_table explicit_apply =
blanchet@43550
   518
  fact_lift (formula_fold true (K (add_combterm_syms_to_table explicit_apply)))
blanchet@38506
   519
blanchet@43546
   520
val default_sym_table_entries : (string * sym_info) list =
blanchet@43434
   521
  [("equal", {pred_sym = true, min_ary = 2, max_ary = 2, typ = NONE}),
blanchet@43439
   522
   (make_fixed_const predicator_base,
blanchet@43434
   523
    {pred_sym = true, min_ary = 1, max_ary = 1, typ = NONE})] @
blanchet@43439
   524
  ([tptp_false, tptp_true]
blanchet@43434
   525
   |> map (rpair {pred_sym = true, min_ary = 0, max_ary = 0, typ = NONE}))
blanchet@41388
   526
blanchet@43415
   527
fun sym_table_for_facts explicit_apply facts =
blanchet@43439
   528
  Symtab.empty |> fold Symtab.default default_sym_table_entries
blanchet@43445
   529
               |> fold (add_fact_syms_to_table explicit_apply) facts
blanchet@38506
   530
blanchet@43429
   531
fun min_arity_of sym_tab s =
blanchet@43429
   532
  case Symtab.lookup sym_tab s of
blanchet@43445
   533
    SOME ({min_ary, ...} : sym_info) => min_ary
blanchet@43429
   534
  | NONE =>
blanchet@43429
   535
    case strip_prefix_and_unascii const_prefix s of
blanchet@43418
   536
      SOME s =>
blanchet@43441
   537
      let val s = s |> unmangled_const_name |> invert_const in
blanchet@43439
   538
        if s = predicator_base then 1
blanchet@43418
   539
        else if s = explicit_app_base then 2
blanchet@43418
   540
        else if s = type_pred_base then 1
blanchet@43428
   541
        else 0
blanchet@43418
   542
      end
blanchet@38506
   543
    | NONE => 0
blanchet@38506
   544
blanchet@38506
   545
(* True if the constant ever appears outside of the top-level position in
blanchet@38506
   546
   literals, or if it appears with different arities (e.g., because of different
blanchet@38506
   547
   type instantiations). If false, the constant always receives all of its
blanchet@38506
   548
   arguments and is used as a predicate. *)
blanchet@43429
   549
fun is_pred_sym sym_tab s =
blanchet@43429
   550
  case Symtab.lookup sym_tab s of
blanchet@43445
   551
    SOME ({pred_sym, min_ary, max_ary, ...} : sym_info) =>
blanchet@43445
   552
    pred_sym andalso min_ary = max_ary
blanchet@43429
   553
  | NONE => false
blanchet@38506
   554
blanchet@43439
   555
val predicator_combconst =
blanchet@43439
   556
  CombConst (`make_fixed_const predicator_base, @{typ "bool => bool"}, [])
blanchet@43439
   557
fun predicator tm = CombApp (predicator_combconst, tm)
blanchet@38506
   558
blanchet@43439
   559
fun introduce_predicators_in_combterm sym_tab tm =
blanchet@43413
   560
  case strip_combterm_comb tm of
blanchet@43413
   561
    (CombConst ((s, _), _, _), _) =>
blanchet@43439
   562
    if is_pred_sym sym_tab s then tm else predicator tm
blanchet@43439
   563
  | _ => predicator tm
blanchet@38506
   564
blanchet@43415
   565
fun list_app head args = fold (curry (CombApp o swap)) args head
blanchet@38506
   566
blanchet@43415
   567
fun explicit_app arg head =
blanchet@43415
   568
  let
blanchet@43433
   569
    val head_T = combtyp_of head
blanchet@43563
   570
    val (arg_T, res_T) = dest_funT head_T
blanchet@43415
   571
    val explicit_app =
blanchet@43433
   572
      CombConst (`make_fixed_const explicit_app_base, head_T --> head_T,
blanchet@43563
   573
                 [arg_T, res_T])
blanchet@43415
   574
  in list_app explicit_app [head, arg] end
blanchet@43415
   575
fun list_explicit_app head args = fold explicit_app args head
blanchet@43415
   576
blanchet@43436
   577
fun introduce_explicit_apps_in_combterm sym_tab =
blanchet@43415
   578
  let
blanchet@43415
   579
    fun aux tm =
blanchet@43415
   580
      case strip_combterm_comb tm of
blanchet@43415
   581
        (head as CombConst ((s, _), _, _), args) =>
blanchet@43415
   582
        args |> map aux
blanchet@43428
   583
             |> chop (min_arity_of sym_tab s)
blanchet@43415
   584
             |>> list_app head
blanchet@43415
   585
             |-> list_explicit_app
blanchet@43415
   586
      | (head, args) => list_explicit_app head (map aux args)
blanchet@43415
   587
  in aux end
blanchet@43415
   588
blanchet@43571
   589
fun impose_type_arg_policy_in_combterm ctxt nonmono_Ts type_sys =
blanchet@43444
   590
  let
blanchet@43444
   591
    fun aux (CombApp tmp) = CombApp (pairself aux tmp)
blanchet@43445
   592
      | aux (CombConst (name as (s, _), T, T_args)) =
blanchet@43571
   593
        let
blanchet@43571
   594
          val level = level_of_type_sys type_sys
blanchet@43571
   595
          val (T, T_args) =
blanchet@43571
   596
