src/HOL/SetInterval.thy
author haftmann
Mon, 02 Feb 2009 13:56:23 +0100
changeset 29709 cf8476cc440d
parent 29667 53103fc8ffa3
child 29857 b95f5b8b93dd
permissions -rw-r--r--
fixed proposition slip
nipkow@8924
     1
(*  Title:      HOL/SetInterval.thy
ballarin@13735
     2
    Author:     Tobias Nipkow and Clemens Ballarin
paulson@14485
     3
                Additions by Jeremy Avigad in March 2004
paulson@8957
     4
    Copyright   2000  TU Muenchen
nipkow@8924
     5
ballarin@13735
     6
lessThan, greaterThan, atLeast, atMost and two-sided intervals
nipkow@8924
     7
*)
nipkow@8924
     8
wenzelm@14577
     9
header {* Set intervals *}
wenzelm@14577
    10
nipkow@15131
    11
theory SetInterval
haftmann@25919
    12
imports Int
nipkow@15131
    13
begin
nipkow@8924
    14
nipkow@24691
    15
context ord
nipkow@24691
    16
begin
nipkow@24691
    17
definition
haftmann@25062
    18
  lessThan    :: "'a => 'a set"	("(1{..<_})") where
haftmann@25062
    19
  "{..<u} == {x. x < u}"
nipkow@24691
    20
nipkow@24691
    21
definition
haftmann@25062
    22
  atMost      :: "'a => 'a set"	("(1{.._})") where
haftmann@25062
    23
  "{..u} == {x. x \<le> u}"
nipkow@24691
    24
nipkow@24691
    25
definition
haftmann@25062
    26
  greaterThan :: "'a => 'a set"	("(1{_<..})") where
haftmann@25062
    27
  "{l<..} == {x. l<x}"
nipkow@24691
    28
nipkow@24691
    29
definition
haftmann@25062
    30
  atLeast     :: "'a => 'a set"	("(1{_..})") where
haftmann@25062
    31
  "{l..} == {x. l\<le>x}"
nipkow@24691
    32
nipkow@24691
    33
definition
haftmann@25062
    34
  greaterThanLessThan :: "'a => 'a => 'a set"  ("(1{_<..<_})") where
haftmann@25062
    35
  "{l<..<u} == {l<..} Int {..<u}"
nipkow@24691
    36
nipkow@24691
    37
definition
haftmann@25062
    38
  atLeastLessThan :: "'a => 'a => 'a set"      ("(1{_..<_})") where
haftmann@25062
    39
  "{l..<u} == {l..} Int {..<u}"
nipkow@24691
    40
nipkow@24691
    41
definition
haftmann@25062
    42
  greaterThanAtMost :: "'a => 'a => 'a set"    ("(1{_<.._})") where
haftmann@25062
    43
  "{l<..u} == {l<..} Int {..u}"
nipkow@24691
    44
nipkow@24691
    45
definition
haftmann@25062
    46
  atLeastAtMost :: "'a => 'a => 'a set"        ("(1{_.._})") where
haftmann@25062
    47
  "{l..u} == {l..} Int {..u}"
nipkow@24691
    48
nipkow@24691
    49
end
nipkow@8924
    50
ballarin@13735
    51
nipkow@15048
    52
text{* A note of warning when using @{term"{..<n}"} on type @{typ
nipkow@15048
    53
nat}: it is equivalent to @{term"{0::nat..<n}"} but some lemmas involving
nipkow@15052
    54
@{term"{m..<n}"} may not exist in @{term"{..<n}"}-form as well. *}
nipkow@15048
    55
kleing@14418
    56
syntax
kleing@14418
    57
  "@UNION_le"   :: "nat => nat => 'b set => 'b set"       ("(3UN _<=_./ _)" 10)
kleing@14418
    58
  "@UNION_less" :: "nat => nat => 'b set => 'b set"       ("(3UN _<_./ _)" 10)
kleing@14418
    59
  "@INTER_le"   :: "nat => nat => 'b set => 'b set"       ("(3INT _<=_./ _)" 10)
kleing@14418
    60
  "@INTER_less" :: "nat => nat => 'b set => 'b set"       ("(3INT _<_./ _)" 10)
kleing@14418
    61
kleing@14418
    62
syntax (input)
kleing@14418
    63
  "@UNION_le"   :: "nat => nat => 'b set => 'b set"       ("(3\<Union> _\<le>_./ _)" 10)
kleing@14418
    64
  "@UNION_less" :: "nat => nat => 'b set => 'b set"       ("(3\<Union> _<_./ _)" 10)
kleing@14418
    65
  "@INTER_le"   :: "nat => nat => 'b set => 'b set"       ("(3\<Inter> _\<le>_./ _)" 10)
kleing@14418
    66
  "@INTER_less" :: "nat => nat => 'b set => 'b set"       ("(3\<Inter> _<_./ _)" 10)
kleing@14418
    67
kleing@14418
    68
syntax (xsymbols)
wenzelm@14846
    69
  "@UNION_le"   :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Union>(00\<^bsub>_ \<le> _\<^esub>)/ _)" 10)
wenzelm@14846
    70
  "@UNION_less" :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Union>(00\<^bsub>_ < _\<^esub>)/ _)" 10)
wenzelm@14846
    71
  "@INTER_le"   :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Inter>(00\<^bsub>_ \<le> _\<^esub>)/ _)" 10)
wenzelm@14846
    72
  "@INTER_less" :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Inter>(00\<^bsub>_ < _\<^esub>)/ _)" 10)
kleing@14418
    73
kleing@14418
    74
translations
kleing@14418
    75
  "UN i<=n. A"  == "UN i:{..n}. A"
nipkow@15045
    76
  "UN i<n. A"   == "UN i:{..<n}. A"
kleing@14418
    77
  "INT i<=n. A" == "INT i:{..n}. A"
nipkow@15045
    78
  "INT i<n. A"  == "INT i:{..<n}. A"
kleing@14418
    79
kleing@14418
    80
paulson@14485
    81
subsection {* Various equivalences *}
ballarin@13735
    82
haftmann@25062
    83
lemma (in ord) lessThan_iff [iff]: "(i: lessThan k) = (i<k)"
paulson@13850
    84
by (simp add: lessThan_def)
ballarin@13735
    85
paulson@15418
    86
lemma Compl_lessThan [simp]:
paulson@13850
    87
    "!!k:: 'a::linorder. -lessThan k = atLeast k"
paulson@13850
    88
apply (auto simp add: lessThan_def atLeast_def)
ballarin@13735
    89
done
ballarin@13735
    90
paulson@13850
    91
lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}"
paulson@13850
    92
by auto
paulson@13850
    93
haftmann@25062
    94
lemma (in ord) greaterThan_iff [iff]: "(i: greaterThan k) = (k<i)"
paulson@13850
    95
by (simp add: greaterThan_def)
paulson@13850
    96
paulson@15418
    97
lemma Compl_greaterThan [simp]:
paulson@13850
    98
    "!!k:: 'a::linorder. -greaterThan k = atMost k"
haftmann@26072
    99
  by (auto simp add: greaterThan_def atMost_def)
ballarin@13735
   100
paulson@13850
   101
lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k"
paulson@13850
   102
apply (subst Compl_greaterThan [symmetric])
paulson@15418
   103
apply (rule double_complement)
ballarin@13735
   104
done
ballarin@13735
   105
haftmann@25062
   106
lemma (in ord) atLeast_iff [iff]: "(i: atLeast k) = (k<=i)"
paulson@13850
   107
by (simp add: atLeast_def)
paulson@13850
   108
paulson@15418
   109
lemma Compl_atLeast [simp]:
paulson@13850
   110
    "!!k:: 'a::linorder. -atLeast k = lessThan k"
haftmann@26072
   111
  by (auto simp add: lessThan_def atLeast_def)
ballarin@13735
   112
haftmann@25062
   113
lemma (in ord) atMost_iff [iff]: "(i: atMost k) = (i<=k)"
paulson@13850
   114
by (simp add: atMost_def)
ballarin@13735
   115
paulson@14485
   116
lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
paulson@14485
   117
by (blast intro: order_antisym)
ballarin@13735
   118
ballarin@13735
   119
paulson@14485
   120
subsection {* Logical Equivalences for Set Inclusion and Equality *}
paulson@13850
   121
paulson@13850
   122
lemma atLeast_subset_iff [iff]:
paulson@15418
   123
     "(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::order))"
