src/HOL/Tools/Sledgehammer/sledgehammer_translate.ML
author blanchet
Fri, 20 Aug 2010 15:16:27 +0200
changeset 38836 4ca2cae2653f
parent 38833 5266689abbc1
child 38841 5536897d04c2
permissions -rw-r--r--
use "hypothesis" rather than "conjecture" for hypotheses in TPTP format;
avoids relying on inconsistently implemented feature of TPTP format
blanchet@38506
     1
(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_translate.ML
blanchet@38506
     2
    Author:     Fabian Immler, TU Muenchen
blanchet@38506
     3
    Author:     Makarius
blanchet@38506
     4
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@38506
     5
blanchet@38506
     6
Translation of HOL to FOL.
blanchet@38506
     7
*)
blanchet@38506
     8
blanchet@38506
     9
signature SLEDGEHAMMER_TRANSLATE =
blanchet@38506
    10
sig
blanchet@38506
    11
  type 'a problem = 'a ATP_Problem.problem
blanchet@38506
    12
blanchet@38506
    13
  val axiom_prefix : string
blanchet@38506
    14
  val conjecture_prefix : string
blanchet@38506
    15
  val helper_prefix : string
blanchet@38506
    16
  val class_rel_clause_prefix : string
blanchet@38506
    17
  val arity_clause_prefix : string
blanchet@38506
    18
  val tfrees_name : string
blanchet@38506
    19
  val prepare_problem :
blanchet@38506
    20
    Proof.context -> bool -> bool -> bool -> bool -> term list -> term
blanchet@38506
    21
    -> (string * thm) list
blanchet@38506
    22
    -> string problem * string Symtab.table * int * string Vector.vector
blanchet@38506
    23
end;
blanchet@38506
    24
blanchet@38506
    25
structure Sledgehammer_Translate : SLEDGEHAMMER_TRANSLATE =
blanchet@38506
    26
struct
blanchet@38506
    27
blanchet@38506
    28
open ATP_Problem
blanchet@38506
    29
open Metis_Clauses
blanchet@38506
    30
open Sledgehammer_Util
blanchet@38506
    31
blanchet@38506
    32
val axiom_prefix = "ax_"
blanchet@38506
    33
val conjecture_prefix = "conj_"
blanchet@38506
    34
val helper_prefix = "help_"
blanchet@38506
    35
val class_rel_clause_prefix = "clrel_";
blanchet@38506
    36
val arity_clause_prefix = "arity_"
blanchet@38506
    37
val tfrees_name = "tfrees"
blanchet@38506
    38
blanchet@38506
    39
(* Freshness almost guaranteed! *)
blanchet@38506
    40
val sledgehammer_weak_prefix = "Sledgehammer:"
blanchet@38506
    41
blanchet@38506
    42
datatype fol_formula =
blanchet@38506
    43
  FOLFormula of {name: string,
blanchet@38506
    44
                 kind: kind,
blanchet@38506
    45
                 combformula: (name, combterm) formula,
blanchet@38506
    46
                 ctypes_sorts: typ list}
blanchet@38506
    47
blanchet@38506
    48
fun mk_anot phi = AConn (ANot, [phi])
blanchet@38506
    49
fun mk_aconn c phi1 phi2 = AConn (c, [phi1, phi2])
blanchet@38506
    50
fun mk_ahorn [] phi = phi
blanchet@38506
    51
  | mk_ahorn (phi :: phis) psi =
blanchet@38506
    52
    AConn (AImplies, [fold (mk_aconn AAnd) phis phi, psi])
blanchet@38506
    53
blanchet@38506
    54
fun combformula_for_prop thy =
blanchet@38506
    55
  let
blanchet@38506
    56
    val do_term = combterm_from_term thy
blanchet@38506
    57
    fun do_quant bs q s T t' =
blanchet@38743
    58
      let val s = Name.variant (map fst bs) s in
blanchet@38743
    59
        do_formula ((s, T) :: bs) t'
blanchet@38743
    60
        #>> (fn phi => AQuant (q, [`make_bound_var s], phi))
blanchet@38743
    61
      end
blanchet@38506
    62
    and do_conn bs c t1 t2 =
blanchet@38506
    63
      do_formula bs t1 ##>> do_formula bs t2
blanchet@38506
    64
      #>> (fn (phi1, phi2) => AConn (c, [phi1, phi2]))
blanchet@38506
    65
    and do_formula bs t =
blanchet@38506
    66
      case t of
blanchet@38506
    67
        @{const Not} $ t1 =>
blanchet@38506
    68
        do_formula bs t1 #>> (fn phi => AConn (ANot, [phi]))
blanchet@38506
    69
      | Const (@{const_name All}, _) $ Abs (s, T, t') =>
blanchet@38506
    70
        do_quant bs AForall s T t'
blanchet@38506
    71
      | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
blanchet@38506
    72
        do_quant bs AExists s T t'
blanchet@38506
    73
