doc-src/TutorialI/fp.tex
author nipkow
Thu, 29 May 2008 22:45:33 +0200
changeset 27015 f8537d69f514
parent 25281 8d309beb66d6
child 27712 007a339b9e7d
permissions -rw-r--r--
*** empty log message ***
paulson@11419
     1
\chapter{Functional Programming in HOL}
paulson@11419
     2
paulson@11450
     3
This chapter describes how to write
paulson@11450
     4
functional programs in HOL and how to verify them.  However, 
paulson@11450
     5
most of the constructs and
paulson@11450
     6
proof procedures introduced are general and recur in any specification
paulson@11450
     7
or verification task.  We really should speak of functional
paulson@11450
     8
\emph{modelling} rather than functional \emph{programming}: 
paulson@11450
     9
our primary aim is not
paulson@11419
    10
to write programs but to design abstract models of systems.  HOL is
paulson@11419
    11
a specification language that goes well beyond what can be expressed as a
paulson@11419
    12
program. However, for the time being we concentrate on the computable.
paulson@11419
    13
paulson@11450
    14
If you are a purist functional programmer, please note that all functions
paulson@11450
    15
in HOL must be total:
paulson@11450
    16
they must terminate for all inputs.  Lazy data structures are not
paulson@11419
    17
directly available.
paulson@11419
    18
paulson@11419
    19
\section{An Introductory Theory}
paulson@11419
    20
\label{sec:intro-theory}
paulson@11419
    21
paulson@11419
    22
Functional programming needs datatypes and functions. Both of them can be
paulson@11419
    23
defined in a theory with a syntax reminiscent of languages like ML or
paulson@11419
    24
Haskell. As an example consider the theory in figure~\ref{fig:ToyList}.
paulson@11419
    25
We will now examine it line by line.
paulson@11419
    26
paulson@11419
    27
\begin{figure}[htbp]
paulson@11419
    28
\begin{ttbox}\makeatother
paulson@11419
    29
\input{ToyList2/ToyList1}\end{ttbox}
paulson@11450
    30
\caption{A Theory of Lists}
paulson@11419
    31
\label{fig:ToyList}
paulson@11419
    32
\end{figure}
paulson@11419
    33
paulson@11457
    34
\index{*ToyList example|(}
wenzelm@17182
    35
{\makeatother\medskip\input{ToyList/document/ToyList.tex}}
paulson@11419
    36
paulson@11419
    37
The complete proof script is shown in Fig.\ts\ref{fig:ToyList-proofs}. The
paulson@11419
    38
concatenation of Figs.\ts\ref{fig:ToyList} and~\ref{fig:ToyList-proofs}
paulson@11419
    39
constitutes the complete theory \texttt{ToyList} and should reside in file
nipkow@12327
    40
\texttt{ToyList.thy}.
nipkow@12327
    41
% It is good practice to present all declarations and
nipkow@12327
    42
%definitions at the beginning of a theory to facilitate browsing.%
paulson@11457
    43
\index{*ToyList example|)}
paulson@11419
    44
paulson@11419
    45
\begin{figure}[htbp]
paulson@11419
    46
\begin{ttbox}\makeatother
paulson@11419
    47
\input{ToyList2/ToyList2}\end{ttbox}
paulson@11450
    48
\caption{Proofs about Lists}
paulson@11419
    49
\label{fig:ToyList-proofs}
paulson@11419
    50
\end{figure}
paulson@11419
    51
paulson@11419
    52
\subsubsection*{Review}
paulson@11419
    53
paulson@11419
    54
This is the end of our toy proof. It should have familiarized you with
paulson@11419
    55
\begin{itemize}
paulson@11419
    56
\item the standard theorem proving procedure:
nipkow@8743
    57
state a goal (lemma or theorem); proceed with proof until a separate lemma is
nipkow@8743
    58
required; prove that lemma; come back to the original goal.
nipkow@8743
    59
\item a specific procedure that works well for functional programs:
nipkow@8743
    60
induction followed by all-out simplification via \isa{auto}.
