doc-src/Intro/advanced.tex
author wenzelm
Mon, 28 Aug 2000 13:52:38 +0200
changeset 9695 ec7d7f877712
parent 5205 602354039306
child 14148 6580d374a509
permissions -rw-r--r--
proper setup of iman.sty/extra.sty/ttbox.sty;
lcp@105
     1
%% $Id$
lcp@284
     2
\part{Advanced Methods}
lcp@105
     3
Before continuing, it might be wise to try some of your own examples in
lcp@105
     4
Isabelle, reinforcing your knowledge of the basic functions.
lcp@105
     5
wenzelm@3103
     6
Look through {\em Isabelle's Object-Logics\/} and try proving some
wenzelm@3103
     7
simple theorems.  You probably should begin with first-order logic
paulson@5205
     8
(\texttt{FOL} or~\texttt{LK}).  Try working some of the examples provided,
paulson@5205
     9
and others from the literature.  Set theory~(\texttt{ZF}) and
paulson@5205
    10
Constructive Type Theory~(\texttt{CTT}) form a richer world for
wenzelm@3103
    11
mathematical reasoning and, again, many examples are in the
paulson@5205
    12
literature.  Higher-order logic~(\texttt{HOL}) is Isabelle's most
paulson@3485
    13
elaborate logic.  Its types and functions are identified with those of
wenzelm@3103
    14
the meta-logic.
lcp@105
    15
lcp@105
    16
Choose a logic that you already understand.  Isabelle is a proof
lcp@105
    17
tool, not a teaching tool; if you do not know how to do a particular proof
lcp@105
    18
on paper, then you certainly will not be able to do it on the machine.
lcp@105
    19
Even experienced users plan large proofs on paper.
lcp@105
    20
lcp@105
    21
We have covered only the bare essentials of Isabelle, but enough to perform
lcp@105
    22
substantial proofs.  By occasionally dipping into the {\em Reference
lcp@105
    23
Manual}, you can learn additional tactics, subgoal commands and tacticals.
lcp@105
    24
lcp@105
    25
lcp@105
    26
\section{Deriving rules in Isabelle}
lcp@105
    27
\index{rules!derived}
lcp@105
    28
A mathematical development goes through a progression of stages.  Each
lcp@105
    29
stage defines some concepts and derives rules about them.  We shall see how
lcp@105
    30
to derive rules, perhaps involving definitions, using Isabelle.  The
lcp@310
    31
following section will explain how to declare types, constants, rules and
lcp@105
    32
definitions.
lcp@105
    33
lcp@105
    34
lcp@296
    35
\subsection{Deriving a rule using tactics and meta-level assumptions} 
lcp@296
    36
\label{deriving-example}
lcp@310
    37
\index{examples!of deriving rules}\index{assumptions!of main goal}
lcp@296
    38
lcp@307
    39
The subgoal module supports the derivation of rules, as discussed in
paulson@5205
    40
\S\ref{deriving}.  When the \ttindex{Goal} command is supplied a formula of
paulson@5205
    41
the form $\List{\theta@1; \ldots; \theta@k} \Imp \phi$, there are two
paulson@5205
    42
possibilities:
paulson@5205
    43
\begin{itemize}
paulson@5205
    44
\item If all of the premises $\theta@1$, \ldots, $\theta@k$ are simple
paulson@5205
    45
  formulae{} (they do not involve the meta-connectives $\Forall$ or
paulson@5205
    46
  $\Imp$) then the command sets the goal to be 
paulson@5205
    47
  $\List{\theta@1; \ldots; \theta@k} \Imp \phi$ and returns the empty list.
paulson@5205
    48
\item If one or more premises involves the meta-connectives $\Forall$ or
paulson@5205
    49
  $\Imp$, then the command sets the goal to be $\phi$ and returns a list
paulson@5205
    50
  consisting of the theorems ${\theta@i\;[\theta@i]}$, for $i=1$, \ldots,~$k$.
paulson@5205
    51
  These meta-assumptions are also recorded internally, allowing
paulson@5205
    52
  \texttt{result} (which is called by \texttt{qed}) to discharge them in the
paulson@5205
    53
  original order.
paulson@5205
    54
\end{itemize}
paulson@5205
    55
Rules that discharge assumptions or introduce eigenvariables have complex
paulson@5205
    56
premises, and the second case applies.
lcp@105
    57
paulson@5205
    58
Let us derive $\conj$ elimination.  Until now, calling \texttt{Goal} has
paulson@5205
    59
returned an empty list, which we have ignored.  In this example, the list
paulson@5205
    60
contains the two premises of the rule, since one of them involves the $\Imp$
paulson@5205
    61
connective.  We bind them to the \ML\ identifiers \texttt{major} and {\tt
paulson@5205
    62
  minor}:\footnote{Some ML compilers will print a message such as {\em binding
paulson@5205
    63
    not exhaustive}.  This warns that \texttt{Goal} must return a 2-element
paulson@5205
    64
  list.  Otherwise, the pattern-match will fail; ML will raise exception
paulson@5205
    65
  \xdx{Match}.}
lcp@105
    66
\begin{ttbox}
paulson@5205
    67
val [major,minor] = Goal
lcp@105
    68
    "[| P&Q;  [| P; Q |] ==> R |] ==> R";
lcp@105
    69
{\out Level 0}
lcp@105
    70
{\out R}
lcp@105
    71
{\out  1. R}
lcp@105
    72
{\out val major = "P & Q  [P & Q]" : thm}
lcp@105
    73
{\out val minor = "[| P; Q |] ==> R  [[| P; Q |] ==> R]" : thm}
lcp@105
    74
\end{ttbox}
lcp@105
    75
Look at the minor premise, recalling that meta-level assumptions are
paulson@5205
    76
shown in brackets.  Using \texttt{minor}, we reduce $R$ to the subgoals
lcp@105
    77
$P$ and~$Q$:
lcp@105
    78
\begin{ttbox}
lcp@105
    79
by (resolve_tac [minor] 1);
lcp@105
    80
{\out Level 1}
lcp@105
    81
{\out R}
lcp@105
    82
{\out  1. P}
lcp@105
    83
{\out  2. Q}
lcp@105
    84
\end{ttbox}
lcp@105
    85
Deviating from~\S\ref{deriving}, we apply $({\conj}E1)$ forwards from the
lcp@105
    86
assumption $P\conj Q$ to obtain the theorem~$P\;[P\conj Q]$.
lcp@105
    87
\begin{ttbox}
lcp@105
    88
major RS conjunct1;
lcp@105
    89
{\out val it = "P  [P & Q]" : thm}
lcp@105
    90
\ttbreak
lcp@105
    91
by (resolve_tac [major RS conjunct1] 1);
lcp@105
    92
{\out Level 2}
lcp@105
    93
{\out R}
lcp@105
    94
{\out  1. Q}
lcp@105
    95
\end{ttbox}
lcp@105
    96
Similarly, we solve the subgoal involving~$Q$.
lcp@105
    97
\begin{ttbox}
lcp@105
    98
major RS conjunct2;
lcp@105
    99
{\out val it = "Q  [P & Q]" : thm}
lcp@105
   100
by (resolve_tac [major RS conjunct2] 1);
lcp@105
   101
{\out Level 3}
lcp@105
   102
{\out R}
lcp@105
   103
{\out No subgoals!}
lcp@105
   104
\end{ttbox}
lcp@105
   105
Calling \ttindex{topthm} returns the current proof state as a theorem.
wenzelm@3103
   106
Note that it contains assumptions.  Calling \ttindex{qed} discharges
wenzelm@3103
   107
the assumptions --- both occurrences of $P\conj Q$ are discharged as
wenzelm@3103
   108
one --- and makes the variables schematic.
lcp@105
   109
\begin{ttbox}
lcp@105
   110
topthm();
lcp@105
   111
{\out val it = "R  [P & Q, P & Q, [| P; Q |] ==> R]" : thm}
wenzelm@3103
   112
qed "conjE";
lcp@105
   113
{\out val conjE = "[| ?P & ?Q; [| ?P; ?Q |] ==> ?R |] ==> ?R" : thm}
lcp@105
   114
\end{ttbox}
lcp@105
   115
lcp@105
   116
lcp@105
   117
\subsection{Definitions and derived rules} \label{definitions}
lcp@310
   118
\index{rules!derived}\index{definitions!and derived rules|(}
lcp@310
   119
lcp@105
   120
Definitions are expressed as meta-level equalities.  Let us define negation
lcp@105
   121
and the if-and-only-if connective:
lcp@105
   122
\begin{eqnarray*}
lcp@105
   123
  \neg \Var{P}          & \equiv & \Var{P}\imp\bot \\
lcp@105
   124
  \Var{P}\bimp \Var{Q}  & \equiv & 
lcp@105
   125
                (\Var{P}\imp \Var{Q}) \conj (\Var{Q}\imp \Var{P})
lcp@105
   126
\end{eqnarray*}
lcp@331
   127
\index{meta-rewriting}%
lcp@105
   128
Isabelle permits {\bf meta-level rewriting} using definitions such as
lcp@105
   129
these.  {\bf Unfolding} replaces every instance
lcp@331
   130
of $\neg \Var{P}$ by the corresponding instance of ${\Var{P}\imp\bot}$.  For
lcp@105
   131
example, $\forall x.\neg (P(x)\conj \neg R(x,0))$ unfolds to
lcp@105
   132
\[ \forall x.(P(x)\conj R(x,0)\imp\bot)\imp\bot.  \]
lcp@105
   133
{\bf Folding} a definition replaces occurrences of the right-hand side by
lcp@105
   134
the left.  The occurrences need not be free in the entire formula.
lcp@105
   135
lcp@105
   136
When you define new concepts, you should derive rules asserting their
lcp@105
   137
abstract properties, and then forget their definitions.  This supports
lcp@331
   138
modularity: if you later change the definitions without affecting their
lcp@105
   139
abstract properties, then most of your proofs will carry through without
lcp@105
   140
change.  Indiscriminate unfolding makes a subgoal grow exponentially,
lcp@105
   141
becoming unreadable.
lcp@105
   142
lcp@105
   143
Taking this point of view, Isabelle does not unfold definitions
lcp@105
   144
automatically during proofs.  Rewriting must be explicit and selective.
lcp@105
   145
Isabelle provides tactics and meta-rules for rewriting, and a version of
paulson@5205
   146
the \texttt{Goal} command that unfolds the conclusion and premises of the rule
lcp@105
   147
being derived.
