doc-src/isac/jrocnik/calulations.tex
author Jan Rocnik <jan.rocnik@student.tugraz.at>
Tue, 14 Feb 2012 22:55:03 +0100
changeset 42368 3afe632cd527
parent 42246 8883440b9074
child 42381 8b94d811cb41
permissions -rwxr-xr-x
tuned - partitially formated
jan@42246
     1
%\documentclass[a4paper]{scrartcl}
jan@42246
     2
%\usepackage[top=2cm, bottom=2.5cm, left=3cm, right=2cm, footskip=1cm]{geometry}
jan@42246
     3
%\usepackage[german]{babel}
jan@42246
     4
%\usepackage[T1]{fontenc}
jan@42246
     5
%\usepackage[latin1]{inputenc}
jan@42246
     6
%\usepackage{endnotes}
jan@42246
     7
%\usepackage{trfsigns}
jan@42246
     8
%\usepackage{setspace}
jan@42246
     9
%
jan@42246
    10
%\setlength{\parindent}{0ex}
jan@42246
    11
%\def\isac{${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$}
jan@42246
    12
%\def\sisac{{\footnotesize${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$}}
jan@42246
    13
%
jan@42246
    14
%\begin{document}
jan@42246
    15
%\title{Interactive Course Material for Signal Processing based on Isabelle/\isac}
jan@42246
    16
%\subtitle{Problemsolutions (Calculations)}
jan@42246
    17
%\author{Walther Neuper, Jan Rocnik}
jan@42246
    18
%\maketitle
jrocnik@42162
    19
jan@42173
    20
jan@42173
    21
%------------------------------------------------------------------------------
jan@42173
    22
%FOURIER
jan@42173
    23
jan@42368
    24
\subsection{Fourier Transformation}
jan@42368
    25
\subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally fragment of the exam to \emph{Signaltransformationen VO} from 04.03.2011. Translated from German.}}
jrocnik@42162
    26
\textbf{(a)} Determine the fourier transform for the given rectangular impulse:
jrocnik@42162
    27
jrocnik@42162
    28
\begin{center}
jrocnik@42162
    29
$x(t)= \left\{
jrocnik@42162
    30
     \begin{array}{lr}
jrocnik@42162
    31
       1 & -1\leq t\geq1\\
jrocnik@42162
    32
       0 & else
jrocnik@42162
    33
     \end{array}
jrocnik@42162
    34
   \right.$
jrocnik@42162
    35
\end{center}
jrocnik@42162
    36
jrocnik@42162
    37
\textbf{(b)} Now consider the given delayed impulse, determine its fourie transformation and calculate phase and magnitude:
jrocnik@42162
    38
jrocnik@42162
    39
\begin{center}
jrocnik@42162
    40
$x(t)= \left\{
jrocnik@42162
    41
     \begin{array}{lr}
jan@42163
    42
       1 & -1\leq t\leq1\\
jrocnik@42162
    43
       0 & else
jrocnik@42162
    44
     \end{array}
jrocnik@42162
    45
   \right.$
jrocnik@42162
    46
\end{center}
jrocnik@42162
    47
jan@42368
    48
\subsubsection{Solution}
jan@42173
    49
\textbf{(a)}
jan@42173
    50
\onehalfspace{
jrocnik@42162
    51
\begin{tabbing}
jrocnik@42162
    52
000\=\kill
jan@42173
    53
\texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\
jan@42173
    54
\`Insert Condition: $x(t) = 1\;$ for $\;\{-1\leq t\;\land\;t\leq 1\}\;$ and $\;x(t)=0\;$ otherwise\\
jan@42173
    55
\texttt{\footnotesize{02}} \> $X(j\omega)=\int_{-1}^{1}{1\cdot e^{-j\omega t}}$\\
jrocnik@42162
    56
      \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\
jan@42173
    57
\texttt{\footnotesize{03}} \> $\int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{-1}^1$\\
jrocnik@42162
    58
       \` pbl: integration in $\cal C$\\
jan@42173
    59
\texttt{\footnotesize{04}} \> $\left(\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot t} \;|_{-1}^1\right)$\\
jrocnik@42162
    60
      \` $f\;t\;|_a^b = f\;b-f\;a$\\
jan@42173
    61
\texttt{\footnotesize{05}} \> $\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 1} -  \frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot -1}$\\
jan@42173
    62
