doc-src/IsarImplementation/Thy/document/Prelim.tex
author wenzelm
Mon, 01 Mar 2010 17:12:43 +0100
changeset 35419 cc8e4276d093
parent 35001 31f8d9eaceff
child 36634 b0c047d03208
permissions -rw-r--r--
updated generated files;
wenzelm@30296
     1
%
wenzelm@30296
     2
\begin{isabellebody}%
wenzelm@30296
     3
\def\isabellecontext{Prelim}%
wenzelm@30296
     4
%
wenzelm@30296
     5
\isadelimtheory
wenzelm@30296
     6
%
wenzelm@30296
     7
\endisadelimtheory
wenzelm@30296
     8
%
wenzelm@30296
     9
\isatagtheory
wenzelm@30296
    10
\isacommand{theory}\isamarkupfalse%
wenzelm@30296
    11
\ Prelim\isanewline
wenzelm@30296
    12
\isakeyword{imports}\ Base\isanewline
wenzelm@30296
    13
\isakeyword{begin}%
wenzelm@30296
    14
\endisatagtheory
wenzelm@30296
    15
{\isafoldtheory}%
wenzelm@30296
    16
%
wenzelm@30296
    17
\isadelimtheory
wenzelm@30296
    18
%
wenzelm@30296
    19
\endisadelimtheory
wenzelm@30296
    20
%
wenzelm@30296
    21
\isamarkupchapter{Preliminaries%
wenzelm@30296
    22
}
wenzelm@30296
    23
\isamarkuptrue%
wenzelm@30296
    24
%
wenzelm@30296
    25
\isamarkupsection{Contexts \label{sec:context}%
wenzelm@30296
    26
}
wenzelm@30296
    27
\isamarkuptrue%
wenzelm@30296
    28
%
wenzelm@30296
    29
\begin{isamarkuptext}%
wenzelm@30296
    30
A logical context represents the background that is required for
wenzelm@30296
    31
  formulating statements and composing proofs.  It acts as a medium to
wenzelm@30296
    32
  produce formal content, depending on earlier material (declarations,
wenzelm@30296
    33
  results etc.).
wenzelm@30296
    34
wenzelm@30296
    35
  For example, derivations within the Isabelle/Pure logic can be
wenzelm@30296
    36
  described as a judgment \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}}, which means that a
wenzelm@30296
    37
  proposition \isa{{\isasymphi}} is derivable from hypotheses \isa{{\isasymGamma}}
wenzelm@30296
    38
  within the theory \isa{{\isasymTheta}}.  There are logical reasons for
wenzelm@30296
    39
  keeping \isa{{\isasymTheta}} and \isa{{\isasymGamma}} separate: theories can be
wenzelm@30296
    40
  liberal about supporting type constructors and schematic
wenzelm@30296
    41
  polymorphism of constants and axioms, while the inner calculus of
wenzelm@30296
    42
  \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymphi}} is strictly limited to Simple Type Theory (with
wenzelm@30296
    43
  fixed type variables in the assumptions).
wenzelm@30296
    44
wenzelm@30296
    45
  \medskip Contexts and derivations are linked by the following key
wenzelm@30296
    46
  principles:
wenzelm@30296
    47
wenzelm@30296
    48
  \begin{itemize}
wenzelm@30296
    49
wenzelm@30296
    50
  \item Transfer: monotonicity of derivations admits results to be
wenzelm@30296
    51
  transferred into a \emph{larger} context, i.e.\ \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}} implies \isa{{\isasymGamma}{\isacharprime}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\isactrlsub {\isacharprime}\ {\isasymphi}} for contexts \isa{{\isasymTheta}{\isacharprime}\ {\isasymsupseteq}\ {\isasymTheta}} and \isa{{\isasymGamma}{\isacharprime}\ {\isasymsupseteq}\ {\isasymGamma}}.
wenzelm@30296
    52
wenzelm@30296
    53
  \item Export: discharge of hypotheses admits results to be exported
wenzelm@30296
    54
  into a \emph{smaller} context, i.e.\ \isa{{\isasymGamma}{\isacharprime}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}}
wenzelm@30296
    55
  implies \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymDelta}\ {\isasymLongrightarrow}\ {\isasymphi}} where \isa{{\isasymGamma}{\isacharprime}\ {\isasymsupseteq}\ {\isasymGamma}} and
wenzelm@30296
    56
  \isa{{\isasymDelta}\ {\isacharequal}\ {\isasymGamma}{\isacharprime}\ {\isacharminus}\ {\isasymGamma}}.  Note that \isa{{\isasymTheta}} remains unchanged here,
wenzelm@30296
    57
  only the \isa{{\isasymGamma}} part is affected.
wenzelm@30296
    58
wenzelm@30296
    59
  \end{itemize}
wenzelm@30296
    60
wenzelm@30296
    61
  \medskip By modeling the main characteristics of the primitive
wenzelm@30296
    62
  \isa{{\isasymTheta}} and \isa{{\isasymGamma}} above, and abstracting over any
wenzelm@30296
    63
  particular logical content, we arrive at the fundamental notions of
wenzelm@30296
    64
  \emph{theory context} and \emph{proof context} in Isabelle/Isar.
wenzelm@30296
    65
  These implement a certain policy to manage arbitrary \emph{context
wenzelm@30296
    66
  data}.  There is a strongly-typed mechanism to declare new kinds of
wenzelm@30296
    67
  data at compile time.
wenzelm@30296
    68
wenzelm@30296
    69
  The internal bootstrap process of Isabelle/Pure eventually reaches a
wenzelm@30296
    70
  stage where certain data slots provide the logical content of \isa{{\isasymTheta}} and \isa{{\isasymGamma}} sketched above, but this does not stop there!
wenzelm@30296
    71
  Various additional data slots support all kinds of mechanisms that
wenzelm@30296
    72
  are not necessarily part of the core logic.
wenzelm@30296
    73
wenzelm@30296
    74
  For example, there would be data for canonical introduction and
wenzelm@30296
    75
  elimination rules for arbitrary operators (depending on the
wenzelm@30296
    76
  object-logic and application), which enables users to perform
wenzelm@30296
    77
  standard proof steps implicitly (cf.\ the \isa{rule} method
wenzelm@30296
    78
  \cite{isabelle-isar-ref}).