lcp@105
   148
lcp@105
   149
For example, the intuitionistic definition of negation given above may seem
lcp@105
   150
peculiar.  Using Isabelle, we shall derive pleasanter negation rules:
lcp@105
   151
\[  \infer[({\neg}I)]{\neg P}{\infer*{\bot}{[P]}}   \qquad
lcp@105
   152
    \infer[({\neg}E)]{Q}{\neg P & P}  \]
lcp@296
   153
This requires proving the following meta-formulae:
wenzelm@3103
   154
$$ (P\Imp\bot)    \Imp \neg P   \eqno(\neg I) $$
wenzelm@3103
   155
$$ \List{\neg P; P} \Imp Q.       \eqno(\neg E) $$
lcp@105
   156
lcp@105
   157
lcp@296
   158
\subsection{Deriving the $\neg$ introduction rule}
paulson@5205
   159
To derive $(\neg I)$, we may call \texttt{Goal} with the appropriate formula.
paulson@5205
   160
Again, the rule's premises involve a meta-connective, and \texttt{Goal}
paulson@5205
   161
returns one-element list.  We bind this list to the \ML\ identifier \texttt{prems}.
lcp@105
   162
\begin{ttbox}
paulson@5205
   163
val prems = Goal "(P ==> False) ==> ~P";
lcp@105
   164
{\out Level 0}
lcp@105
   165
{\out ~P}
lcp@105
   166
{\out  1. ~P}
lcp@105
   167
{\out val prems = ["P ==> False  [P ==> False]"] : thm list}
lcp@105
   168
\end{ttbox}
lcp@310
   169
Calling \ttindex{rewrite_goals_tac} with \tdx{not_def}, which is the
lcp@105
   170
definition of negation, unfolds that definition in the subgoals.  It leaves
lcp@105
   171
the main goal alone.
lcp@105
   172
\begin{ttbox}
lcp@105
   173
not_def;
lcp@105
   174
{\out val it = "~?P == ?P --> False" : thm}
lcp@105
   175
by (rewrite_goals_tac [not_def]);
lcp@105
   176
{\out Level 1}
lcp@105
   177
{\out ~P}
lcp@105
   178
{\out  1. P --> False}
lcp@105
   179
\end{ttbox}
lcp@310
   180
Using \tdx{impI} and the premise, we reduce subgoal~1 to a triviality:
lcp@105
   181
\begin{ttbox}
lcp@105
   182
by (resolve_tac [impI] 1);
lcp@105
   183
{\out Level 2}
lcp@105
   184
{\out ~P}
lcp@105
   185
{\out  1. P ==> False}
lcp@105
   186
\ttbreak
lcp@105
   187
by (resolve_tac prems 1);
lcp@105
   188
{\out Level 3}
lcp@105
   189
{\out ~P}
lcp@105
   190
{\out  1. P ==> P}
lcp@105
   191
\end{ttbox}
lcp@296
   192
The rest of the proof is routine.  Note the form of the final result.
lcp@105
   193
\begin{ttbox}
lcp@105
   194
by (assume_tac 1);
lcp@105
   195
{\out Level 4}
lcp@105
   196
{\out ~P}
lcp@105
   197
{\out No subgoals!}
lcp@296
   198
\ttbreak
wenzelm@3103
   199
qed "notI";
lcp@105
   200
{\out val notI = "(?P ==> False) ==> ~?P" : thm}
lcp@105
   201
\end{ttbox}
lcp@310
   202
\indexbold{*notI theorem}
lcp@105
   203
paulson@5205
   204
There is a simpler way of conducting this proof.  The \ttindex{Goalw}
paulson@5205
   205
command starts a backward proof, as does \texttt{Goal}, but it also
lcp@296
   206
unfolds definitions.  Thus there is no need to call
lcp@296
   207
\ttindex{rewrite_goals_tac}:
lcp@105
   208
\begin{ttbox}
paulson@5205
   209
val prems = Goalw [not_def]
lcp@105
   210
    "(P ==> False) ==> ~P";
lcp@105
   211
{\out Level 0}
lcp@105
   212
{\out ~P}
lcp@105
   213
{\out  1. P --> False}
lcp@105
   214
{\out val prems = ["P ==> False  [P ==> False]"] : thm list}
lcp@105
   215
\end{ttbox}
lcp@105
   216
lcp@105
   217
lcp@296
   218
\subsection{Deriving the $\neg$ elimination rule}
paulson@5205
   219
Let us derive the rule $(\neg E)$.  The proof follows that of~\texttt{conjE}
lcp@296
   220
above, with an additional step to unfold negation in the major premise.
paulson@5205
   221
The \texttt{Goalw} command is best for this: it unfolds definitions not only
paulson@5205
   222
in the conclusion but the premises.
lcp@105
   223
\begin{ttbox}
paulson@5205
   224
Goalw [not_def] "[| ~P;  P |] ==> R";
lcp@105
   225
{\out Level 0}
paulson@5205
   226
{\out [| ~ P; P |] ==> R}
paulson@5205
   227
{\out  1. [| P --> False; P |] ==> R}
paulson@5205
   228
\end{ttbox}
paulson@5205
   229
As the first step, we apply \tdx{FalseE}:
paulson@5205
   230
\begin{ttbox}
lcp@105
   231
by (resolve_tac [FalseE] 1);
lcp@105
   232
{\out Level 1}
paulson@5205
   233
{\out [| ~ P; P |] ==> R}
paulson@5205
   234
{\out  1. [| P --> False; P |] ==> False}
lcp@284
   235
\end{ttbox}
paulson@5205
   236
%
lcp@284
   237
Everything follows from falsity.  And we can prove falsity using the
lcp@284
   238
premises and Modus Ponens:
lcp@284
   239
\begin{ttbox}
paulson@5205
   240
by (eresolve_tac [mp] 1);
lcp@105
   241
{\out Level 2}
paulson@5205
   242
{\out [| ~ P; P |] ==> R}
paulson@5205
   243
{\out  1. P ==> P}
paulson@5205
   244
\ttbreak
paulson@5205
   245
by (assume_tac 1);
lcp@105
   246
{\out Level 3}
paulson@5205
   247
{\out [| ~ P; P |] ==> R}
lcp@105
   248
{\out No subgoals!}
paulson@5205
   249
\ttbreak
wenzelm@3103
   250
qed "notE";
lcp@105
   251
{\out val notE = "[| ~?P; ?P |] ==> ?R" : thm}
lcp@105
   252
\end{ttbox}
paulson@5205
   253
lcp@105
   254
lcp@105
   255
\medskip
paulson@5205
   256
\texttt{Goalw} unfolds definitions in the premises even when it has to return
paulson@5205
   257
them as a list.  Another way of unfolding definitions in a theorem is by
paulson@5205
   258
applying the function \ttindex{rewrite_rule}.
paulson@5205
   259
lcp@310
   260
\index{definitions!and derived rules|)}
lcp@105
   261
lcp@105
   262
lcp@284
   263
\section{Defining theories}\label{sec:defining-theories}
lcp@105
   264
\index{theories!defining|(}
lcp@310
   265
wenzelm@3103
   266
Isabelle makes no distinction between simple extensions of a logic ---
wenzelm@3103
   267
like specifying a type~$bool$ with constants~$true$ and~$false$ ---
wenzelm@3103
   268
and defining an entire logic.  A theory definition has a form like
lcp@105
   269
\begin{ttbox}
lcp@105
   270
\(T\) = \(S@1\) + \(\cdots\) + \(S@n\) +
lcp@105
   271
classes      {\it class declarations}
lcp@105
   272
default      {\it sort}
lcp@331
   273
types        {\it type declarations and synonyms}
wenzelm@3103
   274
arities      {\it type arity declarations}
lcp@105
   275
consts       {\it constant declarations}
wenzelm@3103
   276
syntax       {\it syntactic constant declarations}
wenzelm@3103
   277
translations {\it ast translation rules}
wenzelm@3103
   278
defs         {\it meta-logical definitions}
lcp@105
   279
rules        {\it rule declarations}
lcp@105
   280
end
lcp@105
   281
ML           {\it ML code}
lcp@105
   282
\end{ttbox}
lcp@105
   283
This declares the theory $T$ to extend the existing theories
wenzelm@3103
   284
$S@1$,~\ldots,~$S@n$.  It may introduce new classes, types, arities
wenzelm@3103
   285
(of existing types), constants and rules; it can specify the default
wenzelm@3103
   286
sort for type variables.  A constant declaration can specify an
wenzelm@3103
   287
associated concrete syntax.  The translations section specifies
wenzelm@3103
   288
rewrite rules on abstract syntax trees, handling notations and
paulson@5205
   289
abbreviations.  \index{*ML section} The \texttt{ML} section may contain
wenzelm@3103
   290
code to perform arbitrary syntactic transformations.  The main
wenzelm@3212
   291
declaration forms are discussed below.  There are some more sections
wenzelm@3212
   292
not presented here, the full syntax can be found in
wenzelm@3212
   293
\iflabelundefined{app:TheorySyntax}{an appendix of the {\it Reference
wenzelm@3212
   294
    Manual}}{App.\ts\ref{app:TheorySyntax}}.  Also note that
wenzelm@3212
   295
object-logics may add further theory sections, for example
wenzelm@9695
   296
\texttt{typedef}, \texttt{datatype} in HOL.
lcp@105
   297
wenzelm@3103
   298
All the declaration parts can be omitted or repeated and may appear in
wenzelm@3103
   299
any order, except that the {\ML} section must be last (after the {\tt
wenzelm@3103
   300
  end} keyword).  In the simplest case, $T$ is just the union of
wenzelm@3103
   301
$S@1$,~\ldots,~$S@n$.  New theories always extend one or more other
wenzelm@3103
   302
theories, inheriting their types, constants, syntax, etc.  The theory
paulson@3485
   303
\thydx{Pure} contains nothing but Isabelle's meta-logic.  The variant
wenzelm@3103
   304
\thydx{CPure} offers the more usual higher-order function application
wenzelm@9695
   305
syntax $t\,u@1\ldots\,u@n$ instead of $t(u@1,\ldots,u@n)$ in Pure.
lcp@105
   306
wenzelm@3103
   307
Each theory definition must reside in a separate file, whose name is
wenzelm@3103
   308
the theory's with {\tt.thy} appended.  Calling
wenzelm@3103
   309
\ttindexbold{use_thy}~{\tt"{\it T\/}"} reads the definition from {\it
wenzelm@3103
   310
  T}{\tt.thy}, writes a corresponding file of {\ML} code {\tt.{\it
wenzelm@3103
   311
    T}.thy.ML}, reads the latter file, and deletes it if no errors
wenzelm@3103
   312
occurred.  This declares the {\ML} structure~$T$, which contains a
paulson@5205
   313
component \texttt{thy} denoting the new theory, a component for each
wenzelm@3103
   314
rule, and everything declared in {\it ML code}.