nipkow@8743
    61
\item a basic repertoire of proof commands.
nipkow@8743
    62
\end{itemize}
nipkow@8743
    63
nipkow@12332
    64
\begin{warn}
nipkow@12332
    65
It is tempting to think that all lemmas should have the \isa{simp} attribute
nipkow@12332
    66
just because this was the case in the example above. However, in that example
nipkow@12332
    67
all lemmas were equations, and the right-hand side was simpler than the
nipkow@12332
    68
left-hand side --- an ideal situation for simplification purposes. Unless
nipkow@12332
    69
this is clearly the case, novices should refrain from awarding a lemma the
nipkow@12332
    70
\isa{simp} attribute, which has a global effect. Instead, lemmas can be
nipkow@12332
    71
applied locally where they are needed, which is discussed in the following
nipkow@12332
    72
chapter.
nipkow@12332
    73
\end{warn}
nipkow@8743
    74
paulson@10885
    75
\section{Some Helpful Commands}
nipkow@8743
    76
\label{sec:commands-and-hints}
nipkow@8743
    77
nipkow@8743
    78
This section discusses a few basic commands for manipulating the proof state
nipkow@8743
    79
and can be skipped by casual readers.
nipkow@8743
    80
nipkow@8743
    81
There are two kinds of commands used during a proof: the actual proof
nipkow@8743
    82
commands and auxiliary commands for examining the proof state and controlling
nipkow@8743
    83
the display. Simple proof commands are of the form
nipkow@12327
    84
\commdx{apply}(\textit{method}), where \textit{method} is typically 
paulson@11419
    85
\isa{induct_tac} or \isa{auto}.  All such theorem proving operations
paulson@11419
    86
are referred to as \bfindex{methods}, and further ones are
paulson@11419
    87
introduced throughout the tutorial.  Unless stated otherwise, you may
paulson@11419
    88
assume that a method attacks merely the first subgoal. An exception is
paulson@11419
    89
\isa{auto}, which tries to solve all subgoals.
nipkow@8743
    90
paulson@11419
    91
The most useful auxiliary commands are as follows:
nipkow@8743
    92
\begin{description}
nipkow@8743
    93
\item[Modifying the order of subgoals:]
paulson@11419
    94
\commdx{defer} moves the first subgoal to the end and
paulson@11419
    95
\commdx{prefer}~$n$ moves subgoal $n$ to the front.
nipkow@8743
    96
\item[Printing theorems:]
paulson@11419
    97
  \commdx{thm}~\textit{name}$@1$~\dots~\textit{name}$@n$
nipkow@8743
    98
  prints the named theorems.
paulson@11419
    99
\item[Reading terms and types:] \commdx{term}
nipkow@8743
   100
  \textit{string} reads, type-checks and prints the given string as a term in
nipkow@8743
   101
  the current context; the inferred type is output as well.
paulson@11419
   102
  \commdx{typ} \textit{string} reads and prints the given
nipkow@8743
   103
  string as a type in the current context.
nipkow@8743
   104
\end{description}
nipkow@12327
   105
Further commands are found in the Isabelle/Isar Reference
nipkow@12327
   106
Manual~\cite{isabelle-isar-ref}.
nipkow@8743
   107
nipkow@16412
   108
\begin{pgnote}
nipkow@16523
   109
Clicking on the \pgmenu{State} button redisplays the current proof state.
nipkow@16412
   110
This is helpful in case commands like \isacommand{thm} have overwritten it.
nipkow@16412
   111
\end{pgnote}
nipkow@16412
   112
nipkow@8771
   113
We now examine Isabelle's functional programming constructs systematically,
nipkow@8771
   114
starting with inductive datatypes.
nipkow@8771
   115
nipkow@8743
   116
nipkow@8743
   117
\section{Datatypes}
nipkow@8743
   118
\label{sec:datatype}
nipkow@8743
   119
paulson@11456
   120
\index{datatypes|(}%
nipkow@8743
   121
Inductive datatypes are part of almost every non-trivial application of HOL.
