doc-src/Intro/advanced.tex
author paulson
Wed, 02 Jul 1997 16:46:36 +0200
changeset 3485 f27a30a18a17
parent 3212 567c093297e6
child 5205 602354039306
permissions -rw-r--r--
Now there are TWO spaces after each full stop, so that the Emacs sentence
primitives work
lcp@105
     1
%% $Id$
lcp@284
     2
\part{Advanced Methods}
lcp@105
     3
Before continuing, it might be wise to try some of your own examples in
lcp@105
     4
Isabelle, reinforcing your knowledge of the basic functions.
lcp@105
     5
wenzelm@3103
     6
Look through {\em Isabelle's Object-Logics\/} and try proving some
wenzelm@3103
     7
simple theorems.  You probably should begin with first-order logic
wenzelm@3103
     8
({\tt FOL} or~{\tt LK}).  Try working some of the examples provided,
wenzelm@3103
     9
and others from the literature.  Set theory~({\tt ZF}) and
wenzelm@3103
    10
Constructive Type Theory~({\tt CTT}) form a richer world for
wenzelm@3103
    11
mathematical reasoning and, again, many examples are in the
wenzelm@3103
    12
literature.  Higher-order logic~({\tt HOL}) is Isabelle's most
paulson@3485
    13
elaborate logic.  Its types and functions are identified with those of
wenzelm@3103
    14
the meta-logic.
lcp@105
    15
lcp@105
    16
Choose a logic that you already understand.  Isabelle is a proof
lcp@105
    17
tool, not a teaching tool; if you do not know how to do a particular proof
lcp@105
    18
on paper, then you certainly will not be able to do it on the machine.
lcp@105
    19
Even experienced users plan large proofs on paper.
lcp@105
    20
lcp@105
    21
We have covered only the bare essentials of Isabelle, but enough to perform
lcp@105
    22
substantial proofs.  By occasionally dipping into the {\em Reference
lcp@105
    23
Manual}, you can learn additional tactics, subgoal commands and tacticals.
lcp@105
    24
lcp@105
    25
lcp@105
    26
\section{Deriving rules in Isabelle}
lcp@105
    27
\index{rules!derived}
lcp@105
    28
A mathematical development goes through a progression of stages.  Each
lcp@105
    29
stage defines some concepts and derives rules about them.  We shall see how
lcp@105
    30
to derive rules, perhaps involving definitions, using Isabelle.  The
lcp@310
    31
following section will explain how to declare types, constants, rules and
lcp@105
    32
definitions.
lcp@105
    33
lcp@105
    34
lcp@296
    35
\subsection{Deriving a rule using tactics and meta-level assumptions} 
lcp@296
    36
\label{deriving-example}
lcp@310
    37
\index{examples!of deriving rules}\index{assumptions!of main goal}
lcp@296
    38
lcp@307
    39
The subgoal module supports the derivation of rules, as discussed in
wenzelm@3103
    40
\S\ref{deriving}.  The \ttindex{goal} command, when supplied a goal of
wenzelm@3103
    41
the form $\List{\theta@1; \ldots; \theta@k} \Imp \phi$, creates
wenzelm@3103
    42
$\phi\Imp\phi$ as the initial proof state and returns a list
wenzelm@3103
    43
consisting of the theorems ${\theta@i\;[\theta@i]}$, for $i=1$,
wenzelm@3103
    44
\ldots,~$k$.  These meta-assumptions are also recorded internally,
wenzelm@3103
    45
allowing {\tt result} (which is called by {\tt qed}) to discharge them
lcp@307
    46
in the original order.
lcp@105
    47
lcp@307
    48
Let us derive $\conj$ elimination using Isabelle.
lcp@310
    49
Until now, calling {\tt goal} has returned an empty list, which we have
lcp@105
    50
thrown away.  In this example, the list contains the two premises of the
lcp@105
    51
rule.  We bind them to the \ML\ identifiers {\tt major} and {\tt
lcp@105
    52
minor}:\footnote{Some ML compilers will print a message such as {\em
lcp@105
    53
binding not exhaustive}.  This warns that {\tt goal} must return a
lcp@105
    54
2-element list.  Otherwise, the pattern-match will fail; ML will
lcp@310
    55
raise exception \xdx{Match}.}
lcp@105
    56
\begin{ttbox}
lcp@105
    57
val [major,minor] = goal FOL.thy
lcp@105
    58
    "[| P&Q;  [| P; Q |] ==> R |] ==> R";
lcp@105
    59
{\out Level 0}
lcp@105
    60
{\out R}
lcp@105
    61
{\out  1. R}
lcp@105
    62
{\out val major = "P & Q  [P & Q]" : thm}
lcp@105
    63
{\out val minor = "[| P; Q |] ==> R  [[| P; Q |] ==> R]" : thm}
lcp@105
    64
\end{ttbox}
lcp@105
    65
Look at the minor premise, recalling that meta-level assumptions are
lcp@105
    66
shown in brackets.  Using {\tt minor}, we reduce $R$ to the subgoals
lcp@105
    67
$P$ and~$Q$:
lcp@105
    68
\begin{ttbox}
lcp@105
    69
by (resolve_tac [minor] 1);
lcp@105
    70
{\out Level 1}
lcp@105
    71
{\out R}
lcp@105
    72
{\out  1. P}
lcp@105
    73
{\out  2. Q}
lcp@105
    74
\end{ttbox}
lcp@105
    75
Deviating from~\S\ref{deriving}, we apply $({\conj}E1)$ forwards from the
lcp@105
    76
assumption $P\conj Q$ to obtain the theorem~$P\;[P\conj Q]$.
lcp@105
    77
\begin{ttbox}
lcp@105
    78
major RS conjunct1;
lcp@105
    79
{\out val it = "P  [P & Q]" : thm}
lcp@105
    80
\ttbreak
lcp@105
    81
by (resolve_tac [major RS conjunct1] 1);
lcp@105
    82
{\out Level 2}
lcp@105
    83
{\out R}
lcp@105
    84
{\out  1. Q}
lcp@105
    85
\end{ttbox}
lcp@105
    86
Similarly, we solve the subgoal involving~$Q$.
lcp@105
    87
\begin{ttbox}
lcp@105
    88
major RS conjunct2;
lcp@105
    89
{\out val it = "Q  [P & Q]" : thm}
lcp@105
    90
by (resolve_tac [major RS conjunct2] 1);
lcp@105
    91
{\out Level 3}
lcp@105
    92
{\out R}
lcp@105
    93
{\out No subgoals!}
lcp@105
    94
\end{ttbox}
lcp@105
    95
Calling \ttindex{topthm} returns the current proof state as a theorem.
wenzelm@3103
    96
Note that it contains assumptions.  Calling \ttindex{qed} discharges
wenzelm@3103
    97
the assumptions --- both occurrences of $P\conj Q$ are discharged as
wenzelm@3103
    98
one --- and makes the variables schematic.
lcp@105
    99
\begin{ttbox}
lcp@105
   100
topthm();
lcp@105
   101
{\out val it = "R  [P & Q, P & Q, [| P; Q |] ==> R]" : thm}
wenzelm@3103
   102
qed "conjE";
lcp@105
   103
{\out val conjE = "[| ?P & ?Q; [| ?P; ?Q |] ==> ?R |] ==> ?R" : thm}
lcp@105
   104
\end{ttbox}
lcp@105
   105
lcp@105
   106
lcp@105
   107
\subsection{Definitions and derived rules} \label{definitions}
lcp@310
   108
\index{rules!derived}\index{definitions!and derived rules|(}
lcp@310
   109
lcp@105
   110
Definitions are expressed as meta-level equalities.  Let us define negation
lcp@105
   111
and the if-and-only-if connective:
lcp@105
   112
\begin{eqnarray*}
lcp@105
   113
  \neg \Var{P}          & \equiv & \Var{P}\imp\bot \\
lcp@105
   114
  \Var{P}\bimp \Var{Q}  & \equiv & 
lcp@105
   115
                (\Var{P}\imp \Var{Q}) \conj (\Var{Q}\imp \Var{P})
lcp@105
   116
\end{eqnarray*}
lcp@331
   117
\index{meta-rewriting}%
lcp@105
   118
Isabelle permits {\bf meta-level rewriting} using definitions such as
lcp@105
   119
these.  {\bf Unfolding} replaces every instance
lcp@331
   120
of $\neg \Var{P}$ by the corresponding instance of ${\Var{P}\imp\bot}$.  For
lcp@105
   121
example, $\forall x.\neg (P(x)\conj \neg R(x,0))$ unfolds to
lcp@105
   122
\[ \forall x.(P(x)\conj R(x,0)\imp\bot)\imp\bot.  \]
lcp@105
   123
{\bf Folding} a definition replaces occurrences of the right-hand side by
lcp@105
   124
the left.  The occurrences need not be free in the entire formula.
lcp@105
   125
lcp@105
   126
When you define new concepts, you should derive rules asserting their
lcp@105
   127
abstract properties, and then forget their definitions.  This supports
lcp@331
   128
modularity: if you later change the definitions without affecting their
lcp@105
   129
abstract properties, then most of your proofs will carry through without
lcp@105
   130
change.  Indiscriminate unfolding makes a subgoal grow exponentially,
lcp@105
   131
becoming unreadable.
lcp@105
   132
lcp@105
   133
Taking this point of view, Isabelle does not unfold definitions
lcp@105
   134
automatically during proofs.  Rewriting must be explicit and selective.
lcp@105
   135
Isabelle provides tactics and meta-rules for rewriting, and a version of
lcp@105
   136
the {\tt goal} command that unfolds the conclusion and premises of the rule
lcp@105
   137
being derived.
lcp@105
   138
lcp@105
   139
For example, the intuitionistic definition of negation given above may seem
lcp@105
   140
peculiar.  Using Isabelle, we shall derive pleasanter negation rules:
lcp@105
   141
\[  \infer[({\neg}I)]{\neg P}{\infer*{\bot}{[P]}}   \qquad
lcp@105
   142
    \infer[({\neg}E)]{Q}{\neg P & P}  \]
lcp@296
   143
This requires proving the following meta-formulae:
wenzelm@3103
   144
$$ (P\Imp\bot)    \Imp \neg P   \eqno(\neg I) $$
wenzelm@3103
   145
$$ \List{\neg P; P} \Imp Q.       \eqno(\neg E) $$
lcp@105
   146
lcp@105
   147
lcp@296
   148
\subsection{Deriving the $\neg$ introduction rule}
lcp@310
   149
To derive $(\neg I)$, we may call {\tt goal} with the appropriate
lcp@105
   150
formula.  Again, {\tt goal} returns a list consisting of the rule's
lcp@296
   151
premises.  We bind this one-element list to the \ML\ identifier {\tt
lcp@296
   152
  prems}.
lcp@105
   153
\begin{ttbox}
lcp@105
   154
val prems = goal FOL.thy "(P ==> False) ==> ~P";
lcp@105
   155
{\out Level 0}
lcp@105
   156
{\out ~P}
lcp@105
   157
{\out  1. ~P}
lcp@105
   158
{\out val prems = ["P ==> False  [P ==> False]"] : thm list}
lcp@105
   159
\end{ttbox}
lcp@310
   160
Calling \ttindex{rewrite_goals_tac} with \tdx{not_def}, which is the
lcp@105
   161
definition of negation, unfolds that definition in the subgoals.  It leaves
lcp@105
   162
the main goal alone.