      | @{const "op &"} $ t1 $ t2 => do_conn bs AAnd t1 t2
blanchet@38506
    74
      | @{const "op |"} $ t1 $ t2 => do_conn bs AOr t1 t2
blanchet@38506
    75
      | @{const "op -->"} $ t1 $ t2 => do_conn bs AImplies t1 t2
blanchet@38506
    76
      | Const (@{const_name "op ="}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
blanchet@38506
    77
        do_conn bs AIff t1 t2
blanchet@38506
    78
      | _ => (fn ts => do_term bs (Envir.eta_contract t)
blanchet@38506
    79
                       |>> AAtom ||> union (op =) ts)
blanchet@38506
    80
  in do_formula [] end
blanchet@38506
    81
blanchet@38506
    82
fun presimplify_term thy =
blanchet@38506
    83
  Skip_Proof.make_thm thy
blanchet@38506
    84
  #> Meson.presimplify
blanchet@38506
    85
  #> prop_of
blanchet@38506
    86
blanchet@38506
    87
fun concealed_bound_name j = sledgehammer_weak_prefix ^ Int.toString j
blanchet@38506
    88
fun conceal_bounds Ts t =
blanchet@38506
    89
  subst_bounds (map (Free o apfst concealed_bound_name)
blanchet@38506
    90
                    (0 upto length Ts - 1 ~~ Ts), t)
blanchet@38506
    91
fun reveal_bounds Ts =
blanchet@38506
    92
  subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
blanchet@38506
    93
                    (0 upto length Ts - 1 ~~ Ts))
blanchet@38506
    94
blanchet@38831
    95
(* Removes the lambdas from an equation of the form "t = (%x. u)".
blanchet@38831
    96
   (Cf. "extensionalize_theorem" in "Clausifier".) *)
blanchet@38831
    97
fun extensionalize_term t =
blanchet@38831
    98
  let
blanchet@38831
    99
    fun aux j (@{const Trueprop} $ t') = @{const Trueprop} $ aux j t'
blanchet@38831
   100
      | aux j (t as Const (s, Type (_, [Type (_, [_, T']),
blanchet@38831
   101
                                        Type (_, [_, res_T])]))
blanchet@38831
   102
                    $ t2 $ Abs (var_s, var_T, t')) =
blanchet@38831
   103
        if s = @{const_name "op ="} orelse s = @{const_name "=="} then
blanchet@38831
   104
          let val var_t = Var ((var_s, j), var_T) in
blanchet@38831
   105
            Const (s, T' --> T' --> res_T)
blanchet@38831
   106
              $ betapply (t2, var_t) $ subst_bound (var_t, t')
blanchet@38831
   107
            |> aux (j + 1)
blanchet@38831
   108
          end
blanchet@38831
   109
        else
blanchet@38831
   110
          t
blanchet@38831
   111
      | aux _ t = t
blanchet@38831
   112
  in aux (maxidx_of_term t + 1) t end
blanchet@38831
   113
blanchet@38506
   114
fun introduce_combinators_in_term ctxt kind t =
blanchet@38716
   115
  let val thy = ProofContext.theory_of ctxt in
blanchet@38716
   116
    if Meson.is_fol_term thy t then
blanchet@38716
   117
      t
blanchet@38716
   118
    else
blanchet@38716
   119
      let
blanchet@38716
   120
        fun aux Ts t =
blanchet@38716
   121
          case t of
blanchet@38716
   122
            @{const Not} $ t1 => @{const Not} $ aux Ts t1
blanchet@38716
   123
          | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
blanchet@38716
   124
            t0 $ Abs (s, T, aux (T :: Ts) t')
blanchet@38716
   125
          | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
blanchet@38716
   126
            t0 $ Abs (s, T, aux (T :: Ts) t')
blanchet@38716
   127
          | (t0 as @{const "op &"}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
blanchet@38716
   128
          | (t0 as @{const "op |"}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
blanchet@38716
   129
          | (t0 as @{const "op -->"}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
blanchet@38716
   130
          | (t0 as Const (@{const_name "op ="}, Type (_, [@{typ bool}, _])))
blanchet@38716
   131
              $ t1 $ t2 =>
blanchet@38716
   132
            t0 $ aux Ts t1 $ aux Ts t2
blanchet@38716
   133
          | _ => if not (exists_subterm (fn Abs _ => true | _ => false) t) then
blanchet@38716
   134
                   t
blanchet@38716
   135
                 else
blanchet@38716
   136
                   t |> conceal_bounds Ts
blanchet@38716
   137
                     |> Envir.eta_contract
blanchet@38716
   138
                     |> cterm_of thy