paulson@11458
   122
First we take another look at an important example, the datatype of
nipkow@8743
   123
lists, before we turn to datatypes in general. The section closes with a
nipkow@8743
   124
case study.
nipkow@8743
   125
nipkow@8743
   126
nipkow@8743
   127
\subsection{Lists}
nipkow@8743
   128
paulson@11428
   129
\index{*list (type)}%
paulson@11457
   130
Lists are one of the essential datatypes in computing.  We expect that you
paulson@11457
   131
are already familiar with their basic operations.
nipkow@8771
   132
Theory \isa{ToyList} is only a small fragment of HOL's predefined theory
paulson@11428
   133
\thydx{List}\footnote{\url{http://isabelle.in.tum.de/library/HOL/List.html}}.
nipkow@8743
   134
The latter contains many further operations. For example, the functions
paulson@11419
   135
\cdx{hd} (``head'') and \cdx{tl} (``tail'') return the first
nipkow@25263
   136
element and the remainder of a list. (However, pattern matching is usually
paulson@10795
   137
preferable to \isa{hd} and \isa{tl}.)  
nipkow@10800
   138
Also available are higher-order functions like \isa{map} and \isa{filter}.
paulson@10795
   139
Theory \isa{List} also contains
nipkow@8743
   140
more syntactic sugar: \isa{[}$x@1$\isa{,}\dots\isa{,}$x@n$\isa{]} abbreviates
nipkow@8743
   141
$x@1$\isa{\#}\dots\isa{\#}$x@n$\isa{\#[]}.  In the rest of the tutorial we
nipkow@12327
   142
always use HOL's predefined lists by building on theory \isa{Main}.
nipkow@8743
   143
nipkow@8743
   144
paulson@10885
   145
\subsection{The General Format}
nipkow@8743
   146
\label{sec:general-datatype}
nipkow@8743
   147
nipkow@8743
   148
The general HOL \isacommand{datatype} definition is of the form
nipkow@8743
   149
\[
nipkow@8743
   150
\isacommand{datatype}~(\alpha@1, \dots, \alpha@n) \, t ~=~
nipkow@8743
   151
C@1~\tau@{11}~\dots~\tau@{1k@1} ~\mid~ \dots ~\mid~
nipkow@8743
   152
C@m~\tau@{m1}~\dots~\tau@{mk@m}
nipkow@8743
   153
\]
nipkow@8771
   154
where $\alpha@i$ are distinct type variables (the parameters), $C@i$ are distinct
nipkow@8743
   155
constructor names and $\tau@{ij}$ are types; it is customary to capitalize
nipkow@8743
   156
the first letter in constructor names. There are a number of
nipkow@8743
   157
restrictions (such as that the type should not be empty) detailed
nipkow@8743
   158
elsewhere~\cite{isabelle-HOL}. Isabelle notifies you if you violate them.
nipkow@8743
   159
nipkow@8743
   160
Laws about datatypes, such as \isa{[] \isasymnoteq~x\#xs} and
nipkow@8743
   161
\isa{(x\#xs = y\#ys) = (x=y \isasymand~xs=ys)}, are used automatically
nipkow@8743
   162
during proofs by simplification.  The same is true for the equations in
nipkow@8743
   163
primitive recursive function definitions.
nipkow@8743
   164
nipkow@12327
   165
Every\footnote{Except for advanced datatypes where the recursion involves
nipkow@12327
   166
``\isasymRightarrow'' as in {\S}\ref{sec:nested-fun-datatype}.} datatype $t$
nipkow@12327
   167
comes equipped with a \isa{size} function from $t$ into the natural numbers
nipkow@12327
   168
(see~{\S}\ref{sec:nat} below). For lists, \isa{size} is just the length, i.e.\
nipkow@12327
   169
\isa{size [] = 0} and \isa{size(x \# xs) = size xs + 1}.  In general,
nipkow@12327
   170
\cdx{size} returns
paulson@11456
   171
\begin{itemize}
nipkow@27015
   172
\item zero for all constructors that do not have an argument of type $t$,
paulson@11457
   173
\item one plus the sum of the sizes of all arguments of type~$t$,
nipkow@27015
   174
for all other constructors.