wenzelm@30296
    79
wenzelm@30296
    80
  \medskip Thus Isabelle/Isar is able to bring forth more and more
wenzelm@30296
    81
  concepts successively.  In particular, an object-logic like
wenzelm@30296
    82
  Isabelle/HOL continues the Isabelle/Pure setup by adding specific
wenzelm@30296
    83
  components for automated reasoning (classical reasoner, tableau
wenzelm@30296
    84
  prover, structured induction etc.) and derived specification
wenzelm@30296
    85
  mechanisms (inductive predicates, recursive functions etc.).  All of
wenzelm@30296
    86
  this is ultimately based on the generic data management by theory
wenzelm@30296
    87
  and proof contexts introduced here.%
wenzelm@30296
    88
\end{isamarkuptext}%
wenzelm@30296
    89
\isamarkuptrue%
wenzelm@30296
    90
%
wenzelm@30296
    91
\isamarkupsubsection{Theory context \label{sec:context-theory}%
wenzelm@30296
    92
}
wenzelm@30296
    93
\isamarkuptrue%
wenzelm@30296
    94
%
wenzelm@30296
    95
\begin{isamarkuptext}%
wenzelm@35001
    96
A \emph{theory} is a data container with explicit name and
wenzelm@35001
    97
  unique identifier.  Theories are related by a (nominal) sub-theory
wenzelm@30296
    98
  relation, which corresponds to the dependency graph of the original
wenzelm@30296
    99
  construction; each theory is derived from a certain sub-graph of
wenzelm@35001
   100
  ancestor theories.  To this end, the system maintains a set of
wenzelm@35001
   101
  symbolic ``identification stamps'' within each theory.
wenzelm@30296
   102
wenzelm@35001
   103
  In order to avoid the full-scale overhead of explicit sub-theory
wenzelm@35001
   104
  identification of arbitrary intermediate stages, a theory is
wenzelm@35001
   105
  switched into \isa{draft} mode under certain circumstances.  A
wenzelm@35001
   106
  draft theory acts like a linear type, where updates invalidate
wenzelm@35001
   107
  earlier versions.  An invalidated draft is called \emph{stale}.
wenzelm@30296
   108
wenzelm@35001
   109
  The \isa{checkpoint} operation produces a safe stepping stone
wenzelm@35001
   110
  that will survive the next update without becoming stale: both the
wenzelm@35001
   111
  old and the new theory remain valid and are related by the
wenzelm@35001
   112
  sub-theory relation.  Checkpointing essentially recovers purely
wenzelm@35001
   113
  functional theory values, at the expense of some extra internal
wenzelm@35001
   114
  bookkeeping.
wenzelm@30296
   115
wenzelm@30296
   116
  The \isa{copy} operation produces an auxiliary version that has
wenzelm@30296
   117
  the same data content, but is unrelated to the original: updates of
wenzelm@30296
   118
  the copy do not affect the original, neither does the sub-theory
wenzelm@30296
   119
  relation hold.
wenzelm@30296
   120
wenzelm@35001
   121
  The \isa{merge} operation produces the least upper bound of two
wenzelm@35001
   122
  theories, which actually degenerates into absorption of one theory
wenzelm@35001
   123
  into the other (according to the nominal sub-theory relation).
wenzelm@35001
   124
wenzelm@35001
   125
  The \isa{begin} operation starts a new theory by importing
wenzelm@35001
   126
  several parent theories and entering a special mode of nameless
wenzelm@35001
   127
  incremental updates, until the final \isa{end} operation is
wenzelm@35001
   128
  performed.
wenzelm@35001
   129
wenzelm@30296
   130
  \medskip The example in \figref{fig:ex-theory} below shows a theory
wenzelm@30296
   131
  graph derived from \isa{Pure}, with theory \isa{Length}
wenzelm@30296
   132
  importing \isa{Nat} and \isa{List}.  The body of \isa{Length} consists of a sequence of updates, working mostly on
wenzelm@35001
   133
  drafts internally, while transaction boundaries of Isar top-level
wenzelm@35001
   134
  commands (\secref{sec:isar-toplevel}) are guaranteed to be safe
wenzelm@35001
   135
  checkpoints.
wenzelm@30296
   136
wenzelm@30296
   137
  \begin{figure}[htb]
wenzelm@30296
   138
  \begin{center}
wenzelm@30296
   139
  \begin{tabular}{rcccl}
wenzelm@30296
   140
        &            & \isa{Pure} \\
wenzelm@30296
   141
        &            & \isa{{\isasymdown}} \\
wenzelm@30296
   142
        &            & \isa{FOL} \\
wenzelm@30296
   143
        & $\swarrow$ &              & $\searrow$ & \\
wenzelm@30296
   144
  \isa{Nat} &    &              &            & \isa{List} \\
wenzelm@30296
   145
        & $\searrow$ &              & $\swarrow$ \\
wenzelm@30296
   146
        &            & \isa{Length} \\
wenzelm@30296
   147
        &            & \multicolumn{3}{l}{~~\hyperlink{keyword.imports}{\mbox{\isa{\isakeyword{imports}}}}} \\
wenzelm@30296
   148
        &            & \multicolumn{3}{l}{~~\hyperlink{keyword.begin}{\mbox{\isa{\isakeyword{begin}}}}} \\
wenzelm@30296
   149
        &            & $\vdots$~~ \\
wenzelm@30296
   150
        &            & \isa{{\isasymbullet}}~~ \\
wenzelm@30296
   151
        &            & $\vdots$~~ \\
wenzelm@30296
   152
        &            & \isa{{\isasymbullet}}~~ \\
wenzelm@30296
   153
        &            & $\vdots$~~ \\
wenzelm@30296
   154
        &            & \multicolumn{3}{l}{~~\hyperlink{command.end}{\mbox{\isa{\isacommand{end}}}}} \\
wenzelm@30296
   155
  \end{tabular}
wenzelm@30296
   156
  \caption{A theory definition depending on ancestors}\label{fig:ex-theory}
wenzelm@30296
   157
  \end{center}
wenzelm@30296
   158
  \end{figure}
wenzelm@30296
   159
wenzelm@30296
   160
  \medskip There is a separate notion of \emph{theory reference} for
wenzelm@30296
   161
  maintaining a live link to an evolving theory context: updates on
wenzelm@30296
   162
  drafts are propagated automatically.  Dynamic updating stops after
wenzelm@30296
   163
  an explicit \isa{end} only.