            (* Aggressively merge most "hAPPs" if the type system is unsound
blanchet@43571
   597
               anyway, by distinguishing overloads only on the homogenized
blanchet@43571
   598
               result type. *)
blanchet@43571
   599
            if s = const_prefix ^ explicit_app_base andalso
blanchet@43591
   600
               length T_args = 2 andalso
blanchet@43571
   601
               not (is_type_sys_virtually_sound type_sys) then
blanchet@43571
   602
              T_args |> map (homogenized_type ctxt nonmono_Ts level)
blanchet@43571
   603
                     |> (fn Ts => let val T = hd Ts --> nth Ts 1 in
blanchet@43571
   604
                                    (T --> T, tl Ts)
blanchet@43571
   605
                                  end)
blanchet@43571
   606
            else
blanchet@43571
   607
              (T, T_args)
blanchet@43571
   608
        in
blanchet@43571
   609
          (case strip_prefix_and_unascii const_prefix s of
blanchet@43571
   610
             NONE => (name, T_args)
blanchet@43571
   611
           | SOME s'' =>
blanchet@43571
   612
             let val s'' = invert_const s'' in
blanchet@43571
   613
               case type_arg_policy type_sys s'' of
blanchet@43571
   614
                 No_Type_Args => (name, [])
blanchet@43571
   615
               | Explicit_Type_Args => (name, T_args)
blanchet@43571
   616
               | Mangled_Type_Args => (mangled_const_name T_args name, [])
blanchet@43571
   617
             end)
blanchet@43571
   618
          |> (fn (name, T_args) => CombConst (name, T, T_args))
blanchet@43571
   619
        end
blanchet@43444
   620
      | aux tm = tm
blanchet@43444
   621
  in aux end
blanchet@43444
   622
blanchet@43571
   623
fun repair_combterm ctxt nonmono_Ts type_sys sym_tab =
blanchet@43436
   624
  introduce_explicit_apps_in_combterm sym_tab
blanchet@43439
   625
  #> introduce_predicators_in_combterm sym_tab
blanchet@43571
   626
  #> impose_type_arg_policy_in_combterm ctxt nonmono_Ts type_sys
blanchet@43571
   627
fun repair_fact ctxt nonmono_Ts type_sys sym_tab =
blanchet@43571
   628
  update_combformula (formula_map
blanchet@43571
   629
      (repair_combterm ctxt nonmono_Ts type_sys sym_tab))
blanchet@43444
   630
blanchet@43444
   631
(** Helper facts **)
blanchet@43444
   632
blanchet@43444
   633
fun ti_ti_helper_fact () =
blanchet@43444
   634
  let
blanchet@43444
   635
    fun var s = ATerm (`I s, [])
blanchet@43460
   636
    fun tag tm = ATerm (`make_fixed_const type_tag_name, [var "X", tm])
blanchet@43444
   637
  in
blanchet@43483
   638
    Formula (helper_prefix ^ "ti_ti", Axiom,
blanchet@43444
   639
             AAtom (ATerm (`I "equal", [tag (tag (var "Y")), tag (var "Y")]))
blanchet@43444
   640
             |> close_formula_universally, NONE, NONE)
blanchet@43444
   641
  end
blanchet@43444
   642
blanchet@43445
   643
fun helper_facts_for_sym ctxt type_sys (s, {typ, ...} : sym_info) =
blanchet@43444
   644
  case strip_prefix_and_unascii const_prefix s of
blanchet@43444
   645
    SOME mangled_s =>
blanchet@43444
   646
    let
blanchet@43444
   647
      val thy = Proof_Context.theory_of ctxt
blanchet@43444
   648
      val unmangled_s = mangled_s |> unmangled_const_name
blanchet@43450
   649
      fun dub_and_inst c needs_some_types (th, j) =
blanchet@43450
   650
        ((c ^ "_" ^ string_of_int j ^ (if needs_some_types then "T" else ""),
blanchet@43511
   651
          Chained),
blanchet@43444
   652
         let val t = th |> prop_of in
blanchet@43460
   653
           t |> (general_type_arg_policy type_sys = Mangled_Type_Args andalso
blanchet@43444
   654
                 not (null (Term.hidden_polymorphism t)))
blanchet@43444
   655
                ? (case typ of
blanchet@43444
   656
                     SOME T => specialize_type thy (invert_const unmangled_s, T)
blanchet@43444
   657
                   | NONE => I)
blanchet@43444
   658
         end)
blanchet@43444
   659
      fun make_facts eq_as_iff =
blanchet@43444
   660
        map_filter (make_fact ctxt false eq_as_iff false)
blanchet@43460
   661
      val has_some_types = is_type_sys_fairly_sound type_sys
blanchet@43444
   662
    in
blanchet@43444
   663
      metis_helpers
blanchet@43450
   664
      |> maps (fn (metis_s, (needs_some_types, ths)) =>
blanchet@43444
   665
                  if metis_s <> unmangled_s orelse
blanchet@43460
   666
                     (needs_some_types andalso not has_some_types) then
blanchet@43444
   667
                    []
blanchet@43444
   668
                  else
blanchet@43444
   669
                    ths ~~ (1 upto length ths)