lcp@105
   315
wenzelm@3103
   316
Errors may arise during the translation to {\ML} (say, a misspelled
wenzelm@3103
   317
keyword) or during creation of the new theory (say, a type error in a
paulson@5205
   318
rule).  But if all goes well, \texttt{use_thy} will finally read the file
wenzelm@3103
   319
{\it T}{\tt.ML} (if it exists).  This file typically contains proofs
paulson@3485
   320
that refer to the components of~$T$.  The structure is automatically
wenzelm@3103
   321
opened, so its components may be referred to by unqualified names,
paulson@5205
   322
e.g.\ just \texttt{thy} instead of $T$\texttt{.thy}.
lcp@105
   323
wenzelm@3103
   324
\ttindexbold{use_thy} automatically loads a theory's parents before
wenzelm@3103
   325
loading the theory itself.  When a theory file is modified, many
wenzelm@3103
   326
theories may have to be reloaded.  Isabelle records the modification
wenzelm@3103
   327
times and dependencies of theory files.  See
lcp@331
   328
\iflabelundefined{sec:reloading-theories}{the {\em Reference Manual\/}}%
lcp@331
   329
                 {\S\ref{sec:reloading-theories}}
lcp@296
   330
for more details.
lcp@296
   331
lcp@105
   332
lcp@1084
   333
\subsection{Declaring constants, definitions and rules}
lcp@310
   334
\indexbold{constants!declaring}\index{rules!declaring}
lcp@310
   335
lcp@1084
   336
Most theories simply declare constants, definitions and rules.  The {\bf
lcp@1084
   337
  constant declaration part} has the form
lcp@105
   338
\begin{ttbox}
clasohm@1387
   339
consts  \(c@1\) :: \(\tau@1\)
lcp@105
   340
        \vdots
clasohm@1387
   341
        \(c@n\) :: \(\tau@n\)
lcp@105
   342
\end{ttbox}
lcp@105
   343
where $c@1$, \ldots, $c@n$ are constants and $\tau@1$, \ldots, $\tau@n$ are
clasohm@1387
   344
types.  The types must be enclosed in quotation marks if they contain
paulson@5205
   345
user-declared infix type constructors like \texttt{*}.  Each
lcp@105
   346
constant must be enclosed in quotation marks unless it is a valid
lcp@105
   347
identifier.  To declare $c@1$, \ldots, $c@n$ as constants of type $\tau$,
lcp@105
   348
the $n$ declarations may be abbreviated to a single line:
lcp@105
   349
\begin{ttbox}
clasohm@1387
   350
        \(c@1\), \ldots, \(c@n\) :: \(\tau\)
lcp@105
   351
\end{ttbox}
lcp@105
   352
The {\bf rule declaration part} has the form
lcp@105
   353
\begin{ttbox}
lcp@105
   354
rules   \(id@1\) "\(rule@1\)"
lcp@105
   355
        \vdots
lcp@105
   356
        \(id@n\) "\(rule@n\)"
lcp@105
   357
\end{ttbox}
lcp@105
   358
where $id@1$, \ldots, $id@n$ are \ML{} identifiers and $rule@1$, \ldots,
lcp@284
   359
$rule@n$ are expressions of type~$prop$.  Each rule {\em must\/} be
lcp@284
   360
enclosed in quotation marks.
lcp@284
   361
wenzelm@3103
   362
\indexbold{definitions} The {\bf definition part} is similar, but with
paulson@5205
   363
the keyword \texttt{defs} instead of \texttt{rules}.  {\bf Definitions} are
wenzelm@3103
   364
rules of the form $s \equiv t$, and should serve only as
paulson@3485
   365
abbreviations.  The simplest form of a definition is $f \equiv t$,
paulson@3485
   366
where $f$ is a constant.  Also allowed are $\eta$-equivalent forms of
wenzelm@3106
   367
this, where the arguments of~$f$ appear applied on the left-hand side
wenzelm@3106
   368
of the equation instead of abstracted on the right-hand side.
lcp@1084
   369
wenzelm@3103
   370
Isabelle checks for common errors in definitions, such as extra
wenzelm@3103
   371
variables on the right-hand side, but currently does not a complete
paulson@3485
   372
test of well-formedness.  Thus determined users can write
wenzelm@3103
   373
non-conservative `definitions' by using mutual recursion, for example;
wenzelm@3103
   374
the consequences of such actions are their responsibility.
wenzelm@3103
   375
wenzelm@3103
   376
\index{examples!of theories} This example theory extends first-order
wenzelm@3103
   377
logic by declaring and defining two constants, {\em nand} and {\em
wenzelm@3103
   378
  xor}:
lcp@284
   379
\begin{ttbox}
lcp@105
   380
Gate = FOL +
clasohm@1387
   381
consts  nand,xor :: [o,o] => o
lcp@1084
   382
defs    nand_def "nand(P,Q) == ~(P & Q)"
lcp@105
   383
        xor_def  "xor(P,Q)  == P & ~Q | ~P & Q"
lcp@105
   384
end
lcp@105
   385
\end{ttbox}
lcp@105
   386
nipkow@1649
   387
Declaring and defining constants can be combined:
nipkow@1649
   388
\begin{ttbox}
nipkow@1649
   389
Gate = FOL +
nipkow@1649
   390
constdefs  nand :: [o,o] => o
nipkow@1649
   391
           "nand(P,Q) == ~(P & Q)"
nipkow@1649
   392
           xor  :: [o,o] => o
nipkow@1649
   393
           "xor(P,Q)  == P & ~Q | ~P & Q"
nipkow@1649
   394
end
nipkow@1649
   395
\end{ttbox}
paulson@5205
   396
\texttt{constdefs} generates the names \texttt{nand_def} and \texttt{xor_def}
paulson@3485
   397
automatically, which is why it is restricted to alphanumeric identifiers.  In
nipkow@1649
   398
general it has the form
nipkow@1649
   399
\begin{ttbox}
nipkow@1649
   400
constdefs  \(id@1\) :: \(\tau@1\)
nipkow@1649
   401
           "\(id@1 \equiv \dots\)"
nipkow@1649
   402
           \vdots
nipkow@1649
   403
           \(id@n\) :: \(\tau@n\)
nipkow@1649
   404
           "\(id@n \equiv \dots\)"
nipkow@1649
   405
\end{ttbox}
nipkow@1649
   406
nipkow@1649
   407
nipkow@1366
   408
\begin{warn}
nipkow@1366
   409
A common mistake when writing definitions is to introduce extra free variables
nipkow@1468
   410
on the right-hand side as in the following fictitious definition:
nipkow@1366
   411
\begin{ttbox}
nipkow@1366
   412
defs  prime_def "prime(p) == (m divides p) --> (m=1 | m=p)"
nipkow@1366
   413
\end{ttbox}
paulson@5205
   414
Isabelle rejects this ``definition'' because of the extra \texttt{m} on the
paulson@3485
   415
right-hand side, which would introduce an inconsistency.  What you should have
nipkow@1366
   416
written is
nipkow@1366
   417
\begin{ttbox}
nipkow@1366
   418
defs  prime_def "prime(p) == ALL m. (m divides p) --> (m=1 | m=p)"
nipkow@1366
   419
\end{ttbox}
nipkow@1366
   420
\end{warn}
lcp@105
   421
lcp@105
   422
\subsection{Declaring type constructors}
nipkow@303
   423
\indexbold{types!declaring}\indexbold{arities!declaring}
lcp@284
   424
%
lcp@105
   425
Types are composed of type variables and {\bf type constructors}.  Each
lcp@284
   426
type constructor takes a fixed number of arguments.  They are declared
lcp@284
   427
with an \ML-like syntax.  If $list$ takes one type argument, $tree$ takes
lcp@284
   428
two arguments and $nat$ takes no arguments, then these type constructors
lcp@284
   429
can be declared by
lcp@284
   430
\begin{ttbox}
lcp@284
   431
types 'a list
lcp@284
   432
      ('a,'b) tree
lcp@284
   433
      nat
lcp@284
   434
\end{ttbox}
lcp@105
   435
lcp@284
   436
The {\bf type declaration part} has the general form
lcp@105
   437
\begin{ttbox}
lcp@284
   438
types   \(tids@1\) \(id@1\)
lcp@105
   439
        \vdots
wenzelm@841
   440
        \(tids@n\) \(id@n\)
lcp@105
   441
\end{ttbox}
lcp@284
   442
where $id@1$, \ldots, $id@n$ are identifiers and $tids@1$, \ldots, $tids@n$
lcp@284
   443
are type argument lists as shown in the example above.  It declares each
lcp@284
   444
$id@i$ as a type constructor with the specified number of argument places.
lcp@105
   445
lcp@105
   446
The {\bf arity declaration part} has the form
lcp@105
   447
\begin{ttbox}
lcp@105
   448
arities \(tycon@1\) :: \(arity@1\)
lcp@105
   449
        \vdots
lcp@105
   450
        \(tycon@n\) :: \(arity@n\)
lcp@105
   451
\end{ttbox}
lcp@105
   452
where $tycon@1$, \ldots, $tycon@n$ are identifiers and $arity@1$, \ldots,
lcp@105
   453
$arity@n$ are arities.  Arity declarations add arities to existing
lcp@296
   454
types; they do not declare the types themselves.
lcp@105
   455
In the simplest case, for an 0-place type constructor, an arity is simply
lcp@105
   456
the type's class.  Let us declare a type~$bool$ of class $term$, with
lcp@284
   457
constants $tt$ and~$ff$.  (In first-order logic, booleans are
lcp@284
   458
distinct from formulae, which have type $o::logic$.)
lcp@105
   459
\index{examples!of theories}
lcp@284
   460
\begin{ttbox}
lcp@105
   461
Bool = FOL +
lcp@284
   462
types   bool
lcp@105
   463
arities bool    :: term
clasohm@1387
   464
consts  tt,ff   :: bool
lcp@105
   465
end
lcp@105
   466
\end{ttbox}
lcp@296
   467
A $k$-place type constructor may have arities of the form
lcp@296
   468
$(s@1,\ldots,s@k)c$, where $s@1,\ldots,s@n$ are sorts and $c$ is a class.
lcp@296
   469
Each sort specifies a type argument; it has the form $\{c@1,\ldots,c@m\}$,
lcp@296
   470
where $c@1$, \dots,~$c@m$ are classes.  Mostly we deal with singleton
lcp@296
   471
sorts, and may abbreviate them by dropping the braces.  The arity
lcp@296
   472
$(term)term$ is short for $(\{term\})term$.  Recall the discussion in
lcp@296
   473
\S\ref{polymorphic}.
