src/HOL/Tools/Sledgehammer/sledgehammer_atp_translate.ML
author blanchet
Wed, 15 Dec 2010 11:26:28 +0100
changeset 41384 30bedf58b177
parent 41382 de9e0adc21da
child 41385 8b634031b2a5
permissions -rw-r--r--
implemented new type system encoding "overload_args", which is more lightweight than "const_args" (the unsound default) and hopefully almost as sound
blanchet@40358
     1
(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_atp_translate.ML
blanchet@38506
     2
    Author:     Fabian Immler, TU Muenchen
blanchet@38506
     3
    Author:     Makarius
blanchet@38506
     4
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@38506
     5
blanchet@39734
     6
Translation of HOL to FOL for Sledgehammer.
blanchet@38506
     7
*)
blanchet@38506
     8
blanchet@40249
     9
signature SLEDGEHAMMER_ATP_TRANSLATE =
blanchet@38506
    10
sig
blanchet@38506
    11
  type 'a problem = 'a ATP_Problem.problem
blanchet@40358
    12
  type translated_formula
blanchet@38506
    13
blanchet@41382
    14
  datatype type_system =
blanchet@41382
    15
    Tags of bool |
blanchet@41382
    16
    Preds of bool |
blanchet@41382
    17
    Const_Args |
blanchet@41382
    18
    Overload_Args |
blanchet@41382
    19
    No_Types
blanchet@41382
    20
blanchet@40445
    21
  val fact_prefix : string
blanchet@38506
    22
  val conjecture_prefix : string
blanchet@41384
    23
  val is_fully_typed : type_system -> bool
blanchet@41384
    24
  val num_atp_type_args : theory -> type_system -> string -> int
blanchet@41336
    25
  val translate_atp_fact :
blanchet@39249
    26
    Proof.context -> (string * 'a) * thm
blanchet@41339
    27
    -> translated_formula option * ((string * 'a) * thm)
blanchet@40240
    28
  val prepare_atp_problem :
blanchet@41382
    29
    Proof.context -> bool -> bool -> type_system -> bool -> term list -> term
blanchet@41339
    30
    -> (translated_formula option * ((string * 'a) * thm)) list
blanchet@39053
    31
    -> string problem * string Symtab.table * int * (string * 'a) list vector
blanchet@38506
    32
end;
blanchet@38506
    33
blanchet@40249
    34
structure Sledgehammer_ATP_Translate : SLEDGEHAMMER_ATP_TRANSLATE =
blanchet@38506
    35
struct
blanchet@38506
    36
blanchet@38506
    37
open ATP_Problem
blanchet@39734
    38
open Metis_Translate
blanchet@38506
    39
open Sledgehammer_Util
blanchet@38506
    40
blanchet@40445
    41
val fact_prefix = "fact_"
blanchet@38506
    42
val conjecture_prefix = "conj_"
blanchet@38506
    43
val helper_prefix = "help_"
blanchet@38506
    44
val class_rel_clause_prefix = "clrel_";
blanchet@38506
    45
val arity_clause_prefix = "arity_"
blanchet@40156
    46
val tfree_prefix = "tfree_"
blanchet@38506
    47
blanchet@38506
    48
(* Freshness almost guaranteed! *)
blanchet@38506
    49
val sledgehammer_weak_prefix = "Sledgehammer:"
blanchet@38506
    50
blanchet@40358
    51
type translated_formula =
blanchet@38991
    52
  {name: string,
blanchet@38991
    53
   kind: kind,
blanchet@38991
    54
   combformula: (name, combterm) formula,
blanchet@38991
    55
   ctypes_sorts: typ list}
blanchet@38506
    56
blanchet@41382
    57
datatype type_system =
blanchet@41382
    58
  Tags of bool |
blanchet@41382
    59
  Preds of bool |
blanchet@41382
    60
  Const_Args |
blanchet@41382
    61
  Overload_Args |
blanchet@41382
    62
  No_Types
blanchet@41382
    63
blanchet@41382
    64
fun is_fully_typed (Tags full_types) = full_types
blanchet@41382
    65
  | is_fully_typed (Preds full_types) = full_types
blanchet@41382
    66
  | is_fully_typed _ = false
blanchet@41382
    67
blanchet@41384
    68
(* This is an approximation. If it returns "true" for a constant that isn't
blanchet@41384
    69
   overloaded (i.e., that has one uniform definition), needless clutter is
blanchet@41384
    70
   generated; if it returns "false" for an overloaded constant, the ATP gets a
blanchet@41384
    71
   license to do unsound reasoning if the type system is "overloaded_args". *)
blanchet@41384
    72
fun is_overloaded thy s =
blanchet@41384
    73
  length (Defs.specifications_of (Theory.defs_of thy) s) > 1
blanchet@41384
    74
blanchet@41384
    75
fun needs_type_args thy type_sys s =
blanchet@41384
    76
  case type_sys of
blanchet@41384
    77
    Tags full_types => not full_types
blanchet@41384
    78
  | Preds full_types => not full_types
blanchet@41384
    79
  | Const_Args => true
blanchet@41384
    80
  | Overload_Args => is_overloaded thy s
blanchet@41384
    81
  | No_Types => false
blanchet@41384
    82
blanchet@41384
    83
