doc-src/TutorialI/fp.tex
author nipkow
Wed, 29 Nov 2000 13:44:26 +0100
changeset 10538 d1bf9ca9008d
parent 10522 ed3964d1f1a4
child 10543 8e4307d1207a
permissions -rw-r--r--
*** empty log message ***
nipkow@8743
     1
\chapter{Functional Programming in HOL}
nipkow@8743
     2
nipkow@8743
     3
Although on the surface this chapter is mainly concerned with how to write
nipkow@8743
     4
functional programs in HOL and how to verify them, most of the
nipkow@8743
     5
constructs and proof procedures introduced are general purpose and recur in
nipkow@8743
     6
any specification or verification task.
nipkow@8743
     7
nipkow@9541
     8
The dedicated functional programmer should be warned: HOL offers only
nipkow@9541
     9
\emph{total functional programming} --- all functions in HOL must be total;
nipkow@9541
    10
lazy data structures are not directly available. On the positive side,
nipkow@9541
    11
functions in HOL need not be computable: HOL is a specification language that
nipkow@9541
    12
goes well beyond what can be expressed as a program. However, for the time
nipkow@9541
    13
being we concentrate on the computable.
nipkow@8743
    14
nipkow@8743
    15
\section{An introductory theory}
nipkow@8743
    16
\label{sec:intro-theory}
nipkow@8743
    17
nipkow@8743
    18
Functional programming needs datatypes and functions. Both of them can be
nipkow@8743
    19
defined in a theory with a syntax reminiscent of languages like ML or
nipkow@8743
    20
Haskell. As an example consider the theory in figure~\ref{fig:ToyList}.
nipkow@8743
    21
We will now examine it line by line.
nipkow@8743
    22
nipkow@8743
    23
\begin{figure}[htbp]
nipkow@8743
    24
\begin{ttbox}\makeatother
nipkow@8743
    25
\input{ToyList2/ToyList1}\end{ttbox}
nipkow@8743
    26
\caption{A theory of lists}
nipkow@8743
    27
\label{fig:ToyList}
nipkow@8743
    28
\end{figure}
nipkow@8743
    29
nipkow@8743
    30
{\makeatother\input{ToyList/document/ToyList.tex}}
nipkow@8743
    31
nipkow@8743
    32
The complete proof script is shown in figure~\ref{fig:ToyList-proofs}. The
nipkow@8743
    33
concatenation of figures \ref{fig:ToyList} and \ref{fig:ToyList-proofs}
nipkow@8743
    34
constitutes the complete theory \texttt{ToyList} and should reside in file
nipkow@8743
    35
\texttt{ToyList.thy}. It is good practice to present all declarations and
nipkow@8743
    36
definitions at the beginning of a theory to facilitate browsing.
nipkow@8743
    37
nipkow@8743
    38
\begin{figure}[htbp]
nipkow@8743
    39
\begin{ttbox}\makeatother
nipkow@8743
    40
\input{ToyList2/ToyList2}\end{ttbox}
nipkow@8743
    41
\caption{Proofs about lists}
nipkow@8743
    42
\label{fig:ToyList-proofs}
nipkow@8743
    43
\end{figure}
nipkow@8743
    44
nipkow@8743
    45
\subsubsection*{Review}
nipkow@8743
    46
nipkow@8743
    47
This is the end of our toy proof. It should have familiarized you with
nipkow@8743
    48
\begin{itemize}
nipkow@8743
    49
\item the standard theorem proving procedure:
nipkow@8743
    50
state a goal (lemma or theorem); proceed with proof until a separate lemma is
nipkow@8743
    51
required; prove that lemma; come back to the original goal.
nipkow@8743
    52
\item a specific procedure that works well for functional programs:
nipkow@8743
    53
induction followed by all-out simplification via \isa{auto}.
nipkow@8743
    54
\item a basic repertoire of proof commands.
nipkow@8743
    55
\end{itemize}
nipkow@8743
    56
nipkow@8743
    57
nipkow@8743
    58
\section{Some helpful commands}
nipkow@8743
    59
\label{sec:commands-and-hints}
nipkow@8743
    60
nipkow@8743
    61
This section discusses a few basic commands for manipulating the proof state
nipkow@8743
    62
and can be skipped by casual readers.