lcp@105
   474
lcp@105
   475
A type constructor may be overloaded (subject to certain conditions) by
lcp@296
   476
appearing in several arity declarations.  For instance, the function type
lcp@331
   477
constructor~$fun$ has the arity $(logic,logic)logic$; in higher-order
lcp@105
   478
logic, it is declared also to have arity $(term,term)term$.
lcp@105
   479
paulson@5205
   480
Theory \texttt{List} declares the 1-place type constructor $list$, gives
paulson@5205
   481
it the arity $(term)term$, and declares constants $Nil$ and $Cons$ with
lcp@296
   482
polymorphic types:%
paulson@5205
   483
\footnote{In the \texttt{consts} part, type variable {\tt'a} has the default
paulson@5205
   484
  sort, which is \texttt{term}.  See the {\em Reference Manual\/}
lcp@296
   485
\iflabelundefined{sec:ref-defining-theories}{}%
lcp@296
   486
{(\S\ref{sec:ref-defining-theories})} for more information.}
lcp@105
   487
\index{examples!of theories}
lcp@284
   488
\begin{ttbox}
lcp@105
   489
List = FOL +
lcp@284
   490
types   'a list
lcp@105
   491
arities list    :: (term)term
clasohm@1387
   492
consts  Nil     :: 'a list
clasohm@1387
   493
        Cons    :: ['a, 'a list] => 'a list
lcp@105
   494
end
lcp@105
   495
\end{ttbox}
lcp@284
   496
Multiple arity declarations may be abbreviated to a single line:
lcp@105
   497
\begin{ttbox}
lcp@105
   498
arities \(tycon@1\), \ldots, \(tycon@n\) :: \(arity\)
lcp@105
   499
\end{ttbox}
lcp@105
   500
wenzelm@3103
   501
%\begin{warn}
wenzelm@3103
   502
%Arity declarations resemble constant declarations, but there are {\it no\/}
wenzelm@3103
   503
%quotation marks!  Types and rules must be quoted because the theory
wenzelm@3103
   504
%translator passes them verbatim to the {\ML} output file.
wenzelm@3103
   505
%\end{warn}
lcp@105
   506
lcp@331
   507
\subsection{Type synonyms}\indexbold{type synonyms}
nipkow@303
   508
Isabelle supports {\bf type synonyms} ({\bf abbreviations}) which are similar
lcp@307
   509
to those found in \ML.  Such synonyms are defined in the type declaration part
nipkow@303
   510
and are fairly self explanatory:
nipkow@303
   511
\begin{ttbox}
clasohm@1387
   512
types gate       = [o,o] => o
clasohm@1387
   513
      'a pred    = 'a => o
clasohm@1387
   514
      ('a,'b)nuf = 'b => 'a
nipkow@303
   515
\end{ttbox}
nipkow@303
   516
Type declarations and synonyms can be mixed arbitrarily:
nipkow@303
   517
\begin{ttbox}
nipkow@303
   518
types nat
clasohm@1387
   519
      'a stream = nat => 'a
clasohm@1387
   520
      signal    = nat stream
nipkow@303
   521
      'a list
nipkow@303
   522
\end{ttbox}
wenzelm@3103
   523
A synonym is merely an abbreviation for some existing type expression.
wenzelm@3103
   524
Hence synonyms may not be recursive!  Internally all synonyms are
wenzelm@3103
   525
fully expanded.  As a consequence Isabelle output never contains
wenzelm@3103
   526
synonyms.  Their main purpose is to improve the readability of theory
wenzelm@3103
   527
definitions.  Synonyms can be used just like any other type:
nipkow@303
   528
\begin{ttbox}
clasohm@1387
   529
consts and,or :: gate
clasohm@1387
   530
       negate :: signal => signal
nipkow@303
   531
\end{ttbox}
nipkow@303
   532
lcp@348
   533
\subsection{Infix and mixfix operators}
lcp@310
   534
\index{infixes}\index{examples!of theories}
lcp@310
   535
lcp@310
   536
Infix or mixfix syntax may be attached to constants.  Consider the
lcp@310
   537
following theory:
lcp@284
   538
\begin{ttbox}
lcp@105
   539
Gate2 = FOL +
clasohm@1387
   540
consts  "~&"     :: [o,o] => o         (infixl 35)
clasohm@1387
   541
        "#"      :: [o,o] => o         (infixl 30)
lcp@1084
   542
defs    nand_def "P ~& Q == ~(P & Q)"    
lcp@105
   543
        xor_def  "P # Q  == P & ~Q | ~P & Q"
lcp@105
   544
end
lcp@105
   545
\end{ttbox}
lcp@310
   546
The constant declaration part declares two left-associating infix operators
lcp@310
   547
with their priorities, or precedences; they are $\nand$ of priority~35 and
lcp@310
   548
$\xor$ of priority~30.  Hence $P \xor Q \xor R$ is parsed as $(P\xor Q)
lcp@310
   549
\xor R$ and $P \xor Q \nand R$ as $P \xor (Q \nand R)$.  Note the quotation
lcp@310
   550
marks in \verb|"~&"| and \verb|"#"|.
lcp@105
   551
lcp@105
   552
The constants \hbox{\verb|op ~&|} and \hbox{\verb|op #|} are declared
lcp@105
   553
automatically, just as in \ML.  Hence you may write propositions like
lcp@105
   554
\verb|op #(True) == op ~&(True)|, which asserts that the functions $\lambda
lcp@105
   555
Q.True \xor Q$ and $\lambda Q.True \nand Q$ are identical.
lcp@105
   556
wenzelm@3212
   557
\medskip Infix syntax and constant names may be also specified
paulson@3485
   558
independently.  For example, consider this version of $\nand$:
wenzelm@3212
   559
\begin{ttbox}
wenzelm@3212
   560
consts  nand     :: [o,o] => o         (infixl "~&" 35)
wenzelm@3212
   561
\end{ttbox}
wenzelm@3212
   562
lcp@310
   563
\bigskip\index{mixfix declarations}
lcp@310
   564
{\bf Mixfix} operators may have arbitrary context-free syntaxes.  Let us
lcp@310
   565
add a line to the constant declaration part:
lcp@284
   566
\begin{ttbox}
clasohm@1387
   567
        If :: [o,o,o] => o       ("if _ then _ else _")
lcp@105
   568
\end{ttbox}
lcp@310
   569
This declares a constant $If$ of type $[o,o,o] \To o$ with concrete syntax {\tt
paulson@5205
   570
  if~$P$ then~$Q$ else~$R$} as well as \texttt{If($P$,$Q$,$R$)}.  Underscores
lcp@310
   571
denote argument positions.  
lcp@105
   572
paulson@5205
   573
The declaration above does not allow the \texttt{if}-\texttt{then}-{\tt
wenzelm@3103
   574
  else} construct to be printed split across several lines, even if it
wenzelm@3103
   575
is too long to fit on one line.  Pretty-printing information can be
wenzelm@3103
   576
added to specify the layout of mixfix operators.  For details, see
lcp@310
   577
\iflabelundefined{Defining-Logics}%
lcp@310
   578
    {the {\it Reference Manual}, chapter `Defining Logics'}%
lcp@310
   579
    {Chap.\ts\ref{Defining-Logics}}.
lcp@310
   580
lcp@310
   581
Mixfix declarations can be annotated with priorities, just like
lcp@105
   582
infixes.  The example above is just a shorthand for
lcp@284
   583
\begin{ttbox}
clasohm@1387
   584
        If :: [o,o,o] => o       ("if _ then _ else _" [0,0,0] 1000)
lcp@105
   585
\end{ttbox}
lcp@310
   586
The numeric components determine priorities.  The list of integers
lcp@310
   587
defines, for each argument position, the minimal priority an expression
lcp@310
   588
at that position must have.  The final integer is the priority of the
lcp@105
   589
construct itself.  In the example above, any argument expression is
lcp@310
   590
acceptable because priorities are non-negative, and conditionals may
lcp@310
   591
appear everywhere because 1000 is the highest priority.  On the other
lcp@310
   592
hand, the declaration
lcp@284
   593
\begin{ttbox}
clasohm@1387
   594
        If :: [o,o,o] => o       ("if _ then _ else _" [100,0,0] 99)
lcp@105
   595
\end{ttbox}
lcp@284
   596
defines concrete syntax for a conditional whose first argument cannot have
paulson@5205
   597
the form \texttt{if~$P$ then~$Q$ else~$R$} because it must have a priority
lcp@310
   598
of at least~100.  We may of course write
lcp@284
   599
\begin{quote}\tt
lcp@284
   600
if (if $P$ then $Q$ else $R$) then $S$ else $T$
lcp@156
   601
\end{quote}
lcp@310
   602
because expressions in parentheses have maximal priority.  
lcp@105
   603
lcp@105
   604
Binary type constructors, like products and sums, may also be declared as
lcp@105
   605
infixes.  The type declaration below introduces a type constructor~$*$ with
lcp@105
   606
infix notation $\alpha*\beta$, together with the mixfix notation
lcp@1084
   607
${<}\_,\_{>}$ for pairs.  We also see a rule declaration part.
lcp@310
   608
\index{examples!of theories}\index{mixfix declarations}
lcp@105
   609
\begin{ttbox}
lcp@105
   610
Prod = FOL +
lcp@284
   611
types   ('a,'b) "*"                           (infixl 20)
lcp@105
   612
arities "*"     :: (term,term)term
lcp@105
   613
consts  fst     :: "'a * 'b => 'a"
lcp@105
   614
        snd     :: "'a * 'b => 'b"
lcp@105
   615
        Pair    :: "['a,'b] => 'a * 'b"       ("(1<_,/_>)")
lcp@105
   616
rules   fst     "fst(<a,b>) = a"
lcp@105
   617
        snd     "snd(<a,b>) = b"
lcp@105
   618
end
lcp@105
   619
\end{ttbox}
lcp@105
   620
lcp@105
   621
\begin{warn}
paulson@5205
   622
  The name of the type constructor is~\texttt{*} and not \texttt{op~*}, as
wenzelm@3103
   623
  it would be in the case of an infix constant.  Only infix type
paulson@5205
   624
  constructors can have symbolic names like~\texttt{*}.  General mixfix
paulson@5205
   625
  syntax for types may be introduced via appropriate \texttt{syntax}
wenzelm@3103
   626
  declarations.