blanchet@43450
   670
                    |> map (dub_and_inst mangled_s needs_some_types)
blanchet@43450
   671
                    |> make_facts (not needs_some_types))
blanchet@43444
   672
    end
blanchet@43444
   673
  | NONE => []
blanchet@43444
   674
fun helper_facts_for_sym_table ctxt type_sys sym_tab =
blanchet@43444
   675
  Symtab.fold_rev (append o helper_facts_for_sym ctxt type_sys) sym_tab []
blanchet@43444
   676
blanchet@43444
   677
fun translate_atp_fact ctxt keep_trivial =
blanchet@43444
   678
  `(make_fact ctxt keep_trivial true true o apsnd prop_of)
blanchet@43444
   679
blanchet@43580
   680
fun translate_formulas ctxt prem_kind type_sys hyp_ts concl_t rich_facts =
blanchet@43444
   681
  let
blanchet@43444
   682
    val thy = Proof_Context.theory_of ctxt
blanchet@43444
   683
    val fact_ts = map (prop_of o snd o snd) rich_facts
blanchet@43444
   684
    val (facts, fact_names) =
blanchet@43444
   685
      rich_facts
blanchet@43444
   686
      |> map_filter (fn (NONE, _) => NONE
blanchet@43444
   687
                      | (SOME fact, (name, _)) => SOME (fact, name))
blanchet@43444
   688
      |> ListPair.unzip
blanchet@43444
   689
    (* Remove existing facts from the conjecture, as this can dramatically
blanchet@43444
   690
       boost an ATP's performance (for some reason). *)
blanchet@43444
   691
    val hyp_ts = hyp_ts |> filter_out (member (op aconv) fact_ts)
blanchet@43444
   692
    val goal_t = Logic.list_implies (hyp_ts, concl_t)
blanchet@43444
   693
    val all_ts = goal_t :: fact_ts
blanchet@43444
   694
    val subs = tfree_classes_of_terms all_ts
blanchet@43444
   695
    val supers = tvar_classes_of_terms all_ts
blanchet@43444
   696
    val tycons = type_consts_of_terms thy all_ts
blanchet@43580
   697
    val conjs = make_conjecture ctxt prem_kind (hyp_ts @ [concl_t])
blanchet@43444
   698
    val (supers', arity_clauses) =
blanchet@43460
   699
      if level_of_type_sys type_sys = No_Types then ([], [])
blanchet@43444
   700
      else make_arity_clauses thy tycons supers
blanchet@43444
   701
    val class_rel_clauses = make_class_rel_clauses thy subs supers'
blanchet@43444
   702
  in
blanchet@43444
   703
    (fact_names |> map single, (conjs, facts, class_rel_clauses, arity_clauses))
blanchet@43444
   704
  end
blanchet@43444
   705
blanchet@43444
   706
fun fo_literal_from_type_literal (TyLitVar (class, name)) =
blanchet@43444
   707
    (true, ATerm (class, [ATerm (name, [])]))
blanchet@43444
   708
  | fo_literal_from_type_literal (TyLitFree (class, name)) =
blanchet@43444
   709
    (true, ATerm (class, [ATerm (name, [])]))
blanchet@43444
   710
blanchet@43444
   711
fun formula_from_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
blanchet@43444
   712
blanchet@43571
   713
fun type_pred_combatom ctxt nonmono_Ts type_sys T tm =
blanchet@43444
   714
  CombApp (CombConst (`make_fixed_const type_pred_base, T --> @{typ bool}, [T]),
blanchet@43444
   715
           tm)
blanchet@43571
   716
  |> impose_type_arg_policy_in_combterm ctxt nonmono_Ts type_sys
blanchet@43444
   717
  |> AAtom
blanchet@43444
   718
blanchet@43550
   719
fun formula_from_combformula ctxt nonmono_Ts type_sys =
blanchet@43444
   720
  let
blanchet@43460
   721
    fun tag_with_type type_sys T tm =
blanchet@43460
   722
      CombConst (`make_fixed_const type_tag_name, T --> T, [T])
blanchet@43571
   723
      |> impose_type_arg_policy_in_combterm ctxt nonmono_Ts type_sys
blanchet@43460
   724
      |> do_term true
blanchet@43460
   725
      |> (fn ATerm (s, tms) => ATerm (s, tms @ [tm]))
blanchet@43460
   726
    and do_term top_level u =
blanchet@43444
   727
      let
blanchet@43444
   728
        val (head, args) = strip_combterm_comb u
blanchet@43445
   729
        val (x, T_args) =
blanchet@43444
   730
          case head of
blanchet@43445
   731
            CombConst (name, _, T_args) => (name, T_args)
blanchet@43444
   732
          | CombVar (name, _) => (name, [])
blanchet@43444
   733
          | CombApp _ => raise Fail "impossible \"CombApp\""
blanchet@43445
   734
        val t = ATerm (x, map fo_term_from_typ T_args @
blanchet@43444
   735
                          map (do_term false) args)
blanchet@43445
   736
        val T = combtyp_of u
blanchet@43444
   737
      in
blanchet@43550
   738
        t |> (if not top_level andalso
blanchet@43550
   739
                should_tag_with_type ctxt nonmono_Ts type_sys T then
blanchet@43460
   740
                tag_with_type type_sys T
blanchet@43444
   741
              else
blanchet@43444
   742
                I)
blanchet@43444
   743
      end
blanchet@43444