nipkow@8743
    63
nipkow@8743
    64
There are two kinds of commands used during a proof: the actual proof
nipkow@8743
    65
commands and auxiliary commands for examining the proof state and controlling
nipkow@8743
    66
the display. Simple proof commands are of the form
nipkow@8743
    67
\isacommand{apply}\isa{(method)}\indexbold{apply} where \bfindex{method} is a
nipkow@8743
    68
synonym for ``theorem proving function''. Typical examples are
nipkow@8743
    69
\isa{induct_tac} and \isa{auto}. Further methods are introduced throughout
nipkow@8743
    70
the tutorial.  Unless stated otherwise you may assume that a method attacks
nipkow@8743
    71
merely the first subgoal. An exception is \isa{auto} which tries to solve all
nipkow@8743
    72
subgoals.
nipkow@8743
    73
nipkow@8743
    74
The most useful auxiliary commands are:
nipkow@8743
    75
\begin{description}
nipkow@8743
    76
\item[Undoing:] \isacommand{undo}\indexbold{*undo} undoes the effect of the
nipkow@8743
    77
  last command; \isacommand{undo} can be undone by
nipkow@8743
    78
  \isacommand{redo}\indexbold{*redo}.  Both are only needed at the shell
nipkow@8743
    79
  level and should not occur in the final theory.
nipkow@8743
    80
\item[Printing the current state:] \isacommand{pr}\indexbold{*pr} redisplays
nipkow@8743
    81
  the current proof state, for example when it has disappeared off the
nipkow@8743
    82
  screen.
nipkow@8743
    83
\item[Limiting the number of subgoals:] \isacommand{pr}~$n$ tells Isabelle to
nipkow@8743
    84
  print only the first $n$ subgoals from now on and redisplays the current
nipkow@8743
    85
  proof state. This is helpful when there are many subgoals.
nipkow@8743
    86
\item[Modifying the order of subgoals:]
nipkow@8743
    87
\isacommand{defer}\indexbold{*defer} moves the first subgoal to the end and
nipkow@8743
    88
\isacommand{prefer}\indexbold{*prefer}~$n$ moves subgoal $n$ to the front.
nipkow@8743
    89
\item[Printing theorems:]
nipkow@8743
    90
  \isacommand{thm}\indexbold{*thm}~\textit{name}$@1$~\dots~\textit{name}$@n$
nipkow@8743
    91
  prints the named theorems.
nipkow@8743
    92
\item[Displaying types:] We have already mentioned the flag
nipkow@8743
    93
  \ttindex{show_types} above. It can also be useful for detecting typos in
nipkow@8743
    94
  formulae early on. For example, if \texttt{show_types} is set and the goal
nipkow@8743
    95
  \isa{rev(rev xs) = xs} is started, Isabelle prints the additional output
nipkow@8743
    96
\par\noindent
nipkow@8743
    97
\begin{isabelle}%
nipkow@8743
    98
Variables:\isanewline
nipkow@8743
    99
~~xs~::~'a~list
nipkow@8743
   100
\end{isabelle}%
nipkow@8743
   101
\par\noindent
nipkow@8743
   102
which tells us that Isabelle has correctly inferred that
nipkow@8743
   103
\isa{xs} is a variable of list type. On the other hand, had we
nipkow@8743
   104
made a typo as in \isa{rev(re xs) = xs}, the response
nipkow@8743
   105
\par\noindent
nipkow@8743
   106
\begin{isabelle}%
nipkow@8743
   107
Variables:\isanewline
nipkow@8743
   108
~~re~::~'a~list~{\isasymRightarrow}~'a~list\isanewline
nipkow@8743
   109
~~xs~::~'a~list%
nipkow@8743
   110
\end{isabelle}%
nipkow@8743
   111
\par\noindent
nipkow@8743
   112
would have alerted us because of the unexpected variable \isa{re}.
nipkow@8743
   113
\item[Reading terms and types:] \isacommand{term}\indexbold{*term}
nipkow@8743
   114
  \textit{string} reads, type-checks and prints the given string as a term in
nipkow@8743
   115
  the current context; the inferred type is output as well.
nipkow@8743
   116
  \isacommand{typ}\indexbold{*typ} \textit{string} reads and prints the given
nipkow@8743
   117
  string as a type in the current context.