paulson@15418
   124
by (blast intro: order_trans)
paulson@13850
   125
paulson@13850
   126
lemma atLeast_eq_iff [iff]:
paulson@15418
   127
     "(atLeast x = atLeast y) = (x = (y::'a::linorder))"
paulson@13850
   128
by (blast intro: order_antisym order_trans)
paulson@13850
   129
paulson@13850
   130
lemma greaterThan_subset_iff [iff]:
paulson@15418
   131
     "(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))"
paulson@15418
   132
apply (auto simp add: greaterThan_def)
paulson@15418
   133
 apply (subst linorder_not_less [symmetric], blast)
ballarin@13735
   134
done
ballarin@13735
   135
paulson@13850
   136
lemma greaterThan_eq_iff [iff]:
paulson@15418
   137
     "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))"
paulson@15418
   138
apply (rule iffI)
paulson@15418
   139
 apply (erule equalityE)
haftmann@29709
   140
 apply simp_all
paulson@13850
   141
done
ballarin@13735
   142
paulson@15418
   143
lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::order))"
paulson@13850
   144
by (blast intro: order_trans)
paulson@13850
   145
paulson@15418
   146
lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))"
paulson@13850
   147
by (blast intro: order_antisym order_trans)
paulson@13850
   148
paulson@13850
   149
lemma lessThan_subset_iff [iff]:
paulson@15418
   150
     "(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))"
paulson@15418
   151
apply (auto simp add: lessThan_def)
paulson@15418
   152
 apply (subst linorder_not_less [symmetric], blast)
paulson@13850
   153
done
paulson@13850
   154
paulson@13850
   155
lemma lessThan_eq_iff [iff]:
paulson@15418
   156
     "(lessThan x = lessThan y) = (x = (y::'a::linorder))"
paulson@15418
   157
apply (rule iffI)
paulson@15418
   158
 apply (erule equalityE)
haftmann@29709
   159
 apply simp_all
paulson@13850
   160
done
paulson@13850
   161
paulson@13850
   162
paulson@13850
   163
subsection {*Two-sided intervals*}
ballarin@13735
   164
nipkow@24691
   165
context ord
nipkow@24691
   166
begin
nipkow@24691
   167
paulson@24286
   168
lemma greaterThanLessThan_iff [simp,noatp]:
haftmann@25062
   169
  "(i : {l<..<u}) = (l < i & i < u)"
ballarin@13735
   170
by (simp add: greaterThanLessThan_def)
ballarin@13735
   171
paulson@24286
   172
lemma atLeastLessThan_iff [simp,noatp]:
haftmann@25062
   173
  "(i : {l..<u}) = (l <= i & i < u)"
ballarin@13735
   174
by (simp add: atLeastLessThan_def)
ballarin@13735
   175
paulson@24286
   176
lemma greaterThanAtMost_iff [simp,noatp]:
haftmann@25062
   177
  "(i : {l<..u}) = (l < i & i <= u)"
ballarin@13735
   178
by (simp add: greaterThanAtMost_def)
ballarin@13735
   179
paulson@24286
   180
lemma atLeastAtMost_iff [simp,noatp]:
haftmann@25062
   181
  "(i : {l..u}) = (l <= i & i <= u)"
ballarin@13735
   182
by (simp add: atLeastAtMost_def)
ballarin@13735
   183
wenzelm@14577
   184
text {* The above four lemmas could be declared as iffs.
wenzelm@14577
   185
  If we do so, a call to blast in Hyperreal/Star.ML, lemma @{text STAR_Int}
wenzelm@14577
   186
  seems to take forever (more than one hour). *}
nipkow@24691
   187
end
ballarin@13735
   188
nipkow@15554
   189
subsubsection{* Emptyness and singletons *}
nipkow@15554
   190
nipkow@24691
   191
context order
nipkow@24691
   192
begin
nipkow@15554
   193
haftmann@25062
   194
lemma atLeastAtMost_empty [simp]: "n < m ==> {m..n} = {}";
nipkow@24691
   195
by (auto simp add: atLeastAtMost_def atMost_def atLeast_def)
nipkow@24691
   196
haftmann@25062
   197
lemma atLeastLessThan_empty[simp]: "n \<le> m ==> {m..<n} = {}"
nipkow@15554
   198
by (auto simp add: atLeastLessThan_def)
nipkow@15554
   199
haftmann@25062
   200
lemma greaterThanAtMost_empty[simp]:"l \<le> k ==> {k<..l} = {}"
nipkow@17719
   201
by(auto simp:greaterThanAtMost_def greaterThan_def atMost_def)
nipkow@17719
   202
haftmann@29709
   203
lemma greaterThanLessThan_empty[simp]:"l \<le> k ==> {k<..<l} = {}"
nipkow@17719
   204
by(auto simp:greaterThanLessThan_def greaterThan_def lessThan_def)
nipkow@17719
   205
haftmann@25062
   206
lemma atLeastAtMost_singleton [simp]: "{a..a} = {a}"
nipkow@24691
   207
by (auto simp add: atLeastAtMost_def atMost_def atLeast_def)
nipkow@24691
   208
nipkow@24691
   209
end
paulson@14485
   210
paulson@14485
   211
subsection {* Intervals of natural numbers *}
paulson@14485
   212
paulson@15047
   213
subsubsection {* The Constant @{term lessThan} *}
paulson@15047
   214
paulson@14485
   215
lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
paulson@14485
   216
by (simp add: lessThan_def)
paulson@14485
   217
paulson@14485
   218
lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)"
paulson@14485
   219
by (simp add: lessThan_def less_Suc_eq, blast)
paulson@14485
   220
paulson@14485
   221
lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k"
paulson@14485
   222
by (simp add: lessThan_def atMost_def less_Suc_eq_le)
paulson@14485
   223
paulson@14485
   224
lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV"
paulson@14485
   225
by blast
paulson@14485
   226
paulson@15047
   227
subsubsection {* The Constant @{term greaterThan} *}
paulson@15047
   228
paulson@14485
   229
lemma greaterThan_0 [simp]: "greaterThan 0 = range Suc"
paulson@14485
   230
apply (simp add: greaterThan_def)
paulson@14485
   231
apply (blast dest: gr0_conv_Suc [THEN iffD1])
paulson@14485
   232
done
paulson@14485
   233
paulson@14485
   234
lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
paulson@14485
   235
apply (simp add: greaterThan_def)
paulson@14485
   236
apply (auto elim: linorder_neqE)
paulson@14485
   237
done
paulson@14485
   238
paulson@14485
   239
lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}"
paulson@14485
   240
by blast
paulson@14485
   241
paulson@15047
   242
subsubsection {* The Constant @{term atLeast} *}
paulson@15047
   243
paulson@14485
   244
lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV"
paulson@14485
   245
by (unfold atLeast_def UNIV_def, simp)
paulson@14485
   246
paulson@14485
   247
lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
paulson@14485
   248
apply (simp add: atLeast_def)
paulson@14485
   249
apply (simp add: Suc_le_eq)
paulson@14485
   250
apply (simp add: order_le_less, blast)
paulson@14485
   251
done
paulson@14485
   252
paulson@14485
   253
lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k"
paulson@14485
   254
  by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le)
paulson@14485
   255
paulson@14485
   256
lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV"
paulson@14485
   257
by blast
paulson@14485
   258
paulson@15047
   259
subsubsection {* The Constant @{term atMost} *}