lcp@105
   163
\begin{ttbox}
lcp@105
   164
not_def;
lcp@105
   165
{\out val it = "~?P == ?P --> False" : thm}
lcp@105
   166
by (rewrite_goals_tac [not_def]);
lcp@105
   167
{\out Level 1}
lcp@105
   168
{\out ~P}
lcp@105
   169
{\out  1. P --> False}
lcp@105
   170
\end{ttbox}
lcp@310
   171
Using \tdx{impI} and the premise, we reduce subgoal~1 to a triviality:
lcp@105
   172
\begin{ttbox}
lcp@105
   173
by (resolve_tac [impI] 1);
lcp@105
   174
{\out Level 2}
lcp@105
   175
{\out ~P}
lcp@105
   176
{\out  1. P ==> False}
lcp@105
   177
\ttbreak
lcp@105
   178
by (resolve_tac prems 1);
lcp@105
   179
{\out Level 3}
lcp@105
   180
{\out ~P}
lcp@105
   181
{\out  1. P ==> P}
lcp@105
   182
\end{ttbox}
lcp@296
   183
The rest of the proof is routine.  Note the form of the final result.
lcp@105
   184
\begin{ttbox}
lcp@105
   185
by (assume_tac 1);
lcp@105
   186
{\out Level 4}
lcp@105
   187
{\out ~P}
lcp@105
   188
{\out No subgoals!}
lcp@296
   189
\ttbreak
wenzelm@3103
   190
qed "notI";
lcp@105
   191
{\out val notI = "(?P ==> False) ==> ~?P" : thm}
lcp@105
   192
\end{ttbox}
lcp@310
   193
\indexbold{*notI theorem}
lcp@105
   194
lcp@105
   195
There is a simpler way of conducting this proof.  The \ttindex{goalw}
lcp@310
   196
command starts a backward proof, as does {\tt goal}, but it also
lcp@296
   197
unfolds definitions.  Thus there is no need to call
lcp@296
   198
\ttindex{rewrite_goals_tac}:
lcp@105
   199
\begin{ttbox}
lcp@105
   200
val prems = goalw FOL.thy [not_def]
lcp@105
   201
    "(P ==> False) ==> ~P";
lcp@105
   202
{\out Level 0}
lcp@105
   203
{\out ~P}
lcp@105
   204
{\out  1. P --> False}
lcp@105
   205
{\out val prems = ["P ==> False  [P ==> False]"] : thm list}
lcp@105
   206
\end{ttbox}
lcp@105
   207
lcp@105
   208
lcp@296
   209
\subsection{Deriving the $\neg$ elimination rule}
lcp@284
   210
Let us derive the rule $(\neg E)$.  The proof follows that of~{\tt conjE}
lcp@296
   211
above, with an additional step to unfold negation in the major premise.
lcp@296
   212
Although the {\tt goalw} command is best for this, let us
lcp@310
   213
try~{\tt goal} to see another way of unfolding definitions.  After
lcp@310
   214
binding the premises to \ML\ identifiers, we apply \tdx{FalseE}:
lcp@105
   215
\begin{ttbox}
lcp@105
   216
val [major,minor] = goal FOL.thy "[| ~P;  P |] ==> R";
lcp@105
   217
{\out Level 0}
lcp@105
   218
{\out R}
lcp@105
   219
{\out  1. R}
lcp@105
   220
{\out val major = "~ P  [~ P]" : thm}
lcp@105
   221
{\out val minor = "P  [P]" : thm}
lcp@105
   222
\ttbreak
lcp@105
   223
by (resolve_tac [FalseE] 1);
lcp@105
   224
{\out Level 1}
lcp@105
   225
{\out R}
lcp@105
   226
{\out  1. False}
lcp@284
   227
\end{ttbox}
lcp@284
   228
Everything follows from falsity.  And we can prove falsity using the
lcp@284
   229
premises and Modus Ponens:
lcp@284
   230
\begin{ttbox}
lcp@105
   231
by (resolve_tac [mp] 1);
lcp@105
   232
{\out Level 2}
lcp@105
   233
{\out R}
lcp@105
   234
{\out  1. ?P1 --> False}
lcp@105
   235
{\out  2. ?P1}
lcp@105
   236
\end{ttbox}
lcp@105
   237
For subgoal~1, we transform the major premise from~$\neg P$
lcp@105
   238
to~${P\imp\bot}$.  The function \ttindex{rewrite_rule}, given a list of
lcp@296
   239
definitions, unfolds them in a theorem.  Rewriting does not
lcp@105
   240
affect the theorem's hypothesis, which remains~$\neg P$:
lcp@105
   241
\begin{ttbox}
lcp@105
   242
rewrite_rule [not_def] major;
lcp@105
   243
{\out val it = "P --> False  [~P]" : thm}
lcp@105
   244
by (resolve_tac [it] 1);
lcp@105
   245
{\out Level 3}
lcp@105
   246
{\out R}
lcp@105
   247
{\out  1. P}
lcp@105
   248
\end{ttbox}
lcp@296
   249
The subgoal {\tt?P1} has been instantiated to~{\tt P}, which we can prove
lcp@284
   250
using the minor premise:
lcp@105
   251
\begin{ttbox}
lcp@105
   252
by (resolve_tac [minor] 1);
lcp@105
   253
{\out Level 4}
lcp@105
   254
{\out R}
lcp@105
   255
{\out No subgoals!}
wenzelm@3103
   256
qed "notE";
lcp@105
   257
{\out val notE = "[| ~?P; ?P |] ==> ?R" : thm}
lcp@105
   258
\end{ttbox}
lcp@310
   259
\indexbold{*notE theorem}
lcp@105
   260
lcp@105
   261
\medskip
lcp@284
   262
Again, there is a simpler way of conducting this proof.  Recall that
lcp@284
   263
the \ttindex{goalw} command unfolds definitions the conclusion; it also
lcp@284
   264
unfolds definitions in the premises:
lcp@105
   265
\begin{ttbox}
lcp@105
   266
val [major,minor] = goalw FOL.thy [not_def]
lcp@105
   267
    "[| ~P;  P |] ==> R";
lcp@105
   268
{\out val major = "P --> False  [~ P]" : thm}
lcp@105
   269
{\out val minor = "P  [P]" : thm}
lcp@105
   270
\end{ttbox}
lcp@296
   271
Observe the difference in {\tt major}; the premises are unfolded without
lcp@296
   272
calling~\ttindex{rewrite_rule}.  Incidentally, the four calls to
lcp@296
   273
\ttindex{resolve_tac} above can be collapsed to one, with the help
lcp@284
   274
of~\ttindex{RS}; this is a typical example of forward reasoning from a
lcp@284
   275
complex premise.
lcp@105
   276
\begin{ttbox}
lcp@105
   277
minor RS (major RS mp RS FalseE);
lcp@105
   278
{\out val it = "?P  [P, ~P]" : thm}
lcp@105
   279
by (resolve_tac [it] 1);
lcp@105
   280
{\out Level 1}
lcp@105
   281
{\out R}
lcp@105
   282
{\out No subgoals!}
lcp@105
   283
\end{ttbox}
lcp@310
   284
\index{definitions!and derived rules|)}
lcp@105
   285
lcp@310
   286
\goodbreak\medskip\index{*"!"! symbol!in main goal}
lcp@284
   287
Finally, here is a trick that is sometimes useful.  If the goal
lcp@105
   288
has an outermost meta-quantifier, then \ttindex{goal} and \ttindex{goalw}
lcp@284
   289
do not return the rule's premises in the list of theorems;  instead, the
lcp@284
   290
premises become assumptions in subgoal~1.  
lcp@284
   291
%%%It does not matter which variables are quantified over.
lcp@105
   292
\begin{ttbox}
lcp@105
   293
goalw FOL.thy [not_def] "!!P R. [| ~P;  P |] ==> R";
lcp@105
   294
{\out Level 0}
lcp@105
   295
{\out !!P R. [| ~ P; P |] ==> R}
lcp@105
   296
{\out  1. !!P R. [| P --> False; P |] ==> R}
lcp@105
   297
val it = [] : thm list
lcp@105
   298
\end{ttbox}
lcp@105
   299
The proof continues as before.  But instead of referring to \ML\
lcp@310
   300
identifiers, we refer to assumptions using {\tt eresolve_tac} or
lcp@310
   301
{\tt assume_tac}: 
lcp@105
   302
\begin{ttbox}
lcp@105
   303
by (resolve_tac [FalseE] 1);
lcp@105
   304
{\out Level 1}
lcp@105
   305
{\out !!P R. [| ~ P; P |] ==> R}
lcp@105
   306
{\out  1. !!P R. [| P --> False; P |] ==> False}
lcp@105
   307
\ttbreak
lcp@105
   308
by (eresolve_tac [mp] 1);
lcp@105
   309
{\out Level 2}
lcp@105
   310
{\out !!P R. [| ~ P; P |] ==> R}
lcp@105
   311
{\out  1. !!P R. P ==> P}
lcp@105
   312
\ttbreak
lcp@105
   313
by (assume_tac 1);
lcp@105
   314
{\out Level 3}
lcp@105
   315
{\out !!P R. [| ~ P; P |] ==> R}
lcp@105
   316
{\out No subgoals!}
lcp@105
   317
\end{ttbox}
wenzelm@3103
   318
Calling \ttindex{qed} strips the meta-quantifiers, so the resulting
lcp@105
   319
theorem is the same as before.
lcp@105
   320
\begin{ttbox}
wenzelm@3103
   321
qed "notE";
lcp@105
   322
{\out val notE = "[| ~?P; ?P |] ==> ?R" : thm}
lcp@105
   323
\end{ttbox}
lcp@105
   324
Do not use the {\tt!!}\ trick if the premises contain meta-level
lcp@105
   325
connectives, because \ttindex{eresolve_tac} and \ttindex{assume_tac} would
lcp@105
   326
not be able to handle the resulting assumptions.  The trick is not suitable
lcp@105
   327
for deriving the introduction rule~$(\neg I)$.