lcp@105
   627
\end{warn}
lcp@105
   628
lcp@105
   629
lcp@105
   630
\subsection{Overloading}
lcp@105
   631
\index{overloading}\index{examples!of theories}
lcp@105
   632
The {\bf class declaration part} has the form
lcp@105
   633
\begin{ttbox}
lcp@105
   634
classes \(id@1\) < \(c@1\)
lcp@105
   635
        \vdots
lcp@105
   636
        \(id@n\) < \(c@n\)
lcp@105
   637
\end{ttbox}
lcp@105
   638
where $id@1$, \ldots, $id@n$ are identifiers and $c@1$, \ldots, $c@n$ are
lcp@105
   639
existing classes.  It declares each $id@i$ as a new class, a subclass
lcp@105
   640
of~$c@i$.  In the general case, an identifier may be declared to be a
lcp@105
   641
subclass of $k$ existing classes:
lcp@105
   642
\begin{ttbox}
lcp@105
   643
        \(id\) < \(c@1\), \ldots, \(c@k\)
lcp@105
   644
\end{ttbox}
lcp@296
   645
Type classes allow constants to be overloaded.  As suggested in
lcp@307
   646
\S\ref{polymorphic}, let us define the class $arith$ of arithmetic
lcp@296
   647
types with the constants ${+} :: [\alpha,\alpha]\To \alpha$ and $0,1 {::}
lcp@296
   648
\alpha$, for $\alpha{::}arith$.  We introduce $arith$ as a subclass of
lcp@296
   649
$term$ and add the three polymorphic constants of this class.
lcp@310
   650
\index{examples!of theories}\index{constants!overloaded}
lcp@105
   651
\begin{ttbox}
lcp@105
   652
Arith = FOL +
lcp@105
   653
classes arith < term
clasohm@1387
   654
consts  "0"     :: 'a::arith                  ("0")
clasohm@1387
   655
        "1"     :: 'a::arith                  ("1")
clasohm@1387
   656
        "+"     :: ['a::arith,'a] => 'a       (infixl 60)
lcp@105
   657
end
lcp@105
   658
\end{ttbox}
lcp@105
   659
No rules are declared for these constants: we merely introduce their
lcp@105
   660
names without specifying properties.  On the other hand, classes
lcp@105
   661
with rules make it possible to prove {\bf generic} theorems.  Such
lcp@105
   662
theorems hold for all instances, all types in that class.
lcp@105
   663
lcp@105
   664
We can now obtain distinct versions of the constants of $arith$ by
lcp@105
   665
declaring certain types to be of class $arith$.  For example, let us
lcp@105
   666
declare the 0-place type constructors $bool$ and $nat$:
lcp@105
   667
\index{examples!of theories}
lcp@105
   668
\begin{ttbox}
lcp@105
   669
BoolNat = Arith +
lcp@348
   670
types   bool  nat
lcp@348
   671
arities bool, nat   :: arith
clasohm@1387
   672
consts  Suc         :: nat=>nat
lcp@284
   673
\ttbreak
lcp@105
   674
rules   add0        "0 + n = n::nat"
lcp@105
   675
        addS        "Suc(m)+n = Suc(m+n)"
lcp@105
   676
        nat1        "1 = Suc(0)"
lcp@105
   677
        or0l        "0 + x = x::bool"
lcp@105
   678
        or0r        "x + 0 = x::bool"
lcp@105
   679
        or1l        "1 + x = 1::bool"
lcp@105
   680
        or1r        "x + 1 = 1::bool"
lcp@105
   681
end
lcp@105
   682
\end{ttbox}
lcp@105
   683
Because $nat$ and $bool$ have class $arith$, we can use $0$, $1$ and $+$ at
lcp@105
   684
either type.  The type constraints in the axioms are vital.  Without
lcp@105
   685
constraints, the $x$ in $1+x = x$ would have type $\alpha{::}arith$
lcp@105
   686
and the axiom would hold for any type of class $arith$.  This would
lcp@284
   687
collapse $nat$ to a trivial type:
lcp@105
   688
\[ Suc(1) = Suc(0+1) = Suc(0)+1 = 1+1 = 1! \]
lcp@105
   689
lcp@296
   690
lcp@296
   691
\section{Theory example: the natural numbers}
lcp@296
   692
lcp@296
   693
We shall now work through a small example of formalized mathematics
lcp@105
   694
demonstrating many of the theory extension features.
lcp@105
   695
lcp@105
   696
lcp@105
   697
\subsection{Extending first-order logic with the natural numbers}
lcp@105
   698
\index{examples!of theories}
lcp@105
   699
lcp@284
   700
Section\ts\ref{sec:logical-syntax} has formalized a first-order logic,
lcp@284
   701
including a type~$nat$ and the constants $0::nat$ and $Suc::nat\To nat$.
lcp@284
   702
Let us introduce the Peano axioms for mathematical induction and the
lcp@310
   703
freeness of $0$ and~$Suc$:\index{axioms!Peano}
lcp@307
   704
\[ \vcenter{\infer[(induct)]{P[n/x]}{P[0/x] & \infer*{P[Suc(x)/x]}{[P]}}}
lcp@105
   705
 \qquad \parbox{4.5cm}{provided $x$ is not free in any assumption except~$P$}
lcp@105
   706
\]
lcp@105
   707
\[ \infer[(Suc\_inject)]{m=n}{Suc(m)=Suc(n)} \qquad
lcp@105
   708
   \infer[(Suc\_neq\_0)]{R}{Suc(m)=0}
lcp@105
   709
\]
lcp@105
   710
Mathematical induction asserts that $P(n)$ is true, for any $n::nat$,
lcp@105
   711
provided $P(0)$ holds and that $P(x)$ implies $P(Suc(x))$ for all~$x$.
lcp@105
   712
Some authors express the induction step as $\forall x. P(x)\imp P(Suc(x))$.
lcp@105
   713
To avoid making induction require the presence of other connectives, we
lcp@105
   714
formalize mathematical induction as
lcp@105
   715
$$ \List{P(0); \Forall x. P(x)\Imp P(Suc(x))} \Imp P(n). \eqno(induct) $$
lcp@105
   716
lcp@105
   717
\noindent
lcp@105
   718
Similarly, to avoid expressing the other rules using~$\forall$, $\imp$
lcp@105
   719
and~$\neg$, we take advantage of the meta-logic;\footnote
lcp@105
   720
{On the other hand, the axioms $Suc(m)=Suc(n) \bimp m=n$
lcp@105
   721
and $\neg(Suc(m)=0)$ are logically equivalent to those given, and work
lcp@105
   722
better with Isabelle's simplifier.} 
lcp@105
   723
$(Suc\_neq\_0)$ is
lcp@105
   724
an elimination rule for $Suc(m)=0$:
lcp@105
   725
$$ Suc(m)=Suc(n) \Imp m=n  \eqno(Suc\_inject) $$
lcp@105
   726
$$ Suc(m)=0      \Imp R    \eqno(Suc\_neq\_0) $$
lcp@105
   727
lcp@105
   728
\noindent
lcp@105
   729
We shall also define a primitive recursion operator, $rec$.  Traditionally,
lcp@105
   730
primitive recursion takes a natural number~$a$ and a 2-place function~$f$,
lcp@105
   731
and obeys the equations
lcp@105
   732
\begin{eqnarray*}
lcp@105
   733
  rec(0,a,f)            & = & a \\
lcp@105
   734
  rec(Suc(m),a,f)       & = & f(m, rec(m,a,f))
lcp@105
   735
\end{eqnarray*}
lcp@105
   736
Addition, defined by $m+n \equiv rec(m,n,\lambda x\,y.Suc(y))$,
lcp@105
   737
should satisfy
lcp@105
   738
\begin{eqnarray*}
lcp@105
   739
  0+n      & = & n \\
lcp@105
   740
  Suc(m)+n & = & Suc(m+n)
lcp@105
   741
\end{eqnarray*}
lcp@296
   742
Primitive recursion appears to pose difficulties: first-order logic has no
lcp@296
   743
function-valued expressions.  We again take advantage of the meta-logic,
lcp@296
   744
which does have functions.  We also generalise primitive recursion to be
lcp@105
   745
polymorphic over any type of class~$term$, and declare the addition
lcp@105
   746
function:
lcp@105
   747
\begin{eqnarray*}
lcp@105
   748
  rec   & :: & [nat, \alpha{::}term, [nat,\alpha]\To\alpha] \To\alpha \\
lcp@105
   749
  +     & :: & [nat,nat]\To nat 
lcp@105
   750
\end{eqnarray*}
lcp@105
   751
lcp@105
   752
lcp@105
   753
\subsection{Declaring the theory to Isabelle}
lcp@105
   754
\index{examples!of theories}
lcp@310
   755
Let us create the theory \thydx{Nat} starting from theory~\verb$FOL$,
lcp@105
   756
which contains only classical logic with no natural numbers.  We declare
lcp@307
   757
the 0-place type constructor $nat$ and the associated constants.  Note that
lcp@307
   758
the constant~0 requires a mixfix annotation because~0 is not a legal
lcp@307
   759
identifier, and could not otherwise be written in terms:
lcp@310
   760
\begin{ttbox}\index{mixfix declarations}
lcp@105
   761
Nat = FOL +
lcp@284
   762
types   nat
lcp@105
   763
arities nat         :: term
clasohm@1387
   764
consts  "0"         :: nat                              ("0")
clasohm@1387
   765
        Suc         :: nat=>nat
clasohm@1387
   766
        rec         :: [nat, 'a, [nat,'a]=>'a] => 'a
clasohm@1387
   767
        "+"         :: [nat, nat] => nat                (infixl 60)
lcp@296
   768
rules   Suc_inject  "Suc(m)=Suc(n) ==> m=n"
lcp@105
   769
        Suc_neq_0   "Suc(m)=0      ==> R"
lcp@296
   770
        induct      "[| P(0);  !!x. P(x) ==> P(Suc(x)) |]  ==> P(n)"
lcp@105
   771
        rec_0       "rec(0,a,f) = a"
lcp@105
   772
        rec_Suc     "rec(Suc(m), a, f) = f(m, rec(m,a,f))"
lcp@296
   773
        add_def     "m+n == rec(m, n, \%x y. Suc(y))"
lcp@105
   774
end
lcp@105
   775
\end{ttbox}
paulson@5205
   776
In axiom \texttt{add_def}, recall that \verb|%| stands for~$\lambda$.
paulson@5205
   777
Loading this theory file creates the \ML\ structure \texttt{Nat}, which
wenzelm@3103
   778
contains the theory and axioms.