paulson@15047
   260
paulson@14485
   261
lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
paulson@14485
   262
by (simp add: atMost_def)
paulson@14485
   263
paulson@14485
   264
lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)"
paulson@14485
   265
apply (simp add: atMost_def)
paulson@14485
   266
apply (simp add: less_Suc_eq order_le_less, blast)
paulson@14485
   267
done
paulson@14485
   268
paulson@14485
   269
lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV"
paulson@14485
   270
by blast
paulson@14485
   271
paulson@15047
   272
subsubsection {* The Constant @{term atLeastLessThan} *}
paulson@15047
   273
nipkow@28068
   274
text{*The orientation of the following 2 rules is tricky. The lhs is
nipkow@24449
   275
defined in terms of the rhs.  Hence the chosen orientation makes sense
nipkow@24449
   276
in this theory --- the reverse orientation complicates proofs (eg
nipkow@24449
   277
nontermination). But outside, when the definition of the lhs is rarely
nipkow@24449
   278
used, the opposite orientation seems preferable because it reduces a
nipkow@24449
   279
specific concept to a more general one. *}
nipkow@28068
   280
paulson@15047
   281
lemma atLeast0LessThan: "{0::nat..<n} = {..<n}"
nipkow@15042
   282
by(simp add:lessThan_def atLeastLessThan_def)
nipkow@24449
   283
nipkow@28068
   284
lemma atLeast0AtMost: "{0..n::nat} = {..n}"
nipkow@28068
   285
by(simp add:atMost_def atLeastAtMost_def)
nipkow@28068
   286
nipkow@24449
   287
declare atLeast0LessThan[symmetric, code unfold]
nipkow@28068
   288
        atLeast0AtMost[symmetric, code unfold]
nipkow@24449
   289
nipkow@24449
   290
lemma atLeastLessThan0: "{m..<0::nat} = {}"
paulson@15047
   291
by (simp add: atLeastLessThan_def)
nipkow@24449
   292
paulson@15047
   293
subsubsection {* Intervals of nats with @{term Suc} *}
paulson@15047
   294
paulson@15047
   295
text{*Not a simprule because the RHS is too messy.*}
paulson@15047
   296
lemma atLeastLessThanSuc:
paulson@15047
   297
    "{m..<Suc n} = (if m \<le> n then insert n {m..<n} else {})"
paulson@15418
   298
by (auto simp add: atLeastLessThan_def)
paulson@15047
   299
paulson@15418
   300
lemma atLeastLessThan_singleton [simp]: "{m..<Suc m} = {m}"
paulson@15047
   301
by (auto simp add: atLeastLessThan_def)
nipkow@16041
   302
(*
paulson@15047
   303
lemma atLeast_sum_LessThan [simp]: "{m + k..<k::nat} = {}"
paulson@15047
   304
by (induct k, simp_all add: atLeastLessThanSuc)
paulson@15047
   305
paulson@15047
   306
lemma atLeastSucLessThan [simp]: "{Suc n..<n} = {}"
paulson@15047
   307
by (auto simp add: atLeastLessThan_def)
nipkow@16041
   308
*)
nipkow@15045
   309
lemma atLeastLessThanSuc_atLeastAtMost: "{l..<Suc u} = {l..u}"
paulson@14485
   310
  by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def)
paulson@14485
   311
paulson@15418
   312
lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {l<..u}"
paulson@15418
   313
  by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def
paulson@14485
   314
    greaterThanAtMost_def)
paulson@14485
   315
paulson@15418
   316
lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..<u} = {l<..<u}"
paulson@15418
   317
  by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def
paulson@14485
   318
    greaterThanLessThan_def)
paulson@14485
   319
nipkow@15554
   320
lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
nipkow@15554
   321
by (auto simp add: atLeastAtMost_def)
nipkow@15554
   322
nipkow@16733
   323
subsubsection {* Image *}
nipkow@16733
   324
nipkow@16733
   325
lemma image_add_atLeastAtMost:
nipkow@16733
   326
  "(%n::nat. n+k) ` {i..j} = {i+k..j+k}" (is "?A = ?B")
nipkow@16733
   327
proof
nipkow@16733
   328
  show "?A \<subseteq> ?B" by auto
nipkow@16733
   329
next
nipkow@16733
   330
  show "?B \<subseteq> ?A"
nipkow@16733
   331
  proof
nipkow@16733
   332
    fix n assume a: "n : ?B"
webertj@20217
   333
    hence "n - k : {i..j}" by auto
nipkow@16733
   334
    moreover have "n = (n - k) + k" using a by auto
nipkow@16733
   335
    ultimately show "n : ?A" by blast
nipkow@16733
   336
  qed
nipkow@16733
   337
qed
nipkow@16733
   338
nipkow@16733
   339
lemma image_add_atLeastLessThan:
nipkow@16733
   340
  "(%n::nat. n+k) ` {i..<j} = {i+k..<j+k}" (is "?A = ?B")
nipkow@16733
   341
proof
nipkow@16733
   342
  show "?A \<subseteq> ?B" by auto
nipkow@16733
   343
next
nipkow@16733
   344
  show "?B \<subseteq> ?A"
nipkow@16733
   345
  proof
nipkow@16733
   346
    fix n assume a: "n : ?B"
webertj@20217
   347
    hence "n - k : {i..<j}" by auto
nipkow@16733
   348
    moreover have "n = (n - k) + k" using a by auto
nipkow@16733
   349
    ultimately show "n : ?A" by blast
nipkow@16733
   350
  qed
nipkow@16733
   351
qed
nipkow@16733
   352
nipkow@16733
   353
corollary image_Suc_atLeastAtMost[simp]:
nipkow@16733
   354
  "Suc ` {i..j} = {Suc i..Suc j}"
nipkow@16733
   355
using image_add_atLeastAtMost[where k=1] by simp
nipkow@16733
   356
nipkow@16733
   357
corollary image_Suc_atLeastLessThan[simp]:
nipkow@16733
   358
  "Suc ` {i..<j} = {Suc i..<Suc j}"
nipkow@16733
   359
using image_add_atLeastLessThan[where k=1] by simp
nipkow@16733
   360
nipkow@16733
   361
lemma image_add_int_atLeastLessThan:
nipkow@16733
   362
    "(%x. x + (l::int)) ` {0..<u-l} = {l..<u}"
nipkow@16733
   363
  apply (auto simp add: image_def)
nipkow@16733
   364
  apply (rule_tac x = "x - l" in bexI)
nipkow@16733
   365
  apply auto
nipkow@16733
   366
  done
nipkow@16733
   367
nipkow@16733
   368
paulson@14485
   369
subsubsection {* Finiteness *}
paulson@14485
   370
nipkow@15045
   371
lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..<k}"
paulson@14485
   372
  by (induct k) (simp_all add: lessThan_Suc)
paulson@14485
   373
paulson@14485
   374
lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
paulson@14485
   375
  by (induct k) (simp_all add: atMost_Suc)
paulson@14485
   376
paulson@14485
   377
lemma finite_greaterThanLessThan [iff]:
nipkow@15045
   378
  fixes l :: nat shows "finite {l<..<u}"
paulson@14485
   379
by (simp add: greaterThanLessThan_def)
paulson@14485
   380
paulson@14485
   381
lemma finite_atLeastLessThan [iff]:
nipkow@15045
   382
  fixes l :: nat shows "finite {l..<u}"
paulson@14485
   383
by (simp add: atLeastLessThan_def)
paulson@14485
   384
paulson@14485
   385
lemma finite_greaterThanAtMost [iff]:
nipkow@15045
   386
  fixes l :: nat shows "finite {l<..u}"
paulson@14485
   387
by (simp add: greaterThanAtMost_def)
paulson@14485
   388
paulson@14485
   389
lemma finite_atLeastAtMost [iff]:
paulson@14485
   390
  fixes l :: nat shows "finite {l..u}"
paulson@14485