lcp@105
   328
lcp@105
   329
lcp@284
   330
\section{Defining theories}\label{sec:defining-theories}
lcp@105
   331
\index{theories!defining|(}
lcp@310
   332
wenzelm@3103
   333
Isabelle makes no distinction between simple extensions of a logic ---
wenzelm@3103
   334
like specifying a type~$bool$ with constants~$true$ and~$false$ ---
wenzelm@3103
   335
and defining an entire logic.  A theory definition has a form like
lcp@105
   336
\begin{ttbox}
lcp@105
   337
\(T\) = \(S@1\) + \(\cdots\) + \(S@n\) +
lcp@105
   338
classes      {\it class declarations}
lcp@105
   339
default      {\it sort}
lcp@331
   340
types        {\it type declarations and synonyms}
wenzelm@3103
   341
arities      {\it type arity declarations}
lcp@105
   342
consts       {\it constant declarations}
wenzelm@3103
   343
syntax       {\it syntactic constant declarations}
wenzelm@3103
   344
translations {\it ast translation rules}
wenzelm@3103
   345
defs         {\it meta-logical definitions}
lcp@105
   346
rules        {\it rule declarations}
lcp@105
   347
end
lcp@105
   348
ML           {\it ML code}
lcp@105
   349
\end{ttbox}
lcp@105
   350
This declares the theory $T$ to extend the existing theories
wenzelm@3103
   351
$S@1$,~\ldots,~$S@n$.  It may introduce new classes, types, arities
wenzelm@3103
   352
(of existing types), constants and rules; it can specify the default
wenzelm@3103
   353
sort for type variables.  A constant declaration can specify an
wenzelm@3103
   354
associated concrete syntax.  The translations section specifies
wenzelm@3103
   355
rewrite rules on abstract syntax trees, handling notations and
wenzelm@3103
   356
abbreviations.  \index{*ML section} The {\tt ML} section may contain
wenzelm@3103
   357
code to perform arbitrary syntactic transformations.  The main
wenzelm@3212
   358
declaration forms are discussed below.  There are some more sections
wenzelm@3212
   359
not presented here, the full syntax can be found in
wenzelm@3212
   360
\iflabelundefined{app:TheorySyntax}{an appendix of the {\it Reference
wenzelm@3212
   361
    Manual}}{App.\ts\ref{app:TheorySyntax}}.  Also note that
wenzelm@3212
   362
object-logics may add further theory sections, for example
wenzelm@3212
   363
\texttt{typedef}, \texttt{datatype} in \HOL.
lcp@105
   364
wenzelm@3103
   365
All the declaration parts can be omitted or repeated and may appear in
wenzelm@3103
   366
any order, except that the {\ML} section must be last (after the {\tt
wenzelm@3103
   367
  end} keyword).  In the simplest case, $T$ is just the union of
wenzelm@3103
   368
$S@1$,~\ldots,~$S@n$.  New theories always extend one or more other
wenzelm@3103
   369
theories, inheriting their types, constants, syntax, etc.  The theory
paulson@3485
   370
\thydx{Pure} contains nothing but Isabelle's meta-logic.  The variant
wenzelm@3103
   371
\thydx{CPure} offers the more usual higher-order function application
wenzelm@3106
   372
syntax $t\,u@1\ldots\,u@n$ instead of $t(u@1,\ldots,u@n)$ in \Pure.
lcp@105
   373
wenzelm@3103
   374
Each theory definition must reside in a separate file, whose name is
wenzelm@3103
   375
the theory's with {\tt.thy} appended.  Calling
wenzelm@3103
   376
\ttindexbold{use_thy}~{\tt"{\it T\/}"} reads the definition from {\it
wenzelm@3103
   377
  T}{\tt.thy}, writes a corresponding file of {\ML} code {\tt.{\it
wenzelm@3103
   378
    T}.thy.ML}, reads the latter file, and deletes it if no errors
wenzelm@3103
   379
occurred.  This declares the {\ML} structure~$T$, which contains a
wenzelm@3103
   380
component {\tt thy} denoting the new theory, a component for each
wenzelm@3103
   381
rule, and everything declared in {\it ML code}.
lcp@105
   382
wenzelm@3103
   383
Errors may arise during the translation to {\ML} (say, a misspelled
wenzelm@3103
   384
keyword) or during creation of the new theory (say, a type error in a
wenzelm@3103
   385
rule).  But if all goes well, {\tt use_thy} will finally read the file
wenzelm@3103
   386
{\it T}{\tt.ML} (if it exists).  This file typically contains proofs
paulson@3485
   387
that refer to the components of~$T$.  The structure is automatically
wenzelm@3103
   388
opened, so its components may be referred to by unqualified names,
wenzelm@3103
   389
e.g.\ just {\tt thy} instead of $T${\tt .thy}.
lcp@105
   390
wenzelm@3103
   391
\ttindexbold{use_thy} automatically loads a theory's parents before
wenzelm@3103
   392
loading the theory itself.  When a theory file is modified, many
wenzelm@3103
   393
theories may have to be reloaded.  Isabelle records the modification
wenzelm@3103
   394
times and dependencies of theory files.  See
lcp@331
   395
\iflabelundefined{sec:reloading-theories}{the {\em Reference Manual\/}}%
lcp@331
   396
                 {\S\ref{sec:reloading-theories}}
lcp@296
   397
for more details.
lcp@296
   398
lcp@105
   399
lcp@1084
   400
\subsection{Declaring constants, definitions and rules}
lcp@310
   401
\indexbold{constants!declaring}\index{rules!declaring}
lcp@310
   402
lcp@1084
   403
Most theories simply declare constants, definitions and rules.  The {\bf
lcp@1084
   404
  constant declaration part} has the form
lcp@105
   405
\begin{ttbox}
clasohm@1387
   406
consts  \(c@1\) :: \(\tau@1\)
lcp@105
   407
        \vdots
clasohm@1387
   408
        \(c@n\) :: \(\tau@n\)
lcp@105
   409
\end{ttbox}
lcp@105
   410
where $c@1$, \ldots, $c@n$ are constants and $\tau@1$, \ldots, $\tau@n$ are
clasohm@1387
   411
types.  The types must be enclosed in quotation marks if they contain
clasohm@1387
   412
user-declared infix type constructors like {\tt *}.  Each
lcp@105
   413
constant must be enclosed in quotation marks unless it is a valid
lcp@105
   414
identifier.  To declare $c@1$, \ldots, $c@n$ as constants of type $\tau$,
lcp@105
   415
the $n$ declarations may be abbreviated to a single line:
lcp@105
   416
\begin{ttbox}
clasohm@1387
   417
        \(c@1\), \ldots, \(c@n\) :: \(\tau\)
lcp@105
   418
\end{ttbox}
lcp@105
   419
The {\bf rule declaration part} has the form
lcp@105
   420
\begin{ttbox}
lcp@105
   421
rules   \(id@1\) "\(rule@1\)"
lcp@105
   422
        \vdots
lcp@105
   423
        \(id@n\) "\(rule@n\)"
lcp@105
   424
\end{ttbox}
lcp@105
   425
where $id@1$, \ldots, $id@n$ are \ML{} identifiers and $rule@1$, \ldots,
lcp@284
   426
$rule@n$ are expressions of type~$prop$.  Each rule {\em must\/} be
lcp@284
   427
enclosed in quotation marks.
lcp@284
   428
wenzelm@3103
   429
\indexbold{definitions} The {\bf definition part} is similar, but with
wenzelm@3103
   430
the keyword {\tt defs} instead of {\tt rules}.  {\bf Definitions} are
wenzelm@3103
   431
rules of the form $s \equiv t$, and should serve only as
paulson@3485
   432
abbreviations.  The simplest form of a definition is $f \equiv t$,
paulson@3485
   433
where $f$ is a constant.  Also allowed are $\eta$-equivalent forms of
wenzelm@3106
   434
this, where the arguments of~$f$ appear applied on the left-hand side
wenzelm@3106
   435
of the equation instead of abstracted on the right-hand side.
lcp@1084
   436
wenzelm@3103
   437
Isabelle checks for common errors in definitions, such as extra
wenzelm@3103
   438
variables on the right-hand side, but currently does not a complete
paulson@3485
   439
test of well-formedness.  Thus determined users can write
wenzelm@3103
   440
non-conservative `definitions' by using mutual recursion, for example;
wenzelm@3103
   441
the consequences of such actions are their responsibility.
wenzelm@3103
   442
wenzelm@3103
   443
\index{examples!of theories} This example theory extends first-order
wenzelm@3103
   444
logic by declaring and defining two constants, {\em nand} and {\em
wenzelm@3103
   445
  xor}:
lcp@284
   446
\begin{ttbox}
lcp@105
   447
Gate = FOL +
clasohm@1387
   448
consts  nand,xor :: [o,o] => o
lcp@1084
   449
defs    nand_def "nand(P,Q) == ~(P & Q)"
lcp@105
   450
        xor_def  "xor(P,Q)  == P & ~Q | ~P & Q"
lcp@105
   451
end
lcp@105
   452
\end{ttbox}
lcp@105
   453
nipkow@1649
   454
Declaring and defining constants can be combined:
nipkow@1649
   455
\begin{ttbox}
nipkow@1649
   456
Gate = FOL +
nipkow@1649
   457
constdefs  nand :: [o,o] => o
nipkow@1649
   458
           "nand(P,Q) == ~(P & Q)"
nipkow@1649
   459
           xor  :: [o,o] => o
nipkow@1649
   460
           "xor(P,Q)  == P & ~Q | ~P & Q"
nipkow@1649
   461
end
nipkow@1649
   462
\end{ttbox}
nipkow@1649
   463
{\tt constdefs} generates the names {\tt nand_def} and {\tt xor_def}
paulson@3485
   464
automatically, which is why it is restricted to alphanumeric identifiers.  In
nipkow@1649
   465
general it has the form
nipkow@1649
   466
\begin{ttbox}
nipkow@1649
   467
constdefs  \(id@1\) :: \(\tau@1\)
nipkow@1649
   468
           "\(id@1 \equiv \dots\)"
nipkow@1649
   469
           \vdots
nipkow@1649
   470
           \(id@n\) :: \(\tau@n\)
nipkow@1649
   471
           "\(id@n \equiv \dots\)"
nipkow@1649
   472
\end{ttbox}
nipkow@1649
   473
nipkow@1649
   474
nipkow@1366
   475
\begin{warn}
nipkow@1366
   476
A common mistake when writing definitions is to introduce extra free variables
nipkow@1468
   477
on the right-hand side as in the following fictitious definition:
nipkow@1366
   478
\begin{ttbox}
nipkow@1366
   479
defs  prime_def "prime(p) == (m divides p) --> (m=1 | m=p)"
nipkow@1366
   480
\end{ttbox}
nipkow@1366
   481
Isabelle rejects this ``definition'' because of the extra {\tt m} on the
paulson@3485
   482
right-hand side, which would introduce an inconsistency.  What you should have
nipkow@1366
   483
written is
nipkow@1366
   484
\begin{ttbox}
nipkow@1366
   485
defs  prime_def "prime(p) == ALL m. (m divides p) --> (m=1 | m=p)"
nipkow@1366
   486
\end{ttbox}
nipkow@1366
   487
\end{warn}
lcp@105
   488
lcp@105
   489
\subsection{Declaring type constructors}
nipkow@303
   490
\indexbold{types!declaring}\indexbold{arities!declaring}
lcp@284
   491
%
lcp@105
   492
Types are composed of type variables and {\bf type constructors}.  Each
lcp@284
   493
type constructor takes a fixed number of arguments.  They are declared
lcp@284
   494
with an \ML-like syntax.  If $list$ takes one type argument, $tree$ takes
lcp@284
   495
two arguments and $nat$ takes no arguments, then these type constructors
lcp@284
   496
can be declared by
lcp@284
   497
\begin{ttbox}
lcp@284
   498
types 'a list
lcp@284
   499
      ('a,'b) tree
lcp@284
   500
      nat
lcp@284
   501
\end{ttbox}
lcp@105
   502
lcp@284
   503
The {\bf type declaration part} has the general form
lcp@105
   504
\begin{ttbox}
lcp@284
   505
types   \(tids@1\) \(id@1\)
lcp@105
   506
        \vdots
wenzelm@841
   507
        \(tids@n\) \(id@n\)
lcp@105
   508
\end{ttbox}
lcp@284
   509
where $id@1$, \ldots, $id@n$ are identifiers and $tids@1$, \ldots, $tids@n$
lcp@284
   510
are type argument lists as shown in the example above.  It declares each
lcp@284
   511
$id@i$ as a type constructor with the specified number of argument places.