fun num_atp_type_args thy type_sys s =
blanchet@41384
    84
  if needs_type_args thy type_sys s then num_type_args thy s else 0
blanchet@41384
    85
blanchet@38506
    86
fun mk_anot phi = AConn (ANot, [phi])
blanchet@38506
    87
fun mk_aconn c phi1 phi2 = AConn (c, [phi1, phi2])
blanchet@38506
    88
fun mk_ahorn [] phi = phi
blanchet@38506
    89
  | mk_ahorn (phi :: phis) psi =
blanchet@38506
    90
    AConn (AImplies, [fold (mk_aconn AAnd) phis phi, psi])
blanchet@38506
    91
blanchet@38506
    92
fun combformula_for_prop thy =
blanchet@38506
    93
  let
blanchet@40387
    94
    val do_term = combterm_from_term thy
blanchet@38506
    95
    fun do_quant bs q s T t' =
blanchet@38743
    96
      let val s = Name.variant (map fst bs) s in
blanchet@38743
    97
        do_formula ((s, T) :: bs) t'
blanchet@38743
    98
        #>> (fn phi => AQuant (q, [`make_bound_var s], phi))
blanchet@38743
    99
      end
blanchet@38506
   100
    and do_conn bs c t1 t2 =
blanchet@38506
   101
      do_formula bs t1 ##>> do_formula bs t2
blanchet@38506
   102
      #>> (fn (phi1, phi2) => AConn (c, [phi1, phi2]))
blanchet@38506
   103
    and do_formula bs t =
blanchet@38506
   104
      case t of
blanchet@38506
   105
        @{const Not} $ t1 =>
blanchet@38506
   106
        do_formula bs t1 #>> (fn phi => AConn (ANot, [phi]))
blanchet@38506
   107
      | Const (@{const_name All}, _) $ Abs (s, T, t') =>
blanchet@38506
   108
        do_quant bs AForall s T t'
blanchet@38506
   109
      | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
blanchet@38506
   110
        do_quant bs AExists s T t'
haftmann@39028
   111
      | @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd t1 t2
haftmann@39028
   112
      | @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr t1 t2
haftmann@39019
   113
      | @{const HOL.implies} $ t1 $ t2 => do_conn bs AImplies t1 t2
haftmann@39093
   114
      | Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
blanchet@38506
   115
        do_conn bs AIff t1 t2
blanchet@38506
   116
      | _ => (fn ts => do_term bs (Envir.eta_contract t)
blanchet@38506
   117
                       |>> AAtom ||> union (op =) ts)
blanchet@38506
   118
  in do_formula [] end
blanchet@38506
   119
blanchet@38841
   120
val presimplify_term = prop_of o Meson.presimplify oo Skip_Proof.make_thm
blanchet@38506
   121
blanchet@38506
   122
fun concealed_bound_name j = sledgehammer_weak_prefix ^ Int.toString j
blanchet@38506
   123
fun conceal_bounds Ts t =
blanchet@38506
   124
  subst_bounds (map (Free o apfst concealed_bound_name)
blanchet@38506
   125
                    (0 upto length Ts - 1 ~~ Ts), t)
blanchet@38506
   126
fun reveal_bounds Ts =
blanchet@38506
   127
  subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
blanchet@38506
   128
                    (0 upto length Ts - 1 ~~ Ts))
blanchet@38506
   129
blanchet@38831
   130
(* Removes the lambdas from an equation of the form "t = (%x. u)".
blanchet@40071
   131
   (Cf. "extensionalize_theorem" in "Meson_Clausify".) *)
blanchet@38831
   132
fun extensionalize_term t =
blanchet@38831
   133
  let
blanchet@38831
   134
    fun aux j (@{const Trueprop} $ t') = @{const Trueprop} $ aux j t'
blanchet@38831
   135
      | aux j (t as Const (s, Type (_, [Type (_, [_, T']),
blanchet@38831
   136
                                        Type (_, [_, res_T])]))
blanchet@38831
   137
                    $ t2 $ Abs (var_s, var_T, t')) =
haftmann@39093
   138
        if s = @{const_name HOL.eq} orelse s = @{const_name "=="} then
blanchet@38831
   139
          let val var_t = Var ((var_s, j), var_T) in
blanchet@38831
   140
            Const (s, T' --> T' --> res_T)
blanchet@38831
   141
              $ betapply (t2, var_t) $ subst_bound (var_t, t')
blanchet@38831
   142
            |> aux (j + 1)
blanchet@38831
   143
          end
blanchet@38831
   144
        else
blanchet@38831
   145
          t
blanchet@38831
   146
      | aux _ t = t
blanchet@38831
   147
  in aux (maxidx_of_term t + 1) t end
blanchet@38831
   148
blanchet@38506
   149
fun introduce_combinators_in_term ctxt kind t =
blanchet@38716
   150
  let val thy = ProofContext.theory_of ctxt in
blanchet@38716
   151
    if Meson.is_fol_term thy t then
blanchet@38716
   152
      t
blanchet@38716
   153
    else
blanchet@38716
   154
      let
blanchet@38716
   155
        fun aux Ts t =
blanchet@38716
   156
          case t of
blanchet@38716
   157
            @{const Not} $ t1 => @{const Not} $ aux Ts t1
blanchet@38716
   158
          | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
blanchet@38716
   159
            t0 $ Abs (s, T, aux (T :: Ts) t')
blanchet@38890
   160
          | (t0 as Const (@{const_name All}, _)) $ t1 =>
blanchet@38890
   161
            aux Ts (t0 $ eta_expand Ts t1 1)
blanchet@38716
   162
          | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
blanchet@38716
   163
            t0 $ Abs (s, T, aux (T :: Ts) t')
blanchet@38890
   164
          | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
blanchet@38890
   165
            aux Ts (t0 $ eta_expand Ts t1 1)
haftmann@39028
   166
          | (t0 as @{const HOL.conj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
haftmann@39028
   167
          | (t0 as @{const HOL.disj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
haftmann@39019
   168
          | (t0 as @{const HOL.implies}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
haftmann@39093
   169
          | (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
blanchet@38716
   170
              $ t1 $ t2 =>
blanchet@38716
   171
            t0 $ aux Ts t1 $ aux Ts t2
blanchet@38716
   172
          | _ => if not (exists_subterm (fn Abs _ => true | _ => false) t) then
blanchet@38716
   173
                   t
blanchet@38716
   174
                 else
blanchet@38716
   175
                   t |> conceal_bounds Ts
blanchet@38716
   176
                     |> Envir.eta_contract
blanchet@38716
   177
                     |> cterm_of thy
blanchet@40071
   178
                     |> Meson_Clausify.introduce_combinators_in_cterm
blanchet@38716
   179
                     |> prop_of |> Logic.dest_equals |> snd
blanchet@38716
   180
                     |> reveal_bounds Ts
blanchet@39616
   181
        val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
blanchet@38716
   182
      in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
blanchet@38716
   183
      handle THM _ =>
blanchet@38716
   184
             (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@38836
   185
             if kind = Conjecture then HOLogic.false_const
blanchet@38836
   186
             else HOLogic.true_const
blanchet@38716
   187
  end
blanchet@38506
   188
blanchet@38506
   189
(* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
blanchet@38506
   190
   same in Sledgehammer to prevent the discovery of unreplable proofs. *)
blanchet@38506
   191
fun freeze_term t =
blanchet@38506
   192
  let
blanchet@38506
   193
    fun aux (t $ u) = aux t $ aux u
blanchet@38506
   194
      | aux (Abs (s, T, t)) = Abs (s, T, aux t)
blanchet@38506
   195
      | aux (Var ((s, i), T)) =
blanchet@38506
   196
        Free (sledgehammer_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
blanchet@38506
   197
      | aux t = t
blanchet@38506
   198
  in t |> exists_subterm is_Var t ? aux end
blanchet@38506
   199
blanchet@38827
   200
(* "Object_Logic.atomize_term" isn't as powerful as it could be; for example,
blanchet@38827
   201
    it leaves metaequalities over "prop"s alone. *)
blanchet@38828
   202
val atomize_term =
blanchet@38828
   203
  let
blanchet@38828
   204
    fun aux (@{const Trueprop} $ t1) = t1
blanchet@38828
   205
      | aux (Const (@{const_name all}, _) $ Abs (s, T, t')) =
blanchet@38828
   206
        HOLogic.all_const T $ Abs (s, T, aux t')
blanchet@38828
   207
      | aux (@{const "==>"} $ t1 $ t2) = HOLogic.mk_imp (pairself aux (t1, t2))
blanchet@38828
   208
      | aux (Const (@{const_name "=="}, Type (_, [@{typ prop}, _])) $ t1 $ t2) =
blanchet@38828
   209
        HOLogic.eq_const HOLogic.boolT $ aux t1 $ aux t2
blanchet@38828
   210
      | aux (Const (@{const_name "=="}, Type (_, [T, _])) $ t1 $ t2) =
blanchet@38828
   211
        HOLogic.eq_const T $ t1 $ t2
blanchet@38828
   212
      | aux _ = raise Fail "aux"
blanchet@38828
   213
  in perhaps (try aux) end
blanchet@38827
   214
blanchet@40445
   215
(* making fact and conjecture formulas *)
blanchet@38836
   216
fun make_formula ctxt presimp name kind t =
blanchet@38506
   217
  let
blanchet@38506
   218
    val thy = ProofContext.theory_of ctxt
blanchet@38831
   219
    val t = t |> Envir.beta_eta_contract
blanchet@38890
   220
              |> transform_elim_term
blanchet@38827
   221
              |> atomize_term
blanchet@38890
   222
    val need_trueprop = (fastype_of t = HOLogic.boolT)
blanchet@38890
   223
    val t = t |> need_trueprop ? HOLogic.mk_Trueprop
blanchet@38506
   224
              |> extensionalize_term
blanchet@38506
   225
              |> presimp ? presimplify_term thy
blanchet@38506