wenzelm@30296
   164
wenzelm@30296
   165
  Derived entities may store a theory reference in order to indicate
wenzelm@30296
   166
  the context they belong to.  This implicitly assumes monotonic
wenzelm@30296
   167
  reasoning, because the referenced context may become larger without
wenzelm@30296
   168
  further notice.%
wenzelm@30296
   169
\end{isamarkuptext}%
wenzelm@30296
   170
\isamarkuptrue%
wenzelm@30296
   171
%
wenzelm@30296
   172
\isadelimmlref
wenzelm@30296
   173
%
wenzelm@30296
   174
\endisadelimmlref
wenzelm@30296
   175
%
wenzelm@30296
   176
\isatagmlref
wenzelm@30296
   177
%
wenzelm@30296
   178
\begin{isamarkuptext}%
wenzelm@30296
   179
\begin{mldecls}
wenzelm@30296
   180
  \indexdef{}{ML type}{theory}\verb|type theory| \\
wenzelm@30296
   181
  \indexdef{}{ML}{Theory.subthy}\verb|Theory.subthy: theory * theory -> bool| \\
wenzelm@30296
   182
  \indexdef{}{ML}{Theory.checkpoint}\verb|Theory.checkpoint: theory -> theory| \\
wenzelm@30296
   183
  \indexdef{}{ML}{Theory.copy}\verb|Theory.copy: theory -> theory| \\
wenzelm@35001
   184
  \indexdef{}{ML}{Theory.merge}\verb|Theory.merge: theory * theory -> theory| \\
wenzelm@35001
   185
  \indexdef{}{ML}{Theory.begin\_theory}\verb|Theory.begin_theory: string -> theory list -> theory| \\
wenzelm@30296
   186
  \end{mldecls}
wenzelm@30296
   187
  \begin{mldecls}
wenzelm@30296
   188
  \indexdef{}{ML type}{theory\_ref}\verb|type theory_ref| \\
wenzelm@30296
   189
  \indexdef{}{ML}{Theory.deref}\verb|Theory.deref: theory_ref -> theory| \\
wenzelm@30296
   190
  \indexdef{}{ML}{Theory.check\_thy}\verb|Theory.check_thy: theory -> theory_ref| \\
wenzelm@30296
   191
  \end{mldecls}
wenzelm@30296
   192
wenzelm@30296
   193
  \begin{description}
wenzelm@30296
   194
wenzelm@30296
   195
  \item \verb|theory| represents theory contexts.  This is
wenzelm@35001
   196
  essentially a linear type, with explicit runtime checking!  Most
wenzelm@35001
   197
  internal theory operations destroy the original version, which then
wenzelm@35001
   198
  becomes ``stale''.
wenzelm@30296
   199
wenzelm@35001
   200
  \item \verb|Theory.subthy|~\isa{{\isacharparenleft}thy\isactrlsub {\isadigit{1}}{\isacharcomma}\ thy\isactrlsub {\isadigit{2}}{\isacharparenright}} compares theories
wenzelm@35001
   201
  according to the intrinsic graph structure of the construction.
wenzelm@35001
   202
  This sub-theory relation is a nominal approximation of inclusion
wenzelm@35001
   203
  (\isa{{\isasymsubseteq}}) of the corresponding content (according to the
wenzelm@35001
   204
  semantics of the ML modules that implement the data).
wenzelm@30296
   205
wenzelm@30296
   206
  \item \verb|Theory.checkpoint|~\isa{thy} produces a safe
wenzelm@35001
   207
  stepping stone in the linear development of \isa{thy}.  This
wenzelm@35001
   208
  changes the old theory, but the next update will result in two
wenzelm@35001
   209
  related, valid theories.
wenzelm@30296
   210
wenzelm@35001
   211
  \item \verb|Theory.copy|~\isa{thy} produces a variant of \isa{thy} with the same data.  The copy is not related to the original,
wenzelm@35001
   212
  but the original is unchanged.
wenzelm@35001
   213
wenzelm@35001
   214
  \item \verb|Theory.merge|~\isa{{\isacharparenleft}thy\isactrlsub {\isadigit{1}}{\isacharcomma}\ thy\isactrlsub {\isadigit{2}}{\isacharparenright}} absorbs one theory
wenzelm@35001
   215
  into the other, without changing \isa{thy\isactrlsub {\isadigit{1}}} or \isa{thy\isactrlsub {\isadigit{2}}}.
wenzelm@35001
   216
  This version of ad-hoc theory merge fails for unrelated theories!
wenzelm@35001
   217
wenzelm@35001
   218
  \item \verb|Theory.begin_theory|~\isa{name\ parents} constructs
wenzelm@35001
   219
  a new theory based on the given parents.  This {\ML} function is
wenzelm@35001
   220
  normally not invoked directly.
wenzelm@30296
   221
wenzelm@30296
   222
  \item \verb|theory_ref| represents a sliding reference to an
wenzelm@30296
   223
  always valid theory; updates on the original are propagated
wenzelm@30296
   224
  automatically.
wenzelm@30296
   225
wenzelm@30296
   226
  \item \verb|Theory.deref|~\isa{thy{\isacharunderscore}ref} turns a \verb|theory_ref| into an \verb|theory| value.  As the referenced
wenzelm@30296
   227
  theory evolves monotonically over time, later invocations of \verb|Theory.deref| may refer to a larger context.
wenzelm@30296
   228
wenzelm@30296
   229
  \item \verb|Theory.check_thy|~\isa{thy} produces a \verb|theory_ref| from a valid \verb|theory| value.