lcp@105
   512
lcp@105
   513
The {\bf arity declaration part} has the form
lcp@105
   514
\begin{ttbox}
lcp@105
   515
arities \(tycon@1\) :: \(arity@1\)
lcp@105
   516
        \vdots
lcp@105
   517
        \(tycon@n\) :: \(arity@n\)
lcp@105
   518
\end{ttbox}
lcp@105
   519
where $tycon@1$, \ldots, $tycon@n$ are identifiers and $arity@1$, \ldots,
lcp@105
   520
$arity@n$ are arities.  Arity declarations add arities to existing
lcp@296
   521
types; they do not declare the types themselves.
lcp@105
   522
In the simplest case, for an 0-place type constructor, an arity is simply
lcp@105
   523
the type's class.  Let us declare a type~$bool$ of class $term$, with
lcp@284
   524
constants $tt$ and~$ff$.  (In first-order logic, booleans are
lcp@284
   525
distinct from formulae, which have type $o::logic$.)
lcp@105
   526
\index{examples!of theories}
lcp@284
   527
\begin{ttbox}
lcp@105
   528
Bool = FOL +
lcp@284
   529
types   bool
lcp@105
   530
arities bool    :: term
clasohm@1387
   531
consts  tt,ff   :: bool
lcp@105
   532
end
lcp@105
   533
\end{ttbox}
lcp@296
   534
A $k$-place type constructor may have arities of the form
lcp@296
   535
$(s@1,\ldots,s@k)c$, where $s@1,\ldots,s@n$ are sorts and $c$ is a class.
lcp@296
   536
Each sort specifies a type argument; it has the form $\{c@1,\ldots,c@m\}$,
lcp@296
   537
where $c@1$, \dots,~$c@m$ are classes.  Mostly we deal with singleton
lcp@296
   538
sorts, and may abbreviate them by dropping the braces.  The arity
lcp@296
   539
$(term)term$ is short for $(\{term\})term$.  Recall the discussion in
lcp@296
   540
\S\ref{polymorphic}.
lcp@105
   541
lcp@105
   542
A type constructor may be overloaded (subject to certain conditions) by
lcp@296
   543
appearing in several arity declarations.  For instance, the function type
lcp@331
   544
constructor~$fun$ has the arity $(logic,logic)logic$; in higher-order
lcp@105
   545
logic, it is declared also to have arity $(term,term)term$.
lcp@105
   546
lcp@105
   547
Theory {\tt List} declares the 1-place type constructor $list$, gives
lcp@284
   548
it arity $(term)term$, and declares constants $Nil$ and $Cons$ with
lcp@296
   549
polymorphic types:%
lcp@296
   550
\footnote{In the {\tt consts} part, type variable {\tt'a} has the default
lcp@296
   551
  sort, which is {\tt term}.  See the {\em Reference Manual\/}
lcp@296
   552
\iflabelundefined{sec:ref-defining-theories}{}%
lcp@296
   553
{(\S\ref{sec:ref-defining-theories})} for more information.}
lcp@105
   554
\index{examples!of theories}
lcp@284
   555
\begin{ttbox}
lcp@105
   556
List = FOL +
lcp@284
   557
types   'a list
lcp@105
   558
arities list    :: (term)term
clasohm@1387
   559
consts  Nil     :: 'a list
clasohm@1387
   560
        Cons    :: ['a, 'a list] => 'a list
lcp@105
   561
end
lcp@105
   562
\end{ttbox}
lcp@284
   563
Multiple arity declarations may be abbreviated to a single line:
lcp@105
   564
\begin{ttbox}
lcp@105
   565
arities \(tycon@1\), \ldots, \(tycon@n\) :: \(arity\)
lcp@105
   566
\end{ttbox}
lcp@105
   567
wenzelm@3103
   568
%\begin{warn}
wenzelm@3103
   569
%Arity declarations resemble constant declarations, but there are {\it no\/}
wenzelm@3103
   570
%quotation marks!  Types and rules must be quoted because the theory
wenzelm@3103
   571
%translator passes them verbatim to the {\ML} output file.
wenzelm@3103
   572
%\end{warn}
lcp@105
   573
lcp@331
   574
\subsection{Type synonyms}\indexbold{type synonyms}
nipkow@303
   575
Isabelle supports {\bf type synonyms} ({\bf abbreviations}) which are similar
lcp@307
   576
to those found in \ML.  Such synonyms are defined in the type declaration part
nipkow@303
   577
and are fairly self explanatory:
nipkow@303
   578
\begin{ttbox}
clasohm@1387
   579
types gate       = [o,o] => o
clasohm@1387
   580
      'a pred    = 'a => o
clasohm@1387
   581
      ('a,'b)nuf = 'b => 'a
nipkow@303
   582
\end{ttbox}
nipkow@303
   583
Type declarations and synonyms can be mixed arbitrarily:
nipkow@303
   584
\begin{ttbox}
nipkow@303
   585
types nat
clasohm@1387
   586
      'a stream = nat => 'a
clasohm@1387
   587
      signal    = nat stream
nipkow@303
   588
      'a list
nipkow@303
   589
\end{ttbox}
wenzelm@3103
   590
A synonym is merely an abbreviation for some existing type expression.
wenzelm@3103
   591
Hence synonyms may not be recursive!  Internally all synonyms are
wenzelm@3103
   592
fully expanded.  As a consequence Isabelle output never contains
wenzelm@3103
   593
synonyms.  Their main purpose is to improve the readability of theory
wenzelm@3103
   594
definitions.  Synonyms can be used just like any other type:
nipkow@303
   595
\begin{ttbox}
clasohm@1387
   596
consts and,or :: gate
clasohm@1387
   597
       negate :: signal => signal
nipkow@303
   598
\end{ttbox}
nipkow@303
   599
lcp@348
   600
\subsection{Infix and mixfix operators}
lcp@310
   601
\index{infixes}\index{examples!of theories}
lcp@310
   602
lcp@310
   603
Infix or mixfix syntax may be attached to constants.  Consider the
lcp@310
   604
following theory:
lcp@284
   605
\begin{ttbox}
lcp@105
   606
Gate2 = FOL +
clasohm@1387
   607
consts  "~&"     :: [o,o] => o         (infixl 35)
clasohm@1387
   608
        "#"      :: [o,o] => o         (infixl 30)
lcp@1084
   609
defs    nand_def "P ~& Q == ~(P & Q)"    
lcp@105
   610
        xor_def  "P # Q  == P & ~Q | ~P & Q"
lcp@105
   611
end
lcp@105
   612
\end{ttbox}
lcp@310
   613
The constant declaration part declares two left-associating infix operators
lcp@310
   614
with their priorities, or precedences; they are $\nand$ of priority~35 and
lcp@310
   615
$\xor$ of priority~30.  Hence $P \xor Q \xor R$ is parsed as $(P\xor Q)
lcp@310
   616
\xor R$ and $P \xor Q \nand R$ as $P \xor (Q \nand R)$.  Note the quotation
lcp@310
   617
marks in \verb|"~&"| and \verb|"#"|.
lcp@105
   618
lcp@105
   619
The constants \hbox{\verb|op ~&|} and \hbox{\verb|op #|} are declared
lcp@105
   620
automatically, just as in \ML.  Hence you may write propositions like
lcp@105
   621
\verb|op #(True) == op ~&(True)|, which asserts that the functions $\lambda
lcp@105
   622
Q.True \xor Q$ and $\lambda Q.True \nand Q$ are identical.
lcp@105
   623
wenzelm@3212
   624
\medskip Infix syntax and constant names may be also specified
paulson@3485
   625
independently.  For example, consider this version of $\nand$:
wenzelm@3212
   626
\begin{ttbox}
wenzelm@3212
   627
consts  nand     :: [o,o] => o         (infixl "~&" 35)
wenzelm@3212
   628
\end{ttbox}
wenzelm@3212
   629
lcp@310
   630
\bigskip\index{mixfix declarations}
lcp@310
   631
{\bf Mixfix} operators may have arbitrary context-free syntaxes.  Let us
lcp@310
   632
add a line to the constant declaration part:
lcp@284
   633
\begin{ttbox}
clasohm@1387
   634
        If :: [o,o,o] => o       ("if _ then _ else _")
lcp@105
   635
\end{ttbox}
lcp@310
   636
This declares a constant $If$ of type $[o,o,o] \To o$ with concrete syntax {\tt
lcp@296
   637
  if~$P$ then~$Q$ else~$R$} as well as {\tt If($P$,$Q$,$R$)}.  Underscores
lcp@310
   638
denote argument positions.  
lcp@105
   639
wenzelm@3103
   640
The declaration above does not allow the {\tt if}-{\tt then}-{\tt
wenzelm@3103
   641
  else} construct to be printed split across several lines, even if it
wenzelm@3103
   642
is too long to fit on one line.  Pretty-printing information can be
wenzelm@3103
   643
added to specify the layout of mixfix operators.  For details, see
lcp@310
   644
\iflabelundefined{Defining-Logics}%
lcp@310
   645
    {the {\it Reference Manual}, chapter `Defining Logics'}%
lcp@310
   646
    {Chap.\ts\ref{Defining-Logics}}.
lcp@310
   647
lcp@310
   648
Mixfix declarations can be annotated with priorities, just like
lcp@105
   649
infixes.  The example above is just a shorthand for
lcp@284
   650
\begin{ttbox}
clasohm@1387
   651
        If :: [o,o,o] => o       ("if _ then _ else _" [0,0,0] 1000)
lcp@105
   652
\end{ttbox}
lcp@310
   653
The numeric components determine priorities.  The list of integers
lcp@310
   654
defines, for each argument position, the minimal priority an expression
lcp@310
   655
at that position must have.  The final integer is the priority of the
lcp@105
   656
construct itself.  In the example above, any argument expression is
lcp@310
   657
acceptable because priorities are non-negative, and conditionals may
lcp@310
   658
appear everywhere because 1000 is the highest priority.  On the other
lcp@310
   659
hand, the declaration
lcp@284
   660
\begin{ttbox}
clasohm@1387
   661
        If :: [o,o,o] => o       ("if _ then _ else _" [100,0,0] 99)
lcp@105
   662
\end{ttbox}
lcp@284
   663
defines concrete syntax for a conditional whose first argument cannot have
lcp@310
   664
the form {\tt if~$P$ then~$Q$ else~$R$} because it must have a priority
lcp@310
   665
of at least~100.  We may of course write
lcp@284
   666
\begin{quote}\tt
lcp@284
   667
if (if $P$ then $Q$ else $R$) then $S$ else $T$
lcp@156
   668
\end{quote}
lcp@310
   669
because expressions in parentheses have maximal priority.  