lcp@296
   779
lcp@296
   780
\subsection{Proving some recursion equations}
paulson@5205
   781
Theory \texttt{FOL/ex/Nat} contains proofs involving this theory of the
lcp@105
   782
natural numbers.  As a trivial example, let us derive recursion equations
lcp@105
   783
for \verb$+$.  Here is the zero case:
lcp@284
   784
\begin{ttbox}
paulson@5205
   785
Goalw [add_def] "0+n = n";
lcp@105
   786
{\out Level 0}
lcp@105
   787
{\out 0 + n = n}
lcp@284
   788
{\out  1. rec(0,n,\%x y. Suc(y)) = n}
lcp@105
   789
\ttbreak
lcp@105
   790
by (resolve_tac [rec_0] 1);
lcp@105
   791
{\out Level 1}
lcp@105
   792
{\out 0 + n = n}
lcp@105
   793
{\out No subgoals!}
wenzelm@3103
   794
qed "add_0";
lcp@284
   795
\end{ttbox}
lcp@105
   796
And here is the successor case:
lcp@284
   797
\begin{ttbox}
paulson@5205
   798
Goalw [add_def] "Suc(m)+n = Suc(m+n)";
lcp@105
   799
{\out Level 0}
lcp@105
   800
{\out Suc(m) + n = Suc(m + n)}
lcp@284
   801
{\out  1. rec(Suc(m),n,\%x y. Suc(y)) = Suc(rec(m,n,\%x y. Suc(y)))}
lcp@105
   802
\ttbreak
lcp@105
   803
by (resolve_tac [rec_Suc] 1);
lcp@105
   804
{\out Level 1}
lcp@105
   805
{\out Suc(m) + n = Suc(m + n)}
lcp@105
   806
{\out No subgoals!}
wenzelm@3103
   807
qed "add_Suc";
lcp@284
   808
\end{ttbox}
lcp@105
   809
The induction rule raises some complications, which are discussed next.
lcp@105
   810
\index{theories!defining|)}
lcp@105
   811
lcp@105
   812
lcp@105
   813
\section{Refinement with explicit instantiation}
lcp@310
   814
\index{resolution!with instantiation}
lcp@310
   815
\index{instantiation|(}
lcp@310
   816
lcp@105
   817
In order to employ mathematical induction, we need to refine a subgoal by
lcp@105
   818
the rule~$(induct)$.  The conclusion of this rule is $\Var{P}(\Var{n})$,
lcp@105
   819
which is highly ambiguous in higher-order unification.  It matches every
lcp@105
   820
way that a formula can be regarded as depending on a subterm of type~$nat$.
lcp@105
   821
To get round this problem, we could make the induction rule conclude
lcp@105
   822
$\forall n.\Var{P}(n)$ --- but putting a subgoal into this form requires
lcp@105
   823
refinement by~$(\forall E)$, which is equally hard!
lcp@105
   824
paulson@5205
   825
The tactic \texttt{res_inst_tac}, like \texttt{resolve_tac}, refines a subgoal by
lcp@105
   826
a rule.  But it also accepts explicit instantiations for the rule's
lcp@105
   827
schematic variables.  
lcp@105
   828
\begin{description}
lcp@310
   829
\item[\ttindex{res_inst_tac} {\it insts} {\it thm} {\it i}]
lcp@105
   830
instantiates the rule {\it thm} with the instantiations {\it insts}, and
lcp@105
   831
then performs resolution on subgoal~$i$.
lcp@105
   832
lcp@310
   833
\item[\ttindex{eres_inst_tac}] 
lcp@310
   834
and \ttindex{dres_inst_tac} are similar, but perform elim-resolution
lcp@105
   835
and destruct-resolution, respectively.
lcp@105
   836
\end{description}
lcp@105
   837
The list {\it insts} consists of pairs $[(v@1,e@1), \ldots, (v@n,e@n)]$,
lcp@105
   838
where $v@1$, \ldots, $v@n$ are names of schematic variables in the rule ---
lcp@307
   839
with no leading question marks! --- and $e@1$, \ldots, $e@n$ are
lcp@105
   840
expressions giving their instantiations.  The expressions are type-checked
lcp@105
   841
in the context of a particular subgoal: free variables receive the same
lcp@105
   842
types as they have in the subgoal, and parameters may appear.  Type
lcp@105
   843
variable instantiations may appear in~{\it insts}, but they are seldom
paulson@5205
   844
required: \texttt{res_inst_tac} instantiates type variables automatically
lcp@105
   845
whenever the type of~$e@i$ is an instance of the type of~$\Var{v@i}$.
lcp@105
   846
lcp@105
   847
\subsection{A simple proof by induction}
lcp@310
   848
\index{examples!of induction}
lcp@105
   849
Let us prove that no natural number~$k$ equals its own successor.  To
lcp@105
   850
use~$(induct)$, we instantiate~$\Var{n}$ to~$k$; Isabelle finds a good
lcp@105
   851
instantiation for~$\Var{P}$.
lcp@284
   852
\begin{ttbox}
paulson@5205
   853
Goal "~ (Suc(k) = k)";
lcp@105
   854
{\out Level 0}
lcp@459
   855
{\out Suc(k) ~= k}
lcp@459
   856
{\out  1. Suc(k) ~= k}
lcp@105
   857
\ttbreak
lcp@105
   858
by (res_inst_tac [("n","k")] induct 1);
lcp@105
   859
{\out Level 1}
lcp@459
   860
{\out Suc(k) ~= k}
lcp@459
   861
{\out  1. Suc(0) ~= 0}
lcp@459
   862
{\out  2. !!x. Suc(x) ~= x ==> Suc(Suc(x)) ~= Suc(x)}
lcp@284
   863
\end{ttbox}
lcp@105
   864
We should check that Isabelle has correctly applied induction.  Subgoal~1
lcp@105
   865
is the base case, with $k$ replaced by~0.  Subgoal~2 is the inductive step,
lcp@105
   866
with $k$ replaced by~$Suc(x)$ and with an induction hypothesis for~$x$.
lcp@310
   867
The rest of the proof demonstrates~\tdx{notI}, \tdx{notE} and the
paulson@5205
   868
other rules of theory \texttt{Nat}.  The base case holds by~\ttindex{Suc_neq_0}:
lcp@284
   869
\begin{ttbox}
lcp@105
   870
by (resolve_tac [notI] 1);
lcp@105
   871
{\out Level 2}
lcp@459
   872
{\out Suc(k) ~= k}
lcp@105
   873
{\out  1. Suc(0) = 0 ==> False}
lcp@459
   874
{\out  2. !!x. Suc(x) ~= x ==> Suc(Suc(x)) ~= Suc(x)}
lcp@105
   875
\ttbreak
lcp@105
   876
by (eresolve_tac [Suc_neq_0] 1);
lcp@105
   877
{\out Level 3}
lcp@459
   878
{\out Suc(k) ~= k}
lcp@459
   879
{\out  1. !!x. Suc(x) ~= x ==> Suc(Suc(x)) ~= Suc(x)}
lcp@284
   880
\end{ttbox}
lcp@105
   881
The inductive step holds by the contrapositive of~\ttindex{Suc_inject}.
lcp@284
   882
Negation rules transform the subgoal into that of proving $Suc(x)=x$ from
lcp@284
   883
$Suc(Suc(x)) = Suc(x)$:
lcp@284
   884
\begin{ttbox}
lcp@105
   885
by (resolve_tac [notI] 1);
lcp@105
   886
{\out Level 4}
lcp@459
   887
{\out Suc(k) ~= k}
lcp@459
   888
{\out  1. !!x. [| Suc(x) ~= x; Suc(Suc(x)) = Suc(x) |] ==> False}
lcp@105
   889
\ttbreak
lcp@105
   890
by (eresolve_tac [notE] 1);
lcp@105
   891
{\out Level 5}
lcp@459
   892
{\out Suc(k) ~= k}
lcp@105
   893
{\out  1. !!x. Suc(Suc(x)) = Suc(x) ==> Suc(x) = x}
lcp@105
   894
\ttbreak
lcp@105
   895
by (eresolve_tac [Suc_inject] 1);
lcp@105
   896
{\out Level 6}
lcp@459
   897
{\out Suc(k) ~= k}
lcp@105
   898
{\out No subgoals!}
lcp@284
   899
\end{ttbox}
lcp@105
   900
lcp@105
   901
paulson@5205
   902
\subsection{An example of ambiguity in \texttt{resolve_tac}}
lcp@105
   903
\index{examples!of induction}\index{unification!higher-order}
paulson@5205
   904
If you try the example above, you may observe that \texttt{res_inst_tac} is
lcp@105
   905
not actually needed.  Almost by chance, \ttindex{resolve_tac} finds the right
lcp@105
   906
instantiation for~$(induct)$ to yield the desired next state.  With more
lcp@105
   907
complex formulae, our luck fails.  
lcp@284
   908
\begin{ttbox}
paulson@5205
   909
Goal "(k+m)+n = k+(m+n)";
lcp@105
   910
{\out Level 0}
lcp@105
   911
{\out k + m + n = k + (m + n)}
lcp@105
   912
{\out  1. k + m + n = k + (m + n)}
lcp@105
   913
\ttbreak
lcp@105
   914
by (resolve_tac [induct] 1);
lcp@105
   915
{\out Level 1}
lcp@105
   916
{\out k + m + n = k + (m + n)}
lcp@105
   917
{\out  1. k + m + n = 0}
lcp@105
   918
{\out  2. !!x. k + m + n = x ==> k + m + n = Suc(x)}
lcp@284
   919
\end{ttbox}
lcp@284
   920
This proof requires induction on~$k$.  The occurrence of~0 in subgoal~1
lcp@284
   921
indicates that induction has been applied to the term~$k+(m+n)$; this
lcp@284
   922
application is sound but will not lead to a proof here.  Fortunately,
lcp@284
   923
Isabelle can (lazily!) generate all the valid applications of induction.
lcp@284
   924
The \ttindex{back} command causes backtracking to an alternative outcome of
lcp@284
   925
the tactic.
lcp@284
   926
\begin{ttbox}
lcp@105
   927
back();
lcp@105
   928
{\out Level 1}
lcp@105
   929
{\out k + m + n = k + (m + n)}
lcp@105
   930
{\out  1. k + m + n = k + 0}
lcp@105
   931
{\out  2. !!x. k + m + n = k + x ==> k + m + n = k + Suc(x)}
lcp@284
   932
\end{ttbox}
lcp@284
   933
Now induction has been applied to~$m+n$.  This is equally useless.  Let us
lcp@284
   934
call \ttindex{back} again.