blanchet@38716
   139
                     |> Clausifier.introduce_combinators_in_cterm
blanchet@38716
   140
                     |> prop_of |> Logic.dest_equals |> snd
blanchet@38716
   141
                     |> reveal_bounds Ts
blanchet@38716
   142
        val ([t], ctxt') = Variable.import_terms true [t] ctxt
blanchet@38716
   143
      in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
blanchet@38716
   144
      handle THM _ =>
blanchet@38716
   145
             (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@38836
   146
             if kind = Conjecture then HOLogic.false_const
blanchet@38836
   147
             else HOLogic.true_const
blanchet@38716
   148
  end
blanchet@38506
   149
blanchet@38506
   150
(* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
blanchet@38506
   151
   same in Sledgehammer to prevent the discovery of unreplable proofs. *)
blanchet@38506
   152
fun freeze_term t =
blanchet@38506
   153
  let
blanchet@38506
   154
    fun aux (t $ u) = aux t $ aux u
blanchet@38506
   155
      | aux (Abs (s, T, t)) = Abs (s, T, aux t)
blanchet@38506
   156
      | aux (Var ((s, i), T)) =
blanchet@38506
   157
        Free (sledgehammer_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
blanchet@38506
   158
      | aux t = t
blanchet@38506
   159
  in t |> exists_subterm is_Var t ? aux end
blanchet@38506
   160
blanchet@38827
   161
(* "Object_Logic.atomize_term" isn't as powerful as it could be; for example,
blanchet@38827
   162
    it leaves metaequalities over "prop"s alone. *)
blanchet@38828
   163
val atomize_term =
blanchet@38828
   164
  let
blanchet@38828
   165
    fun aux (@{const Trueprop} $ t1) = t1
blanchet@38828
   166
      | aux (Const (@{const_name all}, _) $ Abs (s, T, t')) =
blanchet@38828
   167
        HOLogic.all_const T $ Abs (s, T, aux t')
blanchet@38828
   168
      | aux (@{const "==>"} $ t1 $ t2) = HOLogic.mk_imp (pairself aux (t1, t2))
blanchet@38828
   169
      | aux (Const (@{const_name "=="}, Type (_, [@{typ prop}, _])) $ t1 $ t2) =
blanchet@38828
   170
        HOLogic.eq_const HOLogic.boolT $ aux t1 $ aux t2
blanchet@38828
   171
      | aux (Const (@{const_name "=="}, Type (_, [T, _])) $ t1 $ t2) =
blanchet@38828
   172
        HOLogic.eq_const T $ t1 $ t2
blanchet@38828
   173
      | aux _ = raise Fail "aux"
blanchet@38828
   174
  in perhaps (try aux) end
blanchet@38827
   175
blanchet@38506
   176
(* making axiom and conjecture formulas *)
blanchet@38836
   177
fun make_formula ctxt presimp name kind t =
blanchet@38506
   178
  let
blanchet@38506
   179
    val thy = ProofContext.theory_of ctxt
blanchet@38831
   180
    val t = t |> Envir.beta_eta_contract
blanchet@38827
   181
              |> atomize_term
blanchet@38506
   182
    val t = t |> fastype_of t = HOLogic.boolT ? HOLogic.mk_Trueprop
blanchet@38506
   183
              |> extensionalize_term
blanchet@38506
   184
              |> presimp ? presimplify_term thy
blanchet@38506
   185
              |> perhaps (try (HOLogic.dest_Trueprop))
blanchet@38506
   186
              |> introduce_combinators_in_term ctxt kind
blanchet@38836
   187
              |> kind <> Axiom ? freeze_term
blanchet@38506
   188
    val (combformula, ctypes_sorts) = combformula_for_prop thy t []
blanchet@38506
   189
  in
blanchet@38506
   190
    FOLFormula {name = name, combformula = combformula, kind = kind,
blanchet@38506
   191
                ctypes_sorts = ctypes_sorts}
blanchet@38506
   192
  end
blanchet@38506
   193
blanchet@38506
   194
fun make_axiom ctxt presimp (name, th) =
blanchet@38836
   195
  (name, make_formula ctxt presimp name Axiom (prop_of th))
blanchet@38836
   196
fun make_conjecture ctxt ts =
blanchet@38836
   197
  let val last = length ts - 1 in
blanchet@38836
   198
    map2 (fn j => make_formula ctxt true (Int.toString j)
blanchet@38836
   199
                               (if j = last then Conjecture else Hypothesis))
blanchet@38836
   200
         (0 upto last) ts
blanchet@38836
   201
  end
blanchet@38506
   202
blanchet@38506
   203
(** Helper facts **)
blanchet@38506
   204
blanchet@38506
   205
fun count_combterm (CombConst ((s, _), _, _)) =