\texttt{\footnotesize{06}} \> $\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega} -  \frac{1}{-j\cdot\omega}\cdot e^{j\cdot\omega}$\\
jan@42173
    63
\` Lift $\frac{1}{j\omega}$\\
jan@42173
    64
\texttt{\footnotesize{07}} \> $\frac{1}{j\cdot\omega}\cdot(e^{j\cdot\omega} - e^{-j\cdot\omega})$\\
jrocnik@42162
    65
      \` trick~!\\
jan@42173
    66
\texttt{\footnotesize{08}} \> $\frac{1}{\omega}\cdot(\frac{-e^{j\cdot\omega} + e^{-j\cdot\omega}}{j})$\\
jrocnik@42162
    67
      \` table\\
jan@42173
    68
\texttt{\footnotesize{09}} \> $2\cdot\frac{\sin\;\omega}{\omega}$
jrocnik@42162
    69
\end{tabbing}
jan@42173
    70
}
jan@42173
    71
jan@42173
    72
\textbf{(b)}
jan@42173
    73
\onehalfspace{
jan@42173
    74
\begin{tabbing}
jan@42173
    75
000\=\kill
jan@42173
    76
\textsf{Subproblem 1}\\
jan@42173
    77
\texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\
jan@42173
    78
\`Insert Condition: $x(t) = 1\;$ for $\;\{1\leq t\;\land\;t\leq 3\}\;$ and $\;x(t)=0\;$ otherwise\\
jan@42173
    79
\texttt{\footnotesize{02}} \> $X(j\omega)=\int_{-1}^{1}{1\cdot e^{-j\omega t}}$\\
jan@42173
    80
      \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\
jan@42173
    81
\texttt{\footnotesize{03}} \> $\int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{1}^3$\\
jan@42173
    82
       \` pbl: integration in $\cal C$\\
jan@42173
    83
\texttt{\footnotesize{04}} \> $\left(\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot t} \;|_{1}^3\right)$\\
jan@42173
    84
      \` $f\;t\;|_a^b = f\;b-f\;a$\\
jan@42173
    85
\texttt{\footnotesize{05}} \> $\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 3} -  \frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 1}$\\
jan@42173
    86
\`Lift $\frac{1}{-j\omega}$\\
jan@42173
    87
\texttt{\footnotesize{06}} \> $\frac{1}{j\cdot\omega}\cdot(e^{-j\cdot\omega} - e^{-j\cdot\omega3})$\\
jan@42173
    88
      \`Lift $e^{j\omega2}$ (trick)\\
jan@42173
    89
\texttt{\footnotesize{07}} \> $\frac{1}{j\omega}\cdot e^{j\omega2}\cdot(e^{j\omega} - e^{-j\omega})$\\
jan@42173
    90
\`Simplification (trick)\\
jan@42173
    91
\texttt{\footnotesize{08}} \> $\frac{1}{\omega}\cdot e^{j\omega2}\cdot(\frac{e^{j\omega} - e^{-j\omega}}{j})$\\
jan@42173
    92
      \` table\\
jan@42246
    93
\texttt{\footnotesize{09}} \> $2\cdot e^{j\omega2}\cdot\frac{\sin\;\omega}{\omega}$\\
jan@42173
    94
\textsf{Subproblem 2}\\
jan@42173
    95
\`Definition: $X(j\omega)=|X(j\omega)|\cdot e^{arg(X(j\omega))}$\\
jan@42173
    96
\`$|X(j\omega)|$ is called \emph{Magnitude}\\
jan@42173
    97
\`$arg(X(j\omega))$ is called \emph{Phase}\\
jan@42173
    98
\texttt{\footnotesize{10}} \> $|X(j\omega)|=\frac{2}{\omega}\cdot sin(\omega)$\\
jan@42173
    99
\texttt{\footnotesize{11}} \> $arg(X(j\omega)=-2\omega$\\
jan@42173
   100
\end{tabbing}
jan@42173
   101
}
jan@42173
   102
jan@42173
   103
%------------------------------------------------------------------------------
jan@42173
   104
%CONVOLUTION
jrocnik@42162
   105
jan@42368
   106
\subsection{Convolution}
jan@42368
   107
\subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the SPSC Problem Class 2, Summer term 2008}}
jrocnik@42162
   108
Consider the two discrete-time, linear and time-invariant (LTI) systems with the following impulse response:
jrocnik@42162
   109
jrocnik@42162
   110
\begin{center}
jrocnik@42162
   111
$h_1[n]=\left(\frac{3}{5}\right)^n\cdot u[n]$\\
jrocnik@42162
   112
$h_1[n]=\left(-\frac{2}{3}\right)^n\cdot u[n]$
jrocnik@42162
   113
\end{center}
jrocnik@42162
   114
jrocnik@42162
   115
The two systems are cascaded seriell. Derive the impulse respinse of the overall system $h_c[n]$.