nipkow@8743
   118
\item[(Re)loading theories:] When you start your interaction you must open a
nipkow@8771
   119
  named theory with the line \isa{\isacommand{theory}~T~=~\dots~:}. Isabelle
nipkow@8771
   120
  automatically loads all the required parent theories from their respective
nipkow@8771
   121
  files (which may take a moment, unless the theories are already loaded and
nipkow@9541
   122
  the files have not been modified).
nipkow@8743
   123
  
nipkow@8743
   124
  If you suddenly discover that you need to modify a parent theory of your
nipkow@9494
   125
  current theory you must first abandon your current theory\indexbold{abandon
nipkow@9494
   126
  theory}\indexbold{theory!abandon} (at the shell
nipkow@8743
   127
  level type \isacommand{kill}\indexbold{*kill}). After the parent theory has
nipkow@8743
   128
  been modified you go back to your original theory. When its first line
nipkow@8743
   129
  \isacommand{theory}\texttt{~T~=}~\dots~\texttt{:} is processed, the
nipkow@8743
   130
  modified parent is reloaded automatically.
nipkow@9541
   131
  
nipkow@9541
   132
  The only time when you need to load a theory by hand is when you simply
nipkow@9541
   133
  want to check if it loads successfully without wanting to make use of the
nipkow@9541
   134
  theory itself. This you can do by typing
nipkow@9541
   135
  \isa{\isacommand{use\_thy}\indexbold{*use_thy}~"T"}.
nipkow@8743
   136
\end{description}
nipkow@8743
   137
Further commands are found in the Isabelle/Isar Reference Manual.
nipkow@8743
   138
nipkow@8771
   139
We now examine Isabelle's functional programming constructs systematically,
nipkow@8771
   140
starting with inductive datatypes.
nipkow@8771
   141
nipkow@8743
   142
nipkow@8743
   143
\section{Datatypes}
nipkow@8743
   144
\label{sec:datatype}
nipkow@8743
   145
nipkow@8743
   146
Inductive datatypes are part of almost every non-trivial application of HOL.
nipkow@8743
   147
First we take another look at a very important example, the datatype of
nipkow@8743
   148
lists, before we turn to datatypes in general. The section closes with a
nipkow@8743
   149
case study.
nipkow@8743
   150
nipkow@8743
   151
nipkow@8743
   152
\subsection{Lists}
nipkow@8743
   153
\indexbold{*list}
nipkow@8743
   154
nipkow@8743
   155
Lists are one of the essential datatypes in computing. Readers of this
nipkow@8743
   156
tutorial and users of HOL need to be familiar with their basic operations.
nipkow@8771
   157
Theory \isa{ToyList} is only a small fragment of HOL's predefined theory
nipkow@8771
   158
\isa{List}\footnote{\url{http://isabelle.in.tum.de/library/HOL/List.html}}.
nipkow@8743
   159
The latter contains many further operations. For example, the functions
nipkow@8771
   160
\isaindexbold{hd} (``head'') and \isaindexbold{tl} (``tail'') return the first
nipkow@8743
   161
element and the remainder of a list. (However, pattern-matching is usually
nipkow@8771
   162
preferable to \isa{hd} and \isa{tl}.)  Theory \isa{List} also contains
nipkow@8743
   163
more syntactic sugar: \isa{[}$x@1$\isa{,}\dots\isa{,}$x@n$\isa{]} abbreviates
nipkow@8743
   164
$x@1$\isa{\#}\dots\isa{\#}$x@n$\isa{\#[]}.  In the rest of the tutorial we
nipkow@8743
   165
always use HOL's predefined lists.