blanchet@38506
   206
    Symtab.map_entry s (Integer.add 1)
blanchet@38506
   207
  | count_combterm (CombVar _) = I
blanchet@38506
   208
  | count_combterm (CombApp (t1, t2)) = fold count_combterm [t1, t2]
blanchet@38506
   209
fun count_combformula (AQuant (_, _, phi)) = count_combformula phi
blanchet@38506
   210
  | count_combformula (AConn (_, phis)) = fold count_combformula phis
blanchet@38506
   211
  | count_combformula (AAtom tm) = count_combterm tm
blanchet@38506
   212
fun count_fol_formula (FOLFormula {combformula, ...}) =
blanchet@38506
   213
  count_combformula combformula
blanchet@38506
   214
blanchet@38506
   215
val optional_helpers =
blanchet@38506
   216
  [(["c_COMBI", "c_COMBK"], @{thms COMBI_def COMBK_def}),
blanchet@38506
   217
   (["c_COMBB", "c_COMBC"], @{thms COMBB_def COMBC_def}),
blanchet@38506
   218
   (["c_COMBS"], @{thms COMBS_def})]
blanchet@38506
   219
val optional_typed_helpers =
blanchet@38506
   220
  [(["c_True", "c_False"], @{thms True_or_False}),
blanchet@38506
   221
   (["c_If"], @{thms if_True if_False True_or_False})]
blanchet@38829
   222
val mandatory_helpers = @{thms fequal_def}
blanchet@38506
   223
blanchet@38506
   224
val init_counters =
blanchet@38506
   225
  Symtab.make (maps (maps (map (rpair 0) o fst))
blanchet@38506
   226
                    [optional_helpers, optional_typed_helpers])
blanchet@38506
   227
blanchet@38506
   228
fun get_helper_facts ctxt is_FO full_types conjectures axioms =
blanchet@38506
   229
  let
blanchet@38506
   230
    val ct = fold (fold count_fol_formula) [conjectures, axioms] init_counters
blanchet@38506
   231
    fun is_needed c = the (Symtab.lookup ct c) > 0
blanchet@38506
   232
  in
blanchet@38506
   233
    (optional_helpers
blanchet@38506
   234
     |> full_types ? append optional_typed_helpers
blanchet@38506
   235
     |> maps (fn (ss, ths) =>
blanchet@38506
   236
                 if exists is_needed ss then map (`Thm.get_name_hint) ths
blanchet@38506
   237
                 else [])) @
blanchet@38506
   238
    (if is_FO then [] else map (`Thm.get_name_hint) mandatory_helpers)
blanchet@38506
   239
    |> map (snd o make_axiom ctxt false)
blanchet@38506
   240
  end
blanchet@38506
   241
blanchet@38506
   242
fun prepare_formulas ctxt full_types hyp_ts concl_t axioms =
blanchet@38506
   243
  let
blanchet@38506
   244
    val thy = ProofContext.theory_of ctxt
blanchet@38506
   245
    val axiom_ts = map (prop_of o snd) axioms
blanchet@38506
   246
    val hyp_ts =
blanchet@38506
   247
      if null hyp_ts then
blanchet@38506
   248
        []
blanchet@38506
   249
      else
blanchet@38506
   250
        (* Remove existing axioms from the conjecture, as this can dramatically
blanchet@38506
   251
           boost an ATP's performance (for some reason). *)
blanchet@38506
   252
        let
blanchet@38506
   253
          val axiom_table = fold (Termtab.update o rpair ()) axiom_ts
blanchet@38506
   254
                                 Termtab.empty
blanchet@38506
   255
        in hyp_ts |> filter_out (Termtab.defined axiom_table) end
blanchet@38506
   256
    val goal_t = Logic.list_implies (hyp_ts, concl_t)
blanchet@38506
   257
    val is_FO = Meson.is_fol_term thy goal_t
blanchet@38506
   258
    val subs = tfree_classes_of_terms [goal_t]
blanchet@38506
   259
    val supers = tvar_classes_of_terms axiom_ts
blanchet@38506
   260
    val tycons = type_consts_of_terms thy (goal_t :: axiom_ts)
blanchet@38506
   261
    (* TFrees in the conjecture; TVars in the axioms *)
blanchet@38836
   262
    val conjectures = make_conjecture ctxt (hyp_ts @ [concl_t])
blanchet@38506
   263
    val (axiom_names, axioms) =
blanchet@38506
   264
      ListPair.unzip (map (make_axiom ctxt true) axioms)
blanchet@38506
   265
    val helper_facts = get_helper_facts ctxt is_FO full_types conjectures axioms
blanchet@38506
   266
    val (supers', arity_clauses) = make_arity_clauses thy tycons supers
blanchet@38506
   267
    val class_rel_clauses = make_class_rel_clauses thy subs supers'
blanchet@38506
   268
  in
blanchet@38506
   269
    (Vector.fromList axiom_names,
blanchet@38506