   226
              |> perhaps (try (HOLogic.dest_Trueprop))
blanchet@38506
   227
              |> introduce_combinators_in_term ctxt kind
blanchet@38836
   228
              |> kind <> Axiom ? freeze_term
blanchet@38506
   229
    val (combformula, ctypes_sorts) = combformula_for_prop thy t []
blanchet@38506
   230
  in
blanchet@38991
   231
    {name = name, combformula = combformula, kind = kind,
blanchet@38991
   232
     ctypes_sorts = ctypes_sorts}
blanchet@38506
   233
  end
blanchet@38506
   234
blanchet@41339
   235
fun make_fact ctxt presimp ((name, _), th) =
blanchet@38841
   236
  case make_formula ctxt presimp name Axiom (prop_of th) of
blanchet@38991
   237
    {combformula = AAtom (CombConst (("c_True", _), _, _)), ...} => NONE
blanchet@41339
   238
  | formula => SOME formula
blanchet@38836
   239
fun make_conjecture ctxt ts =
blanchet@38836
   240
  let val last = length ts - 1 in
blanchet@38836
   241
    map2 (fn j => make_formula ctxt true (Int.toString j)
blanchet@38836
   242
                               (if j = last then Conjecture else Hypothesis))
blanchet@38836
   243
         (0 upto last) ts
blanchet@38836
   244
  end
blanchet@38506
   245
blanchet@38506
   246
(** Helper facts **)
blanchet@38506
   247
blanchet@38506
   248
fun count_combterm (CombConst ((s, _), _, _)) =
blanchet@38506
   249
    Symtab.map_entry s (Integer.add 1)
blanchet@38506
   250
  | count_combterm (CombVar _) = I
blanchet@38506
   251
  | count_combterm (CombApp (t1, t2)) = fold count_combterm [t1, t2]
blanchet@38506
   252
fun count_combformula (AQuant (_, _, phi)) = count_combformula phi
blanchet@38506
   253
  | count_combformula (AConn (_, phis)) = fold count_combformula phis
blanchet@38506
   254
  | count_combformula (AAtom tm) = count_combterm tm
blanchet@40358
   255
fun count_translated_formula ({combformula, ...} : translated_formula) =
blanchet@38506
   256
  count_combformula combformula
blanchet@38506
   257
blanchet@38506
   258
val optional_helpers =
blanchet@40134
   259
  [(["c_COMBI"], @{thms Meson.COMBI_def}),
blanchet@40134
   260
   (["c_COMBK"], @{thms Meson.COMBK_def}),
blanchet@40134
   261
   (["c_COMBB"], @{thms Meson.COMBB_def}),
blanchet@40134
   262
   (["c_COMBC"], @{thms Meson.COMBC_def}),
blanchet@40134
   263
   (["c_COMBS"], @{thms Meson.COMBS_def})]
blanchet@41382
   264
val optional_fully_typed_helpers =
blanchet@38917
   265
  [(["c_True", "c_False", "c_If"], @{thms True_or_False}),
blanchet@38917
   266
   (["c_If"], @{thms if_True if_False})]
blanchet@40135
   267
val mandatory_helpers = @{thms Metis.fequal_def}
blanchet@38506
   268
blanchet@38506
   269
val init_counters =
blanchet@41382
   270
  [optional_helpers, optional_fully_typed_helpers] |> maps (maps fst)
blanchet@38917
   271
  |> sort_distinct string_ord |> map (rpair 0) |> Symtab.make
blanchet@38506
   272
blanchet@41382
   273
fun get_helper_facts ctxt is_FO type_sys conjectures facts =
blanchet@38506
   274
  let
blanchet@40250
   275
    val ct =
blanchet@40445
   276
      fold (fold count_translated_formula) [conjectures, facts] init_counters
blanchet@38506
   277
    fun is_needed c = the (Symtab.lookup ct c) > 0
blanchet@38937
   278
    fun baptize th = ((Thm.get_name_hint th, false), th)
blanchet@38506
   279
  in
blanchet@38506
   280
    (optional_helpers
blanchet@41382
   281
     |> is_fully_typed type_sys ? append optional_fully_typed_helpers
blanchet@38506
   282
     |> maps (fn (ss, ths) =>
blanchet@38937
   283
                 if exists is_needed ss then map baptize ths else [])) @
blanchet@38937
   284
    (if is_FO then [] else map baptize mandatory_helpers)
blanchet@41339
   285
    |> map_filter (make_fact ctxt false)
blanchet@38506
   286
  end
blanchet@38506
   287
blanchet@41339
   288
fun translate_atp_fact ctxt = `(make_fact ctxt true)
blanchet@39248
   289
blanchet@41382
   290
fun translate_formulas ctxt type_sys hyp_ts concl_t rich_facts =
blanchet@38506
   291
  let
blanchet@38506
   292
    val thy = ProofContext.theory_of ctxt
blanchet@41339
   293
    val fact_ts = map (prop_of o snd o snd) rich_facts
blanchet@41339
   294
    val (facts, fact_names) =
blanchet@41339
   295
      rich_facts
blanchet@41339
   296
      |> map_filter (fn (NONE, _) => NONE
blanchet@41339
   297
                      | (SOME fact, (name, _)) => SOME (fact, name))
blanchet@41339
   298
      |> ListPair.unzip
blanchet@40445
   299
    (* Remove existing facts from the conjecture, as this can dramatically
blanchet@39249
   300
       boost an ATP's performance (for some reason). *)