wenzelm@30296
   230
wenzelm@30296
   231
  \end{description}%
wenzelm@30296
   232
\end{isamarkuptext}%
wenzelm@30296
   233
\isamarkuptrue%
wenzelm@30296
   234
%
wenzelm@30296
   235
\endisatagmlref
wenzelm@30296
   236
{\isafoldmlref}%
wenzelm@30296
   237
%
wenzelm@30296
   238
\isadelimmlref
wenzelm@30296
   239
%
wenzelm@30296
   240
\endisadelimmlref
wenzelm@30296
   241
%
wenzelm@30296
   242
\isamarkupsubsection{Proof context \label{sec:context-proof}%
wenzelm@30296
   243
}
wenzelm@30296
   244
\isamarkuptrue%
wenzelm@30296
   245
%
wenzelm@30296
   246
\begin{isamarkuptext}%
wenzelm@35001
   247
A proof context is a container for pure data with a
wenzelm@35001
   248
  back-reference to the theory it belongs to.  The \isa{init}
wenzelm@35001
   249
  operation creates a proof context from a given theory.
wenzelm@35001
   250
  Modifications to draft theories are propagated to the proof context
wenzelm@35001
   251
  as usual, but there is also an explicit \isa{transfer} operation
wenzelm@35001
   252
  to force resynchronization with more substantial updates to the
wenzelm@35001
   253
  underlying theory.
wenzelm@30296
   254
wenzelm@35001
   255
  Entities derived in a proof context need to record logical
wenzelm@30296
   256
  requirements explicitly, since there is no separate context
wenzelm@35001
   257
  identification or symbolic inclusion as for theories.  For example,
wenzelm@35001
   258
  hypotheses used in primitive derivations (cf.\ \secref{sec:thms})
wenzelm@35001
   259
  are recorded separately within the sequent \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymphi}}, just to
wenzelm@35001
   260
  make double sure.  Results could still leak into an alien proof
wenzelm@35001
   261
  context due to programming errors, but Isabelle/Isar includes some
wenzelm@35001
   262
  extra validity checks in critical positions, notably at the end of a
wenzelm@35001
   263
  sub-proof.
wenzelm@30296
   264
wenzelm@30296
   265
  Proof contexts may be manipulated arbitrarily, although the common
wenzelm@30296
   266
  discipline is to follow block structure as a mental model: a given
wenzelm@30296
   267
  context is extended consecutively, and results are exported back
wenzelm@35001
   268
  into the original context.  Note that an Isar proof state models
wenzelm@30296
   269
  block-structured reasoning explicitly, using a stack of proof
wenzelm@35001
   270
  contexts internally.  For various technical reasons, the background
wenzelm@35001
   271
  theory of an Isar proof state must not be changed while the proof is
wenzelm@35001
   272
  still under construction!%
wenzelm@30296
   273
\end{isamarkuptext}%
wenzelm@30296
   274
\isamarkuptrue%
wenzelm@30296
   275
%
wenzelm@30296
   276
\isadelimmlref
wenzelm@30296
   277
%
wenzelm@30296
   278
\endisadelimmlref
wenzelm@30296
   279
%
wenzelm@30296
   280
\isatagmlref
wenzelm@30296
   281
%
wenzelm@30296
   282
\begin{isamarkuptext}%
wenzelm@30296
   283
\begin{mldecls}
wenzelm@30296
   284
  \indexdef{}{ML type}{Proof.context}\verb|type Proof.context| \\
wenzelm@30296
   285
  \indexdef{}{ML}{ProofContext.init}\verb|ProofContext.init: theory -> Proof.context| \\
wenzelm@30296
   286
  \indexdef{}{ML}{ProofContext.theory\_of}\verb|ProofContext.theory_of: Proof.context -> theory| \\
wenzelm@30296
   287
  \indexdef{}{ML}{ProofContext.transfer}\verb|ProofContext.transfer: theory -> Proof.context -> Proof.context| \\
wenzelm@30296
   288
  \end{mldecls}
wenzelm@30296
   289
wenzelm@30296
   290
  \begin{description}
wenzelm@30296
   291
wenzelm@30296
   292
  \item \verb|Proof.context| represents proof contexts.  Elements
wenzelm@30296
   293
  of this type are essentially pure values, with a sliding reference
wenzelm@30296
   294
  to the background theory.
wenzelm@30296
   295
wenzelm@30296
   296
  \item \verb|ProofContext.init|~\isa{thy} produces a proof context
wenzelm@30296
   297
  derived from \isa{thy}, initializing all data.
wenzelm@30296
   298
wenzelm@30296
   299
  \item \verb|ProofContext.theory_of|~\isa{ctxt} selects the
wenzelm@30296
   300
  background theory from \isa{ctxt}, dereferencing its internal
wenzelm@30296
   301
  \verb|theory_ref|.
wenzelm@30296
   302
wenzelm@30296
   303
  \item \verb|ProofContext.transfer|~\isa{thy\ ctxt} promotes the
wenzelm@30296
   304
  background theory of \isa{ctxt} to the super theory \isa{thy}.
wenzelm@30296
   305
wenzelm@30296
   306
  \end{description}%
wenzelm@30296
   307
\end{isamarkuptext}%
wenzelm@30296
   308
\isamarkuptrue%
wenzelm@30296
   309
%
wenzelm@30296
   310
\endisatagmlref
wenzelm@30296
   311
{\isafoldmlref}%
wenzelm@30296
   312
%
wenzelm@30296
   313
\isadelimmlref
wenzelm@30296
   314
%
wenzelm@30296
   315
\endisadelimmlref
wenzelm@30296
   316
%
wenzelm@30296
   317
\isamarkupsubsection{Generic contexts \label{sec:generic-context}%
wenzelm@30296
   318
}
wenzelm@30296
   319
\isamarkuptrue%
wenzelm@30296
   320
%
wenzelm@30296
   321
\begin{isamarkuptext}%
wenzelm@30296
   322
A generic context is the disjoint sum of either a theory or proof
wenzelm@30296
   323
  context.  Occasionally, this enables uniform treatment of generic
wenzelm@30296
   324
  context data, typically extra-logical information.  Operations on
wenzelm@30296
   325
  generic contexts include the usual injections, partial selections,
wenzelm@30296
   326
  and combinators for lifting operations on either component of the
wenzelm@30296
   327
  disjoint sum.