lcp@105
   670
lcp@105
   671
Binary type constructors, like products and sums, may also be declared as
lcp@105
   672
infixes.  The type declaration below introduces a type constructor~$*$ with
lcp@105
   673
infix notation $\alpha*\beta$, together with the mixfix notation
lcp@1084
   674
${<}\_,\_{>}$ for pairs.  We also see a rule declaration part.
lcp@310
   675
\index{examples!of theories}\index{mixfix declarations}
lcp@105
   676
\begin{ttbox}
lcp@105
   677
Prod = FOL +
lcp@284
   678
types   ('a,'b) "*"                           (infixl 20)
lcp@105
   679
arities "*"     :: (term,term)term
lcp@105
   680
consts  fst     :: "'a * 'b => 'a"
lcp@105
   681
        snd     :: "'a * 'b => 'b"
lcp@105
   682
        Pair    :: "['a,'b] => 'a * 'b"       ("(1<_,/_>)")
lcp@105
   683
rules   fst     "fst(<a,b>) = a"
lcp@105
   684
        snd     "snd(<a,b>) = b"
lcp@105
   685
end
lcp@105
   686
\end{ttbox}
lcp@105
   687
lcp@105
   688
\begin{warn}
wenzelm@3103
   689
  The name of the type constructor is~{\tt *} and not {\tt op~*}, as
wenzelm@3103
   690
  it would be in the case of an infix constant.  Only infix type
wenzelm@3103
   691
  constructors can have symbolic names like~{\tt *}.  General mixfix
wenzelm@3103
   692
  syntax for types may be introduced via appropriate {\tt syntax}
wenzelm@3103
   693
  declarations.
lcp@105
   694
\end{warn}
lcp@105
   695
lcp@105
   696
lcp@105
   697
\subsection{Overloading}
lcp@105
   698
\index{overloading}\index{examples!of theories}
lcp@105
   699
The {\bf class declaration part} has the form
lcp@105
   700
\begin{ttbox}
lcp@105
   701
classes \(id@1\) < \(c@1\)
lcp@105
   702
        \vdots
lcp@105
   703
        \(id@n\) < \(c@n\)
lcp@105
   704
\end{ttbox}
lcp@105
   705
where $id@1$, \ldots, $id@n$ are identifiers and $c@1$, \ldots, $c@n$ are
lcp@105
   706
existing classes.  It declares each $id@i$ as a new class, a subclass
lcp@105
   707
of~$c@i$.  In the general case, an identifier may be declared to be a
lcp@105
   708
subclass of $k$ existing classes:
lcp@105
   709
\begin{ttbox}
lcp@105
   710
        \(id\) < \(c@1\), \ldots, \(c@k\)
lcp@105
   711
\end{ttbox}
lcp@296
   712
Type classes allow constants to be overloaded.  As suggested in
lcp@307
   713
\S\ref{polymorphic}, let us define the class $arith$ of arithmetic
lcp@296
   714
types with the constants ${+} :: [\alpha,\alpha]\To \alpha$ and $0,1 {::}
lcp@296
   715
\alpha$, for $\alpha{::}arith$.  We introduce $arith$ as a subclass of
lcp@296
   716
$term$ and add the three polymorphic constants of this class.
lcp@310
   717
\index{examples!of theories}\index{constants!overloaded}
lcp@105
   718
\begin{ttbox}
lcp@105
   719
Arith = FOL +
lcp@105
   720
classes arith < term
clasohm@1387
   721
consts  "0"     :: 'a::arith                  ("0")
clasohm@1387
   722
        "1"     :: 'a::arith                  ("1")
clasohm@1387
   723
        "+"     :: ['a::arith,'a] => 'a       (infixl 60)
lcp@105
   724
end
lcp@105
   725
\end{ttbox}
lcp@105
   726
No rules are declared for these constants: we merely introduce their
lcp@105
   727
names without specifying properties.  On the other hand, classes
lcp@105
   728
with rules make it possible to prove {\bf generic} theorems.  Such
lcp@105
   729
theorems hold for all instances, all types in that class.
lcp@105
   730
lcp@105
   731
We can now obtain distinct versions of the constants of $arith$ by
lcp@105
   732
declaring certain types to be of class $arith$.  For example, let us
lcp@105
   733
declare the 0-place type constructors $bool$ and $nat$:
lcp@105
   734
\index{examples!of theories}
lcp@105
   735
\begin{ttbox}
lcp@105
   736
BoolNat = Arith +
lcp@348
   737
types   bool  nat
lcp@348
   738
arities bool, nat   :: arith
clasohm@1387
   739
consts  Suc         :: nat=>nat
lcp@284
   740
\ttbreak
lcp@105
   741
rules   add0        "0 + n = n::nat"
lcp@105
   742
        addS        "Suc(m)+n = Suc(m+n)"
lcp@105
   743
        nat1        "1 = Suc(0)"
lcp@105
   744
        or0l        "0 + x = x::bool"
lcp@105
   745
        or0r        "x + 0 = x::bool"
lcp@105
   746
        or1l        "1 + x = 1::bool"
lcp@105
   747
        or1r        "x + 1 = 1::bool"
lcp@105
   748
end
lcp@105
   749
\end{ttbox}
lcp@105
   750
Because $nat$ and $bool$ have class $arith$, we can use $0$, $1$ and $+$ at
lcp@105
   751
either type.  The type constraints in the axioms are vital.  Without
lcp@105
   752
constraints, the $x$ in $1+x = x$ would have type $\alpha{::}arith$
lcp@105
   753
and the axiom would hold for any type of class $arith$.  This would
lcp@284
   754
collapse $nat$ to a trivial type:
lcp@105
   755
\[ Suc(1) = Suc(0+1) = Suc(0)+1 = 1+1 = 1! \]
lcp@105
   756
lcp@296
   757
lcp@296
   758
\section{Theory example: the natural numbers}
lcp@296
   759
lcp@296
   760
We shall now work through a small example of formalized mathematics
lcp@105
   761
demonstrating many of the theory extension features.
lcp@105
   762
lcp@105
   763
lcp@105
   764
\subsection{Extending first-order logic with the natural numbers}
lcp@105
   765
\index{examples!of theories}
lcp@105
   766
lcp@284
   767
Section\ts\ref{sec:logical-syntax} has formalized a first-order logic,
lcp@284
   768
including a type~$nat$ and the constants $0::nat$ and $Suc::nat\To nat$.
lcp@284
   769
Let us introduce the Peano axioms for mathematical induction and the
lcp@310
   770
freeness of $0$ and~$Suc$:\index{axioms!Peano}
lcp@307
   771
\[ \vcenter{\infer[(induct)]{P[n/x]}{P[0/x] & \infer*{P[Suc(x)/x]}{[P]}}}
lcp@105
   772
 \qquad \parbox{4.5cm}{provided $x$ is not free in any assumption except~$P$}
lcp@105
   773
\]
lcp@105
   774
\[ \infer[(Suc\_inject)]{m=n}{Suc(m)=Suc(n)} \qquad
lcp@105
   775
   \infer[(Suc\_neq\_0)]{R}{Suc(m)=0}
lcp@105
   776
\]
lcp@105
   777
Mathematical induction asserts that $P(n)$ is true, for any $n::nat$,
lcp@105
   778
provided $P(0)$ holds and that $P(x)$ implies $P(Suc(x))$ for all~$x$.
lcp@105
   779
Some authors express the induction step as $\forall x. P(x)\imp P(Suc(x))$.
lcp@105
   780
To avoid making induction require the presence of other connectives, we
lcp@105
   781
formalize mathematical induction as
lcp@105
   782
$$ \List{P(0); \Forall x. P(x)\Imp P(Suc(x))} \Imp P(n). \eqno(induct) $$
lcp@105
   783
lcp@105
   784
\noindent
lcp@105
   785
Similarly, to avoid expressing the other rules using~$\forall$, $\imp$
lcp@105
   786
and~$\neg$, we take advantage of the meta-logic;\footnote
lcp@105
   787
{On the other hand, the axioms $Suc(m)=Suc(n) \bimp m=n$
lcp@105
   788
and $\neg(Suc(m)=0)$ are logically equivalent to those given, and work
lcp@105
   789
better with Isabelle's simplifier.} 
lcp@105
   790
$(Suc\_neq\_0)$ is
lcp@105
   791
an elimination rule for $Suc(m)=0$:
lcp@105
   792
$$ Suc(m)=Suc(n) \Imp m=n  \eqno(Suc\_inject) $$
lcp@105
   793
$$ Suc(m)=0      \Imp R    \eqno(Suc\_neq\_0) $$
lcp@105
   794
lcp@105
   795
\noindent
lcp@105
   796
We shall also define a primitive recursion operator, $rec$.  Traditionally,
lcp@105
   797
primitive recursion takes a natural number~$a$ and a 2-place function~$f$,
lcp@105
   798
and obeys the equations
lcp@105
   799
\begin{eqnarray*}
lcp@105
   800
  rec(0,a,f)            & = & a \\
lcp@105
   801
  rec(Suc(m),a,f)       & = & f(m, rec(m,a,f))
lcp@105
   802
\end{eqnarray*}
lcp@105
   803
Addition, defined by $m+n \equiv rec(m,n,\lambda x\,y.Suc(y))$,
lcp@105
   804
should satisfy
lcp@105
   805
\begin{eqnarray*}
lcp@105
   806
  0+n      & = & n \\
lcp@105
   807
  Suc(m)+n & = & Suc(m+n)
lcp@105
   808
\end{eqnarray*}
lcp@296
   809
Primitive recursion appears to pose difficulties: first-order logic has no
lcp@296
   810
function-valued expressions.  We again take advantage of the meta-logic,
lcp@296
   811
which does have functions.  We also generalise primitive recursion to be
lcp@105
   812
polymorphic over any type of class~$term$, and declare the addition
lcp@105
   813
function:
lcp@105
   814
\begin{eqnarray*}
lcp@105
   815
  rec   & :: & [nat, \alpha{::}term, [nat,\alpha]\To\alpha] \To\alpha \\
lcp@105
   816
  +     & :: & [nat,nat]\To nat 
lcp@105
   817
\end{eqnarray*}
lcp@105
   818
lcp@105
   819
lcp@105
   820
\subsection{Declaring the theory to Isabelle}
lcp@105
   821
\index{examples!of theories}
lcp@310
   822
Let us create the theory \thydx{Nat} starting from theory~\verb$FOL$,
lcp@105
   823
which contains only classical logic with no natural numbers.  We declare
lcp@307
   824
the 0-place type constructor $nat$ and the associated constants.  Note that
lcp@307
   825
the constant~0 requires a mixfix annotation because~0 is not a legal
lcp@307
   826
identifier, and could not otherwise be written in terms:
lcp@310
   827
\begin{ttbox}\index{mixfix declarations}
lcp@105
   828
Nat = FOL +
lcp@284
   829
types   nat
lcp@105
   830
arities nat         :: term
clasohm@1387
   831
consts  "0"         :: nat                              ("0")
clasohm@1387
   832
        Suc         :: nat=>nat
clasohm@1387
   833
        rec         :: [nat, 'a, [nat,'a]=>'a] => 'a
clasohm@1387
   834
        "+"         :: [nat, nat] => nat                (infixl 60)
lcp@296
   835
rules   Suc_inject  "Suc(m)=Suc(n) ==> m=n"
lcp@105
   836
        Suc_neq_0   "Suc(m)=0      ==> R"
lcp@296
   837
        induct      "[| P(0);  !!x. P(x) ==> P(Suc(x)) |]  ==> P(n)"
lcp@105
   838
        rec_0       "rec(0,a,f) = a"
lcp@105
   839
        rec_Suc     "rec(Suc(m), a, f) = f(m, rec(m,a,f))"
lcp@296
   840
        add_def     "m+n == rec(m, n, \%x y. Suc(y))"
lcp@105
   841
end
lcp@105
   842
\end{ttbox}
lcp@105
   843
In axiom {\tt add_def}, recall that \verb|%| stands for~$\lambda$.