blanchet@40445
   301
    val hyp_ts = hyp_ts |> filter_out (member (op aconv) fact_ts)
blanchet@38506
   302
    val goal_t = Logic.list_implies (hyp_ts, concl_t)
blanchet@38506
   303
    val is_FO = Meson.is_fol_term thy goal_t
blanchet@38506
   304
    val subs = tfree_classes_of_terms [goal_t]
blanchet@40445
   305
    val supers = tvar_classes_of_terms fact_ts
blanchet@40445
   306
    val tycons = type_consts_of_terms thy (goal_t :: fact_ts)
blanchet@40445
   307
    (* TFrees in the conjecture; TVars in the facts *)
blanchet@38836
   308
    val conjectures = make_conjecture ctxt (hyp_ts @ [concl_t])
blanchet@41382
   309
    val helper_facts = get_helper_facts ctxt is_FO type_sys conjectures facts
blanchet@38506
   310
    val (supers', arity_clauses) = make_arity_clauses thy tycons supers
blanchet@38506
   311
    val class_rel_clauses = make_class_rel_clauses thy subs supers'
blanchet@38506
   312
  in
blanchet@40445
   313
    (fact_names |> map single |> Vector.fromList,
blanchet@40445
   314
     (conjectures, facts, helper_facts, class_rel_clauses, arity_clauses))
blanchet@38506
   315
  end
blanchet@38506
   316
blanchet@38506
   317
fun wrap_type ty t = ATerm ((type_wrapper_name, type_wrapper_name), [ty, t])
blanchet@38506
   318
blanchet@38506
   319
fun fo_term_for_combtyp (CombTVar name) = ATerm (name, [])
blanchet@38506
   320
  | fo_term_for_combtyp (CombTFree name) = ATerm (name, [])
blanchet@38506
   321
  | fo_term_for_combtyp (CombType (name, tys)) =
blanchet@38506
   322
    ATerm (name, map fo_term_for_combtyp tys)
blanchet@38506
   323
blanchet@38506
   324
fun fo_literal_for_type_literal (TyLitVar (class, name)) =
blanchet@38506
   325
    (true, ATerm (class, [ATerm (name, [])]))
blanchet@38506
   326
  | fo_literal_for_type_literal (TyLitFree (class, name)) =
blanchet@38506
   327
    (true, ATerm (class, [ATerm (name, [])]))
blanchet@38506
   328
blanchet@38506
   329
fun formula_for_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
blanchet@38506
   330
blanchet@41384
   331
fun fo_term_for_combterm thy type_sys =
blanchet@38506
   332
  let
blanchet@38506
   333
    fun aux top_level u =
blanchet@38506
   334
      let
blanchet@38506
   335
        val (head, args) = strip_combterm_comb u
blanchet@38506
   336
        val (x, ty_args) =
blanchet@38506
   337
          case head of
blanchet@38506
   338
            CombConst (name as (s, s'), _, ty_args) =>
blanchet@41384
   339
            (case strip_prefix_and_unascii const_prefix s of
blanchet@41384
   340
               NONE =>
blanchet@41384
   341
               if s = "equal" then
blanchet@41384
   342
                 if top_level andalso length args = 2 then (name, [])
blanchet@41384
   343
                 else (("c_fequal", @{const_name Metis.fequal}), ty_args)
blanchet@41384
   344
               else
blanchet@41384
   345
                 (name, ty_args)
blanchet@41384
   346
             | SOME s'' =>
blanchet@41384
   347
               let
blanchet@41384
   348
                 val s'' = invert_const s''
blanchet@41384
   349
                 val ty_args =
blanchet@41384
   350
                   if needs_type_args thy type_sys s'' then ty_args else []
blanchet@41384
   351
                in
blanchet@41384
   352
                  if top_level then
blanchet@41384
   353
                    case s of
blanchet@41384
   354
                      "c_False" => (("$false", s'), [])
blanchet@41384
   355
                    | "c_True" => (("$true", s'), [])
blanchet@41384
   356
                    | _ => (name, ty_args)
blanchet@41384
   357
                  else
blanchet@41384
   358
                    (name, ty_args)
blanchet@41384
   359
                end)
blanchet@38506
   360
          | CombVar (name, _) => (name, [])
blanchet@38506
   361
          | CombApp _ => raise Fail "impossible \"CombApp\""
blanchet@38506
   362
        val t = ATerm (x, map fo_term_for_combtyp ty_args @
blanchet@38506
   363
                          map (aux false) args)
blanchet@38506
   364
    in
blanchet@41382
   365
      t |> (if type_sys = Tags true then
blanchet@41382
   366
              wrap_type (fo_term_for_combtyp (combtyp_of u))
blanchet@41382
   367
            else
blanchet@41382
   368
              I)
blanchet@38506
   369
    end
blanchet@38506
   370
  in aux true end
blanchet@38506
   371
blanchet@41384
   372
fun formula_for_combformula thy type_sys =
blanchet@38506
   373
  let
blanchet@38506
   374
    fun aux (AQuant (q, xs, phi)) = AQuant (q, xs, aux phi)