   391
by (simp add: atLeastAtMost_def)
paulson@14485
   392
nipkow@28068
   393
text {* A bounded set of natural numbers is finite. *}
paulson@14485
   394
lemma bounded_nat_set_is_finite:
nipkow@24853
   395
  "(ALL i:N. i < (n::nat)) ==> finite N"
nipkow@28068
   396
apply (rule finite_subset)
nipkow@28068
   397
 apply (rule_tac [2] finite_lessThan, auto)
nipkow@28068
   398
done
nipkow@28068
   399
nipkow@28068
   400
lemma finite_less_ub:
nipkow@28068
   401
     "!!f::nat=>nat. (!!n. n \<le> f n) ==> finite {n. f n \<le> u}"
nipkow@28068
   402
by (rule_tac B="{..u}" in finite_subset, auto intro: order_trans)
paulson@14485
   403
nipkow@24853
   404
text{* Any subset of an interval of natural numbers the size of the
nipkow@24853
   405
subset is exactly that interval. *}
nipkow@24853
   406
nipkow@24853
   407
lemma subset_card_intvl_is_intvl:
nipkow@24853
   408
  "A <= {k..<k+card A} \<Longrightarrow> A = {k..<k+card A}" (is "PROP ?P")
nipkow@24853
   409
proof cases
nipkow@24853
   410
  assume "finite A"
nipkow@24853
   411
  thus "PROP ?P"
nipkow@24853
   412
  proof(induct A rule:finite_linorder_induct)
nipkow@24853
   413
    case empty thus ?case by auto
nipkow@24853
   414
  next
nipkow@24853
   415
    case (insert A b)
nipkow@24853
   416
    moreover hence "b ~: A" by auto
nipkow@24853
   417
    moreover have "A <= {k..<k+card A}" and "b = k+card A"
nipkow@24853
   418
      using `b ~: A` insert by fastsimp+
nipkow@24853
   419
    ultimately show ?case by auto
nipkow@24853
   420
  qed
nipkow@24853
   421
next
nipkow@24853
   422
  assume "~finite A" thus "PROP ?P" by simp
nipkow@24853
   423
qed
nipkow@24853
   424
nipkow@24853
   425
paulson@14485
   426
subsubsection {* Cardinality *}
paulson@14485
   427
nipkow@15045
   428
lemma card_lessThan [simp]: "card {..<u} = u"
paulson@15251
   429
  by (induct u, simp_all add: lessThan_Suc)
paulson@14485
   430
paulson@14485
   431
lemma card_atMost [simp]: "card {..u} = Suc u"
paulson@14485
   432
  by (simp add: lessThan_Suc_atMost [THEN sym])
paulson@14485
   433
nipkow@15045
   434
lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
nipkow@15045
   435
  apply (subgoal_tac "card {l..<u} = card {..<u-l}")
paulson@14485
   436
  apply (erule ssubst, rule card_lessThan)
nipkow@15045
   437
  apply (subgoal_tac "(%x. x + l) ` {..<u-l} = {l..<u}")
paulson@14485
   438
  apply (erule subst)
paulson@14485
   439
  apply (rule card_image)
paulson@14485
   440
  apply (simp add: inj_on_def)
paulson@14485
   441
  apply (auto simp add: image_def atLeastLessThan_def lessThan_def)
paulson@14485
   442
  apply (rule_tac x = "x - l" in exI)
paulson@14485
   443
  apply arith
paulson@14485
   444
  done
paulson@14485
   445
paulson@15418
   446
lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
paulson@14485
   447
  by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp)
paulson@14485
   448
paulson@15418
   449
lemma card_greaterThanAtMost [simp]: "card {l<..u} = u - l"
paulson@14485
   450
  by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp)
paulson@14485
   451
nipkow@15045
   452
lemma card_greaterThanLessThan [simp]: "card {l<..<u} = u - Suc l"
paulson@14485
   453
  by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp)
paulson@14485
   454
nipkow@26105
   455
nipkow@26105
   456
lemma ex_bij_betw_nat_finite:
nipkow@26105
   457
  "finite M \<Longrightarrow> \<exists>h. bij_betw h {0..<card M} M"
nipkow@26105
   458
apply(drule finite_imp_nat_seg_image_inj_on)
nipkow@26105
   459
apply(auto simp:atLeast0LessThan[symmetric] lessThan_def[symmetric] card_image bij_betw_def)
nipkow@26105
   460
done
nipkow@26105
   461
nipkow@26105
   462
lemma ex_bij_betw_finite_nat:
nipkow@26105
   463
  "finite M \<Longrightarrow> \<exists>h. bij_betw h M {0..<card M}"
nipkow@26105
   464
by (blast dest: ex_bij_betw_nat_finite bij_betw_inv)
nipkow@26105
   465
nipkow@26105
   466
paulson@14485
   467
subsection {* Intervals of integers *}
paulson@14485
   468
nipkow@15045
   469
lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..<u+1} = {l..(u::int)}"
paulson@14485
   470
  by (auto simp add: atLeastAtMost_def atLeastLessThan_def)
paulson@14485
   471
paulson@15418
   472
lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {l<..(u::int)}"
paulson@14485
   473
  by (auto simp add: atLeastAtMost_def greaterThanAtMost_def)
paulson@14485
   474
paulson@15418
   475
lemma atLeastPlusOneLessThan_greaterThanLessThan_int:
paulson@15418
   476
    "{l+1..<u} = {l<..<u::int}"
paulson@14485
   477
  by (auto simp add: atLeastLessThan_def greaterThanLessThan_def)
paulson@14485
   478
paulson@14485
   479
subsubsection {* Finiteness *}
paulson@14485
   480
paulson@15418
   481
lemma image_atLeastZeroLessThan_int: "0 \<le> u ==>
nipkow@15045
   482
    {(0::int)..<u} = int ` {..<nat u}"
paulson@14485
   483
  apply (unfold image_def lessThan_def)
paulson@14485
   484
  apply auto
paulson@14485
   485
  apply (rule_tac x = "nat x" in exI)
paulson@14485
   486
  apply (auto simp add: zless_nat_conj zless_nat_eq_int_zless [THEN sym])
paulson@14485
   487
  done
paulson@14485
   488
nipkow@15045
   489
lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..<u}"
paulson@14485
   490
  apply (case_tac "0 \<le> u")
paulson@14485
   491
  apply (subst image_atLeastZeroLessThan_int, assumption)
paulson@14485
   492
  apply (rule finite_imageI)
paulson@14485
   493
  apply auto
paulson@14485
   494
  done
paulson@14485
   495
nipkow@15045
   496
lemma finite_atLeastLessThan_int [iff]: "finite {l..<u::int}"
nipkow@15045
   497
  apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
paulson@14485
   498
  apply (erule subst)
paulson@14485
   499
  apply (rule finite_imageI)
paulson@14485
   500
  apply (rule finite_atLeastZeroLessThan_int)
nipkow@16733
   501
  apply (rule image_add_int_atLeastLessThan)
paulson@14485
   502
  done
paulson@14485
   503
paulson@15418
   504
lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}"
paulson@14485
   505
  by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp)
paulson@14485
   506
paulson@15418
   507
lemma finite_greaterThanAtMost_int [iff]: "finite {l<..(u::int)}"
paulson@14485
   508
  by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp)
paulson@14485
   509
paulson@15418
   510
lemma finite_greaterThanLessThan_int [iff]: "finite {l<..<u::int}"
paulson@14485
   511
  by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp)
paulson@14485
   512
nipkow@24853
   513
paulson@14485
   514
subsubsection {* Cardinality *}
paulson@14485
   515
nipkow@15045
   516
lemma card_atLeastZeroLessThan_int: "card {(0::int)..<u} = nat u"