lcp@296
   844
Loading this theory file creates the \ML\ structure {\tt Nat}, which
wenzelm@3103
   845
contains the theory and axioms.
lcp@296
   846
lcp@296
   847
\subsection{Proving some recursion equations}
lcp@331
   848
File {\tt FOL/ex/Nat.ML} contains proofs involving this theory of the
lcp@105
   849
natural numbers.  As a trivial example, let us derive recursion equations
lcp@105
   850
for \verb$+$.  Here is the zero case:
lcp@284
   851
\begin{ttbox}
lcp@105
   852
goalw Nat.thy [add_def] "0+n = n";
lcp@105
   853
{\out Level 0}
lcp@105
   854
{\out 0 + n = n}
lcp@284
   855
{\out  1. rec(0,n,\%x y. Suc(y)) = n}
lcp@105
   856
\ttbreak
lcp@105
   857
by (resolve_tac [rec_0] 1);
lcp@105
   858
{\out Level 1}
lcp@105
   859
{\out 0 + n = n}
lcp@105
   860
{\out No subgoals!}
wenzelm@3103
   861
qed "add_0";
lcp@284
   862
\end{ttbox}
lcp@105
   863
And here is the successor case:
lcp@284
   864
\begin{ttbox}
lcp@105
   865
goalw Nat.thy [add_def] "Suc(m)+n = Suc(m+n)";
lcp@105
   866
{\out Level 0}
lcp@105
   867
{\out Suc(m) + n = Suc(m + n)}
lcp@284
   868
{\out  1. rec(Suc(m),n,\%x y. Suc(y)) = Suc(rec(m,n,\%x y. Suc(y)))}
lcp@105
   869
\ttbreak
lcp@105
   870
by (resolve_tac [rec_Suc] 1);
lcp@105
   871
{\out Level 1}
lcp@105
   872
{\out Suc(m) + n = Suc(m + n)}
lcp@105
   873
{\out No subgoals!}
wenzelm@3103
   874
qed "add_Suc";
lcp@284
   875
\end{ttbox}
lcp@105
   876
The induction rule raises some complications, which are discussed next.
lcp@105
   877
\index{theories!defining|)}
lcp@105
   878
lcp@105
   879
lcp@105
   880
\section{Refinement with explicit instantiation}
lcp@310
   881
\index{resolution!with instantiation}
lcp@310
   882
\index{instantiation|(}
lcp@310
   883
lcp@105
   884
In order to employ mathematical induction, we need to refine a subgoal by
lcp@105
   885
the rule~$(induct)$.  The conclusion of this rule is $\Var{P}(\Var{n})$,
lcp@105
   886
which is highly ambiguous in higher-order unification.  It matches every
lcp@105
   887
way that a formula can be regarded as depending on a subterm of type~$nat$.
lcp@105
   888
To get round this problem, we could make the induction rule conclude
lcp@105
   889
$\forall n.\Var{P}(n)$ --- but putting a subgoal into this form requires
lcp@105
   890
refinement by~$(\forall E)$, which is equally hard!
lcp@105
   891
lcp@105
   892
The tactic {\tt res_inst_tac}, like {\tt resolve_tac}, refines a subgoal by
lcp@105
   893
a rule.  But it also accepts explicit instantiations for the rule's
lcp@105
   894
schematic variables.  
lcp@105
   895
\begin{description}
lcp@310
   896
\item[\ttindex{res_inst_tac} {\it insts} {\it thm} {\it i}]
lcp@105
   897
instantiates the rule {\it thm} with the instantiations {\it insts}, and
lcp@105
   898
then performs resolution on subgoal~$i$.
lcp@105
   899
lcp@310
   900
\item[\ttindex{eres_inst_tac}] 
lcp@310
   901
and \ttindex{dres_inst_tac} are similar, but perform elim-resolution
lcp@105
   902
and destruct-resolution, respectively.
lcp@105
   903
\end{description}
lcp@105
   904
The list {\it insts} consists of pairs $[(v@1,e@1), \ldots, (v@n,e@n)]$,
lcp@105
   905
where $v@1$, \ldots, $v@n$ are names of schematic variables in the rule ---
lcp@307
   906
with no leading question marks! --- and $e@1$, \ldots, $e@n$ are
lcp@105
   907
expressions giving their instantiations.  The expressions are type-checked
lcp@105
   908
in the context of a particular subgoal: free variables receive the same
lcp@105
   909
types as they have in the subgoal, and parameters may appear.  Type
lcp@105
   910
variable instantiations may appear in~{\it insts}, but they are seldom
lcp@105
   911
required: {\tt res_inst_tac} instantiates type variables automatically
lcp@105
   912
whenever the type of~$e@i$ is an instance of the type of~$\Var{v@i}$.
lcp@105
   913
lcp@105
   914
\subsection{A simple proof by induction}
lcp@310
   915
\index{examples!of induction}
lcp@105
   916
Let us prove that no natural number~$k$ equals its own successor.  To
lcp@105
   917
use~$(induct)$, we instantiate~$\Var{n}$ to~$k$; Isabelle finds a good
lcp@105
   918
instantiation for~$\Var{P}$.
lcp@284
   919
\begin{ttbox}
lcp@105
   920
goal Nat.thy "~ (Suc(k) = k)";
lcp@105
   921
{\out Level 0}
lcp@459
   922
{\out Suc(k) ~= k}
lcp@459
   923
{\out  1. Suc(k) ~= k}
lcp@105
   924
\ttbreak
lcp@105
   925
by (res_inst_tac [("n","k")] induct 1);
lcp@105
   926
{\out Level 1}
lcp@459
   927
{\out Suc(k) ~= k}
lcp@459
   928
{\out  1. Suc(0) ~= 0}
lcp@459
   929
{\out  2. !!x. Suc(x) ~= x ==> Suc(Suc(x)) ~= Suc(x)}
lcp@284
   930
\end{ttbox}
lcp@105
   931
We should check that Isabelle has correctly applied induction.  Subgoal~1
lcp@105
   932
is the base case, with $k$ replaced by~0.  Subgoal~2 is the inductive step,
lcp@105
   933
with $k$ replaced by~$Suc(x)$ and with an induction hypothesis for~$x$.
lcp@310
   934
The rest of the proof demonstrates~\tdx{notI}, \tdx{notE} and the
lcp@310
   935
other rules of theory {\tt Nat}.  The base case holds by~\ttindex{Suc_neq_0}:
lcp@284
   936
\begin{ttbox}
lcp@105
   937
by (resolve_tac [notI] 1);
lcp@105
   938
{\out Level 2}
lcp@459
   939
{\out Suc(k) ~= k}
lcp@105
   940
{\out  1. Suc(0) = 0 ==> False}
lcp@459
   941
{\out  2. !!x. Suc(x) ~= x ==> Suc(Suc(x)) ~= Suc(x)}
lcp@105
   942
\ttbreak
lcp@105
   943
by (eresolve_tac [Suc_neq_0] 1);
lcp@105
   944
{\out Level 3}
lcp@459
   945
{\out Suc(k) ~= k}
lcp@459
   946
{\out  1. !!x. Suc(x) ~= x ==> Suc(Suc(x)) ~= Suc(x)}
lcp@284
   947
\end{ttbox}
lcp@105
   948
The inductive step holds by the contrapositive of~\ttindex{Suc_inject}.
lcp@284
   949
Negation rules transform the subgoal into that of proving $Suc(x)=x$ from
lcp@284
   950
$Suc(Suc(x)) = Suc(x)$:
lcp@284
   951
\begin{ttbox}
lcp@105
   952
by (resolve_tac [notI] 1);
lcp@105
   953
{\out Level 4}
lcp@459
   954
{\out Suc(k) ~= k}
lcp@459
   955
{\out  1. !!x. [| Suc(x) ~= x; Suc(Suc(x)) = Suc(x) |] ==> False}
lcp@105
   956
\ttbreak
lcp@105
   957
by (eresolve_tac [notE] 1);
lcp@105
   958
{\out Level 5}
lcp@459
   959
{\out Suc(k) ~= k}
lcp@105
   960
{\out  1. !!x. Suc(Suc(x)) = Suc(x) ==> Suc(x) = x}
lcp@105
   961
\ttbreak
lcp@105
   962
by (eresolve_tac [Suc_inject] 1);
lcp@105
   963
{\out Level 6}
lcp@459
   964
{\out Suc(k) ~= k}
lcp@105
   965
{\out No subgoals!}
lcp@284
   966
\end{ttbox}
lcp@105
   967
lcp@105
   968
lcp@105
   969
\subsection{An example of ambiguity in {\tt resolve_tac}}
lcp@105
   970
\index{examples!of induction}\index{unification!higher-order}
lcp@105
   971
If you try the example above, you may observe that {\tt res_inst_tac} is
lcp@105
   972
not actually needed.  Almost by chance, \ttindex{resolve_tac} finds the right
lcp@105
   973
instantiation for~$(induct)$ to yield the desired next state.  With more
lcp@105
   974
complex formulae, our luck fails.  
lcp@284
   975
\begin{ttbox}
lcp@105
   976
goal Nat.thy "(k+m)+n = k+(m+n)";
lcp@105
   977
{\out Level 0}
lcp@105
   978
{\out k + m + n = k + (m + n)}
lcp@105
   979
{\out  1. k + m + n = k + (m + n)}
lcp@105
   980
\ttbreak
lcp@105
   981
by (resolve_tac [induct] 1);
lcp@105
   982
{\out Level 1}
lcp@105
   983
{\out k + m + n = k + (m + n)}
lcp@105
   984
{\out  1. k + m + n = 0}
lcp@105
   985
{\out  2. !!x. k + m + n = x ==> k + m + n = Suc(x)}
lcp@284
   986
\end{ttbox}
lcp@284
   987
This proof requires induction on~$k$.  The occurrence of~0 in subgoal~1
lcp@284
   988
indicates that induction has been applied to the term~$k+(m+n)$; this
lcp@284
   989
application is sound but will not lead to a proof here.  Fortunately,
lcp@284
   990
Isabelle can (lazily!) generate all the valid applications of induction.