wenzelm@30296
   328
wenzelm@30296
   329
  Moreover, there are total operations \isa{theory{\isacharunderscore}of} and \isa{proof{\isacharunderscore}of} to convert a generic context into either kind: a theory
wenzelm@30296
   330
  can always be selected from the sum, while a proof context might
wenzelm@35001
   331
  have to be constructed by an ad-hoc \isa{init} operation, which
wenzelm@35001
   332
  incurs a small runtime overhead.%
wenzelm@30296
   333
\end{isamarkuptext}%
wenzelm@30296
   334
\isamarkuptrue%
wenzelm@30296
   335
%
wenzelm@30296
   336
\isadelimmlref
wenzelm@30296
   337
%
wenzelm@30296
   338
\endisadelimmlref
wenzelm@30296
   339
%
wenzelm@30296
   340
\isatagmlref
wenzelm@30296
   341
%
wenzelm@30296
   342
\begin{isamarkuptext}%
wenzelm@30296
   343
\begin{mldecls}
wenzelm@30296
   344
  \indexdef{}{ML type}{Context.generic}\verb|type Context.generic| \\
wenzelm@30296
   345
  \indexdef{}{ML}{Context.theory\_of}\verb|Context.theory_of: Context.generic -> theory| \\
wenzelm@30296
   346
  \indexdef{}{ML}{Context.proof\_of}\verb|Context.proof_of: Context.generic -> Proof.context| \\
wenzelm@30296
   347
  \end{mldecls}
wenzelm@30296
   348
wenzelm@30296
   349
  \begin{description}
wenzelm@30296
   350
wenzelm@30296
   351
  \item \verb|Context.generic| is the direct sum of \verb|theory| and \verb|Proof.context|, with the datatype
wenzelm@30296
   352
  constructors \verb|Context.Theory| and \verb|Context.Proof|.
wenzelm@30296
   353
wenzelm@30296
   354
  \item \verb|Context.theory_of|~\isa{context} always produces a
wenzelm@30296
   355
  theory from the generic \isa{context}, using \verb|ProofContext.theory_of| as required.
wenzelm@30296
   356
wenzelm@30296
   357
  \item \verb|Context.proof_of|~\isa{context} always produces a
wenzelm@30296
   358
  proof context from the generic \isa{context}, using \verb|ProofContext.init| as required (note that this re-initializes the
wenzelm@30296
   359
  context data with each invocation).
wenzelm@30296
   360
wenzelm@30296
   361
  \end{description}%
wenzelm@30296
   362
\end{isamarkuptext}%
wenzelm@30296
   363
\isamarkuptrue%
wenzelm@30296
   364
%
wenzelm@30296
   365
\endisatagmlref
wenzelm@30296
   366
{\isafoldmlref}%
wenzelm@30296
   367
%
wenzelm@30296
   368
\isadelimmlref
wenzelm@30296
   369
%
wenzelm@30296
   370
\endisadelimmlref
wenzelm@30296
   371
%
wenzelm@30296
   372
\isamarkupsubsection{Context data \label{sec:context-data}%
wenzelm@30296
   373
}
wenzelm@30296
   374
\isamarkuptrue%
wenzelm@30296
   375
%
wenzelm@30296
   376
\begin{isamarkuptext}%
wenzelm@33526
   377
The main purpose of theory and proof contexts is to manage
wenzelm@33526
   378
  arbitrary (pure) data.  New data types can be declared incrementally
wenzelm@33526
   379
  at compile time.  There are separate declaration mechanisms for any
wenzelm@33526
   380
  of the three kinds of contexts: theory, proof, generic.
wenzelm@30296
   381
wenzelm@33526
   382
  \paragraph{Theory data} declarations need to implement the following
wenzelm@33526
   383
  SML signature:
wenzelm@30296
   384
wenzelm@30296
   385
  \medskip
wenzelm@30296
   386
  \begin{tabular}{ll}
wenzelm@30296
   387
  \isa{{\isasymtype}\ T} & representing type \\
wenzelm@30296
   388
  \isa{{\isasymval}\ empty{\isacharcolon}\ T} & empty default value \\
wenzelm@30296
   389
  \isa{{\isasymval}\ extend{\isacharcolon}\ T\ {\isasymrightarrow}\ T} & re-initialize on import \\
wenzelm@30296
   390
  \isa{{\isasymval}\ merge{\isacharcolon}\ T\ {\isasymtimes}\ T\ {\isasymrightarrow}\ T} & join on import \\
wenzelm@30296
   391
  \end{tabular}
wenzelm@30296
   392
  \medskip
wenzelm@30296
   393
wenzelm@30296
   394
  \noindent The \isa{empty} value acts as initial default for
wenzelm@33526
   395
  \emph{any} theory that does not declare actual data content; \isa{extend} is acts like a unitary version of \isa{merge}.
wenzelm@30296
   396
wenzelm@35001
   397
  Implementing \isa{merge} can be tricky.  The general idea is
wenzelm@35001
   398
  that \isa{merge\ {\isacharparenleft}data\isactrlsub {\isadigit{1}}{\isacharcomma}\ data\isactrlsub {\isadigit{2}}{\isacharparenright}} inserts those parts of \isa{data\isactrlsub {\isadigit{2}}} into \isa{data\isactrlsub {\isadigit{1}}} that are not yet present, while
wenzelm@35001
   399
  keeping the general order of things.  The \verb|Library.merge|
wenzelm@35001
   400
  function on plain lists may serve as canonical template.
wenzelm@35001
   401
wenzelm@35001
   402
  Particularly note that shared parts of the data must not be
wenzelm@35001
   403
  duplicated by naive concatenation, or a theory graph that is like a
wenzelm@35001
   404
  chain of diamonds would cause an exponential blowup!
wenzelm@35001
   405
wenzelm@33526
   406
  \paragraph{Proof context data} declarations need to implement the
wenzelm@33526
   407
  following SML signature:
wenzelm@30296
   408
wenzelm@30296
   409
  \medskip
wenzelm@30296
   410
  \begin{tabular}{ll}
wenzelm@30296
   411
  \isa{{\isasymtype}\ T} & representing type \\
wenzelm@30296
   412
  \isa{{\isasymval}\ init{\isacharcolon}\ theory\ {\isasymrightarrow}\ T} & produce initial value \\
wenzelm@30296
   413
  \end{tabular}
wenzelm@30296
   414
  \medskip
wenzelm@30296
   415
wenzelm@30296
   416
  \noindent The \isa{init} operation is supposed to produce a pure
wenzelm@35001
   417
  value from the given background theory and should be somehow
wenzelm@35001
   418
  ``immediate''.  Whenever a proof context is initialized, which
wenzelm@35001
   419
  happens frequently, the the system invokes the \isa{init}
wenzelm@35001
   420
  operation of \emph{all} theory data slots ever declared.