   270
     (conjectures, axioms, helper_facts, class_rel_clauses, arity_clauses))
blanchet@38506
   271
  end
blanchet@38506
   272
blanchet@38506
   273
fun wrap_type ty t = ATerm ((type_wrapper_name, type_wrapper_name), [ty, t])
blanchet@38506
   274
blanchet@38506
   275
fun fo_term_for_combtyp (CombTVar name) = ATerm (name, [])
blanchet@38506
   276
  | fo_term_for_combtyp (CombTFree name) = ATerm (name, [])
blanchet@38506
   277
  | fo_term_for_combtyp (CombType (name, tys)) =
blanchet@38506
   278
    ATerm (name, map fo_term_for_combtyp tys)
blanchet@38506
   279
blanchet@38506
   280
fun fo_literal_for_type_literal (TyLitVar (class, name)) =
blanchet@38506
   281
    (true, ATerm (class, [ATerm (name, [])]))
blanchet@38506
   282
  | fo_literal_for_type_literal (TyLitFree (class, name)) =
blanchet@38506
   283
    (true, ATerm (class, [ATerm (name, [])]))
blanchet@38506
   284
blanchet@38506
   285
fun formula_for_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
blanchet@38506
   286
blanchet@38506
   287
fun fo_term_for_combterm full_types =
blanchet@38506
   288
  let
blanchet@38506
   289
    fun aux top_level u =
blanchet@38506
   290
      let
blanchet@38506
   291
        val (head, args) = strip_combterm_comb u
blanchet@38506
   292
        val (x, ty_args) =
blanchet@38506
   293
          case head of
blanchet@38506
   294
            CombConst (name as (s, s'), _, ty_args) =>
blanchet@38721
   295
            let val ty_args = if full_types then [] else ty_args in
blanchet@38721
   296
              if s = "equal" then
blanchet@38721
   297
                if top_level andalso length args = 2 then (name, [])
blanchet@38721
   298
                else (("c_fequal", @{const_name fequal}), ty_args)
blanchet@38721
   299
              else if top_level then
blanchet@38721
   300
                case s of
blanchet@38721
   301
                  "c_False" => (("$false", s'), [])
blanchet@38721
   302
                | "c_True" => (("$true", s'), [])
blanchet@38721
   303
                | _ => (name, ty_args)
blanchet@38721
   304
              else
blanchet@38721
   305
                (name, ty_args)
blanchet@38721
   306
            end
blanchet@38506
   307
          | CombVar (name, _) => (name, [])
blanchet@38506
   308
          | CombApp _ => raise Fail "impossible \"CombApp\""
blanchet@38506
   309
        val t = ATerm (x, map fo_term_for_combtyp ty_args @
blanchet@38506
   310
                          map (aux false) args)
blanchet@38506
   311
    in
blanchet@38506
   312
      if full_types then wrap_type (fo_term_for_combtyp (combtyp_of u)) t else t
blanchet@38506
   313
    end
blanchet@38506
   314
  in aux true end
blanchet@38506
   315
blanchet@38506
   316
fun formula_for_combformula full_types =
blanchet@38506
   317
  let
blanchet@38506
   318
    fun aux (AQuant (q, xs, phi)) = AQuant (q, xs, aux phi)
blanchet@38506
   319
      | aux (AConn (c, phis)) = AConn (c, map aux phis)
blanchet@38506
   320
      | aux (AAtom tm) = AAtom (fo_term_for_combterm full_types tm)
blanchet@38506
   321
  in aux end
blanchet@38506
   322
blanchet@38506
   323
fun formula_for_axiom full_types (FOLFormula {combformula, ctypes_sorts, ...}) =
blanchet@38506
   324
  mk_ahorn (map (formula_for_fo_literal o fo_literal_for_type_literal)
blanchet@38506
   325
                (type_literals_for_types ctypes_sorts))
blanchet@38506
   326
           (formula_for_combformula full_types combformula)
blanchet@38506
   327
blanchet@38506
   328
fun problem_line_for_fact prefix full_types
blanchet@38506
   329
                          (formula as FOLFormula {name, kind, ...}) =
blanchet@38506
   330
  Fof (prefix ^ ascii_of name, kind, formula_for_axiom full_types formula)
blanchet@38506
   331
blanchet@38506
   332
fun problem_line_for_class_rel_clause (ClassRelClause {name, subclass,
blanchet@38506
   333
                                                       superclass, ...}) =
blanchet@38506
   334
  let val ty_arg = ATerm (("T", "T"), []) in
blanchet@38506
   335
    Fof (class_rel_clause_prefix ^ ascii_of name, Axiom,
blanchet@38506
   336
         AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
blanchet@38506
   337
                           AAtom (ATerm (superclass, [ty_arg]))]))
blanchet@38506
   338
  end
blanchet@38506
   339
blanchet@38506
   340
fun fo_literal_for_arity_literal (TConsLit (c, t, args)) =
blanchet@38506
   341
    (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
blanchet@38506
   342
  | fo_literal_for_arity_literal (TVarLit (c, sort)) =
blanchet@38506
   343
    (false, ATerm (c, [ATerm (sort, [])]))
blanchet@38506
   344
blanchet@38506
   345
fun problem_line_for_arity_clause (ArityClause {name, conclLit, premLits,
blanchet@38506
   346
                                                ...}) =
blanchet@38506
   347
  Fof (arity_clause_prefix ^ ascii_of name, Axiom,
blanchet@38506
   348
       mk_ahorn (map (formula_for_fo_literal o apfst not
blanchet@38506
   349
                      o fo_literal_for_arity_literal) premLits)
blanchet@38506
   350
                (formula_for_fo_literal
blanchet@38506
   351
                     (fo_literal_for_arity_literal conclLit)))
blanchet@38506
   352
blanchet@38506
   353
fun problem_line_for_conjecture full_types
blanchet@38506
   354
                                (FOLFormula {name, kind, combformula, ...}) =
blanchet@38506
   355
  Fof (conjecture_prefix ^ name, kind,
blanchet@38506
   356
       formula_for_combformula full_types combformula)
blanchet@38506
   357
blanchet@38506
   358
fun free_type_literals_for_conjecture (FOLFormula {ctypes_sorts, ...}) =
blanchet@38506
   359
  map fo_literal_for_type_literal (type_literals_for_types ctypes_sorts)
blanchet@38506
   360
blanchet@38506
   361
fun problem_line_for_free_type lit =
blanchet@38836
   362
  Fof (tfrees_name, Hypothesis, formula_for_fo_literal lit)
blanchet@38506
   363
fun problem_lines_for_free_types conjectures =
blanchet@38506
   364
  let
blanchet@38506
   365
    val litss = map free_type_literals_for_conjecture conjectures
blanchet@38506
   366
    val lits = fold (union (op =)) litss []
blanchet@38506
   367
  in map problem_line_for_free_type lits end
blanchet@38506
   368
blanchet@38506
   369
(** "hBOOL" and "hAPP" **)
blanchet@38506
   370
blanchet@38506
   371
type const_info = {min_arity: int, max_arity: int, sub_level: bool}
blanchet@38506
   372
blanchet@38506
   373
fun consider_term top_level (ATerm ((s, _), ts)) =
blanchet@38506
   374
  (if is_tptp_variable s then
blanchet@38506
   375
     I
blanchet@38506
   376
   else
blanchet@38506
   377
     let val n = length ts in
blanchet@38506
   378
       Symtab.map_default
blanchet@38506
   379
           (s, {min_arity = n, max_arity = 0, sub_level = false})
blanchet@38506
   380
           (fn {min_arity, max_arity, sub_level} =>
blanchet@38506
   381
               {min_arity = Int.min (n, min_arity),
blanchet@38506
   382
                max_arity = Int.max (n, max_arity),
blanchet@38506
   383
                sub_level = sub_level orelse not top_level})
blanchet@38506
   384
     end)
blanchet@38506
   385
  #> fold (consider_term (top_level andalso s = type_wrapper_name)) ts
blanchet@38506
   386
fun consider_formula (AQuant (_, _, phi)) = consider_formula phi
blanchet@38506
   387
  | consider_formula (AConn (_, phis)) = fold consider_formula phis
blanchet@38506
   388
  | consider_formula (AAtom tm) = consider_term true tm
blanchet@38506
   389
blanchet@38506
   390
fun consider_problem_line (Fof (_, _, phi)) = consider_formula phi
blanchet@38506
   391
fun consider_problem problem = fold (fold consider_problem_line o snd) problem
blanchet@38506
   392
blanchet@38506
   393
fun const_table_for_problem explicit_apply problem =
blanchet@38506
   394
  if explicit_apply then NONE
blanchet@38506
   395
  else SOME (Symtab.empty |> consider_problem problem)
blanchet@38506
   396
blanchet@38506
   397
fun min_arity_of thy full_types NONE s =
blanchet@38506
   398
    (if s = "equal" orelse s = type_wrapper_name orelse
blanchet@38506
   399
        String.isPrefix type_const_prefix s orelse
blanchet@38506
   400
        String.isPrefix class_prefix s then
blanchet@38506
   401
       16383 (* large number *)
blanchet@38506