nipkow@8743
   166
nipkow@8743
   167
nipkow@8743
   168
\subsection{The general format}
nipkow@8743
   169
\label{sec:general-datatype}
nipkow@8743
   170
nipkow@8743
   171
The general HOL \isacommand{datatype} definition is of the form
nipkow@8743
   172
\[
nipkow@8743
   173
\isacommand{datatype}~(\alpha@1, \dots, \alpha@n) \, t ~=~
nipkow@8743
   174
C@1~\tau@{11}~\dots~\tau@{1k@1} ~\mid~ \dots ~\mid~
nipkow@8743
   175
C@m~\tau@{m1}~\dots~\tau@{mk@m}
nipkow@8743
   176
\]
nipkow@8771
   177
where $\alpha@i$ are distinct type variables (the parameters), $C@i$ are distinct
nipkow@8743
   178
constructor names and $\tau@{ij}$ are types; it is customary to capitalize
nipkow@8743
   179
the first letter in constructor names. There are a number of
nipkow@8743
   180
restrictions (such as that the type should not be empty) detailed
nipkow@8743
   181
elsewhere~\cite{isabelle-HOL}. Isabelle notifies you if you violate them.
nipkow@8743
   182
nipkow@8743
   183
Laws about datatypes, such as \isa{[] \isasymnoteq~x\#xs} and
nipkow@8743
   184
\isa{(x\#xs = y\#ys) = (x=y \isasymand~xs=ys)}, are used automatically
nipkow@8743
   185
during proofs by simplification.  The same is true for the equations in
nipkow@8743
   186
primitive recursive function definitions.
nipkow@8743
   187
nipkow@9644
   188
Every datatype $t$ comes equipped with a \isa{size} function from $t$ into
nipkow@10538
   189
the natural numbers (see~{\S}\ref{sec:nat} below). For lists, \isa{size} is
nipkow@9644
   190
just the length, i.e.\ \isa{size [] = 0} and \isa{size(x \# xs) = size xs +
nipkow@10237
   191
  1}.  In general, \isaindexbold{size} returns \isa{0} for all constructors
nipkow@10237
   192
that do not have an argument of type $t$, and for all other constructors
nipkow@10237
   193
\isa{1 +} the sum of the sizes of all arguments of type $t$. Note that because
nipkow@9644
   194
\isa{size} is defined on every datatype, it is overloaded; on lists
nipkow@10237
   195
\isa{size} is also called \isaindexbold{length}, which is not overloaded.
nipkow@10237
   196
Isbelle will always show \isa{size} on lists as \isa{length}.
nipkow@9644
   197
nipkow@9644
   198
nipkow@8743
   199
\subsection{Primitive recursion}
nipkow@8743
   200
nipkow@8743
   201
Functions on datatypes are usually defined by recursion. In fact, most of the
nipkow@8743
   202
time they are defined by what is called \bfindex{primitive recursion}.
nipkow@8743
   203
The keyword \isacommand{primrec}\indexbold{*primrec} is followed by a list of
nipkow@8743
   204
equations
nipkow@8743
   205
\[ f \, x@1 \, \dots \, (C \, y@1 \, \dots \, y@k)\, \dots \, x@n = r \]
nipkow@8743
   206
such that $C$ is a constructor of the datatype $t$ and all recursive calls of
nipkow@8743
   207
$f$ in $r$ are of the form $f \, \dots \, y@i \, \dots$ for some $i$. Thus
nipkow@8743
   208
Isabelle immediately sees that $f$ terminates because one (fixed!) argument
nipkow@8743
   209
becomes smaller with every recursive call. There must be exactly one equation
nipkow@8743
   210
for each constructor.  Their order is immaterial.
nipkow@8771
   211
A more general method for defining total recursive functions is introduced in
nipkow@10538
   212
{\S}\ref{sec:recdef}.
nipkow@8743
   213
nipkow@9493
   214
\begin{exercise}\label{ex:Tree}
nipkow@8743
   215
\input{Misc/document/Tree.tex}%
nipkow@8743
   216
\end{exercise}
nipkow@8743
   217
nipkow@9721
   218
\input{Misc/document/case_exprs.tex}
nipkow@8743
   219
nipkow@8743
   220
\begin{warn}
nipkow@8743
   221
  Induction is only allowed on free (or \isasymAnd-bound) variables that
nipkow@9644
   222
  should not occur among the assumptions of the subgoal; see
nipkow@10538
   223
  {\S}\ref{sec:ind-var-in-prems} for details. Case distinction
nipkow@8743
   224
  (\isa{case_tac}) works for arbitrary terms, which need to be
nipkow@8743
   225
  quoted if they are non-atomic.