   744
    val do_bound_type =
blanchet@43552
   745
      case type_sys of
blanchet@43587
   746
        Simple_Types level =>
blanchet@43552
   747
        SOME o mangled_type_name o homogenized_type ctxt nonmono_Ts level
blanchet@43552
   748
      | _ => K NONE
blanchet@43444
   749
    fun do_out_of_bound_type (s, T) =
blanchet@43550
   750
      if should_predicate_on_type ctxt nonmono_Ts type_sys T then
blanchet@43571
   751
        type_pred_combatom ctxt nonmono_Ts type_sys T (CombVar (s, T))
blanchet@43444
   752
        |> do_formula |> SOME
blanchet@43444
   753
      else
blanchet@43444
   754
        NONE
blanchet@43444
   755
    and do_formula (AQuant (q, xs, phi)) =
blanchet@43444
   756
        AQuant (q, xs |> map (apsnd (fn NONE => NONE
blanchet@43445
   757
                                      | SOME T => do_bound_type T)),
blanchet@43444
   758
                (if q = AForall then mk_ahorn else fold_rev (mk_aconn AAnd))
blanchet@43444
   759
                    (map_filter
blanchet@43444
   760
                         (fn (_, NONE) => NONE
blanchet@43445
   761
                           | (s, SOME T) => do_out_of_bound_type (s, T)) xs)
blanchet@43444
   762
                    (do_formula phi))
blanchet@43444
   763
      | do_formula (AConn (c, phis)) = AConn (c, map do_formula phis)
blanchet@43444
   764
      | do_formula (AAtom tm) = AAtom (do_term true tm)
blanchet@43444
   765
  in do_formula end
blanchet@43444
   766
blanchet@43592
   767
fun bound_atomic_types type_sys Ts =
blanchet@43592
   768
  mk_ahorn (map (formula_from_fo_literal o fo_literal_from_type_literal)
blanchet@43592
   769
                (atp_type_literals_for_types type_sys Axiom Ts))
blanchet@43592
   770
blanchet@43550
   771
fun formula_for_fact ctxt nonmono_Ts type_sys
blanchet@43444
   772
                     ({combformula, atomic_types, ...} : translated_formula) =
blanchet@43592
   773
  combformula
blanchet@43592
   774
  |> close_combformula_universally
blanchet@43592
   775
  |> formula_from_combformula ctxt nonmono_Ts type_sys
blanchet@43592
   776
  |> bound_atomic_types type_sys atomic_types
blanchet@43444
   777
  |> close_formula_universally
blanchet@43444
   778
blanchet@43511
   779
fun useful_isabelle_info s = SOME (ATerm ("[]", [ATerm ("isabelle_" ^ s, [])]))
blanchet@43511
   780
blanchet@43444
   781
(* Each fact is given a unique fact number to avoid name clashes (e.g., because
blanchet@43444
   782
   of monomorphization). The TPTP explicitly forbids name clashes, and some of
blanchet@43444
   783
   the remote provers might care. *)
blanchet@43550
   784
fun formula_line_for_fact ctxt prefix nonmono_Ts type_sys
blanchet@43511
   785
                          (j, formula as {name, locality, kind, ...}) =
blanchet@43550
   786
  Formula (prefix ^ (if polymorphism_of_type_sys type_sys = Polymorphic then ""
blanchet@43550
   787
                     else string_of_int j ^ "_") ^
blanchet@43518
   788
           ascii_of name,
blanchet@43550
   789
           kind, formula_for_fact ctxt nonmono_Ts type_sys formula, NONE,
blanchet@43511
   790
           if generate_useful_info then
blanchet@43511
   791
             case locality of
blanchet@43511
   792
               Intro => useful_isabelle_info "intro"
blanchet@43511
   793
             | Elim => useful_isabelle_info "elim"
blanchet@43511
   794
             | Simp => useful_isabelle_info "simp"
blanchet@43511
   795
             | _ => NONE
blanchet@43511
   796
           else
blanchet@43511
   797
             NONE)
blanchet@43444
   798
blanchet@43444
   799
fun formula_line_for_class_rel_clause (ClassRelClause {name, subclass,
blanchet@43444
   800
                                                       superclass, ...}) =
blanchet@43444
   801
  let val ty_arg = ATerm (`I "T", []) in
blanchet@43448
   802
    Formula (class_rel_clause_prefix ^ ascii_of name, Axiom,
blanchet@43444
   803
             AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
blanchet@43444
   804
                               AAtom (ATerm (superclass, [ty_arg]))])
blanchet@43444
   805
             |> close_formula_universally, NONE, NONE)
blanchet@43444
   806
  end
blanchet@43444
   807
blanchet@43444
   808
fun fo_literal_from_arity_literal (TConsLit (c, t, args)) =
blanchet@43444
   809
    (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
blanchet@43444
   810
  | fo_literal_from_arity_literal (TVarLit (c, sort)) =
blanchet@43444
   811
    (false, ATerm (c, [ATerm (sort, [])]))
blanchet@43444
   812
blanchet@43444
   813
fun formula_line_for_arity_clause (ArityClause {name, conclLit, premLits,