   402
     else if full_types then
blanchet@38506
   403
       0
blanchet@38506
   404
     else case strip_prefix_and_undo_ascii const_prefix s of
blanchet@38506
   405
       SOME s' => num_type_args thy (invert_const s')
blanchet@38506
   406
     | NONE => 0)
blanchet@38506
   407
  | min_arity_of _ _ (SOME the_const_tab) s =
blanchet@38506
   408
    case Symtab.lookup the_const_tab s of
blanchet@38506
   409
      SOME ({min_arity, ...} : const_info) => min_arity
blanchet@38506
   410
    | NONE => 0
blanchet@38506
   411
blanchet@38506
   412
fun full_type_of (ATerm ((s, _), [ty, _])) =
blanchet@38506
   413
    if s = type_wrapper_name then ty else raise Fail "expected type wrapper"
blanchet@38506
   414
  | full_type_of _ = raise Fail "expected type wrapper"
blanchet@38506
   415
blanchet@38506
   416
fun list_hAPP_rev _ t1 [] = t1
blanchet@38506
   417
  | list_hAPP_rev NONE t1 (t2 :: ts2) =
blanchet@38506
   418
    ATerm (`I "hAPP", [list_hAPP_rev NONE t1 ts2, t2])
blanchet@38506
   419
  | list_hAPP_rev (SOME ty) t1 (t2 :: ts2) =
blanchet@38506
   420
    let val ty' = ATerm (`make_fixed_type_const @{type_name fun},
blanchet@38506
   421
                         [full_type_of t2, ty]) in
blanchet@38506
   422
      ATerm (`I "hAPP", [wrap_type ty' (list_hAPP_rev (SOME ty') t1 ts2), t2])
blanchet@38506
   423
    end
blanchet@38506
   424
blanchet@38506
   425
fun repair_applications_in_term thy full_types const_tab =
blanchet@38506
   426
  let
blanchet@38506
   427
    fun aux opt_ty (ATerm (name as (s, _), ts)) =
blanchet@38506
   428
      if s = type_wrapper_name then
blanchet@38506
   429
        case ts of
blanchet@38506
   430
          [t1, t2] => ATerm (name, [aux NONE t1, aux (SOME t1) t2])
blanchet@38506
   431
        | _ => raise Fail "malformed type wrapper"
blanchet@38506
   432
      else
blanchet@38506
   433
        let
blanchet@38506
   434
          val ts = map (aux NONE) ts
blanchet@38506
   435
          val (ts1, ts2) = chop (min_arity_of thy full_types const_tab s) ts
blanchet@38506
   436
        in list_hAPP_rev opt_ty (ATerm (name, ts1)) (rev ts2) end
blanchet@38506
   437
  in aux NONE end
blanchet@38506
   438
blanchet@38506
   439
fun boolify t = ATerm (`I "hBOOL", [t])
blanchet@38506
   440
blanchet@38506
   441
(* True if the constant ever appears outside of the top-level position in
blanchet@38506
   442
   literals, or if it appears with different arities (e.g., because of different
blanchet@38506
   443
   type instantiations). If false, the constant always receives all of its
blanchet@38506
   444
   arguments and is used as a predicate. *)
blanchet@38506
   445
fun is_predicate NONE s =
blanchet@38812
   446
    s = "equal" orelse s = "$false" orelse s = "$true" orelse
blanchet@38812
   447
    String.isPrefix type_const_prefix s orelse String.isPrefix class_prefix s
blanchet@38506
   448
  | is_predicate (SOME the_const_tab) s =
blanchet@38506
   449
    case Symtab.lookup the_const_tab s of
blanchet@38506
   450
      SOME {min_arity, max_arity, sub_level} =>
blanchet@38506
   451
      not sub_level andalso min_arity = max_arity
blanchet@38506
   452
    | NONE => false
blanchet@38506
   453
blanchet@38506
   454
fun repair_predicates_in_term const_tab (t as ATerm ((s, _), ts)) =
blanchet@38506
   455
  if s = type_wrapper_name then
blanchet@38506
   456
    case ts of
blanchet@38506
   457
      [_, t' as ATerm ((s', _), _)] =>
blanchet@38506
   458
      if is_predicate const_tab s' then t' else boolify t
blanchet@38506
   459
    | _ => raise Fail "malformed type wrapper"
blanchet@38506
   460
  else
blanchet@38506
   461
    t |> not (is_predicate const_tab s) ? boolify
blanchet@38506
   462
blanchet@38506
   463
fun close_universally phi =
blanchet@38506
   464
  let
blanchet@38506
   465
    fun term_vars bounds (ATerm (name as (s, _), tms)) =
blanchet@38506
   466
        (is_tptp_variable s andalso not (member (op =) bounds name))
blanchet@38506
   467
          ? insert (op =) name
blanchet@38506
   468
        #> fold (term_vars bounds) tms
blanchet@38506
   469
    fun formula_vars bounds (AQuant (q, xs, phi)) =