paulson@11456
   175
\end{itemize}
paulson@11456
   176
Note that because
nipkow@9644
   177
\isa{size} is defined on every datatype, it is overloaded; on lists
paulson@11419
   178
\isa{size} is also called \sdx{length}, which is not overloaded.
paulson@10795
   179
Isabelle will always show \isa{size} on lists as \isa{length}.
nipkow@9644
   180
nipkow@9644
   181
paulson@10885
   182
\subsection{Primitive Recursion}
nipkow@8743
   183
paulson@11456
   184
\index{recursion!primitive}%
nipkow@8743
   185
Functions on datatypes are usually defined by recursion. In fact, most of the
nipkow@27015
   186
time they are defined by what is called \textbf{primitive recursion} over some
nipkow@27015
   187
datatype $t$. This means that the recursion equations must be of the form
nipkow@8743
   188
\[ f \, x@1 \, \dots \, (C \, y@1 \, \dots \, y@k)\, \dots \, x@n = r \]
nipkow@27015
   189
such that $C$ is a constructor of $t$ and all recursive calls of
nipkow@8743
   190
$f$ in $r$ are of the form $f \, \dots \, y@i \, \dots$ for some $i$. Thus
nipkow@8743
   191
Isabelle immediately sees that $f$ terminates because one (fixed!) argument
nipkow@10654
   192
becomes smaller with every recursive call. There must be at most one equation
nipkow@8743
   193
for each constructor.  Their order is immaterial.
nipkow@8771
   194
A more general method for defining total recursive functions is introduced in
nipkow@25258
   195
{\S}\ref{sec:fun}.
nipkow@8743
   196
nipkow@9493
   197
\begin{exercise}\label{ex:Tree}
nipkow@8743
   198
\input{Misc/document/Tree.tex}%
nipkow@8743
   199
\end{exercise}
nipkow@8743
   200
nipkow@9721
   201
\input{Misc/document/case_exprs.tex}
nipkow@8743
   202
nipkow@8743
   203
\input{Ifexpr/document/Ifexpr.tex}
paulson@11456
   204
\index{datatypes|)}
paulson@11456
   205
nipkow@8743
   206
paulson@10885
   207
\section{Some Basic Types}
nipkow@8743
   208
paulson@11457
   209
This section introduces the types of natural numbers and ordered pairs.  Also
paulson@11457
   210
described is type \isa{option}, which is useful for modelling exceptional
paulson@11457
   211
cases. 
nipkow@8743
   212
paulson@10885
   213
\subsection{Natural Numbers}
paulson@11456
   214
\label{sec:nat}\index{natural numbers}%
paulson@11428
   215
\index{linear arithmetic|(}
nipkow@8743
   216
wenzelm@17182
   217
\input{Misc/document/fakenat.tex}\medskip
nipkow@8743
   218
\input{Misc/document/natsum.tex}
nipkow@8743
   219
paulson@11428
   220
\index{linear arithmetic|)}
nipkow@8743
   221
nipkow@8743
   222
nipkow@10396
   223
\subsection{Pairs}
nipkow@9541
   224
\input{Misc/document/pairs.tex}
nipkow@8743
   225
nipkow@10608
   226
\subsection{Datatype {\tt\slshape option}}
nipkow@10543
   227
\label{sec:option}
nipkow@10543
   228
\input{Misc/document/Option2.tex}
nipkow@10543
   229
nipkow@8743
   230
\section{Definitions}
nipkow@8743
   231
\label{sec:Definitions}
nipkow@8743
   232
nipkow@8743
   233
A definition is simply an abbreviation, i.e.\ a new name for an existing
nipkow@8743
   234
construction. In particular, definitions cannot be recursive. Isabelle offers
nipkow@8743
   235
definitions on the level of types and terms. Those on the type level are
paulson@11456
   236
called \textbf{type synonyms}; those on the term level are simply called 
nipkow@8743
   237
definitions.