blanchet@43444
   814
                                                ...}) =
blanchet@43448
   815
  Formula (arity_clause_prefix ^ ascii_of name, Axiom,
blanchet@43444
   816
           mk_ahorn (map (formula_from_fo_literal o apfst not
blanchet@43444
   817
                          o fo_literal_from_arity_literal) premLits)
blanchet@43444
   818
                    (formula_from_fo_literal
blanchet@43444
   819
                         (fo_literal_from_arity_literal conclLit))
blanchet@43444
   820
           |> close_formula_universally, NONE, NONE)
blanchet@43444
   821
blanchet@43550
   822
fun formula_line_for_conjecture ctxt nonmono_Ts type_sys
blanchet@43444
   823
        ({name, kind, combformula, ...} : translated_formula) =
blanchet@43448
   824
  Formula (conjecture_prefix ^ name, kind,
blanchet@43550
   825
           formula_from_combformula ctxt nonmono_Ts type_sys
blanchet@43444
   826
                                    (close_combformula_universally combformula)
blanchet@43444
   827
           |> close_formula_universally, NONE, NONE)
blanchet@43444
   828
blanchet@43444
   829
fun free_type_literals type_sys ({atomic_types, ...} : translated_formula) =
blanchet@43444
   830
  atomic_types |> atp_type_literals_for_types type_sys Conjecture
blanchet@43444
   831
               |> map fo_literal_from_type_literal
blanchet@43444
   832
blanchet@43444
   833
fun formula_line_for_free_type j lit =
blanchet@43448
   834
  Formula (tfree_prefix ^ string_of_int j, Hypothesis,
blanchet@43444
   835
           formula_from_fo_literal lit, NONE, NONE)
blanchet@43444
   836
fun formula_lines_for_free_types type_sys facts =
blanchet@43444
   837
  let
blanchet@43444
   838
    val litss = map (free_type_literals type_sys) facts
blanchet@43444
   839
    val lits = fold (union (op =)) litss []
blanchet@43444
   840
  in map2 formula_line_for_free_type (0 upto length lits - 1) lits end
blanchet@43444
   841
blanchet@43444
   842
(** Symbol declarations **)
blanchet@43415
   843
blanchet@43547
   844
fun insert_type get_T x xs =
blanchet@43547
   845
  let val T = get_T x in
blanchet@43547
   846
    if exists (curry Type.raw_instance T o get_T) xs then xs
blanchet@43547
   847
    else x :: filter_out ((fn T' => Type.raw_instance (T', T)) o get_T) xs
blanchet@43547
   848
  end
blanchet@43547
   849
blanchet@43445
   850
fun should_declare_sym type_sys pred_sym s =
blanchet@43413
   851
  not (String.isPrefix bound_var_prefix s) andalso s <> "equal" andalso
blanchet@43516
   852
  not (String.isPrefix "$" s) andalso
blanchet@43587
   853
  ((case type_sys of Simple_Types _ => true | _ => false) orelse not pred_sym)
blanchet@43413
   854
blanchet@43568
   855
fun sym_decl_table_for_facts type_sys repaired_sym_tab (conjs, facts) =
blanchet@43445
   856
  let
blanchet@43568
   857
    fun add_combterm in_conj tm =
blanchet@43445
   858
      let val (head, args) = strip_combterm_comb tm in
blanchet@43445
   859
        (case head of
blanchet@43445
   860
           CombConst ((s, s'), T, T_args) =>
blanchet@43445
   861
           let val pred_sym = is_pred_sym repaired_sym_tab s in
blanchet@43445
   862
             if should_declare_sym type_sys pred_sym s then
blanchet@43447
   863
               Symtab.map_default (s, [])
blanchet@43568
   864
                   (insert_type #3 (s', T_args, T, pred_sym, length args,
blanchet@43568
   865
                                    in_conj))
blanchet@43445
   866
             else
blanchet@43445
   867
               I
blanchet@43445
   868
           end
blanchet@43445
   869
         | _ => I)
blanchet@43568
   870
        #> fold (add_combterm in_conj) args
blanchet@43445
   871
      end
blanchet@43568
   872
    fun add_fact in_conj =
blanchet@43568
   873
      fact_lift (formula_fold true (K (add_combterm in_conj)))
blanchet@43568
   874
  in
blanchet@43568
   875
    Symtab.empty
blanchet@43568
   876
    |> is_type_sys_fairly_sound type_sys
blanchet@43568
   877
       ? (fold (add_fact true) conjs #> fold (add_fact false) facts)
blanchet@43568
   878
  end
blanchet@43445
   879
blanchet@43547
   880
fun is_var_or_bound_var (CombConst ((s, _), _, _)) =
blanchet@43547
   881
    String.isPrefix bound_var_prefix s
blanchet@43547
   882
  | is_var_or_bound_var (CombVar _) = true
blanchet@43547
   883
  | is_var_or_bound_var _ = false
blanchet@43547
   884
blanchet@43555
   885
(* This inference is described in section 2.3 of Claessen et al.'s "Sorting it
blanchet@43555
   886
   out with monotonicity" paper presented at CADE 2011. *)
blanchet@43550
   887
fun add_combterm_nonmonotonic_types _ (SOME false) _ = I