blanchet@38506
   375
      | aux (AConn (c, phis)) = AConn (c, map aux phis)
blanchet@41384
   376
      | aux (AAtom tm) = AAtom (fo_term_for_combterm thy type_sys tm)
blanchet@38506
   377
  in aux end
blanchet@38506
   378
blanchet@41384
   379
fun formula_for_fact thy type_sys
blanchet@40445
   380
                     ({combformula, ctypes_sorts, ...} : translated_formula) =
blanchet@38506
   381
  mk_ahorn (map (formula_for_fo_literal o fo_literal_for_type_literal)
blanchet@38506
   382
                (type_literals_for_types ctypes_sorts))
blanchet@41384
   383
           (formula_for_combformula thy type_sys combformula)
blanchet@38506
   384
blanchet@41384
   385
fun problem_line_for_fact thy prefix type_sys (formula as {name, kind, ...}) =
blanchet@41384
   386
  Fof (prefix ^ ascii_of name, kind, formula_for_fact thy type_sys formula)
blanchet@38506
   387
blanchet@38506
   388
fun problem_line_for_class_rel_clause (ClassRelClause {name, subclass,
blanchet@38506
   389
                                                       superclass, ...}) =
blanchet@38506
   390
  let val ty_arg = ATerm (("T", "T"), []) in
blanchet@38506
   391
    Fof (class_rel_clause_prefix ^ ascii_of name, Axiom,
blanchet@38506
   392
         AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
blanchet@38506
   393
                           AAtom (ATerm (superclass, [ty_arg]))]))
blanchet@38506
   394
  end
blanchet@38506
   395
blanchet@38506
   396
fun fo_literal_for_arity_literal (TConsLit (c, t, args)) =
blanchet@38506
   397
    (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
blanchet@38506
   398
  | fo_literal_for_arity_literal (TVarLit (c, sort)) =
blanchet@38506
   399
    (false, ATerm (c, [ATerm (sort, [])]))
blanchet@38506
   400
blanchet@38506
   401
fun problem_line_for_arity_clause (ArityClause {name, conclLit, premLits,
blanchet@38506
   402
                                                ...}) =
blanchet@38506
   403
  Fof (arity_clause_prefix ^ ascii_of name, Axiom,
blanchet@38506
   404
       mk_ahorn (map (formula_for_fo_literal o apfst not
blanchet@38506
   405
                      o fo_literal_for_arity_literal) premLits)
blanchet@38506
   406
                (formula_for_fo_literal
blanchet@38506
   407
                     (fo_literal_for_arity_literal conclLit)))
blanchet@38506
   408
blanchet@41384
   409
fun problem_line_for_conjecture thy type_sys
blanchet@40358
   410
        ({name, kind, combformula, ...} : translated_formula) =
blanchet@38506
   411
  Fof (conjecture_prefix ^ name, kind,
blanchet@41384
   412
       formula_for_combformula thy type_sys combformula)
blanchet@38506
   413
blanchet@40358
   414
fun free_type_literals_for_conjecture
blanchet@40358
   415
        ({ctypes_sorts, ...} : translated_formula) =
blanchet@38506
   416
  map fo_literal_for_type_literal (type_literals_for_types ctypes_sorts)
blanchet@38506
   417
blanchet@40156
   418
fun problem_line_for_free_type j lit =
blanchet@40156
   419
  Fof (tfree_prefix ^ string_of_int j, Hypothesis, formula_for_fo_literal lit)
blanchet@38506
   420
fun problem_lines_for_free_types conjectures =
blanchet@38506
   421
  let
blanchet@38506
   422
    val litss = map free_type_literals_for_conjecture conjectures
blanchet@38506
   423
    val lits = fold (union (op =)) litss []
blanchet@40156
   424
  in map2 problem_line_for_free_type (0 upto length lits - 1) lits end
blanchet@38506
   425
blanchet@38506
   426
(** "hBOOL" and "hAPP" **)
blanchet@38506
   427
blanchet@38506
   428
type const_info = {min_arity: int, max_arity: int, sub_level: bool}
blanchet@38506
   429
blanchet@38506
   430
fun consider_term top_level (ATerm ((s, _), ts)) =
blanchet@39692
   431
  (if is_atp_variable s then
blanchet@38506
   432
     I
blanchet@38506
   433
   else
blanchet@38506
   434
     let val n = length ts in
blanchet@38506
   435
       Symtab.map_default
blanchet@38506
   436
           (s, {min_arity = n, max_arity = 0, sub_level = false})
blanchet@38506
   437
           (fn {min_arity, max_arity, sub_level} =>
blanchet@38506
   438
               {min_arity = Int.min (n, min_arity),
blanchet@38506
   439
                max_arity = Int.max (n, max_arity),
blanchet@38506
   440
                sub_level = sub_level orelse not top_level})
blanchet@38506
   441
     end)
blanchet@38506
   442
  #> fold (consider_term (top_level andalso s = type_wrapper_name)) ts
blanchet@38506
   443
fun consider_formula (AQuant (_, _, phi)) = consider_formula phi
blanchet@38506
   444