nipkow@8743
   238
nipkow@8743
   239
paulson@10885
   240
\subsection{Type Synonyms}
nipkow@8743
   241
nipkow@12327
   242
\index{type synonyms}%
paulson@11456
   243
Type synonyms are similar to those found in ML\@. They are created by a 
paulson@11428
   244
\commdx{types} command:
nipkow@8743
   245
wenzelm@17182
   246
\medskip
nipkow@12327
   247
\input{Misc/document/types.tex}
nipkow@8743
   248
nipkow@9844
   249
\input{Misc/document/prime_def.tex}
nipkow@8743
   250
nipkow@8743
   251
nipkow@11201
   252
\section{The Definitional Approach}
nipkow@11201
   253
\label{sec:definitional}
nipkow@11201
   254
paulson@11457
   255
\index{Definitional Approach}%
nipkow@11201
   256
As we pointed out at the beginning of the chapter, asserting arbitrary
paulson@11456
   257
axioms such as $f(n) = f(n) + 1$ can easily lead to contradictions. In order
paulson@11457
   258
to avoid this danger, we advocate the definitional rather than
paulson@11456
   259
the axiomatic approach: introduce new concepts by definitions. However,  Isabelle/HOL seems to
paulson@11456
   260
support many richer definitional constructs, such as
paulson@11456
   261
\isacommand{primrec}. The point is that Isabelle reduces such constructs to first principles. For example, each
paulson@11456
   262
\isacommand{primrec} function definition is turned into a proper
paulson@11456
   263
(nonrecursive!) definition from which the user-supplied recursion equations are
paulson@11457
   264
automatically proved.  This process is
paulson@11456
   265
hidden from the user, who does not have to understand the details.  Other commands described
nipkow@25258
   266
later, like \isacommand{fun} and \isacommand{inductive}, work similarly.  
paulson@11457
   267
This strict adherence to the definitional approach reduces the risk of 
paulson@11457
   268
soundness errors.
nipkow@11201
   269
nipkow@8743
   270
\chapter{More Functional Programming}
nipkow@8743
   271
paulson@11458
   272
The purpose of this chapter is to deepen your understanding of the
nipkow@8771
   273
concepts encountered so far and to introduce advanced forms of datatypes and
nipkow@8771
   274
recursive functions. The first two sections give a structured presentation of
nipkow@10538
   275
theorem proving by simplification ({\S}\ref{sec:Simplification}) and discuss
paulson@11458
   276
important heuristics for induction ({\S}\ref{sec:InductionHeuristics}).  You can
paulson@11458
   277
skip them if you are not planning to perform proofs yourself.
paulson@11458
   278
We then present a case
paulson@11458
   279
study: a compiler for expressions ({\S}\ref{sec:ExprCompiler}). Advanced
nipkow@8771
   280
datatypes, including those involving function spaces, are covered in
paulson@11458
   281
{\S}\ref{sec:advanced-datatypes}; it closes with another case study, search
nipkow@25258
   282
trees (``tries'').  Finally we introduce \isacommand{fun}, a general
paulson@11458
   283
form of recursive function definition that goes well beyond 
nipkow@25258
   284
\isacommand{primrec} ({\S}\ref{sec:fun}).
nipkow@8743
   285
nipkow@8743
   286
nipkow@8743
   287
\section{Simplification}
nipkow@8743
   288
\label{sec:Simplification}
nipkow@8743
   289
\index{simplification|(}
nipkow@8743
   290
paulson@10795
   291
So far we have proved our theorems by \isa{auto}, which simplifies
paulson@11458
   292
all subgoals. In fact, \isa{auto} can do much more than that. 
paulson@11458
   293
To go beyond toy examples, you
nipkow@9541
   294
need to understand the ingredients of \isa{auto}.  This section covers the
nipkow@10971
   295
method that \isa{auto} always applies first, simplification.