blanchet@38506
   470
        formula_vars (xs @ bounds) phi
blanchet@38506
   471
      | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
blanchet@38506
   472
      | formula_vars bounds (AAtom tm) = term_vars bounds tm
blanchet@38506
   473
  in
blanchet@38506
   474
    case formula_vars [] phi [] of [] => phi | xs => AQuant (AForall, xs, phi)
blanchet@38506
   475
  end
blanchet@38506
   476
blanchet@38506
   477
fun repair_formula thy explicit_forall full_types const_tab =
blanchet@38506
   478
  let
blanchet@38506
   479
    fun aux (AQuant (q, xs, phi)) = AQuant (q, xs, aux phi)
blanchet@38506
   480
      | aux (AConn (c, phis)) = AConn (c, map aux phis)
blanchet@38506
   481
      | aux (AAtom tm) =
blanchet@38506
   482
        AAtom (tm |> repair_applications_in_term thy full_types const_tab
blanchet@38506
   483
                  |> repair_predicates_in_term const_tab)
blanchet@38506
   484
  in aux #> explicit_forall ? close_universally end
blanchet@38506
   485
blanchet@38506
   486
fun repair_problem_line thy explicit_forall full_types const_tab
blanchet@38506
   487
                        (Fof (ident, kind, phi)) =
blanchet@38506
   488
  Fof (ident, kind, repair_formula thy explicit_forall full_types const_tab phi)
blanchet@38506
   489
fun repair_problem_with_const_table thy =
blanchet@38506
   490
  map o apsnd o map ooo repair_problem_line thy
blanchet@38506
   491
blanchet@38506
   492
fun repair_problem thy explicit_forall full_types explicit_apply problem =
blanchet@38506
   493
  repair_problem_with_const_table thy explicit_forall full_types
blanchet@38506
   494
      (const_table_for_problem explicit_apply problem) problem
blanchet@38506
   495
blanchet@38506
   496
fun prepare_problem ctxt readable_names explicit_forall full_types
blanchet@38506
   497
                    explicit_apply hyp_ts concl_t axiom_ts =
blanchet@38506
   498
  let
blanchet@38506
   499
    val thy = ProofContext.theory_of ctxt
blanchet@38506
   500
    val (axiom_names, (conjectures, axioms, helper_facts, class_rel_clauses,
blanchet@38506
   501
                       arity_clauses)) =
blanchet@38506
   502
      prepare_formulas ctxt full_types hyp_ts concl_t axiom_ts
blanchet@38506
   503
    val axiom_lines = map (problem_line_for_fact axiom_prefix full_types) axioms
blanchet@38506
   504
    val helper_lines =
blanchet@38506
   505
      map (problem_line_for_fact helper_prefix full_types) helper_facts
blanchet@38506
   506
    val conjecture_lines =
blanchet@38506
   507
      map (problem_line_for_conjecture full_types) conjectures
blanchet@38506
   508
    val tfree_lines = problem_lines_for_free_types conjectures
blanchet@38506
   509
    val class_rel_lines =
blanchet@38506
   510
      map problem_line_for_class_rel_clause class_rel_clauses
blanchet@38506
   511
    val arity_lines = map problem_line_for_arity_clause arity_clauses
blanchet@38506
   512
    (* Reordering these might or might not confuse the proof reconstruction
blanchet@38506
   513
       code or the SPASS Flotter hack. *)
blanchet@38506
   514
    val problem =
blanchet@38506
   515
      [("Relevant facts", axiom_lines),
blanchet@38506
   516
       ("Class relationships", class_rel_lines),
blanchet@38506
   517
       ("Arity declarations", arity_lines),
blanchet@38506
   518
       ("Helper facts", helper_lines),
blanchet@38506
   519
       ("Conjectures", conjecture_lines),
blanchet@38506
   520
       ("Type variables", tfree_lines)]
blanchet@38506
   521
      |> repair_problem thy explicit_forall full_types explicit_apply
blanchet@38506
   522
    val (problem, pool) = nice_tptp_problem readable_names problem
blanchet@38506
   523
    val conjecture_offset =
blanchet@38506
   524
      length axiom_lines + length class_rel_lines + length arity_lines
blanchet@38506
   525
      + length helper_lines
blanchet@38506
   526
  in
blanchet@38506
   527
    (problem,
blanchet@38506
   528
     case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
blanchet@38506
   529
     conjecture_offset, axiom_names)
blanchet@38506
   530
  end
blanchet@38506
   531
blanchet@38506
   532
end;