paulson@14485
   517
  apply (case_tac "0 \<le> u")
paulson@14485
   518
  apply (subst image_atLeastZeroLessThan_int, assumption)
paulson@14485
   519
  apply (subst card_image)
paulson@14485
   520
  apply (auto simp add: inj_on_def)
paulson@14485
   521
  done
paulson@14485
   522
nipkow@15045
   523
lemma card_atLeastLessThan_int [simp]: "card {l..<u} = nat (u - l)"
nipkow@15045
   524
  apply (subgoal_tac "card {l..<u} = card {0..<u-l}")
paulson@14485
   525
  apply (erule ssubst, rule card_atLeastZeroLessThan_int)
nipkow@15045
   526
  apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
paulson@14485
   527
  apply (erule subst)
paulson@14485
   528
  apply (rule card_image)
paulson@14485
   529
  apply (simp add: inj_on_def)
nipkow@16733
   530
  apply (rule image_add_int_atLeastLessThan)
paulson@14485
   531
  done
paulson@14485
   532
paulson@14485
   533
lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
nipkow@29667
   534
apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym])
nipkow@29667
   535
apply (auto simp add: algebra_simps)
nipkow@29667
   536
done
paulson@14485
   537
paulson@15418
   538
lemma card_greaterThanAtMost_int [simp]: "card {l<..u} = nat (u - l)"
nipkow@29667
   539
by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp)
paulson@14485
   540
nipkow@15045
   541
lemma card_greaterThanLessThan_int [simp]: "card {l<..<u} = nat (u - (l + 1))"
nipkow@29667
   542
by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp)
paulson@14485
   543
bulwahn@27656
   544
lemma finite_M_bounded_by_nat: "finite {k. P k \<and> k < (i::nat)}"
bulwahn@27656
   545
proof -
bulwahn@27656
   546
  have "{k. P k \<and> k < i} \<subseteq> {..<i}" by auto
bulwahn@27656
   547
  with finite_lessThan[of "i"] show ?thesis by (simp add: finite_subset)
bulwahn@27656
   548
qed
bulwahn@27656
   549
bulwahn@27656
   550
lemma card_less:
bulwahn@27656
   551
assumes zero_in_M: "0 \<in> M"
bulwahn@27656
   552
shows "card {k \<in> M. k < Suc i} \<noteq> 0"
bulwahn@27656
   553
proof -
bulwahn@27656
   554
  from zero_in_M have "{k \<in> M. k < Suc i} \<noteq> {}" by auto
bulwahn@27656
   555
  with finite_M_bounded_by_nat show ?thesis by (auto simp add: card_eq_0_iff)
bulwahn@27656
   556
qed
bulwahn@27656
   557
bulwahn@27656
   558
lemma card_less_Suc2: "0 \<notin> M \<Longrightarrow> card {k. Suc k \<in> M \<and> k < i} = card {k \<in> M. k < Suc i}"
bulwahn@27656
   559
apply (rule card_bij_eq [of "Suc" _ _ "\<lambda>x. x - 1"])
bulwahn@27656
   560
apply simp
bulwahn@27656
   561
apply fastsimp
bulwahn@27656
   562
apply auto
bulwahn@27656
   563
apply (rule inj_on_diff_nat)
bulwahn@27656
   564
apply auto
bulwahn@27656
   565
apply (case_tac x)
bulwahn@27656
   566
apply auto
bulwahn@27656
   567
apply (case_tac xa)
bulwahn@27656
   568
apply auto
bulwahn@27656
   569
apply (case_tac xa)
bulwahn@27656
   570
apply auto
bulwahn@27656
   571
apply (auto simp add: finite_M_bounded_by_nat)
bulwahn@27656
   572
done
bulwahn@27656
   573
bulwahn@27656
   574
lemma card_less_Suc:
bulwahn@27656
   575
  assumes zero_in_M: "0 \<in> M"
bulwahn@27656
   576
    shows "Suc (card {k. Suc k \<in> M \<and> k < i}) = card {k \<in> M. k < Suc i}"
bulwahn@27656
   577
proof -
bulwahn@27656
   578
  from assms have a: "0 \<in> {k \<in> M. k < Suc i}" by simp
bulwahn@27656
   579
  hence c: "{k \<in> M. k < Suc i} = insert 0 ({k \<in> M. k < Suc i} - {0})"
bulwahn@27656
   580
    by (auto simp only: insert_Diff)
bulwahn@27656
   581
  have b: "{k \<in> M. k < Suc i} - {0} = {k \<in> M - {0}. k < Suc i}"  by auto
bulwahn@27656
   582
  from finite_M_bounded_by_nat[of "\<lambda>x. x \<in> M" "Suc i"] have "Suc (card {k. Suc k \<in> M \<and> k < i}) = card (insert 0 ({k \<in> M. k < Suc i} - {0}))"
bulwahn@27656
   583
    apply (subst card_insert)
bulwahn@27656
   584
    apply simp_all
bulwahn@27656
   585
    apply (subst b)
bulwahn@27656
   586
    apply (subst card_less_Suc2[symmetric])
bulwahn@27656
   587
    apply simp_all
bulwahn@27656
   588
    done
bulwahn@27656
   589
  with c show ?thesis by simp
bulwahn@27656
   590
qed
bulwahn@27656
   591
paulson@14485
   592
paulson@13850
   593
subsection {*Lemmas useful with the summation operator setsum*}
paulson@13850
   594
ballarin@16102
   595
text {* For examples, see Algebra/poly/UnivPoly2.thy *}
ballarin@13735
   596
wenzelm@14577
   597
subsubsection {* Disjoint Unions *}
ballarin@13735
   598
wenzelm@14577
   599
text {* Singletons and open intervals *}
ballarin@13735
   600
ballarin@13735
   601
lemma ivl_disj_un_singleton:
nipkow@15045
   602
  "{l::'a::linorder} Un {l<..} = {l..}"
nipkow@15045
   603
  "{..<u} Un {u::'a::linorder} = {..u}"
nipkow@15045
   604
  "(l::'a::linorder) < u ==> {l} Un {l<..<u} = {l..<u}"
nipkow@15045
   605
  "(l::'a::linorder) < u ==> {l<..<u} Un {u} = {l<..u}"
nipkow@15045
   606
  "(l::'a::linorder) <= u ==> {l} Un {l<..u} = {l..u}"
nipkow@15045
   607
  "(l::'a::linorder) <= u ==> {l..<u} Un {u} = {l..u}"
ballarin@14398
   608
by auto
ballarin@13735
   609
wenzelm@14577
   610
text {* One- and two-sided intervals *}
ballarin@13735
   611
ballarin@13735
   612
lemma ivl_disj_un_one:
nipkow@15045
   613
  "(l::'a::linorder) < u ==> {..l} Un {l<..<u} = {..<u}"
nipkow@15045
   614
  "(l::'a::linorder) <= u ==> {..<l} Un {l..<u} = {..<u}"
nipkow@15045
   615
  "(l::'a::linorder) <= u ==> {..l} Un {l<..u} = {..u}"
nipkow@15045
   616
  "(l::'a::linorder) <= u ==> {..<l} Un {l..u} = {..u}"
nipkow@15045
   617
  "(l::'a::linorder) <= u ==> {l<..u} Un {u<..} = {l<..}"
nipkow@15045
   618
  "(l::'a::linorder) < u ==> {l<..<u} Un {u..} = {l<..}"
nipkow@15045
   619
  "(l::'a::linorder) <= u ==> {l..u} Un {u<..} = {l..}"
nipkow@15045
   620
  "(l::'a::linorder) <= u ==> {l..<u} Un {u..} = {l..}"
ballarin@14398
   621
by auto
ballarin@13735
   622
wenzelm@14577
   623
text {* Two- and two-sided intervals *}
ballarin@13735
   624
ballarin@13735
   625
lemma ivl_disj_un_two:
nipkow@15045
   626
  "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..<u} = {l<..<u}"
nipkow@15045
   627
  "[| (l::'a::linorder) <= m; m < u |] ==> {l<..m} Un {m<..<u} = {l<..<u}"
nipkow@15045
   628
  "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..<u} = {l..<u}"
nipkow@15045
   629
  "[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {m<..<u} = {l..<u}"
nipkow@15045
   630
  "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..u} = {l<..u}"
nipkow@15045
   631
  "[| (l::'a::linorder) <= m; m <= u |] ==> {l<..m} Un {m<..u} = {l<..u}"
nipkow@15045
   632
  "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..u} = {l..u}"
nipkow@15045
   633