nipkow@8743
   226
\end{warn}
nipkow@8743
   227
nipkow@8743
   228
nipkow@8743
   229
\input{Ifexpr/document/Ifexpr.tex}
nipkow@8743
   230
nipkow@8743
   231
\section{Some basic types}
nipkow@8743
   232
nipkow@8743
   233
nipkow@8743
   234
\subsection{Natural numbers}
nipkow@9644
   235
\label{sec:nat}
nipkow@8743
   236
\index{arithmetic|(}
nipkow@8743
   237
nipkow@8743
   238
\input{Misc/document/fakenat.tex}
nipkow@8743
   239
\input{Misc/document/natsum.tex}
nipkow@8743
   240
nipkow@8743
   241
\index{arithmetic|)}
nipkow@8743
   242
nipkow@8743
   243
nipkow@10396
   244
\subsection{Pairs}
nipkow@9541
   245
\input{Misc/document/pairs.tex}
nipkow@8743
   246
nipkow@8743
   247
\section{Definitions}
nipkow@8743
   248
\label{sec:Definitions}
nipkow@8743
   249
nipkow@8743
   250
A definition is simply an abbreviation, i.e.\ a new name for an existing
nipkow@8743
   251
construction. In particular, definitions cannot be recursive. Isabelle offers
nipkow@8743
   252
definitions on the level of types and terms. Those on the type level are
nipkow@8743
   253
called type synonyms, those on the term level are called (constant)
nipkow@8743
   254
definitions.
nipkow@8743
   255
nipkow@8743
   256
nipkow@8743
   257
\subsection{Type synonyms}
nipkow@8771
   258
\indexbold{type synonym}
nipkow@8743
   259
nipkow@8743
   260
Type synonyms are similar to those found in ML. Their syntax is fairly self
nipkow@8743
   261
explanatory:
nipkow@8743
   262
nipkow@8743
   263
\input{Misc/document/types.tex}%
nipkow@8743
   264
nipkow@8743
   265
Note that pattern-matching is not allowed, i.e.\ each definition must be of
nipkow@8743
   266
the form $f\,x@1\,\dots\,x@n~\isasymequiv~t$.
nipkow@10538
   267
Section~{\S}\ref{sec:Simplification} explains how definitions are used
nipkow@8743
   268
in proofs.
nipkow@8743
   269
nipkow@9844
   270
\input{Misc/document/prime_def.tex}
nipkow@8743
   271
nipkow@8743
   272
nipkow@8743
   273
\chapter{More Functional Programming}
nipkow@8743
   274
nipkow@8743
   275
The purpose of this chapter is to deepen the reader's understanding of the
nipkow@8771
   276
concepts encountered so far and to introduce advanced forms of datatypes and
nipkow@8771
   277
recursive functions. The first two sections give a structured presentation of
nipkow@10538
   278
theorem proving by simplification ({\S}\ref{sec:Simplification}) and discuss
nipkow@10538
   279
important heuristics for induction ({\S}\ref{sec:InductionHeuristics}). They can
nipkow@8771
   280
be skipped by readers less interested in proofs. They are followed by a case
nipkow@10538
   281
study, a compiler for expressions ({\S}\ref{sec:ExprCompiler}). Advanced
nipkow@8771
   282
datatypes, including those involving function spaces, are covered in
nipkow@10538
   283
{\S}\ref{sec:advanced-datatypes}, which closes with another case study, search
nipkow@8771
   284
trees (``tries'').  Finally we introduce \isacommand{recdef}, a very general
nipkow@8771
   285
form of recursive function definition which goes well beyond what
nipkow@10538
   286
\isacommand{primrec} allows ({\S}\ref{sec:recdef}).
nipkow@8743
   287
nipkow@8743
   288
nipkow@8743
   289
\section{Simplification}
nipkow@8743
   290
\label{sec:Simplification}
nipkow@8743
   291
\index{simplification|(}
nipkow@8743
   292
nipkow@9541
   293
So far we have proved our theorems by \isa{auto}, which ``simplifies''
nipkow@9541
   294
\emph{all} subgoals. In fact, \isa{auto} can do much more than that, except
nipkow@9541
   295
that it did not need to so far. However, when you go beyond toy examples, you
nipkow@9541
   296
need to understand the ingredients of \isa{auto}.  This section covers the
nipkow@9541
   297
method that \isa{auto} always applies first, namely simplification.