wenzelm@30296
   421
wenzelm@30296
   422
  \paragraph{Generic data} provides a hybrid interface for both theory
wenzelm@33526
   423
  and proof data.  The \isa{init} operation for proof contexts is
wenzelm@33526
   424
  predefined to select the current data value from the background
wenzelm@33526
   425
  theory.
wenzelm@30296
   426
wenzelm@35001
   427
  \bigskip Any of these data declaration over type \isa{T} result
wenzelm@35001
   428
  in an ML structure with the following signature:
wenzelm@30296
   429
wenzelm@30296
   430
  \medskip
wenzelm@30296
   431
  \begin{tabular}{ll}
wenzelm@30296
   432
  \isa{get{\isacharcolon}\ context\ {\isasymrightarrow}\ T} \\
wenzelm@30296
   433
  \isa{put{\isacharcolon}\ T\ {\isasymrightarrow}\ context\ {\isasymrightarrow}\ context} \\
wenzelm@30296
   434
  \isa{map{\isacharcolon}\ {\isacharparenleft}T\ {\isasymrightarrow}\ T{\isacharparenright}\ {\isasymrightarrow}\ context\ {\isasymrightarrow}\ context} \\
wenzelm@30296
   435
  \end{tabular}
wenzelm@30296
   436
  \medskip
wenzelm@30296
   437
wenzelm@35001
   438
  \noindent These other operations provide exclusive access for the
wenzelm@35001
   439
  particular kind of context (theory, proof, or generic context).
wenzelm@35001
   440
  This interface fully observes the ML discipline for types and
wenzelm@35001
   441
  scopes: there is no other way to access the corresponding data slot
wenzelm@35001
   442
  of a context.  By keeping these operations private, an Isabelle/ML
wenzelm@35001
   443
  module may maintain abstract values authentically.%
wenzelm@30296
   444
\end{isamarkuptext}%
wenzelm@30296
   445
\isamarkuptrue%
wenzelm@30296
   446
%
wenzelm@30296
   447
\isadelimmlref
wenzelm@30296
   448
%
wenzelm@30296
   449
\endisadelimmlref
wenzelm@30296
   450
%
wenzelm@30296
   451
\isatagmlref
wenzelm@30296
   452
%
wenzelm@30296
   453
\begin{isamarkuptext}%
wenzelm@30296
   454
\begin{mldecls}
wenzelm@33526
   455
  \indexdef{}{ML functor}{Theory\_Data}\verb|functor Theory_Data| \\
wenzelm@33526
   456
  \indexdef{}{ML functor}{Proof\_Data}\verb|functor Proof_Data| \\
wenzelm@33526
   457
  \indexdef{}{ML functor}{Generic\_Data}\verb|functor Generic_Data| \\
wenzelm@30296
   458
  \end{mldecls}
wenzelm@30296
   459
wenzelm@30296
   460
  \begin{description}
wenzelm@30296
   461
wenzelm@33526
   462
  \item \verb|Theory_Data|\isa{{\isacharparenleft}spec{\isacharparenright}} declares data for
wenzelm@30296
   463
  type \verb|theory| according to the specification provided as
wenzelm@30296
   464
  argument structure.  The resulting structure provides data init and
wenzelm@30296
   465
  access operations as described above.
wenzelm@30296
   466
wenzelm@33526
   467
  \item \verb|Proof_Data|\isa{{\isacharparenleft}spec{\isacharparenright}} is analogous to
wenzelm@33526
   468
  \verb|Theory_Data| for type \verb|Proof.context|.
wenzelm@30296
   469
wenzelm@33526
   470
  \item \verb|Generic_Data|\isa{{\isacharparenleft}spec{\isacharparenright}} is analogous to
wenzelm@33526
   471
  \verb|Theory_Data| for type \verb|Context.generic|.
wenzelm@30296
   472
wenzelm@30296
   473
  \end{description}%
wenzelm@30296
   474
\end{isamarkuptext}%
wenzelm@30296
   475
\isamarkuptrue%
wenzelm@30296
   476
%
wenzelm@30296
   477
\endisatagmlref
wenzelm@30296
   478
{\isafoldmlref}%
wenzelm@30296
   479
%
wenzelm@30296
   480
\isadelimmlref
wenzelm@30296
   481
%
wenzelm@30296
   482
\endisadelimmlref
wenzelm@30296
   483
%
wenzelm@35001
   484
\isadelimmlex
wenzelm@35001
   485
%
wenzelm@35001
   486
\endisadelimmlex
wenzelm@35001
   487
%
wenzelm@35001
   488
\isatagmlex
wenzelm@35001
   489
%
wenzelm@35001
   490
\begin{isamarkuptext}%
wenzelm@35001
   491
The following artificial example demonstrates theory
wenzelm@35001
   492
  data: we maintain a set of terms that are supposed to be wellformed
wenzelm@35001
   493
  wrt.\ the enclosing theory.  The public interface is as follows:%
wenzelm@35001
   494
\end{isamarkuptext}%
wenzelm@35001
   495
\isamarkuptrue%
wenzelm@35001
   496
%
wenzelm@35001
   497
\endisatagmlex
wenzelm@35001
   498
{\isafoldmlex}%
wenzelm@35001
   499
%
wenzelm@35001
   500
\isadelimmlex
wenzelm@35001
   501
%
wenzelm@35001
   502
\endisadelimmlex
wenzelm@35001
   503
%
wenzelm@35001
   504
\isadelimML
wenzelm@35001
   505
%
wenzelm@35001
   506
\endisadelimML
wenzelm@35001
   507
%
wenzelm@35001
   508
\isatagML
wenzelm@35001
   509
\isacommand{ML}\isamarkupfalse%
wenzelm@35001
   510
\ {\isacharverbatimopen}\isanewline
wenzelm@35001
   511
\ \ signature\ WELLFORMED{\isacharunderscore}TERMS\ {\isacharequal}\isanewline
