doc-src/isac/jrocnik/calulations.tex
changeset 42368 3afe632cd527
parent 42246 8883440b9074
child 42381 8b94d811cb41
equal deleted inserted replaced
42367:c1ebb7e759f9 42368:3afe632cd527
    19 
    19 
    20 
    20 
    21 %------------------------------------------------------------------------------
    21 %------------------------------------------------------------------------------
    22 %FOURIER
    22 %FOURIER
    23 
    23 
    24 \section*{Fourier Transformation}
    24 \subsection{Fourier Transformation}
    25 \subsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally fragment of the exam to \emph{Signaltransformationen VO} from 04.03.2011. Translated from German.}}
    25 \subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally fragment of the exam to \emph{Signaltransformationen VO} from 04.03.2011. Translated from German.}}
    26 \textbf{(a)} Determine the fourier transform for the given rectangular impulse:
    26 \textbf{(a)} Determine the fourier transform for the given rectangular impulse:
    27 
    27 
    28 \begin{center}
    28 \begin{center}
    29 $x(t)= \left\{
    29 $x(t)= \left\{
    30      \begin{array}{lr}
    30      \begin{array}{lr}
    43        0 & else
    43        0 & else
    44      \end{array}
    44      \end{array}
    45    \right.$
    45    \right.$
    46 \end{center}
    46 \end{center}
    47 
    47 
    48 \subsection*{Solution}
    48 \subsubsection{Solution}
    49 \textbf{(a)}
    49 \textbf{(a)}
    50 \onehalfspace{
    50 \onehalfspace{
    51 \begin{tabbing}
    51 \begin{tabbing}
    52 000\=\kill
    52 000\=\kill
    53 \texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\
    53 \texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\
   101 }
   101 }
   102 
   102 
   103 %------------------------------------------------------------------------------
   103 %------------------------------------------------------------------------------
   104 %CONVOLUTION
   104 %CONVOLUTION
   105 
   105 
   106 \section*{Convolution}
   106 \subsection{Convolution}
   107 \subsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the SPSC Problem Class 2, Summer term 2008}}
   107 \subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the SPSC Problem Class 2, Summer term 2008}}
   108 Consider the two discrete-time, linear and time-invariant (LTI) systems with the following impulse response:
   108 Consider the two discrete-time, linear and time-invariant (LTI) systems with the following impulse response:
   109 
   109 
   110 \begin{center}
   110 \begin{center}
   111 $h_1[n]=\left(\frac{3}{5}\right)^n\cdot u[n]$\\
   111 $h_1[n]=\left(\frac{3}{5}\right)^n\cdot u[n]$\\
   112 $h_1[n]=\left(-\frac{2}{3}\right)^n\cdot u[n]$
   112 $h_1[n]=\left(-\frac{2}{3}\right)^n\cdot u[n]$
   113 \end{center}
   113 \end{center}
   114 
   114 
   115 The two systems are cascaded seriell. Derive the impulse respinse of the overall system $h_c[n]$.
   115 The two systems are cascaded seriell. Derive the impulse respinse of the overall system $h_c[n]$.
   116 \subsection*{Solution}
   116 \subsubsection*{Solution}
   117 
   117 
   118 \doublespace{
   118 \doublespace{
   119 \begin{tabbing}
   119 \begin{tabbing}
   120 000\=\kill
   120 000\=\kill
   121 \texttt{\footnotesize{01}} \> $h_c[n]=h_1[n]*h_2[n]$\\
   121 \texttt{\footnotesize{01}} \> $h_c[n]=h_1[n]*h_2[n]$\\
   150 }
   150 }
   151 
   151 
   152 %------------------------------------------------------------------------------
   152 %------------------------------------------------------------------------------
   153 %Z-Transformation
   153 %Z-Transformation
   154 
   154 
   155 \section*{$\cal Z$-Transformation}
   155 \subsection{$\cal Z$-Transformation\label{sec:calc:ztrans}}
   156 \subsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the signal processing problem class 5, summer term 2008.}}
   156 \subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the signal processing problem class 5, summer term 2008.}}
   157 Determine the inverse $\cal{z}$ transform of the following expression. Hint: applay the partial fraction expansion.
   157 Determine the inverse $\cal{z}$ transform of the following expression. Hint: applay the partial fraction expansion.
   158 
   158 
   159 \begin{center}
   159 \begin{center}
   160 $X(z)=\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}},\ \ x[n]$ is absolute summable
   160 $X(z)=\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}},\ \ x[n]$ is absolute summable
   161 \end{center}
   161 \end{center}
   162 
   162 
   163 \subsection*{Solution}
   163 \subsubsection*{Solution}
   164 \onehalfspace{
   164 \onehalfspace{
   165 \begin{tabbing}
   165 \begin{tabbing}
   166 000\=\kill
   166 000\=\kill
   167 \textsf{Main Problem}\\
   167 \textsf{Main Problem}\\
   168 \texttt{\footnotesize{01}} \> $\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}}$ \\
   168 \texttt{\footnotesize{01}} \> $\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}}$ \\