  | consider_formula (AConn (_, phis)) = fold consider_formula phis
blanchet@38506
   445
  | consider_formula (AAtom tm) = consider_term true tm
blanchet@38506
   446
blanchet@38506
   447
fun consider_problem_line (Fof (_, _, phi)) = consider_formula phi
blanchet@38506
   448
fun consider_problem problem = fold (fold consider_problem_line o snd) problem
blanchet@38506
   449
blanchet@38506
   450
fun const_table_for_problem explicit_apply problem =
blanchet@38506
   451
  if explicit_apply then NONE
blanchet@38506
   452
  else SOME (Symtab.empty |> consider_problem problem)
blanchet@38506
   453
blanchet@41382
   454
fun min_arity_of thy type_sys NONE s =
blanchet@38506
   455
    (if s = "equal" orelse s = type_wrapper_name orelse
blanchet@38506
   456
        String.isPrefix type_const_prefix s orelse
blanchet@38506
   457
        String.isPrefix class_prefix s then
blanchet@38506
   458
       16383 (* large number *)
blanchet@38987
   459
     else case strip_prefix_and_unascii const_prefix s of
blanchet@41384
   460
       SOME s' => num_atp_type_args thy type_sys (invert_const s')
blanchet@38506
   461
     | NONE => 0)
blanchet@38506
   462
  | min_arity_of _ _ (SOME the_const_tab) s =
blanchet@38506
   463
    case Symtab.lookup the_const_tab s of
blanchet@38506
   464
      SOME ({min_arity, ...} : const_info) => min_arity
blanchet@38506
   465
    | NONE => 0
blanchet@38506
   466
blanchet@38506
   467
fun full_type_of (ATerm ((s, _), [ty, _])) =
blanchet@38506
   468
    if s = type_wrapper_name then ty else raise Fail "expected type wrapper"
blanchet@38506
   469
  | full_type_of _ = raise Fail "expected type wrapper"
blanchet@38506
   470
blanchet@38506
   471
fun list_hAPP_rev _ t1 [] = t1
blanchet@38506
   472
  | list_hAPP_rev NONE t1 (t2 :: ts2) =
blanchet@38506
   473
    ATerm (`I "hAPP", [list_hAPP_rev NONE t1 ts2, t2])
blanchet@38506
   474
  | list_hAPP_rev (SOME ty) t1 (t2 :: ts2) =
blanchet@38506
   475
    let val ty' = ATerm (`make_fixed_type_const @{type_name fun},
blanchet@38506
   476
                         [full_type_of t2, ty]) in
blanchet@38506
   477
      ATerm (`I "hAPP", [wrap_type ty' (list_hAPP_rev (SOME ty') t1 ts2), t2])
blanchet@38506
   478
    end
blanchet@38506
   479
blanchet@41382
   480
fun repair_applications_in_term thy type_sys const_tab =
blanchet@38506
   481
  let
blanchet@38506
   482
    fun aux opt_ty (ATerm (name as (s, _), ts)) =
blanchet@38506
   483
      if s = type_wrapper_name then
blanchet@38506
   484
        case ts of
blanchet@38506
   485
          [t1, t2] => ATerm (name, [aux NONE t1, aux (SOME t1) t2])
blanchet@38506
   486
        | _ => raise Fail "malformed type wrapper"
blanchet@38506
   487
      else
blanchet@38506
   488
        let
blanchet@38506
   489
          val ts = map (aux NONE) ts
blanchet@41382
   490
          val (ts1, ts2) = chop (min_arity_of thy type_sys const_tab s) ts
blanchet@38506
   491
        in list_hAPP_rev opt_ty (ATerm (name, ts1)) (rev ts2) end
blanchet@38506
   492
  in aux NONE end
blanchet@38506
   493
blanchet@38506
   494
fun boolify t = ATerm (`I "hBOOL", [t])
blanchet@38506
   495
blanchet@38506
   496
(* True if the constant ever appears outside of the top-level position in
blanchet@38506
   497
   literals, or if it appears with different arities (e.g., because of different
blanchet@38506
   498
   type instantiations). If false, the constant always receives all of its
blanchet@38506
   499
   arguments and is used as a predicate. *)
blanchet@38506
   500
fun is_predicate NONE s =
blanchet@38812
   501
    s = "equal" orelse s = "$false" orelse s = "$true" orelse
blanchet@38812
   502
    String.isPrefix type_const_prefix s orelse String.isPrefix class_prefix s
blanchet@38506
   503
  | is_predicate (SOME the_const_tab) s =
blanchet@38506
   504
    case Symtab.lookup the_const_tab s of
blanchet@38506
   505
      SOME {min_arity, max_arity, sub_level} =>
blanchet@38506
   506
      not sub_level andalso min_arity = max_arity
blanchet@38506
   507
    | NONE => false
blanchet@38506
   508
blanchet@38506
   509
fun repair_predicates_in_term const_tab (t as ATerm ((s, _), ts)) =
blanchet@38506
   510
  if s = type_wrapper_name then
blanchet@38506
   511
    case ts of
blanchet@38506
   512
      [_, t' as ATerm ((s', _), _)] =>
blanchet@38506
   513
      if is_predicate const_tab s' then t' else boolify t
blanchet@38506
   514
    | _ => raise Fail "malformed type wrapper"
blanchet@38506
   515
  else
blanchet@38506
   516
    t |> not (is_predicate const_tab s) ? boolify
blanchet@38506