blanchet@43550
   888
  | add_combterm_nonmonotonic_types ctxt _
blanchet@43550
   889
        (CombApp (CombApp (CombConst (("equal", _), Type (_, [T, _]), _), tm1),
blanchet@43550
   890
                  tm2)) =
blanchet@43550
   891
    (exists is_var_or_bound_var [tm1, tm2] andalso
blanchet@43550
   892
     not (is_type_surely_infinite ctxt T)) ? insert_type I T
blanchet@43550
   893
  | add_combterm_nonmonotonic_types _ _ _ = I
blanchet@43550
   894
fun add_fact_nonmonotonic_types ctxt ({kind, combformula, ...}
blanchet@43550
   895
                                      : translated_formula) =
blanchet@43550
   896
  formula_fold (kind <> Conjecture) (add_combterm_nonmonotonic_types ctxt)
blanchet@43550
   897
               combformula
blanchet@43550
   898
fun add_nonmonotonic_types_for_facts ctxt type_sys facts =
blanchet@43550
   899
  level_of_type_sys type_sys = Nonmonotonic_Types
blanchet@43596
   900
  ? (fold (add_fact_nonmonotonic_types ctxt) facts
blanchet@43596
   901
     (* in case helper "True_or_False" is included *)
blanchet@43596
   902
     #> insert_type I @{typ bool})
blanchet@43547
   903
blanchet@43445
   904
fun n_ary_strip_type 0 T = ([], T)
blanchet@43445
   905
  | n_ary_strip_type n (Type (@{type_name fun}, [dom_T, ran_T])) =
blanchet@43445
   906
    n_ary_strip_type (n - 1) ran_T |>> cons dom_T
blanchet@43445
   907
  | n_ary_strip_type _ _ = raise Fail "unexpected non-function"
blanchet@43445
   908
blanchet@43568
   909
fun result_type_of_decl (_, _, T, _, ary, _) = n_ary_strip_type ary T |> snd
blanchet@43450
   910
blanchet@43568
   911
fun decl_line_for_sym s (s', _, T, pred_sym, ary, _) =
blanchet@43450
   912
  let val (arg_Ts, res_T) = n_ary_strip_type ary T in
blanchet@43483
   913
    Decl (sym_decl_prefix ^ s, (s, s'), map mangled_type_name arg_Ts,
blanchet@43450
   914
          if pred_sym then `I tptp_tff_bool_type else mangled_type_name res_T)
blanchet@43450
   915
  end
blanchet@43450
   916
blanchet@43463
   917
fun is_polymorphic_type T = fold_atyps (fn TVar _ => K true | _ => I) T false
blanchet@43463
   918
blanchet@43580
   919
fun formula_line_for_sym_decl ctxt conj_sym_kind nonmono_Ts type_sys n s j
blanchet@43568
   920
                              (s', T_args, T, _, ary, in_conj) =
blanchet@43450
   921
  let
blanchet@43580
   922
    val (kind, maybe_negate) =
blanchet@43580
   923
      if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
blanchet@43580
   924
      else (Axiom, I)
blanchet@43450
   925
    val (arg_Ts, res_T) = n_ary_strip_type ary T
blanchet@43450
   926
    val bound_names =
blanchet@43450
   927
      1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
blanchet@43450
   928
    val bound_tms =
blanchet@43450
   929
      bound_names ~~ arg_Ts |> map (fn (name, T) => CombConst (name, T, []))
blanchet@43450
   930
    val bound_Ts =
blanchet@43463
   931
      arg_Ts |> map (fn T => if n > 1 orelse is_polymorphic_type T then SOME T
blanchet@43463
   932
                             else NONE)
blanchet@43450
   933
  in
blanchet@43483
   934
    Formula (sym_decl_prefix ^ s ^
blanchet@43580
   935
             (if n > 1 then "_" ^ string_of_int j else ""), kind,
blanchet@43450
   936
             CombConst ((s, s'), T, T_args)
blanchet@43450
   937
             |> fold (curry (CombApp o swap)) bound_tms
blanchet@43571
   938
             |> type_pred_combatom ctxt nonmono_Ts type_sys res_T
blanchet@43450
   939
             |> mk_aquant AForall (bound_names ~~ bound_Ts)
blanchet@43550
   940
             |> formula_from_combformula ctxt nonmono_Ts type_sys
blanchet@43592
   941
             |> n > 1 ? bound_atomic_types type_sys (atyps_of T)
blanchet@43580
   942
             |> close_formula_universally
blanchet@43580
   943
             |> maybe_negate,
blanchet@43450
   944
             NONE, NONE)
blanchet@43450
   945
  end
blanchet@43450
   946
blanchet@43580
   947
fun problem_lines_for_sym_decls ctxt conj_sym_kind nonmono_Ts type_sys
blanchet@43580
   948
                                (s, decls) =
blanchet@43552
   949
  case type_sys of
blanchet@43587
   950
    Simple_Types _ => map (decl_line_for_sym s) decls
blanchet@43552
   951
  | _ =>
blanchet@43445
   952
    let
blanchet@43450
   953
      val decls =
blanchet@43450
   954
        case decls of
blanchet@43450
   955
          decl :: (decls' as _ :: _) =>
blanchet@43463
   956
          let val T = result_type_of_decl decl in
blanchet@43463
   957
            if forall ((fn T' => Type.raw_instance (T', T))
blanchet@43463
   958
                       o result_type_of_decl) decls' then