nipkow@8743
   298
nipkow@8743
   299
Simplification is one of the central theorem proving tools in Isabelle and
nipkow@8743
   300
many other systems. The tool itself is called the \bfindex{simplifier}. The
nipkow@9754
   301
purpose of this section is introduce the many features of the simplifier.
nipkow@9754
   302
Anybody intending to use HOL should read this section. Later on
nipkow@10538
   303
({\S}\ref{sec:simplification-II}) we explain some more advanced features and a
nipkow@9754
   304
little bit of how the simplifier works. The serious student should read that
nipkow@9754
   305
section as well, in particular in order to understand what happened if things
nipkow@9754
   306
do not simplify as expected.
nipkow@8743
   307
nipkow@9458
   308
\subsubsection{What is simplification}
nipkow@9458
   309
nipkow@8743
   310
In its most basic form, simplification means repeated application of
nipkow@8743
   311
equations from left to right. For example, taking the rules for \isa{\at}
nipkow@8743
   312
and applying them to the term \isa{[0,1] \at\ []} results in a sequence of
nipkow@8743
   313
simplification steps:
nipkow@8743
   314
\begin{ttbox}\makeatother
nipkow@8743
   315
(0#1#[]) @ []  \(\leadsto\)  0#((1#[]) @ [])  \(\leadsto\)  0#(1#([] @ []))  \(\leadsto\)  0#1#[]
nipkow@8743
   316
\end{ttbox}
nipkow@9933
   317
This is also known as \bfindex{term rewriting}\indexbold{rewriting} and the
nipkow@9933
   318
equations are referred to as \textbf{rewrite rules}\indexbold{rewrite rule}.
nipkow@9933
   319
``Rewriting'' is more honest than ``simplification'' because the terms do not
nipkow@9933
   320
necessarily become simpler in the process.
nipkow@8743
   321
nipkow@9844
   322
\input{Misc/document/simp.tex}
nipkow@8743
   323
nipkow@8743
   324
\index{simplification|)}
nipkow@8743
   325
nipkow@9844
   326
\input{Misc/document/Itrev.tex}
nipkow@8743
   327
nipkow@9493
   328
\begin{exercise}
nipkow@9493
   329
\input{Misc/document/Tree2.tex}%
nipkow@9493
   330
\end{exercise}
nipkow@8743
   331
nipkow@9844
   332
\input{CodeGen/document/CodeGen.tex}
nipkow@8743
   333
nipkow@8743
   334
nipkow@8743
   335
\section{Advanced datatypes}
nipkow@8743
   336
\label{sec:advanced-datatypes}
nipkow@8743
   337
\index{*datatype|(}
nipkow@8743
   338
\index{*primrec|(}
nipkow@8743
   339
%|)
nipkow@8743
   340
nipkow@8743
   341
This section presents advanced forms of \isacommand{datatype}s.
nipkow@8743
   342
nipkow@8743
   343
\subsection{Mutual recursion}
nipkow@8743
   344
\label{sec:datatype-mut-rec}
nipkow@8743
   345
nipkow@8743
   346
\input{Datatype/document/ABexpr.tex}
nipkow@8743
   347
nipkow@8743
   348
\subsection{Nested recursion}
nipkow@9644
   349
\label{sec:nested-datatype}
nipkow@8743
   350
nipkow@9644
   351
{\makeatother\input{Datatype/document/Nested.tex}}
nipkow@8743
   352
nipkow@8743
   353
nipkow@8743
   354
\subsection{The limits of nested recursion}
nipkow@8743
   355
nipkow@8743
   356
How far can we push nested recursion? By the unfolding argument above, we can
nipkow@8743
   357
reduce nested to mutual recursion provided the nested recursion only involves
nipkow@8743
   358
previously defined datatypes. This does not include functions:
nipkow@9792
   359
\begin{isabelle}
nipkow@9792
   360
\isacommand{datatype} t = C "t \isasymRightarrow\ bool"
nipkow@9792
   361
\end{isabelle}
nipkow@8743
   362
is a real can of worms: in HOL it must be ruled out because it requires a type
nipkow@8743
   363
\isa{t} such that \isa{t} and its power set \isa{t \isasymFun\ bool} have the
nipkow@8743
   364
same cardinality---an impossibility. For the same reason it is not possible
nipkow@8743
   365
to allow recursion involving the type \isa{set}, which is isomorphic to
nipkow@8743
   366
\isa{t \isasymFun\ bool}.