lcp@284
   991
The \ttindex{back} command causes backtracking to an alternative outcome of
lcp@284
   992
the tactic.
lcp@284
   993
\begin{ttbox}
lcp@105
   994
back();
lcp@105
   995
{\out Level 1}
lcp@105
   996
{\out k + m + n = k + (m + n)}
lcp@105
   997
{\out  1. k + m + n = k + 0}
lcp@105
   998
{\out  2. !!x. k + m + n = k + x ==> k + m + n = k + Suc(x)}
lcp@284
   999
\end{ttbox}
lcp@284
  1000
Now induction has been applied to~$m+n$.  This is equally useless.  Let us
lcp@284
  1001
call \ttindex{back} again.
lcp@284
  1002
\begin{ttbox}
lcp@105
  1003
back();
lcp@105
  1004
{\out Level 1}
lcp@105
  1005
{\out k + m + n = k + (m + n)}
lcp@105
  1006
{\out  1. k + m + 0 = k + (m + 0)}
lcp@284
  1007
{\out  2. !!x. k + m + x = k + (m + x) ==>}
lcp@284
  1008
{\out          k + m + Suc(x) = k + (m + Suc(x))}
lcp@284
  1009
\end{ttbox}
lcp@105
  1010
Now induction has been applied to~$n$.  What is the next alternative?
lcp@284
  1011
\begin{ttbox}
lcp@105
  1012
back();
lcp@105
  1013
{\out Level 1}
lcp@105
  1014
{\out k + m + n = k + (m + n)}
lcp@105
  1015
{\out  1. k + m + n = k + (m + 0)}
lcp@105
  1016
{\out  2. !!x. k + m + n = k + (m + x) ==> k + m + n = k + (m + Suc(x))}
lcp@284
  1017
\end{ttbox}
lcp@105
  1018
Inspecting subgoal~1 reveals that induction has been applied to just the
lcp@105
  1019
second occurrence of~$n$.  This perfectly legitimate induction is useless
lcp@310
  1020
here.  
lcp@310
  1021
lcp@310
  1022
The main goal admits fourteen different applications of induction.  The
lcp@310
  1023
number is exponential in the size of the formula.
lcp@105
  1024
lcp@105
  1025
\subsection{Proving that addition is associative}
lcp@331
  1026
Let us invoke the induction rule properly, using~{\tt
lcp@310
  1027
  res_inst_tac}.  At the same time, we shall have a glimpse at Isabelle's
lcp@310
  1028
simplification tactics, which are described in 
lcp@310
  1029
\iflabelundefined{simp-chap}%
lcp@310
  1030
    {the {\em Reference Manual}}{Chap.\ts\ref{simp-chap}}.
lcp@105
  1031
lcp@310
  1032
\index{simplification}\index{examples!of simplification} 
lcp@284
  1033
wenzelm@3114
  1034
Isabelle's simplification tactics repeatedly apply equations to a
wenzelm@3114
  1035
subgoal, perhaps proving it.  For efficiency, the rewrite rules must
wenzelm@3114
  1036
be packaged into a {\bf simplification set},\index{simplification
wenzelm@3114
  1037
  sets} or {\bf simpset}.  We augment the implicit simpset of {\FOL}
wenzelm@3114
  1038
with the equations proved in the previous section, namely $0+n=n$ and
wenzelm@3114
  1039
${\tt Suc}(m)+n={\tt Suc}(m+n)$:
lcp@284
  1040
\begin{ttbox}
wenzelm@3114
  1041
Addsimps [add_0, add_Suc];
lcp@284
  1042
\end{ttbox}
lcp@105
  1043
We state the goal for associativity of addition, and
lcp@105
  1044
use \ttindex{res_inst_tac} to invoke induction on~$k$:
lcp@284
  1045
\begin{ttbox}
lcp@105
  1046
goal Nat.thy "(k+m)+n = k+(m+n)";
lcp@105
  1047
{\out Level 0}
lcp@105
  1048
{\out k + m + n = k + (m + n)}
lcp@105
  1049
{\out  1. k + m + n = k + (m + n)}
lcp@105
  1050
\ttbreak
lcp@105
  1051
by (res_inst_tac [("n","k")] induct 1);
lcp@105
  1052
{\out Level 1}
lcp@105
  1053
{\out k + m + n = k + (m + n)}
lcp@105
  1054
{\out  1. 0 + m + n = 0 + (m + n)}
lcp@284
  1055
{\out  2. !!x. x + m + n = x + (m + n) ==>}
lcp@284
  1056
{\out          Suc(x) + m + n = Suc(x) + (m + n)}
lcp@284
  1057
\end{ttbox}
lcp@105
  1058
The base case holds easily; both sides reduce to $m+n$.  The
wenzelm@3114
  1059
tactic~\ttindex{Simp_tac} rewrites with respect to the current
wenzelm@3114
  1060
simplification set, applying the rewrite rules for addition:
lcp@284
  1061
\begin{ttbox}
wenzelm@3114
  1062
by (Simp_tac 1);
lcp@105
  1063
{\out Level 2}
lcp@105
  1064
{\out k + m + n = k + (m + n)}
lcp@284
  1065
{\out  1. !!x. x + m + n = x + (m + n) ==>}
lcp@284
  1066
{\out          Suc(x) + m + n = Suc(x) + (m + n)}
lcp@284
  1067
\end{ttbox}
lcp@331
  1068
The inductive step requires rewriting by the equations for addition
lcp@105
  1069
together the induction hypothesis, which is also an equation.  The
wenzelm@3114
  1070
tactic~\ttindex{Asm_simp_tac} rewrites using the implicit
wenzelm@3114
  1071
simplification set and any useful assumptions:
lcp@284
  1072
\begin{ttbox}
wenzelm@3114
  1073
by (Asm_simp_tac 1);
lcp@105
  1074
{\out Level 3}
lcp@105
  1075
{\out k + m + n = k + (m + n)}
lcp@105
  1076
{\out No subgoals!}
lcp@284
  1077
\end{ttbox}
lcp@310
  1078
\index{instantiation|)}
lcp@105
  1079
lcp@105
  1080
lcp@284
  1081
\section{A Prolog interpreter}
lcp@105
  1082
\index{Prolog interpreter|bold}
lcp@284
  1083
To demonstrate the power of tacticals, let us construct a Prolog
lcp@105
  1084
interpreter and execute programs involving lists.\footnote{To run these
lcp@331
  1085
examples, see the file {\tt FOL/ex/Prolog.ML}.} The Prolog program
lcp@105
  1086
consists of a theory.  We declare a type constructor for lists, with an
lcp@105
  1087
arity declaration to say that $(\tau)list$ is of class~$term$
lcp@105
  1088
provided~$\tau$ is:
lcp@105
  1089
\begin{eqnarray*}
lcp@105
  1090
  list  & :: & (term)term
lcp@105
  1091
\end{eqnarray*}
lcp@105
  1092
We declare four constants: the empty list~$Nil$; the infix list
lcp@105
  1093
constructor~{:}; the list concatenation predicate~$app$; the list reverse
lcp@284
  1094
predicate~$rev$.  (In Prolog, functions on lists are expressed as
lcp@105
  1095
predicates.)
lcp@105
  1096
\begin{eqnarray*}
lcp@105
  1097
    Nil         & :: & \alpha list \\
lcp@105
  1098
    {:}         & :: & [\alpha,\alpha list] \To \alpha list \\
lcp@105
  1099
    app & :: & [\alpha list,\alpha list,\alpha list] \To o \\
lcp@105
  1100
    rev & :: & [\alpha list,\alpha list] \To o 
lcp@105
  1101
\end{eqnarray*}
lcp@284
  1102
The predicate $app$ should satisfy the Prolog-style rules
lcp@105
  1103
\[ {app(Nil,ys,ys)} \qquad
lcp@105
  1104
   {app(xs,ys,zs) \over app(x:xs, ys, x:zs)} \]
lcp@105
  1105
We define the naive version of $rev$, which calls~$app$:
lcp@105
  1106
\[ {rev(Nil,Nil)} \qquad
lcp@105
  1107
   {rev(xs,ys)\quad  app(ys, x:Nil, zs) \over
lcp@105
  1108
    rev(x:xs, zs)} 
lcp@105
  1109
\]
lcp@105
  1110
lcp@105
  1111
\index{examples!of theories}
lcp@310
  1112
Theory \thydx{Prolog} extends first-order logic in order to make use
lcp@105
  1113
of the class~$term$ and the type~$o$.  The interpreter does not use the
lcp@310
  1114
rules of~{\tt FOL}.
lcp@105
  1115
\begin{ttbox}
lcp@105
  1116
Prolog = FOL +
lcp@296
  1117
types   'a list
lcp@105
  1118
arities list    :: (term)term
clasohm@1387
  1119
consts  Nil     :: 'a list
clasohm@1387
  1120
        ":"     :: ['a, 'a list]=> 'a list            (infixr 60)
clasohm@1387
  1121
        app     :: ['a list, 'a list, 'a list] => o
clasohm@1387
  1122
        rev     :: ['a list, 'a list] => o
lcp@105
  1123
rules   appNil  "app(Nil,ys,ys)"
lcp@105
  1124
        appCons "app(xs,ys,zs) ==> app(x:xs, ys, x:zs)"
lcp@105
  1125
        revNil  "rev(Nil,Nil)"
lcp@105
  1126
        revCons "[| rev(xs,ys); app(ys,x:Nil,zs) |] ==> rev(x:xs,zs)"
lcp@105
  1127
end
lcp@105
  1128
\end{ttbox}
lcp@105
  1129
\subsection{Simple executions}
lcp@284
  1130
Repeated application of the rules solves Prolog goals.  Let us
lcp@105
  1131
append the lists $[a,b,c]$ and~$[d,e]$.  As the rules are applied, the
lcp@105
  1132
answer builds up in~{\tt ?x}.
lcp@105
  1133
\begin{ttbox}
lcp@105
  1134
goal Prolog.thy "app(a:b:c:Nil, d:e:Nil, ?x)";
lcp@105
  1135
{\out Level 0}
lcp@105
  1136
{\out app(a : b : c : Nil, d : e : Nil, ?x)}
lcp@105
  1137
{\out  1. app(a : b : c : Nil, d : e : Nil, ?x)}
lcp@105
  1138
\ttbreak
lcp@105
  1139
by (resolve_tac [appNil,appCons] 1);
lcp@105
  1140
{\out Level 1}
lcp@105
  1141
{\out app(a : b : c : Nil, d : e : Nil, a : ?zs1)}
lcp@105
  1142
{\out  1. app(b : c : Nil, d : e : Nil, ?zs1)}
lcp@105
  1143
\ttbreak
lcp@105
  1144
by (resolve_tac [appNil,appCons] 1);
lcp@105
  1145
{\out Level 2}
lcp@105
  1146
{\out app(a : b : c : Nil, d : e : Nil, a : b : ?zs2)}
lcp@105
  1147
{\out  1. app(c : Nil, d : e : Nil, ?zs2)}
lcp@105
  1148
\end{ttbox}
lcp@105
  1149
At this point, the first two elements of the result are~$a$ and~$b$.