blanchet@43463
   959
              [decl]
blanchet@43463
   960
            else
blanchet@43463
   961
              decls
blanchet@43463
   962
          end
blanchet@43450
   963
        | _ => decls
blanchet@43450
   964
      val n = length decls
blanchet@43450
   965
      val decls =
blanchet@43550
   966
        decls |> filter (should_predicate_on_type ctxt nonmono_Ts type_sys
blanchet@43450
   967
                         o result_type_of_decl)
blanchet@43445
   968
    in
blanchet@43580
   969
      (0 upto length decls - 1, decls)
blanchet@43580
   970
      |-> map2 (formula_line_for_sym_decl ctxt conj_sym_kind nonmono_Ts type_sys
blanchet@43580
   971
                                          n s)
blanchet@43445
   972
    end
blanchet@43450
   973
blanchet@43580
   974
fun problem_lines_for_sym_decl_table ctxt conj_sym_kind nonmono_Ts type_sys
blanchet@43580
   975
                                     sym_decl_tab =
blanchet@43580
   976
  Symtab.fold_rev (append o problem_lines_for_sym_decls ctxt conj_sym_kind
blanchet@43580
   977
                                                        nonmono_Ts type_sys)
blanchet@43445
   978
                  sym_decl_tab []
blanchet@43410
   979
blanchet@43414
   980
fun add_tff_types_in_formula (AQuant (_, xs, phi)) =
blanchet@43414
   981
    union (op =) (map_filter snd xs) #> add_tff_types_in_formula phi
blanchet@43414
   982
  | add_tff_types_in_formula (AConn (_, phis)) =
blanchet@43414
   983
    fold add_tff_types_in_formula phis
blanchet@43414
   984
  | add_tff_types_in_formula (AAtom _) = I
blanchet@43414
   985
blanchet@43433
   986
fun add_tff_types_in_problem_line (Decl (_, _, arg_Ts, res_T)) =
blanchet@43433
   987
    union (op =) (res_T :: arg_Ts)
blanchet@43448
   988
  | add_tff_types_in_problem_line (Formula (_, _, phi, _, _)) =
blanchet@43414
   989
    add_tff_types_in_formula phi
blanchet@43414
   990
blanchet@43414
   991
fun tff_types_in_problem problem =
blanchet@43414
   992
  fold (fold add_tff_types_in_problem_line o snd) problem []
blanchet@43414
   993
blanchet@43416
   994
fun decl_line_for_tff_type (s, s') =
blanchet@43439
   995
  Decl (type_decl_prefix ^ ascii_of s, (s, s'), [], `I tptp_tff_type_of_types)
blanchet@43414
   996
blanchet@43414
   997
val type_declsN = "Types"
blanchet@43415
   998
val sym_declsN = "Symbol types"
blanchet@41405
   999
val factsN = "Relevant facts"
blanchet@41405
  1000
val class_relsN = "Class relationships"
blanchet@43414
  1001
val aritiesN = "Arities"
blanchet@41405
  1002
val helpersN = "Helper facts"
blanchet@41405
  1003
val conjsN = "Conjectures"
blanchet@41561
  1004
val free_typesN = "Type variables"
blanchet@41405
  1005
blanchet@41405
  1006
fun offset_of_heading_in_problem _ [] j = j
blanchet@41405
  1007
  | offset_of_heading_in_problem needle ((heading, lines) :: problem) j =
blanchet@41405
  1008
    if heading = needle then j
blanchet@41405
  1009
    else offset_of_heading_in_problem needle problem (j + length lines)
blanchet@41405
  1010
blanchet@43580
  1011
fun prepare_atp_problem ctxt conj_sym_kind prem_kind type_sys explicit_apply
blanchet@43580
  1012
                        hyp_ts concl_t facts =
blanchet@38506
  1013
  let
blanchet@41561
  1014
    val (fact_names, (conjs, facts, class_rel_clauses, arity_clauses)) =
blanchet@43580
  1015
      translate_formulas ctxt prem_kind type_sys hyp_ts concl_t facts
blanchet@43434
  1016
    val sym_tab = conjs @ facts |> sym_table_for_facts explicit_apply
blanchet@43552
  1017
    val nonmono_Ts =
blanchet@43552
  1018
      [] |> fold (add_nonmonotonic_types_for_facts ctxt type_sys) [facts, conjs]
blanchet@43571
  1019
    val repair = repair_fact ctxt nonmono_Ts type_sys sym_tab
blanchet@43552
  1020
    val (conjs, facts) = (conjs, facts) |> pairself (map repair)
blanchet@43550
  1021
    val repaired_sym_tab = conjs @ facts |> sym_table_for_facts false
blanchet@43444
  1022
    val helpers =
blanchet@43552
  1023
      repaired_sym_tab |> helper_facts_for_sym_table ctxt type_sys |> map repair
blanchet@43550
  1024
    val sym_decl_lines =
blanchet@43596
  1025
      (conjs, helpers @ facts)
blanchet@43550
  1026
      |> sym_decl_table_for_facts type_sys repaired_sym_tab
blanchet@43580
  1027
      |> problem_lines_for_sym_decl_table ctxt conj_sym_kind nonmono_Ts type_sys
blanchet@43393
  1028
    (* Reordering these might confuse the proof reconstruction code or the SPASS
blanchet@43393
  1029
       Flotter hack. *)
blanchet@38506
  1030
    val problem =
blanchet@43432
  1031
      [(sym_declsN, sym_decl_lines),
blanchet@43550
  1032