nipkow@8743
   367
nipkow@8743
   368
Fortunately, a limited form of recursion
nipkow@8743
   369
involving function spaces is permitted: the recursive type may occur on the
nipkow@8743
   370
right of a function arrow, but never on the left. Hence the above can of worms
nipkow@8743
   371
is ruled out but the following example of a potentially infinitely branching tree is
nipkow@8743
   372
accepted:
nipkow@8771
   373
\smallskip
nipkow@8743
   374
nipkow@8743
   375
\input{Datatype/document/Fundata.tex}
nipkow@8743
   376
\bigskip
nipkow@8743
   377
nipkow@9792
   378
If you need nested recursion on the left of a function arrow, there are
nipkow@9792
   379
alternatives to pure HOL: LCF~\cite{paulson87} is a logic where types like
nipkow@9792
   380
\begin{isabelle}
nipkow@9792
   381
\isacommand{datatype} lam = C "lam \isasymrightarrow\ lam"
nipkow@9792
   382
\end{isabelle}
nipkow@9792
   383
do indeed make sense (but note the intentionally different arrow
nipkow@9792
   384
\isa{\isasymrightarrow}). There is even a version of LCF on top of HOL,
nipkow@9792
   385
called HOLCF~\cite{MuellerNvOS99}.
nipkow@8743
   386
nipkow@8743
   387
\index{*primrec|)}
nipkow@8743
   388
\index{*datatype|)}
nipkow@8743
   389
nipkow@8743
   390
\subsection{Case study: Tries}
nipkow@8743
   391
nipkow@8743
   392
Tries are a classic search tree data structure~\cite{Knuth3-75} for fast
nipkow@8743
   393
indexing with strings. Figure~\ref{fig:trie} gives a graphical example of a
nipkow@8743
   394
trie containing the words ``all'', ``an'', ``ape'', ``can'', ``car'' and
nipkow@8743
   395
``cat''.  When searching a string in a trie, the letters of the string are
nipkow@8743
   396
examined sequentially. Each letter determines which subtrie to search next.
nipkow@8743
   397
In this case study we model tries as a datatype, define a lookup and an
nipkow@8743
   398
update function, and prove that they behave as expected.
nipkow@8743
   399
nipkow@8743
   400
\begin{figure}[htbp]
nipkow@8743
   401
\begin{center}
nipkow@8743
   402
\unitlength1mm
nipkow@8743
   403
\begin{picture}(60,30)
nipkow@8743
   404
\put( 5, 0){\makebox(0,0)[b]{l}}
nipkow@8743
   405
\put(25, 0){\makebox(0,0)[b]{e}}
nipkow@8743
   406
\put(35, 0){\makebox(0,0)[b]{n}}
nipkow@8743
   407
\put(45, 0){\makebox(0,0)[b]{r}}
nipkow@8743
   408
\put(55, 0){\makebox(0,0)[b]{t}}
nipkow@8743
   409
%
nipkow@8743
   410
\put( 5, 9){\line(0,-1){5}}
nipkow@8743
   411
\put(25, 9){\line(0,-1){5}}
nipkow@8743
   412
\put(44, 9){\line(-3,-2){9}}
nipkow@8743
   413
\put(45, 9){\line(0,-1){5}}
nipkow@8743
   414
\put(46, 9){\line(3,-2){9}}
nipkow@8743
   415
%
nipkow@8743
   416
\put( 5,10){\makebox(0,0)[b]{l}}
nipkow@8743
   417
\put(15,10){\makebox(0,0)[b]{n}}
nipkow@8743
   418
\put(25,10){\makebox(0,0)[b]{p}}
nipkow@8743
   419
\put(45,10){\makebox(0,0)[b]{a}}
nipkow@8743
   420
%
nipkow@8743
   421
\put(14,19){\line(-3,-2){9}}
nipkow@8743
   422
\put(15,19){\line(0,-1){5}}
nipkow@8743
   423
\put(16,19){\line(3,-2){9}}
nipkow@8743
   424
\put(45,19){\line(0,-1){5}}
nipkow@8743
   425
%
nipkow@8743
   426
\put(15,20){\makebox(0,0)[b]{a}}
nipkow@8743
   427
\put(45,20){\makebox(0,0)[b]{c}}
nipkow@8743
   428
%
nipkow@8743
   429
\put(30,30){\line(-3,-2){13}}
nipkow@8743
   430
\put(30,30){\line(3,-2){13}}
nipkow@8743
   431
\end{picture}
nipkow@8743