  "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {m<..u} = {l..u}"
ballarin@14398
   634
by auto
ballarin@13735
   635
ballarin@13735
   636
lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two
ballarin@13735
   637
wenzelm@14577
   638
subsubsection {* Disjoint Intersections *}
ballarin@13735
   639
wenzelm@14577
   640
text {* Singletons and open intervals *}
ballarin@13735
   641
ballarin@13735
   642
lemma ivl_disj_int_singleton:
nipkow@15045
   643
  "{l::'a::order} Int {l<..} = {}"
nipkow@15045
   644
  "{..<u} Int {u} = {}"
nipkow@15045
   645
  "{l} Int {l<..<u} = {}"
nipkow@15045
   646
  "{l<..<u} Int {u} = {}"
nipkow@15045
   647
  "{l} Int {l<..u} = {}"
nipkow@15045
   648
  "{l..<u} Int {u} = {}"
ballarin@13735
   649
  by simp+
ballarin@13735
   650
wenzelm@14577
   651
text {* One- and two-sided intervals *}
ballarin@13735
   652
ballarin@13735
   653
lemma ivl_disj_int_one:
nipkow@15045
   654
  "{..l::'a::order} Int {l<..<u} = {}"
nipkow@15045
   655
  "{..<l} Int {l..<u} = {}"
nipkow@15045
   656
  "{..l} Int {l<..u} = {}"
nipkow@15045
   657
  "{..<l} Int {l..u} = {}"
nipkow@15045
   658
  "{l<..u} Int {u<..} = {}"
nipkow@15045
   659
  "{l<..<u} Int {u..} = {}"
nipkow@15045
   660
  "{l..u} Int {u<..} = {}"
nipkow@15045
   661
  "{l..<u} Int {u..} = {}"
ballarin@14398
   662
  by auto
ballarin@13735
   663
wenzelm@14577
   664
text {* Two- and two-sided intervals *}
ballarin@13735
   665
ballarin@13735
   666
lemma ivl_disj_int_two:
nipkow@15045
   667
  "{l::'a::order<..<m} Int {m..<u} = {}"
nipkow@15045
   668
  "{l<..m} Int {m<..<u} = {}"
nipkow@15045
   669
  "{l..<m} Int {m..<u} = {}"
nipkow@15045
   670
  "{l..m} Int {m<..<u} = {}"
nipkow@15045
   671
  "{l<..<m} Int {m..u} = {}"
nipkow@15045
   672
  "{l<..m} Int {m<..u} = {}"
nipkow@15045
   673
  "{l..<m} Int {m..u} = {}"
nipkow@15045
   674
  "{l..m} Int {m<..u} = {}"
ballarin@14398
   675
  by auto
ballarin@13735
   676
ballarin@13735
   677
lemmas ivl_disj_int = ivl_disj_int_singleton ivl_disj_int_one ivl_disj_int_two
ballarin@13735
   678
nipkow@15542
   679
subsubsection {* Some Differences *}
nipkow@15542
   680
nipkow@15542
   681
lemma ivl_diff[simp]:
nipkow@15542
   682
 "i \<le> n \<Longrightarrow> {i..<m} - {i..<n} = {n..<(m::'a::linorder)}"
nipkow@15542
   683
by(auto)
nipkow@15542
   684
nipkow@15542
   685
nipkow@15542
   686
subsubsection {* Some Subset Conditions *}
nipkow@15542
   687
paulson@24286
   688
lemma ivl_subset [simp,noatp]:
nipkow@15542
   689
 "({i..<j} \<subseteq> {m..<n}) = (j \<le> i | m \<le> i & j \<le> (n::'a::linorder))"
nipkow@15542
   690
apply(auto simp:linorder_not_le)
nipkow@15542
   691
apply(rule ccontr)
nipkow@15542
   692
apply(insert linorder_le_less_linear[of i n])
nipkow@15542
   693
apply(clarsimp simp:linorder_not_le)
nipkow@15542
   694
apply(fastsimp)
nipkow@15542
   695
done
nipkow@15542
   696
nipkow@15041
   697
nipkow@15042
   698
subsection {* Summation indexed over intervals *}
nipkow@15042
   699
nipkow@15042
   700
syntax
nipkow@15042
   701
  "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _.._./ _)" [0,0,0,10] 10)
nipkow@15048
   702
  "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _..<_./ _)" [0,0,0,10] 10)
nipkow@16052
   703
  "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<_./ _)" [0,0,10] 10)
nipkow@16052
   704
  "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<=_./ _)" [0,0,10] 10)
nipkow@15042
   705
syntax (xsymbols)
nipkow@15042
   706
  "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
nipkow@15048
   707
  "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
nipkow@16052
   708
  "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
nipkow@16052
   709
  "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
nipkow@15042
   710
syntax (HTML output)
nipkow@15042
   711
  "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
nipkow@15048
   712
  "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
nipkow@16052
   713
  "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
nipkow@16052
   714
  "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
nipkow@15056
   715
syntax (latex_sum output)
nipkow@15052
   716
  "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"
nipkow@15052
   717
 ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
nipkow@15052
   718
  "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"
nipkow@15052
   719
 ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
nipkow@16052
   720
  "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"
nipkow@16052
   721
 ("(3\<^raw:$\sum_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
nipkow@15052
   722
  "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"
nipkow@16052
   723
 ("(3\<^raw:$\sum_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
nipkow@15042
   724
nipkow@15048
   725
translations
nipkow@28853
   726
  "\<Sum>x=a..b. t" == "CONST setsum (%x. t) {a..b}"
nipkow@28853
   727
  "\<Sum>x=a..<b. t" == "CONST setsum (%x. t) {a..<b}"
nipkow@28853
   728
  "\<Sum>i\<le>n. t" == "CONST setsum (\<lambda>i. t) {..n}"
nipkow@28853
   729
  "\<Sum>i<n. t" == "CONST setsum (\<lambda>i. t) {..<n}"
nipkow@15042
   730
nipkow@15052
   731
text{* The above introduces some pretty alternative syntaxes for
nipkow@15056
   732
summation over intervals:
nipkow@15052
   733
\begin{center}
nipkow@15052
   734
\begin{tabular}{lll}
nipkow@15056
   735
Old & New & \LaTeX\\
nipkow@15056
   736
@{term[source]"\<Sum>x\<in>{a..b}. e"} & @{term"\<Sum>x=a..b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..b. e"}\\
nipkow@15056
   737
@{term[source]"\<Sum>x\<in>{a..<b}. e"} & @{term"\<Sum>x=a..<b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..<b. e"}\\
nipkow@16052
   738
@{term[source]"\<Sum>x\<in>{..b}. e"} & @{term"\<Sum>x\<le>b. e"} & @{term[mode=latex_sum]"\<Sum>x\<le>b. e"}\\
nipkow@15056
   739
@{term[source]"\<Sum>x\<in>{..<b}. e"} & @{term"\<Sum>x<b. e"} & @{term[mode=latex_sum]"\<Sum>x<b. e"}
nipkow@15052
   740
\end{tabular}
nipkow@15052
   741
\end{center}
nipkow@15056
   742
The left column shows the term before introduction of the new syntax,
nipkow@15056
   743
the middle column shows the new (default) syntax, and the right column
nipkow@15056
   744
shows a special syntax. The latter is only meaningful for latex output
nipkow@15056
   745
and has to be activated explicitly by setting the print mode to
wenzelm@21502
   746
@{text latex_sum} (e.g.\ via @{text "mode = latex_sum"} in
nipkow@15056
   747
antiquotations). It is not the default \LaTeX\ output because it only
nipkow@15056
   748
works well with italic-style formulae, not tt-style.