nipkow@8743
   296
nipkow@8743
   297
Simplification is one of the central theorem proving tools in Isabelle and
paulson@11458
   298
many other systems. The tool itself is called the \textbf{simplifier}. 
paulson@11458
   299
This section introduces the many features of the simplifier
paulson@11458
   300
and is required reading if you intend to perform proofs.  Later on,
paulson@11458
   301
{\S}\ref{sec:simplification-II} explains some more advanced features and a
nipkow@9754
   302
little bit of how the simplifier works. The serious student should read that
paulson@11458
   303
section as well, in particular to understand why the simplifier did
paulson@11458
   304
something unexpected.
nipkow@8743
   305
paulson@11458
   306
\subsection{What is Simplification?}
nipkow@9458
   307
nipkow@8743
   308
In its most basic form, simplification means repeated application of
nipkow@8743
   309
equations from left to right. For example, taking the rules for \isa{\at}
nipkow@8743
   310
and applying them to the term \isa{[0,1] \at\ []} results in a sequence of
nipkow@8743
   311
simplification steps:
nipkow@8743
   312
\begin{ttbox}\makeatother
nipkow@8743
   313
(0#1#[]) @ []  \(\leadsto\)  0#((1#[]) @ [])  \(\leadsto\)  0#(1#([] @ []))  \(\leadsto\)  0#1#[]
nipkow@8743
   314
\end{ttbox}
nipkow@9933
   315
This is also known as \bfindex{term rewriting}\indexbold{rewriting} and the
paulson@11458
   316
equations are referred to as \bfindex{rewrite rules}.
nipkow@9933
   317
``Rewriting'' is more honest than ``simplification'' because the terms do not
nipkow@9933
   318
necessarily become simpler in the process.
nipkow@8743
   319
paulson@11458
   320
The simplifier proves arithmetic goals as described in
paulson@11458
   321
{\S}\ref{sec:nat} above.  Arithmetic expressions are simplified using built-in
paulson@11458
   322
procedures that go beyond mere rewrite rules.  New simplification procedures
paulson@11458
   323
can be coded and installed, but they are definitely not a matter for this
paulson@11458
   324
tutorial. 
paulson@11458
   325
nipkow@9844
   326
\input{Misc/document/simp.tex}
nipkow@8743
   327
nipkow@8743
   328
\index{simplification|)}
nipkow@8743
   329
nipkow@9844
   330
\input{Misc/document/Itrev.tex}
nipkow@13305
   331
\begin{exercise}
nipkow@13305
   332
\input{Misc/document/Plus.tex}%
nipkow@13305
   333
\end{exercise}
nipkow@9493
   334
\begin{exercise}
nipkow@9493
   335
\input{Misc/document/Tree2.tex}%
nipkow@9493
   336
\end{exercise}
nipkow@8743
   337
nipkow@9844
   338
\input{CodeGen/document/CodeGen.tex}
nipkow@8743
   339
nipkow@8743
   340
paulson@10885
   341
\section{Advanced Datatypes}
nipkow@8743
   342
\label{sec:advanced-datatypes}
paulson@11428
   343
\index{datatype@\isacommand {datatype} (command)|(}
paulson@11428
   344
\index{primrec@\isacommand {primrec} (command)|(}
nipkow@8743
   345
%|)
nipkow@8743
   346
paulson@11428
   347
This section presents advanced forms of datatypes: mutual and nested
paulson@11428
   348
recursion.  A series of examples will culminate in a treatment of the trie
paulson@11428
   349
data structure.