   517
blanchet@38506
   518
fun close_universally phi =
blanchet@38506
   519
  let
blanchet@38506
   520
    fun term_vars bounds (ATerm (name as (s, _), tms)) =
blanchet@39692
   521
        (is_atp_variable s andalso not (member (op =) bounds name))
blanchet@38506
   522
          ? insert (op =) name
blanchet@38506
   523
        #> fold (term_vars bounds) tms
blanchet@38917
   524
    fun formula_vars bounds (AQuant (_, xs, phi)) =
blanchet@38506
   525
        formula_vars (xs @ bounds) phi
blanchet@38506
   526
      | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
blanchet@38506
   527
      | formula_vars bounds (AAtom tm) = term_vars bounds tm
blanchet@38506
   528
  in
blanchet@38506
   529
    case formula_vars [] phi [] of [] => phi | xs => AQuant (AForall, xs, phi)
blanchet@38506
   530
  end
blanchet@38506
   531
blanchet@41382
   532
fun repair_formula thy explicit_forall type_sys const_tab =
blanchet@38506
   533
  let
blanchet@38506
   534
    fun aux (AQuant (q, xs, phi)) = AQuant (q, xs, aux phi)
blanchet@38506
   535
      | aux (AConn (c, phis)) = AConn (c, map aux phis)
blanchet@38506
   536
      | aux (AAtom tm) =
blanchet@41382
   537
        AAtom (tm |> repair_applications_in_term thy type_sys const_tab
blanchet@38506
   538
                  |> repair_predicates_in_term const_tab)
blanchet@38506
   539
  in aux #> explicit_forall ? close_universally end
blanchet@38506
   540
blanchet@41382
   541
fun repair_problem_line thy explicit_forall type_sys const_tab
blanchet@38506
   542
                        (Fof (ident, kind, phi)) =
blanchet@41382
   543
  Fof (ident, kind, repair_formula thy explicit_forall type_sys const_tab phi)
blanchet@38506
   544
fun repair_problem_with_const_table thy =
blanchet@38506
   545
  map o apsnd o map ooo repair_problem_line thy
blanchet@38506
   546
blanchet@41382
   547
fun repair_problem thy explicit_forall type_sys explicit_apply problem =
blanchet@41382
   548
  repair_problem_with_const_table thy explicit_forall type_sys
blanchet@38506
   549
      (const_table_for_problem explicit_apply problem) problem
blanchet@38506
   550
blanchet@41382
   551
fun prepare_atp_problem ctxt readable_names explicit_forall type_sys
blanchet@40445
   552
                        explicit_apply hyp_ts concl_t facts =
blanchet@38506
   553
  let
blanchet@38506
   554
    val thy = ProofContext.theory_of ctxt
blanchet@40445
   555
    val (fact_names, (conjectures, facts, helper_facts, class_rel_clauses,
blanchet@40445
   556
                      arity_clauses)) =
blanchet@41382
   557
      translate_formulas ctxt type_sys hyp_ts concl_t facts
blanchet@41384
   558
    val fact_lines = map (problem_line_for_fact thy fact_prefix type_sys) facts
blanchet@38506
   559
    val helper_lines =
blanchet@41384
   560
      map (problem_line_for_fact thy helper_prefix type_sys) helper_facts
blanchet@38506
   561
    val conjecture_lines =
blanchet@41384
   562
      map (problem_line_for_conjecture thy type_sys) conjectures
blanchet@38506
   563
    val tfree_lines = problem_lines_for_free_types conjectures
blanchet@38506
   564
    val class_rel_lines =
blanchet@38506
   565
      map problem_line_for_class_rel_clause class_rel_clauses
blanchet@38506
   566
    val arity_lines = map problem_line_for_arity_clause arity_clauses
blanchet@38506
   567
    (* Reordering these might or might not confuse the proof reconstruction
blanchet@38506
   568
       code or the SPASS Flotter hack. *)
blanchet@38506
   569
    val problem =
blanchet@40445
   570
      [("Relevant facts", fact_lines),
blanchet@38506
   571
       ("Class relationships", class_rel_lines),
blanchet@38506
   572
       ("Arity declarations", arity_lines),
blanchet@38506
   573
       ("Helper facts", helper_lines),
blanchet@38506
   574
       ("Conjectures", conjecture_lines),
blanchet@38506
   575
       ("Type variables", tfree_lines)]
blanchet@41382
   576
      |> repair_problem thy explicit_forall type_sys explicit_apply
blanchet@39692
   577
    val (problem, pool) = nice_atp_problem readable_names problem
blanchet@38506
   578
    val conjecture_offset =
blanchet@40445
   579
      length fact_lines + length class_rel_lines + length arity_lines
blanchet@38506
   580
      + length helper_lines
blanchet@38506
   581
  in
blanchet@38506
   582
    (problem,
blanchet@38506
   583
     case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
blanchet@40445
   584
     conjecture_offset, fact_names)
blanchet@38506
   585
  end
blanchet@38506
   586
blanchet@38506
   587
end;