jan@42368
   116
\subsubsection*{Solution}
jrocnik@42162
   117
jan@42173
   118
\doublespace{
jrocnik@42162
   119
\begin{tabbing}
jrocnik@42162
   120
000\=\kill
jan@42173
   121
\texttt{\footnotesize{01}} \> $h_c[n]=h_1[n]*h_2[n]$\\
jan@42173
   122
\texttt{\footnotesize{02}} \> $h_c[n]=\left(\left(\frac{3}{5}\right)^n\cdot u[n]\right)*\left(\left(-\frac{2}{3}\right)^n\cdot u[n]\right)$\\
jrocnik@42162
   123
\`Definition: $a^n\cdot u[n]\,*\,b^n\cdot u[n]=\sum\limits_{k=-\infty}^{\infty}{a^k\cdot u[k]\cdot b^{n-k}\cdot u[n-k]}$\\
jan@42173
   124
\texttt{\footnotesize{03}} \> $h_c[n]=\sum\limits_{k=-\infty}^{\infty}{\left(\frac{3}{5}\right)^k\cdot u[n]\,\cdot \,\left(-\frac{2}{3}\right)^{n-k}\cdot u[n-k]}$\\
jrocnik@42162
   125
\`$u[n]= \left\{
jrocnik@42162
   126
     \begin{array}{lr}
jrocnik@42162
   127
       1 & for\ n>=0\\
jrocnik@42162
   128
       0 & else
jrocnik@42162
   129
     \end{array}
jrocnik@42162
   130
   \right.$\\
jan@42173
   131
\`We can leave the unitstep through simplification.\\
jan@42173
   132
\`So the lower limit is 0, the upper limit is n.\\
jan@42173
   133
\texttt{\footnotesize{04}} \> $h_c[n]=\sum\limits_{k=0}^{n}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{n-k}}$\\
jan@42173
   134
\`Expand\\
jan@42173
   135
\texttt{\footnotesize{05}} \> $h_c[n]=\sum\limits_{k=0}^{n}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{n}\cdot \left(-\frac{2}{3}\right)^{-k}}$\\
jan@42173
   136
\`Lift\\
jan@42173
   137
\texttt{\footnotesize{06}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{\infty}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{-k}}$\\
jan@42173
   138
\texttt{\footnotesize{07}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{n}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{3}{2}\right)^{k}}$\\
jan@42173
   139
\texttt{\footnotesize{08}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{n}{\left(-\frac{9}{10}\right)^{k}}$\\
jan@42173
   140
\`Geometric Series: $\sum\limits_{k=0}^{n}{q^k}=\frac{1-q^{n+1}}{1-q}$\\
jan@42173
   141
\`Now we have to consider the limits again.\\
jan@42173
   142
\`It is neccesarry to put the unitstep in again.\\
jan@42173
   143
\texttt{\footnotesize{09}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n+1}}{1-\left(-\frac{9}{10}\right)}\cdot u[n]$\\
jan@42173
   144
\texttt{\footnotesize{10}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)}{1-\left(-\frac{9}{10}\right)}\cdot u[n]$\\
jan@42173
   145
\texttt{\footnotesize{11}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)}{\left(\frac{19}{10}\right)}\cdot u[n]$\\
jan@42173
   146
\texttt{\footnotesize{12}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot \left(1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)\right)\cdot\left(\frac{10}{19}\right)\cdot u[n]$\\
jan@42173
   147
\`Lift $u[n]$\\
jan@42173
   148
\texttt{\footnotesize{13}} \> $\left(\frac{10}{19}\cdot\left(-\frac{2}{3}\right)^n+\frac{9}{19}\cdot\left(\frac{3}{5}\right)^n\right)\cdot u[n]$\\
jrocnik@42162
   149
\end{tabbing}
jan@42173
   150
}
jan@42173
   151
jan@42173
   152
%------------------------------------------------------------------------------
jan@42173
   153
%Z-Transformation
jrocnik@42162
   154
jan@42368
   155
\subsection{$\cal Z$-Transformation\label{sec:calc:ztrans}}
jan@42368
   156
\subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the signal processing problem class 5, summer term 2008.}}
jrocnik@42162
   157
Determine the inverse $\cal{z}$ transform of the following expression. Hint: applay the partial fraction expansion.