wenzelm@35001
   512
\ \ sig\isanewline
wenzelm@35001
   513
\ \ \ \ val\ get{\isacharcolon}\ theory\ {\isacharminus}{\isachargreater}\ term\ list\isanewline
wenzelm@35001
   514
\ \ \ \ val\ add{\isacharcolon}\ term\ {\isacharminus}{\isachargreater}\ theory\ {\isacharminus}{\isachargreater}\ theory\isanewline
wenzelm@35001
   515
\ \ end{\isacharsemicolon}\isanewline
wenzelm@35001
   516
{\isacharverbatimclose}%
wenzelm@35001
   517
\endisatagML
wenzelm@35001
   518
{\isafoldML}%
wenzelm@35001
   519
%
wenzelm@35001
   520
\isadelimML
wenzelm@35001
   521
%
wenzelm@35001
   522
\endisadelimML
wenzelm@35001
   523
%
wenzelm@35001
   524
\begin{isamarkuptext}%
wenzelm@35001
   525
\noindent The implementation uses private theory data
wenzelm@35001
   526
  internally, and only exposes an operation that involves explicit
wenzelm@35001
   527
  argument checking wrt.\ the given theory.%
wenzelm@35001
   528
\end{isamarkuptext}%
wenzelm@35001
   529
\isamarkuptrue%
wenzelm@35001
   530
%
wenzelm@35001
   531
\isadelimML
wenzelm@35001
   532
%
wenzelm@35001
   533
\endisadelimML
wenzelm@35001
   534
%
wenzelm@35001
   535
\isatagML
wenzelm@35001
   536
\isacommand{ML}\isamarkupfalse%
wenzelm@35001
   537
\ {\isacharverbatimopen}\isanewline
wenzelm@35001
   538
\ \ structure\ Wellformed{\isacharunderscore}Terms{\isacharcolon}\ WELLFORMED{\isacharunderscore}TERMS\ {\isacharequal}\isanewline
wenzelm@35001
   539
\ \ struct\isanewline
wenzelm@35001
   540
\isanewline
wenzelm@35001
   541
\ \ structure\ Terms\ {\isacharequal}\ Theory{\isacharunderscore}Data\isanewline
wenzelm@35001
   542
\ \ {\isacharparenleft}\isanewline
wenzelm@35001
   543
\ \ \ \ type\ T\ {\isacharequal}\ term\ OrdList{\isachardot}T{\isacharsemicolon}\isanewline
wenzelm@35001
   544
\ \ \ \ val\ empty\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}{\isacharsemicolon}\isanewline
wenzelm@35001
   545
\ \ \ \ val\ extend\ {\isacharequal}\ I{\isacharsemicolon}\isanewline
wenzelm@35001
   546
\ \ \ \ fun\ merge\ {\isacharparenleft}ts{\isadigit{1}}{\isacharcomma}\ ts{\isadigit{2}}{\isacharparenright}\ {\isacharequal}\isanewline
wenzelm@35419
   547
\ \ \ \ \ \ OrdList{\isachardot}union\ Term{\isacharunderscore}Ord{\isachardot}fast{\isacharunderscore}term{\isacharunderscore}ord\ ts{\isadigit{1}}\ ts{\isadigit{2}}{\isacharsemicolon}\isanewline
wenzelm@35001
   548
\ \ {\isacharparenright}\isanewline
wenzelm@35001
   549
\isanewline
wenzelm@35001
   550
\ \ val\ get\ {\isacharequal}\ Terms{\isachardot}get{\isacharsemicolon}\isanewline
wenzelm@35001
   551
\isanewline
wenzelm@35001
   552
\ \ fun\ add\ raw{\isacharunderscore}t\ thy\ {\isacharequal}\isanewline
wenzelm@35001
   553
\ \ \ \ let\ val\ t\ {\isacharequal}\ Sign{\isachardot}cert{\isacharunderscore}term\ thy\ raw{\isacharunderscore}t\isanewline
wenzelm@35419
   554
\ \ \ \ in\ Terms{\isachardot}map\ {\isacharparenleft}OrdList{\isachardot}insert\ Term{\isacharunderscore}Ord{\isachardot}fast{\isacharunderscore}term{\isacharunderscore}ord\ t{\isacharparenright}\ thy\ end{\isacharsemicolon}\isanewline
wenzelm@35001
   555
\isanewline
wenzelm@35001
   556
\ \ end{\isacharsemicolon}\isanewline
wenzelm@35001
   557
{\isacharverbatimclose}%
wenzelm@35001
   558
\endisatagML
wenzelm@35001
   559
{\isafoldML}%
wenzelm@35001
   560
%
wenzelm@35001
   561
\isadelimML
wenzelm@35001
   562
%
wenzelm@35001
   563
\endisadelimML
wenzelm@35001
   564
%
wenzelm@35001
   565
\begin{isamarkuptext}%
wenzelm@35001
   566
We use \verb|term OrdList.T| for reasonably efficient
wenzelm@35001
   567
  representation of a set of terms: all operations are linear in the
wenzelm@35001
   568
  number of stored elements.  Here we assume that our users do not
wenzelm@35001
   569
  care about the declaration order, since that data structure forces
wenzelm@35001
   570
  its own arrangement of elements.
wenzelm@35001
   571
wenzelm@35001
   572
  Observe how the \verb|merge| operation joins the data slots of
wenzelm@35001
   573
  the two constituents: \verb|OrdList.union| prevents duplication of
wenzelm@35001
   574
  common data from different branches, thus avoiding the danger of
wenzelm@35001
   575
  exponential blowup.  (Plain list append etc.\ must never be used for
wenzelm@35001
   576
  theory data merges.)
wenzelm@35001
   577
wenzelm@35001
   578
  \medskip Our intended invariant is achieved as follows:
wenzelm@35001
   579
  \begin{enumerate}
wenzelm@35001
   580
wenzelm@35001
   581
  \item \verb|Wellformed_Terms.add| only admits terms that have passed
wenzelm@35001
   582
  the \verb|Sign.cert_term| check of the given theory at that point.