lcp@284
   935
\begin{ttbox}
lcp@105
   936
back();
lcp@105
   937
{\out Level 1}
lcp@105
   938
{\out k + m + n = k + (m + n)}
lcp@105
   939
{\out  1. k + m + 0 = k + (m + 0)}
lcp@284
   940
{\out  2. !!x. k + m + x = k + (m + x) ==>}
lcp@284
   941
{\out          k + m + Suc(x) = k + (m + Suc(x))}
lcp@284
   942
\end{ttbox}
lcp@105
   943
Now induction has been applied to~$n$.  What is the next alternative?
lcp@284
   944
\begin{ttbox}
lcp@105
   945
back();
lcp@105
   946
{\out Level 1}
lcp@105
   947
{\out k + m + n = k + (m + n)}
lcp@105
   948
{\out  1. k + m + n = k + (m + 0)}
lcp@105
   949
{\out  2. !!x. k + m + n = k + (m + x) ==> k + m + n = k + (m + Suc(x))}
lcp@284
   950
\end{ttbox}
lcp@105
   951
Inspecting subgoal~1 reveals that induction has been applied to just the
lcp@105
   952
second occurrence of~$n$.  This perfectly legitimate induction is useless
lcp@310
   953
here.  
lcp@310
   954
lcp@310
   955
The main goal admits fourteen different applications of induction.  The
lcp@310
   956
number is exponential in the size of the formula.
lcp@105
   957
lcp@105
   958
\subsection{Proving that addition is associative}
lcp@331
   959
Let us invoke the induction rule properly, using~{\tt
lcp@310
   960
  res_inst_tac}.  At the same time, we shall have a glimpse at Isabelle's
lcp@310
   961
simplification tactics, which are described in 
lcp@310
   962
\iflabelundefined{simp-chap}%
lcp@310
   963
    {the {\em Reference Manual}}{Chap.\ts\ref{simp-chap}}.
lcp@105
   964
lcp@310
   965
\index{simplification}\index{examples!of simplification} 
lcp@284
   966
wenzelm@9695
   967
Isabelle's simplification tactics repeatedly apply equations to a subgoal,
wenzelm@9695
   968
perhaps proving it.  For efficiency, the rewrite rules must be packaged into a
wenzelm@9695
   969
{\bf simplification set},\index{simplification sets} or {\bf simpset}.  We
wenzelm@9695
   970
augment the implicit simpset of FOL with the equations proved in the previous
wenzelm@9695
   971
section, namely $0+n=n$ and $\texttt{Suc}(m)+n=\texttt{Suc}(m+n)$:
lcp@284
   972
\begin{ttbox}
wenzelm@3114
   973
Addsimps [add_0, add_Suc];
lcp@284
   974
\end{ttbox}
lcp@105
   975
We state the goal for associativity of addition, and
lcp@105
   976
use \ttindex{res_inst_tac} to invoke induction on~$k$:
lcp@284
   977
\begin{ttbox}
paulson@5205
   978
Goal "(k+m)+n = k+(m+n)";
lcp@105
   979
{\out Level 0}
lcp@105
   980
{\out k + m + n = k + (m + n)}
lcp@105
   981
{\out  1. k + m + n = k + (m + n)}
lcp@105
   982
\ttbreak
lcp@105
   983
by (res_inst_tac [("n","k")] induct 1);
lcp@105
   984
{\out Level 1}
lcp@105
   985
{\out k + m + n = k + (m + n)}
lcp@105
   986
{\out  1. 0 + m + n = 0 + (m + n)}
lcp@284
   987
{\out  2. !!x. x + m + n = x + (m + n) ==>}
lcp@284
   988
{\out          Suc(x) + m + n = Suc(x) + (m + n)}
lcp@284
   989
\end{ttbox}
lcp@105
   990
The base case holds easily; both sides reduce to $m+n$.  The
wenzelm@3114
   991
tactic~\ttindex{Simp_tac} rewrites with respect to the current
wenzelm@3114
   992
simplification set, applying the rewrite rules for addition:
lcp@284
   993
\begin{ttbox}
wenzelm@3114
   994
by (Simp_tac 1);
lcp@105
   995
{\out Level 2}
lcp@105
   996
{\out k + m + n = k + (m + n)}
lcp@284
   997
{\out  1. !!x. x + m + n = x + (m + n) ==>}
lcp@284
   998
{\out          Suc(x) + m + n = Suc(x) + (m + n)}
lcp@284
   999
\end{ttbox}
lcp@331
  1000
The inductive step requires rewriting by the equations for addition
lcp@105
  1001
together the induction hypothesis, which is also an equation.  The
wenzelm@3114
  1002
tactic~\ttindex{Asm_simp_tac} rewrites using the implicit
wenzelm@3114
  1003
simplification set and any useful assumptions:
lcp@284
  1004
\begin{ttbox}
wenzelm@3114
  1005
by (Asm_simp_tac 1);
lcp@105
  1006
{\out Level 3}
lcp@105
  1007
{\out k + m + n = k + (m + n)}
lcp@105
  1008
{\out No subgoals!}
lcp@284
  1009
\end{ttbox}
lcp@310
  1010
\index{instantiation|)}
lcp@105
  1011
lcp@105
  1012
lcp@284
  1013
\section{A Prolog interpreter}
lcp@105
  1014
\index{Prolog interpreter|bold}
lcp@284
  1015
To demonstrate the power of tacticals, let us construct a Prolog
lcp@105
  1016
interpreter and execute programs involving lists.\footnote{To run these
paulson@5205
  1017
examples, see the file \texttt{FOL/ex/Prolog.ML}.} The Prolog program
lcp@105
  1018
consists of a theory.  We declare a type constructor for lists, with an
lcp@105
  1019
arity declaration to say that $(\tau)list$ is of class~$term$
lcp@105
  1020
provided~$\tau$ is:
lcp@105
  1021
\begin{eqnarray*}
lcp@105
  1022
  list  & :: & (term)term
lcp@105
  1023
\end{eqnarray*}
lcp@105
  1024
We declare four constants: the empty list~$Nil$; the infix list
lcp@105
  1025
constructor~{:}; the list concatenation predicate~$app$; the list reverse
lcp@284
  1026
predicate~$rev$.  (In Prolog, functions on lists are expressed as
lcp@105
  1027
predicates.)
lcp@105
  1028
\begin{eqnarray*}
lcp@105
  1029
    Nil         & :: & \alpha list \\
lcp@105
  1030
    {:}         & :: & [\alpha,\alpha list] \To \alpha list \\
lcp@105
  1031
    app & :: & [\alpha list,\alpha list,\alpha list] \To o \\
lcp@105
  1032
    rev & :: & [\alpha list,\alpha list] \To o 
lcp@105
  1033
\end{eqnarray*}
lcp@284
  1034
The predicate $app$ should satisfy the Prolog-style rules
lcp@105
  1035
\[ {app(Nil,ys,ys)} \qquad
lcp@105
  1036
   {app(xs,ys,zs) \over app(x:xs, ys, x:zs)} \]
lcp@105
  1037
We define the naive version of $rev$, which calls~$app$:
lcp@105
  1038
\[ {rev(Nil,Nil)} \qquad
lcp@105
  1039
   {rev(xs,ys)\quad  app(ys, x:Nil, zs) \over
lcp@105
  1040
    rev(x:xs, zs)} 
lcp@105
  1041
\]
lcp@105
  1042
lcp@105
  1043
\index{examples!of theories}
lcp@310
  1044
Theory \thydx{Prolog} extends first-order logic in order to make use
lcp@105
  1045
of the class~$term$ and the type~$o$.  The interpreter does not use the
paulson@5205
  1046
rules of~\texttt{FOL}.
lcp@105
  1047
\begin{ttbox}
lcp@105
  1048
Prolog = FOL +
lcp@296
  1049
types   'a list
lcp@105
  1050
arities list    :: (term)term
clasohm@1387
  1051
consts  Nil     :: 'a list
clasohm@1387
  1052
        ":"     :: ['a, 'a list]=> 'a list            (infixr 60)
clasohm@1387
  1053
        app     :: ['a list, 'a list, 'a list] => o
clasohm@1387
  1054
        rev     :: ['a list, 'a list] => o
lcp@105
  1055
rules   appNil  "app(Nil,ys,ys)"
lcp@105
  1056
        appCons "app(xs,ys,zs) ==> app(x:xs, ys, x:zs)"
lcp@105
  1057
        revNil  "rev(Nil,Nil)"
lcp@105
  1058
        revCons "[| rev(xs,ys); app(ys,x:Nil,zs) |] ==> rev(x:xs,zs)"
lcp@105
  1059
end
lcp@105
  1060
\end{ttbox}
lcp@105
  1061
\subsection{Simple executions}
lcp@284
  1062
Repeated application of the rules solves Prolog goals.  Let us
lcp@105
  1063
append the lists $[a,b,c]$ and~$[d,e]$.  As the rules are applied, the
paulson@5205
  1064
answer builds up in~\texttt{?x}.
lcp@105
  1065
\begin{ttbox}
paulson@5205
  1066
Goal "app(a:b:c:Nil, d:e:Nil, ?x)";
lcp@105
  1067
{\out Level 0}
lcp@105
  1068
{\out app(a : b : c : Nil, d : e : Nil, ?x)}
lcp@105
  1069
{\out  1. app(a : b : c : Nil, d : e : Nil, ?x)}
lcp@105
  1070
\ttbreak
lcp@105
  1071
by (resolve_tac [appNil,appCons] 1);
lcp@105
  1072
{\out Level 1}
lcp@105
  1073
{\out app(a : b : c : Nil, d : e : Nil, a : ?zs1)}
lcp@105
  1074
{\out  1. app(b : c : Nil, d : e : Nil, ?zs1)}
lcp@105
  1075
\ttbreak
lcp@105
  1076
by (resolve_tac [appNil,appCons] 1);
lcp@105
  1077
{\out Level 2}
lcp@105
  1078
{\out app(a : b : c : Nil, d : e : Nil, a : b : ?zs2)}
lcp@105
  1079
{\out  1. app(c : Nil, d : e : Nil, ?zs2)}
lcp@105
  1080
\end{ttbox}
lcp@105
  1081
At this point, the first two elements of the result are~$a$ and~$b$.