nipkow@15052
   749
nipkow@15052
   750
Note that for uniformity on @{typ nat} it is better to use
nipkow@15052
   751
@{term"\<Sum>x::nat=0..<n. e"} rather than @{text"\<Sum>x<n. e"}: @{text setsum} may
nipkow@15052
   752
not provide all lemmas available for @{term"{m..<n}"} also in the
nipkow@15052
   753
special form for @{term"{..<n}"}. *}
nipkow@15052
   754
nipkow@15542
   755
text{* This congruence rule should be used for sums over intervals as
nipkow@15542
   756
the standard theorem @{text[source]setsum_cong} does not work well
nipkow@15542
   757
with the simplifier who adds the unsimplified premise @{term"x:B"} to
nipkow@15542
   758
the context. *}
nipkow@15542
   759
nipkow@15542
   760
lemma setsum_ivl_cong:
nipkow@15542
   761
 "\<lbrakk>a = c; b = d; !!x. \<lbrakk> c \<le> x; x < d \<rbrakk> \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow>
nipkow@15542
   762
 setsum f {a..<b} = setsum g {c..<d}"
nipkow@15542
   763
by(rule setsum_cong, simp_all)
nipkow@15042
   764
nipkow@16041
   765
(* FIXME why are the following simp rules but the corresponding eqns
nipkow@16041
   766
on intervals are not? *)
nipkow@16041
   767
nipkow@16052
   768
lemma setsum_atMost_Suc[simp]: "(\<Sum>i \<le> Suc n. f i) = (\<Sum>i \<le> n. f i) + f(Suc n)"
nipkow@16052
   769
by (simp add:atMost_Suc add_ac)
nipkow@16052
   770
nipkow@16041
   771
lemma setsum_lessThan_Suc[simp]: "(\<Sum>i < Suc n. f i) = (\<Sum>i < n. f i) + f n"
nipkow@16041
   772
by (simp add:lessThan_Suc add_ac)
nipkow@15041
   773
nipkow@15911
   774
lemma setsum_cl_ivl_Suc[simp]:
nipkow@15561
   775
  "setsum f {m..Suc n} = (if Suc n < m then 0 else setsum f {m..n} + f(Suc n))"
nipkow@15561
   776
by (auto simp:add_ac atLeastAtMostSuc_conv)
nipkow@15561
   777
nipkow@15911
   778
lemma setsum_op_ivl_Suc[simp]:
nipkow@15561
   779
  "setsum f {m..<Suc n} = (if n < m then 0 else setsum f {m..<n} + f(n))"
nipkow@15561
   780
by (auto simp:add_ac atLeastLessThanSuc)
nipkow@16041
   781
(*
nipkow@15561
   782
lemma setsum_cl_ivl_add_one_nat: "(n::nat) <= m + 1 ==>
nipkow@15561
   783
    (\<Sum>i=n..m+1. f i) = (\<Sum>i=n..m. f i) + f(m + 1)"
nipkow@15561
   784
by (auto simp:add_ac atLeastAtMostSuc_conv)
nipkow@16041
   785
*)
nipkow@28068
   786
nipkow@28068
   787
lemma setsum_head:
nipkow@28068
   788
  fixes n :: nat
nipkow@28068
   789
  assumes mn: "m <= n" 
nipkow@28068
   790
  shows "(\<Sum>x\<in>{m..n}. P x) = P m + (\<Sum>x\<in>{m<..n}. P x)" (is "?lhs = ?rhs")
nipkow@28068
   791
proof -
nipkow@28068
   792
  from mn
nipkow@28068
   793
  have "{m..n} = {m} \<union> {m<..n}"
nipkow@28068
   794
    by (auto intro: ivl_disj_un_singleton)
nipkow@28068
   795
  hence "?lhs = (\<Sum>x\<in>{m} \<union> {m<..n}. P x)"
nipkow@28068
   796
    by (simp add: atLeast0LessThan)
nipkow@28068
   797
  also have "\<dots> = ?rhs" by simp
nipkow@28068
   798
  finally show ?thesis .
nipkow@28068
   799
qed
nipkow@28068
   800
nipkow@28068
   801
lemma setsum_head_Suc:
nipkow@28068
   802
  "m \<le> n \<Longrightarrow> setsum f {m..n} = f m + setsum f {Suc m..n}"
nipkow@28068
   803
by (simp add: setsum_head atLeastSucAtMost_greaterThanAtMost)
nipkow@28068
   804
nipkow@28068
   805
lemma setsum_head_upt_Suc:
nipkow@28068
   806
  "m < n \<Longrightarrow> setsum f {m..<n} = f m + setsum f {Suc m..<n}"
nipkow@28068
   807
apply(insert setsum_head_Suc[of m "n - 1" f])
nipkow@29667
   808
apply (simp add: atLeastLessThanSuc_atLeastAtMost[symmetric] algebra_simps)
nipkow@28068
   809
done
nipkow@28068
   810
nipkow@28068
   811
nipkow@15539
   812
lemma setsum_add_nat_ivl: "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow>
nipkow@15539
   813
  setsum f {m..<n} + setsum f {n..<p} = setsum f {m..<p::nat}"
nipkow@15539
   814
by (simp add:setsum_Un_disjoint[symmetric] ivl_disj_int ivl_disj_un)
nipkow@15539
   815
nipkow@15539
   816
lemma setsum_diff_nat_ivl:
nipkow@15539
   817
fixes f :: "nat \<Rightarrow> 'a::ab_group_add"
nipkow@15539
   818
shows "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow>
nipkow@15539
   819
  setsum f {m..<p} - setsum f {m..<n} = setsum f {n..<p}"
nipkow@15539
   820
using setsum_add_nat_ivl [of m n p f,symmetric]
nipkow@15539
   821
apply (simp add: add_ac)
nipkow@15539
   822
done
nipkow@15539
   823
nipkow@28068
   824
nipkow@16733
   825
subsection{* Shifting bounds *}
nipkow@16733
   826
nipkow@15539
   827
lemma setsum_shift_bounds_nat_ivl:
nipkow@15539
   828
  "setsum f {m+k..<n+k} = setsum (%i. f(i + k)){m..<n::nat}"
nipkow@15539
   829
by (induct "n", auto simp:atLeastLessThanSuc)
nipkow@15539
   830
nipkow@16733
   831
lemma setsum_shift_bounds_cl_nat_ivl:
nipkow@16733
   832
  "setsum f {m+k..n+k} = setsum (%i. f(i + k)){m..n::nat}"
nipkow@16733
   833
apply (insert setsum_reindex[OF inj_on_add_nat, where h=f and B = "{m..n}"])
nipkow@16733
   834
apply (simp add:image_add_atLeastAtMost o_def)
nipkow@16733
   835
done
nipkow@16733
   836
nipkow@16733
   837
corollary setsum_shift_bounds_cl_Suc_ivl:
nipkow@16733
   838
  "setsum f {Suc m..Suc n} = setsum (%i. f(Suc i)){m..n}"
nipkow@16733
   839
by (simp add:setsum_shift_bounds_cl_nat_ivl[where k=1,simplified])
nipkow@16733
   840
nipkow@16733
   841
corollary setsum_shift_bounds_Suc_ivl:
nipkow@16733
   842
  "setsum f {Suc m..<Suc n} = setsum (%i. f(Suc i)){m..<n}"
nipkow@16733
   843
by (simp add:setsum_shift_bounds_nat_ivl[where k=1,simplified])
nipkow@16733
   844
nipkow@28068
   845
lemma setsum_shift_lb_Suc0_0:
nipkow@28068