jrocnik@42162
   158
jrocnik@42162
   159
\begin{center}
jrocnik@42162
   160
$X(z)=\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}},\ \ x[n]$ is absolute summable
jrocnik@42162
   161
\end{center}
jrocnik@42162
   162
jan@42368
   163
\subsubsection*{Solution}
jan@42173
   164
\onehalfspace{
jan@42173
   165
\begin{tabbing}
jan@42173
   166
000\=\kill
jan@42173
   167
\textsf{Main Problem}\\
jan@42173
   168
\texttt{\footnotesize{01}} \> $\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}}$ \\
jan@42173
   169
\`Divide through z, neccesary for z-transformation\\
jan@42173
   170
\texttt{\footnotesize{02}} \> $\frac{3}{z^2-\frac{1}{4}z-\frac{1}{8}}$ \\
jan@42173
   171
\`Start with partial fraction expansion\\
jan@42173
   172
\texttt{\footnotesize{03}} \> $\frac{3}{z^2-\frac{1}{4}z-\frac{1}{8}}=\frac{A}{z-z_1}+\frac{B}{z-z_2}$ \\
jan@42173
   173
\`Eliminate Fractions\\
jan@42173
   174
\texttt{\footnotesize{04}} \> $3=A(z-z_2)+B(z-z_1)$ \\
jan@42173
   175
\textsf{Subproblem 1}\\
jan@42173
   176
\`Setup a linear equation system by inserting the zeros $z_1$ and $z_2$ for $z$\\
jan@42173
   177
\texttt{\footnotesize{05}} \> $3=A(z_1-z_2)$ \& $3=B(z_2-z_1)$\\
jan@42173
   178
\texttt{\footnotesize{06}} \> $\frac{3}{z_1-z_2}=A$ \& $\frac{3}{z_2-z_1}=B$\\
jan@42173
   179
\textsf{Subproblem 2}\\
jan@42173
   180
\`Determine $z_1$ and $z_2$\\
jan@42173
   181
\texttt{\footnotesize{07}} \> $z_1=\frac{1}{8}+\sqrt{\frac{1}{64}+\frac{1}{8}}$ \& $z_2=\frac{1}{8}-\sqrt{\frac{1}{64}+\frac{1}{8}}$\\
jan@42173
   182
\texttt{\footnotesize{08}} \> $z_1=\frac{1}{8}+\sqrt{\frac{9}{64}}$ \& $z_2=\frac{1}{8}-\sqrt{\frac{9}{64}}$\\
jan@42173
   183
\texttt{\footnotesize{09}} \> $z_1=\frac{1}{8}+\frac{3}{8}$ \& $z_2=\frac{1}{8}-\frac{3}{8}$\\
jan@42173
   184
\texttt{\footnotesize{10}} \> $z_1=\frac{1}{2}$ \& $z_2=-\frac{1}{4}$\\
jan@42173
   185
\textsf{Continiue with Subproblem 1}\\
jan@42173
   186
\`Get the coeffizients $A$ and $B$\\
jan@42173
   187
\texttt{\footnotesize{11}} \> $\frac{3}{\frac{1}{2}-(-\frac{1}{4})}=A$ \& $\frac{3}{-\frac{1}{4}-\frac{1}{2}}=B$\\
jan@42173
   188
\texttt{\footnotesize{12}} \> $\frac{3}{\frac{1}{2}+\frac{1}{4}}=A$ \& $\frac{3}{-\frac{1}{4}-\frac{1}{2}}=B$\\
jan@42173
   189
\texttt{\footnotesize{13}} \> $\frac{3}{\frac{3}{4}}=A$ \& $\frac{3}{-\frac{3}{4}}=B$\\
jan@42173
   190
\texttt{\footnotesize{14}} \> $\frac{12}{3}=A$ \& $-\frac{12}{3}=B$\\
jan@42173
   191
\texttt{\footnotesize{15}} \> $4=A$ \& $-4=B$\\
jan@42173
   192
\textsf{Continiue with Main Problem}\\
jan@42173
   193
\texttt{\footnotesize{16}} \> $\frac{A}{z-z_1}+\frac{B}{z-z_2}$\\
jan@42173
   194
\texttt{\footnotesize{17}} \> $\frac{4}{z-\frac{1}{2}}+\frac{4}{z-\left(-\frac{1}{4}\right)}$ \\
jan@42173
   195
\texttt{\footnotesize{18}} \> $\frac{4}{z-\frac{1}{2}}-\frac{4}{z+\frac{1}{4}}$ \\
jan@42173
   196
\`Multiply with z, neccesary for z-transformation\\
jan@42173
   197
\texttt{\footnotesize{19}} \> $\frac{4z}{z-\frac{1}{2}}-\frac{4z}{z+\frac{1}{4}}$ \\
jan@42173
   198
\texttt{\footnotesize{20}} \> $4\cdot\frac{z}{z-\frac{1}{2}}+(-4)\cdot\frac{z}{z+\frac{1}{4}}$ \\
jan@42173
   199
\`Transformation\\
jan@42173
   200
\texttt{\footnotesize{21}} \> $4\cdot\frac{z}{z-\frac{1}{2}}+(-4)\cdot\frac{z}{z+\frac{1}{4}}\ \Ztransf\ 4\cdot\left(-\frac{1}{2}\right)^n\cdot u[n]+(-4)\cdot\left(\frac{1}{4}\right)^n\cdot u[n]$\\
jan@42173
   201
\end{tabbing}
jan@42173
   202
}
jrocnik@42162
   203
\theendnotes
jan@42246
   204
%\end{document}