paulson@11428
   350
nipkow@8743
   351
paulson@10885
   352
\subsection{Mutual Recursion}
nipkow@8743
   353
\label{sec:datatype-mut-rec}
nipkow@8743
   354
nipkow@8743
   355
\input{Datatype/document/ABexpr.tex}
nipkow@8743
   356
paulson@10885
   357
\subsection{Nested Recursion}
nipkow@9644
   358
\label{sec:nested-datatype}
nipkow@8743
   359
nipkow@9644
   360
{\makeatother\input{Datatype/document/Nested.tex}}
nipkow@8743
   361
nipkow@8743
   362
paulson@11419
   363
\subsection{The Limits of Nested Recursion}
nipkow@12327
   364
\label{sec:nested-fun-datatype}
paulson@11419
   365
paulson@11419
   366
How far can we push nested recursion? By the unfolding argument above, we can
paulson@11419
   367
reduce nested to mutual recursion provided the nested recursion only involves
paulson@11419
   368
previously defined datatypes. This does not include functions:
paulson@11419
   369
\begin{isabelle}
paulson@11419
   370
\isacommand{datatype} t = C "t \isasymRightarrow\ bool"
paulson@11419
   371
\end{isabelle}
paulson@11419
   372
This declaration is a real can of worms.
paulson@11419
   373
In HOL it must be ruled out because it requires a type
paulson@11419
   374
\isa{t} such that \isa{t} and its power set \isa{t \isasymFun\ bool} have the
paulson@11419
   375
same cardinality --- an impossibility. For the same reason it is not possible
nipkow@12328
   376
to allow recursion involving the type \isa{t set}, which is isomorphic to
paulson@11419
   377
\isa{t \isasymFun\ bool}.
paulson@11419
   378
paulson@11419
   379
Fortunately, a limited form of recursion
paulson@11419
   380
involving function spaces is permitted: the recursive type may occur on the
paulson@11419
   381
right of a function arrow, but never on the left. Hence the above can of worms
paulson@11458
   382
is ruled out but the following example of a potentially 
paulson@11458
   383
\index{infinitely branching trees}%
paulson@11458
   384
infinitely branching tree is accepted:
paulson@11419
   385
\smallskip
paulson@11419
   386
paulson@11419
   387
\input{Datatype/document/Fundata.tex}
paulson@11419
   388
paulson@11419
   389
If you need nested recursion on the left of a function arrow, there are
paulson@11419
   390
alternatives to pure HOL\@.  In the Logic for Computable Functions 
paulson@11458
   391
(\rmindex{LCF}), types like
paulson@11419
   392
\begin{isabelle}
paulson@11419
   393
\isacommand{datatype} lam = C "lam \isasymrightarrow\ lam"
paulson@11419
   394
\end{isabelle}
paulson@11419
   395
do indeed make sense~\cite{paulson87}.  Note the different arrow,
paulson@11419
   396
\isa{\isasymrightarrow} instead of \isa{\isasymRightarrow},
paulson@11419
   397
expressing the type of \emph{continuous} functions. 
paulson@11419
   398
There is even a version of LCF on top of HOL,
paulson@11458
   399
called \rmindex{HOLCF}~\cite{MuellerNvOS99}.
paulson@11428
   400
\index{datatype@\isacommand {datatype} (command)|)}
paulson@11428
   401
\index{primrec@\isacommand {primrec} (command)|)}
paulson@11419
   402
paulson@11419
   403
paulson@11419
   404
\subsection{Case Study: Tries}
paulson@11419
   405
\label{sec:Trie}
paulson@11419
   406
paulson@11458
   407
\index{tries|(}%
paulson@11419
   408
Tries are a classic search tree data structure~\cite{Knuth3-75} for fast
paulson@11419
   409
indexing with strings. Figure~\ref{fig:trie} gives a graphical example of a
paulson@11419
   410
trie containing the words ``all'', ``an'', ``ape'', ``can'', ``car'' and
paulson@11419
   411
``cat''.  When searching a string in a trie, the letters of the string are
paulson@11419
   412
examined sequentially. Each letter determines which subtrie to search next.
paulson@11419
   413
In this case study we model tries as a datatype, define a lookup and an
paulson@11419
   414
update function, and prove that they behave as expected.
