doc-src/isac/jrocnik/calulations.tex
changeset 42381 8b94d811cb41
parent 42368 3afe632cd527
equal deleted inserted replaced
42380:a8471740e3b0 42381:8b94d811cb41
    32        0 & else
    32        0 & else
    33      \end{array}
    33      \end{array}
    34    \right.$
    34    \right.$
    35 \end{center}
    35 \end{center}
    36 
    36 
    37 \textbf{(b)} Now consider the given delayed impulse, determine its fourie transformation and calculate phase and magnitude:
    37 \textbf{\noindent (b)} Now consider the given delayed impulse, determine its fourie transformation and calculate phase and magnitude:
    38 
    38 
    39 \begin{center}
    39 \begin{center}
    40 $x(t)= \left\{
    40 $x(t)= \left\{
    41      \begin{array}{lr}
    41      \begin{array}{lr}
    42        1 & -1\leq t\leq1\\
    42        1 & -1\leq t\leq1\\
    44      \end{array}
    44      \end{array}
    45    \right.$
    45    \right.$
    46 \end{center}
    46 \end{center}
    47 
    47 
    48 \subsubsection{Solution}
    48 \subsubsection{Solution}
    49 \textbf{(a)}
    49 \textbf{(a)} \textsf{Subproblem 1}
    50 \onehalfspace{
    50 \onehalfspace{
    51 \begin{tabbing}
    51 \begin{tabbing}
    52 000\=\kill
    52 000\=\kill
    53 \texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\
    53 \texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\
    54 \`Insert Condition: $x(t) = 1\;$ for $\;\{-1\leq t\;\land\;t\leq 1\}\;$ and $\;x(t)=0\;$ otherwise\\
    54 \`Insert Condition: $x(t) = 1\;$ for $\;\{-1\leq t\;\land\;t\leq 1\}\;$ and $\;x(t)=0\;$ otherwise\\
    67       \` table\\
    67       \` table\\
    68 \texttt{\footnotesize{09}} \> $2\cdot\frac{\sin\;\omega}{\omega}$
    68 \texttt{\footnotesize{09}} \> $2\cdot\frac{\sin\;\omega}{\omega}$
    69 \end{tabbing}
    69 \end{tabbing}
    70 }
    70 }
    71 
    71 
    72 \textbf{(b)}
    72 \noindent\textbf{(b)} \textsf{Subproblem 1}
    73 \onehalfspace{
    73 \onehalfspace{
    74 \begin{tabbing}
    74 \begin{tabbing}
    75 000\=\kill
    75 000\=\kill
    76 \textsf{Subproblem 1}\\
       
    77 \texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\
    76 \texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\
    78 \`Insert Condition: $x(t) = 1\;$ for $\;\{1\leq t\;\land\;t\leq 3\}\;$ and $\;x(t)=0\;$ otherwise\\
    77 \`Insert Condition: $x(t) = 1\;$ for $\;\{1\leq t\;\land\;t\leq 3\}\;$ and $\;x(t)=0\;$ otherwise\\
    79 \texttt{\footnotesize{02}} \> $X(j\omega)=\int_{-1}^{1}{1\cdot e^{-j\omega t}}$\\
    78 \texttt{\footnotesize{02}} \> $X(j\omega)=\int_{-1}^{1}{1\cdot e^{-j\omega t}}$\\
    80       \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\
    79       \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\
    81 \texttt{\footnotesize{03}} \> $\int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{1}^3$\\
    80 \texttt{\footnotesize{03}} \> $\int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{1}^3$\\
    89 \texttt{\footnotesize{07}} \> $\frac{1}{j\omega}\cdot e^{j\omega2}\cdot(e^{j\omega} - e^{-j\omega})$\\
    88 \texttt{\footnotesize{07}} \> $\frac{1}{j\omega}\cdot e^{j\omega2}\cdot(e^{j\omega} - e^{-j\omega})$\\
    90 \`Simplification (trick)\\
    89 \`Simplification (trick)\\
    91 \texttt{\footnotesize{08}} \> $\frac{1}{\omega}\cdot e^{j\omega2}\cdot(\frac{e^{j\omega} - e^{-j\omega}}{j})$\\
    90 \texttt{\footnotesize{08}} \> $\frac{1}{\omega}\cdot e^{j\omega2}\cdot(\frac{e^{j\omega} - e^{-j\omega}}{j})$\\
    92       \` table\\
    91       \` table\\
    93 \texttt{\footnotesize{09}} \> $2\cdot e^{j\omega2}\cdot\frac{\sin\;\omega}{\omega}$\\
    92 \texttt{\footnotesize{09}} \> $2\cdot e^{j\omega2}\cdot\frac{\sin\;\omega}{\omega}$\\
    94 \textsf{Subproblem 2}\\
    93 \noindent\textbf{(b)} \textsf{Subproblem 2}\\
    95 \`Definition: $X(j\omega)=|X(j\omega)|\cdot e^{arg(X(j\omega))}$\\
    94 \`Definition: $X(j\omega)=|X(j\omega)|\cdot e^{arg(X(j\omega))}$\\
    96 \`$|X(j\omega)|$ is called \emph{Magnitude}\\
    95 \`$|X(j\omega)|$ is called \emph{Magnitude}\\
    97 \`$arg(X(j\omega))$ is called \emph{Phase}\\
    96 \`$arg(X(j\omega))$ is called \emph{Phase}\\
    98 \texttt{\footnotesize{10}} \> $|X(j\omega)|=\frac{2}{\omega}\cdot sin(\omega)$\\
    97 \texttt{\footnotesize{10}} \> $|X(j\omega)|=\frac{2}{\omega}\cdot sin(\omega)$\\
    99 \texttt{\footnotesize{11}} \> $arg(X(j\omega)=-2\omega$\\
    98 \texttt{\footnotesize{11}} \> $arg(X(j\omega)=-2\omega$\\
   100 \end{tabbing}
    99 \end{tabbing}
   101 }
   100 }
   102 
       
   103 %------------------------------------------------------------------------------
   101 %------------------------------------------------------------------------------
   104 %CONVOLUTION
   102 %CONVOLUTION
   105 
   103 
   106 \subsection{Convolution}
   104 \subsection{Convolution}
   107 \subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the SPSC Problem Class 2, Summer term 2008}}
   105 \subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the SPSC Problem Class 2, Summer term 2008}}
   150 }
   148 }
   151 
   149 
   152 %------------------------------------------------------------------------------
   150 %------------------------------------------------------------------------------
   153 %Z-Transformation
   151 %Z-Transformation
   154 
   152 
   155 \subsection{$\cal Z$-Transformation\label{sec:calc:ztrans}}
   153 \subsection{Z-Transformation\label{sec:calc:ztrans}}
   156 \subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the signal processing problem class 5, summer term 2008.}}
   154 \subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the signal processing problem class 5, summer term 2008.}}
   157 Determine the inverse $\cal{z}$ transform of the following expression. Hint: applay the partial fraction expansion.
   155 Determine the inverse $\cal{z}$ transform of the following expression. Hint: applay the partial fraction expansion.
   158 
   156 
   159 \begin{center}
   157 \begin{center}
   160 $X(z)=\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}},\ \ x[n]$ is absolute summable
   158 $X(z)=\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}},\ \ x[n]$ is absolute summable