   432
\end{center}
nipkow@8743
   433
\caption{A sample trie}
nipkow@8743
   434
\label{fig:trie}
nipkow@8743
   435
\end{figure}
nipkow@8743
   436
nipkow@8743
   437
Proper tries associate some value with each string. Since the
nipkow@8743
   438
information is stored only in the final node associated with the string, many
nipkow@8743
   439
nodes do not carry any value. This distinction is captured by the
nipkow@8771
   440
following predefined datatype (from theory \isa{Option}, which is a parent
nipkow@8771
   441
of \isa{Main}):
nipkow@8771
   442
\smallskip
nipkow@8743
   443
\input{Trie/document/Option2.tex}
nipkow@8771
   444
\indexbold{*option}\indexbold{*None}\indexbold{*Some}%
nipkow@8743
   445
\input{Trie/document/Trie.tex}
nipkow@8743
   446
nipkow@8743
   447
\begin{exercise}
nipkow@8743
   448
  Write an improved version of \isa{update} that does not suffer from the
nipkow@8743
   449
  space leak in the version above. Prove the main theorem for your improved
nipkow@8743
   450
  \isa{update}.
nipkow@8743
   451
\end{exercise}
nipkow@8743
   452
nipkow@8743
   453
\begin{exercise}
nipkow@8743
   454
  Write a function to \emph{delete} entries from a trie. An easy solution is
nipkow@8743
   455
  a clever modification of \isa{update} which allows both insertion and
nipkow@8743
   456
  deletion with a single function.  Prove (a modified version of) the main
nipkow@8743
   457
  theorem above. Optimize you function such that it shrinks tries after
nipkow@8743
   458
  deletion, if possible.
nipkow@8743
   459
\end{exercise}
nipkow@8743
   460
nipkow@8743
   461
\section{Total recursive functions}
nipkow@8743
   462
\label{sec:recdef}
nipkow@8743
   463
\index{*recdef|(}
nipkow@8743
   464
nipkow@8743
   465
Although many total functions have a natural primitive recursive definition,
nipkow@8743
   466
this is not always the case. Arbitrary total recursive functions can be
nipkow@8743
   467
defined by means of \isacommand{recdef}: you can use full pattern-matching,
nipkow@8743
   468
recursion need not involve datatypes, and termination is proved by showing
nipkow@8743
   469
that the arguments of all recursive calls are smaller in a suitable (user
nipkow@10522
   470
supplied) sense. In this section we ristrict ourselves to measure functions;
nipkow@10538
   471
more advanced termination proofs are discussed in {\S}\ref{sec:beyond-measure}.
nipkow@8743
   472
nipkow@8743
   473
\subsection{Defining recursive functions}
nipkow@8743
   474
nipkow@8743
   475
\input{Recdef/document/examples.tex}
nipkow@8743
   476
nipkow@8743
   477
\subsection{Proving termination}
nipkow@8743
   478
nipkow@8743
   479
\input{Recdef/document/termination.tex}
nipkow@8743
   480
nipkow@8743
   481
\subsection{Simplification with recdef}
paulson@10181
   482
\label{sec:recdef-simplification}
nipkow@8743
   483
nipkow@8743
   484
\input{Recdef/document/simplification.tex}
nipkow@8743
   485
nipkow@8743
   486
\subsection{Induction}
nipkow@8743
   487
\index{induction!recursion|(}
nipkow@8743
   488
\index{recursion induction|(}
nipkow@8743
   489
nipkow@8743
   490
\input{Recdef/document/Induction.tex}
nipkow@9644
   491
\label{sec:recdef-induction}
nipkow@8743
   492
nipkow@8743
   493
\index{induction!recursion|)}
nipkow@8743
   494
\index{recursion induction|)}
nipkow@8743
   495
\index{*recdef|)}