   846
  "f(0::nat) = (0::nat) \<Longrightarrow> setsum f {Suc 0..k} = setsum f {0..k}"
nipkow@28068
   847
by(simp add:setsum_head_Suc)
kleing@19106
   848
nipkow@28068
   849
lemma setsum_shift_lb_Suc0_0_upt:
nipkow@28068
   850
  "f(0::nat) = 0 \<Longrightarrow> setsum f {Suc 0..<k} = setsum f {0..<k}"
nipkow@28068
   851
apply(cases k)apply simp
nipkow@28068
   852
apply(simp add:setsum_head_upt_Suc)
nipkow@28068
   853
done
kleing@19022
   854
ballarin@17149
   855
subsection {* The formula for geometric sums *}
ballarin@17149
   856
ballarin@17149
   857
lemma geometric_sum:
ballarin@17149
   858
  "x ~= 1 ==> (\<Sum>i=0..<n. x ^ i) =
huffman@22713
   859
  (x ^ n - 1) / (x - 1::'a::{field, recpower})"
nipkow@23496
   860
by (induct "n") (simp_all add:field_simps power_Suc)
ballarin@17149
   861
kleing@19469
   862
subsection {* The formula for arithmetic sums *}
kleing@19469
   863
kleing@19469
   864
lemma gauss_sum:
huffman@23277
   865
  "((1::'a::comm_semiring_1) + 1)*(\<Sum>i\<in>{1..n}. of_nat i) =
kleing@19469
   866
   of_nat n*((of_nat n)+1)"
kleing@19469
   867
proof (induct n)
kleing@19469
   868
  case 0
kleing@19469
   869
  show ?case by simp
kleing@19469
   870
next
kleing@19469
   871
  case (Suc n)
nipkow@29667
   872
  then show ?case by (simp add: algebra_simps)
kleing@19469
   873
qed
kleing@19469
   874
kleing@19469
   875
theorem arith_series_general:
huffman@23277
   876
  "((1::'a::comm_semiring_1) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
kleing@19469
   877
  of_nat n * (a + (a + of_nat(n - 1)*d))"
kleing@19469
   878
proof cases
kleing@19469
   879
  assume ngt1: "n > 1"
kleing@19469
   880
  let ?I = "\<lambda>i. of_nat i" and ?n = "of_nat n"
kleing@19469
   881
  have
kleing@19469
   882
    "(\<Sum>i\<in>{..<n}. a+?I i*d) =
kleing@19469
   883
     ((\<Sum>i\<in>{..<n}. a) + (\<Sum>i\<in>{..<n}. ?I i*d))"
kleing@19469
   884
    by (rule setsum_addf)
kleing@19469
   885
  also from ngt1 have "\<dots> = ?n*a + (\<Sum>i\<in>{..<n}. ?I i*d)" by simp
kleing@19469
   886
  also from ngt1 have "\<dots> = (?n*a + d*(\<Sum>i\<in>{1..<n}. ?I i))"
nipkow@28068
   887
    by (simp add: setsum_right_distrib atLeast0LessThan[symmetric] setsum_shift_lb_Suc0_0_upt mult_ac)
kleing@19469
   888
  also have "(1+1)*\<dots> = (1+1)*?n*a + d*(1+1)*(\<Sum>i\<in>{1..<n}. ?I i)"
kleing@19469
   889
    by (simp add: left_distrib right_distrib)
kleing@19469
   890
  also from ngt1 have "{1..<n} = {1..n - 1}"
nipkow@28068
   891
    by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost)
nipkow@28068
   892
  also from ngt1
kleing@19469
   893
  have "(1+1)*?n*a + d*(1+1)*(\<Sum>i\<in>{1..n - 1}. ?I i) = ((1+1)*?n*a + d*?I (n - 1)*?I n)"
kleing@19469
   894
    by (simp only: mult_ac gauss_sum [of "n - 1"])
huffman@23431
   895
       (simp add:  mult_ac trans [OF add_commute of_nat_Suc [symmetric]])
nipkow@29667
   896
  finally show ?thesis by (simp add: algebra_simps)
kleing@19469
   897
next
kleing@19469
   898
  assume "\<not>(n > 1)"
kleing@19469
   899
  hence "n = 1 \<or> n = 0" by auto
nipkow@29667
   900
  thus ?thesis by (auto simp: algebra_simps)
kleing@19469
   901
qed
kleing@19469
   902
kleing@19469
   903
lemma arith_series_nat:
kleing@19469
   904
  "Suc (Suc 0) * (\<Sum>i\<in>{..<n}. a+i*d) = n * (a + (a+(n - 1)*d))"
kleing@19469
   905
proof -
kleing@19469
   906
  have
kleing@19469
   907
    "((1::nat) + 1) * (\<Sum>i\<in>{..<n::nat}. a + of_nat(i)*d) =
kleing@19469
   908
    of_nat(n) * (a + (a + of_nat(n - 1)*d))"
kleing@19469
   909
    by (rule arith_series_general)
kleing@19469
   910
  thus ?thesis by (auto simp add: of_nat_id)
kleing@19469
   911
qed
kleing@19469
   912
kleing@19469
   913
lemma arith_series_int:
kleing@19469
   914
  "(2::int) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
kleing@19469
   915
  of_nat n * (a + (a + of_nat(n - 1)*d))"
kleing@19469
   916
proof -
kleing@19469
   917
  have
kleing@19469
   918
    "((1::int) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
kleing@19469
   919
    of_nat(n) * (a + (a + of_nat(n - 1)*d))"
kleing@19469
   920
    by (rule arith_series_general)
kleing@19469
   921
  thus ?thesis by simp
kleing@19469
   922
qed
paulson@15418
   923
kleing@19022
   924
lemma sum_diff_distrib:
kleing@19022
   925
  fixes P::"nat\<Rightarrow>nat"
kleing@19022
   926
  shows
kleing@19022
   927
  "\<forall>x. Q x \<le> P x  \<Longrightarrow>
kleing@19022
   928
  (\<Sum>x<n. P x) - (\<Sum>x<n. Q x) = (\<Sum>x<n. P x - Q x)"
kleing@19022
   929
proof (induct n)
kleing@19022
   930
  case 0 show ?case by simp
kleing@19022
   931
next
kleing@19022
   932
  case (Suc n)
kleing@19022
   933
kleing@19022
   934
  let ?lhs = "(\<Sum>x<n. P x) - (\<Sum>x<n. Q x)"
kleing@19022
   935
  let ?rhs = "\<Sum>x<n. P x - Q x"
kleing@19022
   936
kleing@19022
   937
  from Suc have "?lhs = ?rhs" by simp
kleing@19022
   938
  moreover
kleing@19022
   939
  from Suc have "?lhs + P n - Q n = ?rhs + (P n - Q n)" by simp
kleing@19022
   940
  moreover
kleing@19022
   941
  from Suc have
kleing@19022
   942
    "(\<Sum>x<n. P x) + P n - ((\<Sum>x<n. Q x) + Q n) = ?rhs + (P n - Q n)"
kleing@19022
   943
    by (subst diff_diff_left[symmetric],
kleing@19022
   944
        subst diff_add_assoc2)
kleing@19022
   945
       (auto simp: diff_add_assoc2 intro: setsum_mono)
kleing@19022
   946
  ultimately
kleing@19022
   947
  show ?case by simp
kleing@19022
   948
qed
kleing@19022
   949
nipkow@8924
   950
end