       (factsN, map (formula_line_for_fact ctxt fact_prefix nonmono_Ts type_sys)
blanchet@43051
  1033
                    (0 upto length facts - 1 ~~ facts)),
blanchet@43416
  1034
       (class_relsN, map formula_line_for_class_rel_clause class_rel_clauses),
blanchet@43416
  1035
       (aritiesN, map formula_line_for_arity_clause arity_clauses),
blanchet@43550
  1036
       (helpersN, map (formula_line_for_fact ctxt helper_prefix nonmono_Ts
blanchet@43550
  1037
                                             type_sys)
blanchet@43434
  1038
                      (0 upto length helpers - 1 ~~ helpers)
blanchet@43450
  1039
                  |> (case type_sys of
blanchet@43460
  1040
                        Tags (Polymorphic, level) =>
blanchet@43557
  1041
                        is_type_level_partial level
blanchet@43460
  1042
                        ? cons (ti_ti_helper_fact ())
blanchet@43450
  1043
                      | _ => I)),
blanchet@43550
  1044
       (conjsN, map (formula_line_for_conjecture ctxt nonmono_Ts type_sys)
blanchet@43550
  1045
                    conjs),
blanchet@43416
  1046
       (free_typesN, formula_lines_for_free_types type_sys (facts @ conjs))]
blanchet@43414
  1047
    val problem =
blanchet@43432
  1048
      problem
blanchet@43552
  1049
      |> (case type_sys of
blanchet@43587
  1050
            Simple_Types _ =>
blanchet@43432
  1051
            cons (type_declsN,
blanchet@43432
  1052
                  map decl_line_for_tff_type (tff_types_in_problem problem))
blanchet@43552
  1053
          | _ => I)
blanchet@43517
  1054
    val (problem, pool) =
blanchet@43517
  1055
      problem |> nice_atp_problem (Config.get ctxt readable_names)
blanchet@38506
  1056
  in
blanchet@38506
  1057
    (problem,
blanchet@38506
  1058
     case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
blanchet@43456
  1059
     offset_of_heading_in_problem conjsN problem 0,
blanchet@43412
  1060
     offset_of_heading_in_problem factsN problem 0,
blanchet@41405
  1061
     fact_names |> Vector.fromList)
blanchet@38506
  1062
  end
blanchet@38506
  1063
blanchet@41561
  1064
(* FUDGE *)
blanchet@41561
  1065
val conj_weight = 0.0
blanchet@42641
  1066
val hyp_weight = 0.1
blanchet@42641
  1067
val fact_min_weight = 0.2
blanchet@41561
  1068
val fact_max_weight = 1.0
blanchet@43479
  1069
val type_info_default_weight = 0.8
blanchet@41561
  1070
blanchet@41561
  1071
fun add_term_weights weight (ATerm (s, tms)) =
blanchet@43599
  1072
  (not (is_atp_variable s) andalso s <> "equal" andalso
blanchet@43599
  1073
   not (String.isPrefix "$" s)) ? Symtab.default (s, weight)
blanchet@41561
  1074
  #> fold (add_term_weights weight) tms
blanchet@43448
  1075
fun add_problem_line_weights weight (Formula (_, _, phi, _, _)) =
blanchet@43550
  1076
    formula_fold true (K (add_term_weights weight)) phi
blanchet@43399
  1077
  | add_problem_line_weights _ _ = I
blanchet@41561
  1078
blanchet@41561
  1079
fun add_conjectures_weights [] = I
blanchet@41561
  1080
  | add_conjectures_weights conjs =
blanchet@41561
  1081
    let val (hyps, conj) = split_last conjs in
blanchet@41561
  1082
      add_problem_line_weights conj_weight conj
blanchet@41561
  1083
      #> fold (add_problem_line_weights hyp_weight) hyps
blanchet@41561
  1084
    end
blanchet@41561
  1085
blanchet@41561
  1086
fun add_facts_weights facts =
blanchet@41561
  1087
  let
blanchet@41561
  1088
    val num_facts = length facts
blanchet@41561
  1089
    fun weight_of j =
blanchet@41561
  1090
      fact_min_weight + (fact_max_weight - fact_min_weight) * Real.fromInt j
blanchet@41561
  1091
                        / Real.fromInt num_facts
blanchet@41561
  1092
  in
blanchet@41561
  1093
    map weight_of (0 upto num_facts - 1) ~~ facts
blanchet@41561
  1094
    |> fold (uncurry add_problem_line_weights)
blanchet@41561
  1095
  end
blanchet@41561
  1096
blanchet@41561
  1097
(* Weights are from 0.0 (most important) to 1.0 (least important). *)
blanchet@41561
  1098
fun atp_problem_weights problem =
blanchet@43479
  1099
  let val get = these o AList.lookup (op =) problem in
blanchet@43479
  1100
    Symtab.empty
blanchet@43479
  1101
    |> add_conjectures_weights (get free_typesN @ get conjsN)
blanchet@43479
  1102
    |> add_facts_weights (get factsN)
blanchet@43479
  1103
    |> fold (fold (add_problem_line_weights type_info_default_weight) o get)
blanchet@43479
  1104
            [sym_declsN, class_relsN, aritiesN]
blanchet@43479
  1105
    |> Symtab.dest
blanchet@43479
  1106
    |> sort (prod_ord Real.compare string_ord o pairself swap)
blanchet@43479
  1107
  end
blanchet@41561
  1108
blanchet@38506
  1109
end;