lcp@105
  1082
\begin{ttbox}
lcp@105
  1083
by (resolve_tac [appNil,appCons] 1);
lcp@105
  1084
{\out Level 3}
lcp@105
  1085
{\out app(a : b : c : Nil, d : e : Nil, a : b : c : ?zs3)}
lcp@105
  1086
{\out  1. app(Nil, d : e : Nil, ?zs3)}
lcp@105
  1087
\ttbreak
lcp@105
  1088
by (resolve_tac [appNil,appCons] 1);
lcp@105
  1089
{\out Level 4}
lcp@105
  1090
{\out app(a : b : c : Nil, d : e : Nil, a : b : c : d : e : Nil)}
lcp@105
  1091
{\out No subgoals!}
lcp@105
  1092
\end{ttbox}
lcp@105
  1093
lcp@284
  1094
Prolog can run functions backwards.  Which list can be appended
lcp@105
  1095
with $[c,d]$ to produce $[a,b,c,d]$?
lcp@105
  1096
Using \ttindex{REPEAT}, we find the answer at once, $[a,b]$:
lcp@105
  1097
\begin{ttbox}
paulson@5205
  1098
Goal "app(?x, c:d:Nil, a:b:c:d:Nil)";
lcp@105
  1099
{\out Level 0}
lcp@105
  1100
{\out app(?x, c : d : Nil, a : b : c : d : Nil)}
lcp@105
  1101
{\out  1. app(?x, c : d : Nil, a : b : c : d : Nil)}
lcp@105
  1102
\ttbreak
lcp@105
  1103
by (REPEAT (resolve_tac [appNil,appCons] 1));
lcp@105
  1104
{\out Level 1}
lcp@105
  1105
{\out app(a : b : Nil, c : d : Nil, a : b : c : d : Nil)}
lcp@105
  1106
{\out No subgoals!}
lcp@105
  1107
\end{ttbox}
lcp@105
  1108
lcp@105
  1109
lcp@310
  1110
\subsection{Backtracking}\index{backtracking!Prolog style}
lcp@296
  1111
Prolog backtracking can answer questions that have multiple solutions.
lcp@296
  1112
Which lists $x$ and $y$ can be appended to form the list $[a,b,c,d]$?  This
lcp@296
  1113
question has five solutions.  Using \ttindex{REPEAT} to apply the rules, we
lcp@296
  1114
quickly find the first solution, namely $x=[]$ and $y=[a,b,c,d]$:
lcp@105
  1115
\begin{ttbox}
paulson@5205
  1116
Goal "app(?x, ?y, a:b:c:d:Nil)";
lcp@105
  1117
{\out Level 0}
lcp@105
  1118
{\out app(?x, ?y, a : b : c : d : Nil)}
lcp@105
  1119
{\out  1. app(?x, ?y, a : b : c : d : Nil)}
lcp@105
  1120
\ttbreak
lcp@105
  1121
by (REPEAT (resolve_tac [appNil,appCons] 1));
lcp@105
  1122
{\out Level 1}
lcp@105
  1123
{\out app(Nil, a : b : c : d : Nil, a : b : c : d : Nil)}
lcp@105
  1124
{\out No subgoals!}
lcp@105
  1125
\end{ttbox}
lcp@284
  1126
Isabelle can lazily generate all the possibilities.  The \ttindex{back}
lcp@284
  1127
command returns the tactic's next outcome, namely $x=[a]$ and $y=[b,c,d]$:
lcp@105
  1128
\begin{ttbox}
lcp@105
  1129
back();
lcp@105
  1130
{\out Level 1}
lcp@105
  1131
{\out app(a : Nil, b : c : d : Nil, a : b : c : d : Nil)}
lcp@105
  1132
{\out No subgoals!}
lcp@105
  1133
\end{ttbox}
lcp@105
  1134
The other solutions are generated similarly.
lcp@105
  1135
\begin{ttbox}
lcp@105
  1136
back();
lcp@105
  1137
{\out Level 1}
lcp@105
  1138
{\out app(a : b : Nil, c : d : Nil, a : b : c : d : Nil)}
lcp@105
  1139
{\out No subgoals!}
lcp@105
  1140
\ttbreak
lcp@105
  1141
back();
lcp@105
  1142
{\out Level 1}
lcp@105
  1143
{\out app(a : b : c : Nil, d : Nil, a : b : c : d : Nil)}
lcp@105
  1144
{\out No subgoals!}
lcp@105
  1145
\ttbreak
lcp@105
  1146
back();
lcp@105
  1147
{\out Level 1}
lcp@105
  1148
{\out app(a : b : c : d : Nil, Nil, a : b : c : d : Nil)}
lcp@105
  1149
{\out No subgoals!}
lcp@105
  1150
\end{ttbox}
lcp@105
  1151
lcp@105
  1152
lcp@105
  1153
\subsection{Depth-first search}
lcp@105
  1154
\index{search!depth-first}
lcp@105
  1155
Now let us try $rev$, reversing a list.
paulson@5205
  1156
Bundle the rules together as the \ML{} identifier \texttt{rules}.  Naive
lcp@105
  1157
reverse requires 120 inferences for this 14-element list, but the tactic
lcp@105
  1158
terminates in a few seconds.
lcp@105
  1159
\begin{ttbox}
paulson@5205
  1160
Goal "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:Nil, ?w)";
lcp@105
  1161
{\out Level 0}
lcp@105
  1162
{\out rev(a : b : c : d : e : f : g : h : i : j : k : l : m : n : Nil, ?w)}
lcp@284
  1163
{\out  1. rev(a : b : c : d : e : f : g : h : i : j : k : l : m : n : Nil,}
lcp@284
  1164
{\out         ?w)}
lcp@284
  1165
\ttbreak
lcp@105
  1166
val rules = [appNil,appCons,revNil,revCons];
lcp@105
  1167
\ttbreak
lcp@105
  1168
by (REPEAT (resolve_tac rules 1));
lcp@105
  1169
{\out Level 1}
lcp@105
  1170
{\out rev(a : b : c : d : e : f : g : h : i : j : k : l : m : n : Nil,}
lcp@105
  1171
{\out     n : m : l : k : j : i : h : g : f : e : d : c : b : a : Nil)}
lcp@105
  1172
{\out No subgoals!}
lcp@105
  1173
\end{ttbox}
lcp@105
  1174
We may execute $rev$ backwards.  This, too, should reverse a list.  What
lcp@105
  1175
is the reverse of $[a,b,c]$?
lcp@105
  1176
\begin{ttbox}
paulson@5205
  1177
Goal "rev(?x, a:b:c:Nil)";
lcp@105
  1178
{\out Level 0}
lcp@105
  1179
{\out rev(?x, a : b : c : Nil)}
lcp@105
  1180
{\out  1. rev(?x, a : b : c : Nil)}
lcp@105
  1181
\ttbreak
lcp@105
  1182
by (REPEAT (resolve_tac rules 1));
lcp@105
  1183
{\out Level 1}
lcp@105
  1184
{\out rev(?x1 : Nil, a : b : c : Nil)}
lcp@105
  1185
{\out  1. app(Nil, ?x1 : Nil, a : b : c : Nil)}
lcp@105
  1186
\end{ttbox}
lcp@105
  1187
The tactic has failed to find a solution!  It reached a dead end at
lcp@331
  1188
subgoal~1: there is no~$\Var{x@1}$ such that [] appended with~$[\Var{x@1}]$
lcp@105
  1189
equals~$[a,b,c]$.  Backtracking explores other outcomes.
lcp@105
  1190
\begin{ttbox}
lcp@105
  1191
back();
lcp@105
  1192
{\out Level 1}
lcp@105
  1193
{\out rev(?x1 : a : Nil, a : b : c : Nil)}
lcp@105
  1194
{\out  1. app(Nil, ?x1 : Nil, b : c : Nil)}
lcp@105
  1195
\end{ttbox}
lcp@105
  1196
This too is a dead end, but the next outcome is successful.
lcp@105
  1197
\begin{ttbox}
lcp@105
  1198
back();
lcp@105
  1199
{\out Level 1}
lcp@105
  1200
{\out rev(c : b : a : Nil, a : b : c : Nil)}
lcp@105
  1201
{\out No subgoals!}
lcp@105
  1202
\end{ttbox}
lcp@310
  1203
\ttindex{REPEAT} goes wrong because it is only a repetition tactical, not a
paulson@5205
  1204
search tactical.  \texttt{REPEAT} stops when it cannot continue, regardless of
lcp@310
  1205
which state is reached.  The tactical \ttindex{DEPTH_FIRST} searches for a
lcp@310
  1206
satisfactory state, as specified by an \ML{} predicate.  Below,
lcp@105
  1207
\ttindex{has_fewer_prems} specifies that the proof state should have no
lcp@310
  1208
subgoals.
lcp@105
  1209
\begin{ttbox}
lcp@105
  1210
val prolog_tac = DEPTH_FIRST (has_fewer_prems 1) 
lcp@105
  1211
                             (resolve_tac rules 1);
lcp@105
  1212
\end{ttbox}
lcp@284
  1213
Since Prolog uses depth-first search, this tactic is a (slow!) 
lcp@296
  1214
Prolog interpreter.  We return to the start of the proof using
paulson@5205
  1215
\ttindex{choplev}, and apply \texttt{prolog_tac}:
lcp@105
  1216
\begin{ttbox}
lcp@105
  1217
choplev 0;
lcp@105
  1218
{\out Level 0}
lcp@105
  1219
{\out rev(?x, a : b : c : Nil)}
lcp@105
  1220
{\out  1. rev(?x, a : b : c : Nil)}
lcp@105
  1221
\ttbreak
lcp@105
  1222
by (DEPTH_FIRST (has_fewer_prems 1) (resolve_tac rules 1));
lcp@105
  1223
{\out Level 1}
lcp@105
  1224
{\out rev(c : b : a : Nil, a : b : c : Nil)}
lcp@105
  1225
{\out No subgoals!}
lcp@105
  1226
\end{ttbox}
paulson@5205
  1227
Let us try \texttt{prolog_tac} on one more example, containing four unknowns:
lcp@105
  1228
\begin{ttbox}
paulson@5205
  1229
Goal "rev(a:?x:c:?y:Nil, d:?z:b:?u)";
lcp@105
  1230
{\out Level 0}
lcp@105
  1231
{\out rev(a : ?x : c : ?y : Nil, d : ?z : b : ?u)}
lcp@105
  1232
{\out  1. rev(a : ?x : c : ?y : Nil, d : ?z : b : ?u)}
lcp@105
  1233
\ttbreak
lcp@105
  1234
by prolog_tac;
lcp@105
  1235
{\out Level 1}
lcp@105
  1236
{\out rev(a : b : c : d : Nil, d : c : b : a : Nil)}
lcp@105
  1237
{\out No subgoals!}
lcp@105
  1238
\end{ttbox}
lcp@284
  1239
Although Isabelle is much slower than a Prolog system, Isabelle
lcp@156
  1240
tactics can exploit logic programming techniques.  
lcp@156
  1241