paulson@11419
   415
paulson@11419
   416
\begin{figure}[htbp]
paulson@11419
   417
\begin{center}
nipkow@8743
   418
\unitlength1mm
nipkow@8743
   419
\begin{picture}(60,30)
nipkow@8743
   420
\put( 5, 0){\makebox(0,0)[b]{l}}
nipkow@8743
   421
\put(25, 0){\makebox(0,0)[b]{e}}
nipkow@8743
   422
\put(35, 0){\makebox(0,0)[b]{n}}
nipkow@8743
   423
\put(45, 0){\makebox(0,0)[b]{r}}
nipkow@8743
   424
\put(55, 0){\makebox(0,0)[b]{t}}
nipkow@8743
   425
%
nipkow@8743
   426
\put( 5, 9){\line(0,-1){5}}
nipkow@8743
   427
\put(25, 9){\line(0,-1){5}}
nipkow@8743
   428
\put(44, 9){\line(-3,-2){9}}
nipkow@8743
   429
\put(45, 9){\line(0,-1){5}}
nipkow@8743
   430
\put(46, 9){\line(3,-2){9}}
nipkow@8743
   431
%
nipkow@8743
   432
\put( 5,10){\makebox(0,0)[b]{l}}
nipkow@8743
   433
\put(15,10){\makebox(0,0)[b]{n}}
paulson@11419
   434
\put(25,10){\makebox(0,0)[b]{p}}
paulson@11419
   435
\put(45,10){\makebox(0,0)[b]{a}}
paulson@11419
   436
%
paulson@11419
   437
\put(14,19){\line(-3,-2){9}}
paulson@11419
   438
\put(15,19){\line(0,-1){5}}
paulson@11419
   439
\put(16,19){\line(3,-2){9}}
paulson@11419
   440
\put(45,19){\line(0,-1){5}}
paulson@11419
   441
%
paulson@11419
   442
\put(15,20){\makebox(0,0)[b]{a}}
paulson@11419
   443
\put(45,20){\makebox(0,0)[b]{c}}
paulson@11419
   444
%
paulson@11419
   445
\put(30,30){\line(-3,-2){13}}
paulson@11419
   446
\put(30,30){\line(3,-2){13}}
paulson@11419
   447
\end{picture}
paulson@11419
   448
\end{center}
paulson@11450
   449
\caption{A Sample Trie}
paulson@11419
   450
\label{fig:trie}
paulson@11419
   451
\end{figure}
paulson@11419
   452
paulson@11419
   453
Proper tries associate some value with each string. Since the
paulson@11419
   454
information is stored only in the final node associated with the string, many
paulson@11419
   455
nodes do not carry any value. This distinction is modeled with the help
paulson@11419
   456
of the predefined datatype \isa{option} (see {\S}\ref{sec:option}).
paulson@11419
   457
\input{Trie/document/Trie.tex}
paulson@11458
   458
\index{tries|)}
paulson@11419
   459
nipkow@25261
   460
\section{Total Recursive Functions: \isacommand{fun}}
nipkow@25258
   461
\label{sec:fun}
nipkow@25258
   462
\index{fun@\isacommand {fun} (command)|(}\index{functions!total|(}
paulson@11419
   463
paulson@11419
   464
Although many total functions have a natural primitive recursive definition,
paulson@11419
   465
this is not always the case. Arbitrary total recursive functions can be
nipkow@25263
   466
defined by means of \isacommand{fun}: you can use full pattern matching,
paulson@11419
   467
recursion need not involve datatypes, and termination is proved by showing
nipkow@25258
   468
that the arguments of all recursive calls are smaller in a suitable sense.
nipkow@25258
   469
In this section we restrict ourselves to functions where Isabelle can prove
nipkow@25281
   470
termination automatically. More advanced function definitions, including user
nipkow@25281
   471
supplied termination proofs, nested recursion and partiality, are discussed
nipkow@25281
   472
in a separate tutorial~\cite{isabelle-function}.
paulson@11419
   473
nipkow@25258
   474
\input{Fun/document/fun0.tex}
paulson@11419
   475
nipkow@25258
   476
\index{fun@\isacommand {fun} (command)|)}\index{functions!total|)}