lcp@105
  1150
\begin{ttbox}
lcp@105
  1151
by (resolve_tac [appNil,appCons] 1);
lcp@105
  1152
{\out Level 3}
lcp@105
  1153
{\out app(a : b : c : Nil, d : e : Nil, a : b : c : ?zs3)}
lcp@105
  1154
{\out  1. app(Nil, d : e : Nil, ?zs3)}
lcp@105
  1155
\ttbreak
lcp@105
  1156
by (resolve_tac [appNil,appCons] 1);
lcp@105
  1157
{\out Level 4}
lcp@105
  1158
{\out app(a : b : c : Nil, d : e : Nil, a : b : c : d : e : Nil)}
lcp@105
  1159
{\out No subgoals!}
lcp@105
  1160
\end{ttbox}
lcp@105
  1161
lcp@284
  1162
Prolog can run functions backwards.  Which list can be appended
lcp@105
  1163
with $[c,d]$ to produce $[a,b,c,d]$?
lcp@105
  1164
Using \ttindex{REPEAT}, we find the answer at once, $[a,b]$:
lcp@105
  1165
\begin{ttbox}
lcp@105
  1166
goal Prolog.thy "app(?x, c:d:Nil, a:b:c:d:Nil)";
lcp@105
  1167
{\out Level 0}
lcp@105
  1168
{\out app(?x, c : d : Nil, a : b : c : d : Nil)}
lcp@105
  1169
{\out  1. app(?x, c : d : Nil, a : b : c : d : Nil)}
lcp@105
  1170
\ttbreak
lcp@105
  1171
by (REPEAT (resolve_tac [appNil,appCons] 1));
lcp@105
  1172
{\out Level 1}
lcp@105
  1173
{\out app(a : b : Nil, c : d : Nil, a : b : c : d : Nil)}
lcp@105
  1174
{\out No subgoals!}
lcp@105
  1175
\end{ttbox}
lcp@105
  1176
lcp@105
  1177
lcp@310
  1178
\subsection{Backtracking}\index{backtracking!Prolog style}
lcp@296
  1179
Prolog backtracking can answer questions that have multiple solutions.
lcp@296
  1180
Which lists $x$ and $y$ can be appended to form the list $[a,b,c,d]$?  This
lcp@296
  1181
question has five solutions.  Using \ttindex{REPEAT} to apply the rules, we
lcp@296
  1182
quickly find the first solution, namely $x=[]$ and $y=[a,b,c,d]$:
lcp@105
  1183
\begin{ttbox}
lcp@105
  1184
goal Prolog.thy "app(?x, ?y, a:b:c:d:Nil)";
lcp@105
  1185
{\out Level 0}
lcp@105
  1186
{\out app(?x, ?y, a : b : c : d : Nil)}
lcp@105
  1187
{\out  1. app(?x, ?y, a : b : c : d : Nil)}
lcp@105
  1188
\ttbreak
lcp@105
  1189
by (REPEAT (resolve_tac [appNil,appCons] 1));
lcp@105
  1190
{\out Level 1}
lcp@105
  1191
{\out app(Nil, a : b : c : d : Nil, a : b : c : d : Nil)}
lcp@105
  1192
{\out No subgoals!}
lcp@105
  1193
\end{ttbox}
lcp@284
  1194
Isabelle can lazily generate all the possibilities.  The \ttindex{back}
lcp@284
  1195
command returns the tactic's next outcome, namely $x=[a]$ and $y=[b,c,d]$:
lcp@105
  1196
\begin{ttbox}
lcp@105
  1197
back();
lcp@105
  1198
{\out Level 1}
lcp@105
  1199
{\out app(a : Nil, b : c : d : Nil, a : b : c : d : Nil)}
lcp@105
  1200
{\out No subgoals!}
lcp@105
  1201
\end{ttbox}
lcp@105
  1202
The other solutions are generated similarly.
lcp@105
  1203
\begin{ttbox}
lcp@105
  1204
back();
lcp@105
  1205
{\out Level 1}
lcp@105
  1206
{\out app(a : b : Nil, c : d : Nil, a : b : c : d : Nil)}
lcp@105
  1207
{\out No subgoals!}
lcp@105
  1208
\ttbreak
lcp@105
  1209
back();
lcp@105
  1210
{\out Level 1}
lcp@105
  1211
{\out app(a : b : c : Nil, d : Nil, a : b : c : d : Nil)}
lcp@105
  1212
{\out No subgoals!}
lcp@105
  1213
\ttbreak
lcp@105
  1214
back();
lcp@105
  1215
{\out Level 1}
lcp@105
  1216
{\out app(a : b : c : d : Nil, Nil, a : b : c : d : Nil)}
lcp@105
  1217
{\out No subgoals!}
lcp@105
  1218
\end{ttbox}
lcp@105
  1219
lcp@105
  1220
lcp@105
  1221
\subsection{Depth-first search}
lcp@105
  1222
\index{search!depth-first}
lcp@105
  1223
Now let us try $rev$, reversing a list.
lcp@105
  1224
Bundle the rules together as the \ML{} identifier {\tt rules}.  Naive
lcp@105
  1225
reverse requires 120 inferences for this 14-element list, but the tactic
lcp@105
  1226
terminates in a few seconds.
lcp@105
  1227
\begin{ttbox}
lcp@105
  1228
goal Prolog.thy "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:Nil, ?w)";
lcp@105
  1229
{\out Level 0}
lcp@105
  1230
{\out rev(a : b : c : d : e : f : g : h : i : j : k : l : m : n : Nil, ?w)}
lcp@284
  1231
{\out  1. rev(a : b : c : d : e : f : g : h : i : j : k : l : m : n : Nil,}
lcp@284
  1232
{\out         ?w)}
lcp@284
  1233
\ttbreak
lcp@105
  1234
val rules = [appNil,appCons,revNil,revCons];
lcp@105
  1235
\ttbreak
lcp@105
  1236
by (REPEAT (resolve_tac rules 1));
lcp@105
  1237
{\out Level 1}
lcp@105
  1238
{\out rev(a : b : c : d : e : f : g : h : i : j : k : l : m : n : Nil,}
lcp@105
  1239
{\out     n : m : l : k : j : i : h : g : f : e : d : c : b : a : Nil)}
lcp@105
  1240
{\out No subgoals!}
lcp@105
  1241
\end{ttbox}
lcp@105
  1242
We may execute $rev$ backwards.  This, too, should reverse a list.  What
lcp@105
  1243
is the reverse of $[a,b,c]$?
lcp@105
  1244
\begin{ttbox}
lcp@105
  1245
goal Prolog.thy "rev(?x, a:b:c:Nil)";
lcp@105
  1246
{\out Level 0}
lcp@105
  1247
{\out rev(?x, a : b : c : Nil)}
lcp@105
  1248
{\out  1. rev(?x, a : b : c : Nil)}
lcp@105
  1249
\ttbreak
lcp@105
  1250
by (REPEAT (resolve_tac rules 1));
lcp@105
  1251
{\out Level 1}
lcp@105
  1252
{\out rev(?x1 : Nil, a : b : c : Nil)}
lcp@105
  1253
{\out  1. app(Nil, ?x1 : Nil, a : b : c : Nil)}
lcp@105
  1254
\end{ttbox}
lcp@105
  1255
The tactic has failed to find a solution!  It reached a dead end at
lcp@331
  1256
subgoal~1: there is no~$\Var{x@1}$ such that [] appended with~$[\Var{x@1}]$
lcp@105
  1257
equals~$[a,b,c]$.  Backtracking explores other outcomes.
lcp@105
  1258
\begin{ttbox}
lcp@105
  1259
back();
lcp@105
  1260
{\out Level 1}
lcp@105
  1261
{\out rev(?x1 : a : Nil, a : b : c : Nil)}
lcp@105
  1262
{\out  1. app(Nil, ?x1 : Nil, b : c : Nil)}
lcp@105
  1263
\end{ttbox}
lcp@105
  1264
This too is a dead end, but the next outcome is successful.
lcp@105
  1265
\begin{ttbox}
lcp@105
  1266
back();
lcp@105
  1267
{\out Level 1}
lcp@105
  1268
{\out rev(c : b : a : Nil, a : b : c : Nil)}
lcp@105
  1269
{\out No subgoals!}
lcp@105
  1270
\end{ttbox}
lcp@310
  1271
\ttindex{REPEAT} goes wrong because it is only a repetition tactical, not a
lcp@310
  1272
search tactical.  {\tt REPEAT} stops when it cannot continue, regardless of
lcp@310
  1273
which state is reached.  The tactical \ttindex{DEPTH_FIRST} searches for a
lcp@310
  1274
satisfactory state, as specified by an \ML{} predicate.  Below,
lcp@105
  1275
\ttindex{has_fewer_prems} specifies that the proof state should have no
lcp@310
  1276
subgoals.
lcp@105
  1277
\begin{ttbox}
lcp@105
  1278
val prolog_tac = DEPTH_FIRST (has_fewer_prems 1) 
lcp@105
  1279
                             (resolve_tac rules 1);
lcp@105
  1280
\end{ttbox}
lcp@284
  1281
Since Prolog uses depth-first search, this tactic is a (slow!) 
lcp@296
  1282
Prolog interpreter.  We return to the start of the proof using
lcp@296
  1283
\ttindex{choplev}, and apply {\tt prolog_tac}:
lcp@105
  1284
\begin{ttbox}
lcp@105
  1285
choplev 0;
lcp@105
  1286
{\out Level 0}
lcp@105
  1287
{\out rev(?x, a : b : c : Nil)}
lcp@105
  1288
{\out  1. rev(?x, a : b : c : Nil)}
lcp@105
  1289
\ttbreak
lcp@105
  1290
by (DEPTH_FIRST (has_fewer_prems 1) (resolve_tac rules 1));
lcp@105
  1291
{\out Level 1}
lcp@105
  1292
{\out rev(c : b : a : Nil, a : b : c : Nil)}
lcp@105
  1293
{\out No subgoals!}
lcp@105
  1294
\end{ttbox}
lcp@105
  1295
Let us try {\tt prolog_tac} on one more example, containing four unknowns:
lcp@105
  1296
\begin{ttbox}
lcp@105
  1297
goal Prolog.thy "rev(a:?x:c:?y:Nil, d:?z:b:?u)";
lcp@105
  1298
{\out Level 0}
lcp@105
  1299
{\out rev(a : ?x : c : ?y : Nil, d : ?z : b : ?u)}
lcp@105
  1300
{\out  1. rev(a : ?x : c : ?y : Nil, d : ?z : b : ?u)}
lcp@105
  1301
\ttbreak
lcp@105
  1302
by prolog_tac;
lcp@105
  1303
{\out Level 1}
lcp@105
  1304
{\out rev(a : b : c : d : Nil, d : c : b : a : Nil)}
lcp@105
  1305
{\out No subgoals!}
lcp@105
  1306
\end{ttbox}
lcp@284
  1307
Although Isabelle is much slower than a Prolog system, Isabelle
lcp@156
  1308
tactics can exploit logic programming techniques.  
lcp@156
  1309