wenzelm@35001
   583
wenzelm@35001
   584
  \item Wellformedness in the sense of \verb|Sign.cert_term| is
wenzelm@35001
   585
  monotonic wrt.\ the sub-theory relation.  So our data can move
wenzelm@35001
   586
  upwards in the hierarchy (via extension or merges), and maintain
wenzelm@35001
   587
  wellformedness without further checks.
wenzelm@35001
   588
wenzelm@35001
   589
  \end{enumerate}
wenzelm@35001
   590
wenzelm@35001
   591
  Note that all basic operations of the inference kernel (which
wenzelm@35001
   592
  includes \verb|Sign.cert_term|) observe this monotonicity principle,
wenzelm@35001
   593
  but other user-space tools don't.  For example, fully-featured
wenzelm@35001
   594
  type-inference via \verb|Syntax.check_term| (cf.\
wenzelm@35001
   595
  \secref{sec:term-check}) is not necessarily monotonic wrt.\ the
wenzelm@35001
   596
  background theory, since constraints of term constants can be
wenzelm@35001
   597
  strengthened by later declarations, for example.
wenzelm@35001
   598
wenzelm@35001
   599
  In most cases, user-space context data does not have to take such
wenzelm@35001
   600
  invariants too seriously.  The situation is different in the
wenzelm@35001
   601
  implementation of the inference kernel itself, which uses the very
wenzelm@35001
   602
  same data mechanisms for types, constants, axioms etc.%
wenzelm@35001
   603
\end{isamarkuptext}%
wenzelm@35001
   604
\isamarkuptrue%
wenzelm@35001
   605
%
wenzelm@30296
   606
\isamarkupsection{Names \label{sec:names}%
wenzelm@30296
   607
}
wenzelm@30296
   608
\isamarkuptrue%
wenzelm@30296
   609
%
wenzelm@30296
   610
\begin{isamarkuptext}%
wenzelm@30296
   611
In principle, a name is just a string, but there are various
wenzelm@35001
   612
  conventions for representing additional structure.  For example,
wenzelm@35001
   613
  ``\isa{Foo{\isachardot}bar{\isachardot}baz}'' is considered as a long name consisting of
wenzelm@35001
   614
  qualifier \isa{Foo{\isachardot}bar} and base name \isa{baz}.  The
wenzelm@35001
   615
  individual constituents of a name may have further substructure,
wenzelm@35001
   616
  e.g.\ the string ``\verb,\,\verb,<alpha>,'' encodes as a single
wenzelm@35001
   617
  symbol.
wenzelm@35001
   618
wenzelm@35001
   619
  \medskip Subsequently, we shall introduce specific categories of
wenzelm@35001
   620
  names.  Roughly speaking these correspond to logical entities as
wenzelm@35001
   621
  follows:
wenzelm@35001
   622
  \begin{itemize}
wenzelm@35001
   623
wenzelm@35001
   624
  \item Basic names (\secref{sec:basic-name}): free and bound
wenzelm@35001
   625
  variables.
wenzelm@35001
   626
wenzelm@35001
   627
  \item Indexed names (\secref{sec:indexname}): schematic variables.
wenzelm@35001
   628
wenzelm@35001
   629
  \item Long names (\secref{sec:long-name}): constants of any kind
wenzelm@35001
   630
  (type constructors, term constants, other concepts defined in user
wenzelm@35001
   631
  space).  Such entities are typically managed via name spaces
wenzelm@35001
   632
  (\secref{sec:name-space}).
wenzelm@35001
   633
wenzelm@35001
   634
  \end{itemize}%
wenzelm@30296
   635
\end{isamarkuptext}%
wenzelm@30296
   636
\isamarkuptrue%
wenzelm@30296
   637
%
wenzelm@30296
   638
\isamarkupsubsection{Strings of symbols%
wenzelm@30296
   639
}
wenzelm@30296
   640
\isamarkuptrue%
wenzelm@30296
   641
%
wenzelm@30296
   642
\begin{isamarkuptext}%
wenzelm@35001
   643
A \emph{symbol} constitutes the smallest textual unit in
wenzelm@35001
   644
  Isabelle --- raw ML characters are normally not encountered at all!
wenzelm@35001
   645
  Isabelle strings consist of a sequence of symbols, represented as a
wenzelm@35001
   646
  packed string or an exploded list of strings.  Each symbol is in
wenzelm@35001
   647
  itself a small string, which has either one of the following forms:
wenzelm@30296
   648
wenzelm@30296
   649
  \begin{enumerate}
wenzelm@30296
   650
wenzelm@35001
   651
  \item a single ASCII character ``\isa{c}'' or raw byte in the
wenzelm@35001
   652
  range of 128\dots 255, for example ``\verb,a,'',
wenzelm@30296
   653
wenzelm@30296
   654
  \item a regular symbol ``\verb,\,\verb,<,\isa{ident}\verb,>,'',
wenzelm@30296
   655
  for example ``\verb,\,\verb,<alpha>,'',
wenzelm@30296
   656
wenzelm@30296
   657
  \item a control symbol ``\verb,\,\verb,<^,\isa{ident}\verb,>,'',
wenzelm@30296
   658
  for example ``\verb,\,\verb,<^bold>,'',
wenzelm@30296
   659
wenzelm@30296
   660
  \item a raw symbol ``\verb,\,\verb,<^raw:,\isa{text}\verb,>,''
wenzelm@35001
   661
  where \isa{text} consists of printable characters excluding
wenzelm@30296
   662
  ``\verb,.,'' and ``\verb,>,'', for example
wenzelm@30296
   663
  ``\verb,\,\verb,<^raw:$\sum_{i = 1}^n$>,'',
wenzelm@30296
   664
wenzelm@30296
   665
  \item a numbered raw control symbol ``\verb,\,\verb,<^raw,\isa{n}\verb,>, where \isa{n} consists of digits, for example
wenzelm@30296
   666
  ``\verb,\,\verb,<^raw42>,''.
wenzelm@30296
   667
wenzelm@30296
   668
  \end{enumerate}
wenzelm@30296
   669
wenzelm@30296
   670
  \noindent The \isa{ident} syntax for symbol names is \isa{letter\ {\isacharparenleft}letter\ {\isacharbar}\ digit{\isacharparenright}\isactrlsup {\isacharasterisk}}, where \isa{letter\ {\isacharequal}\ A{\isachardot}{\isachardot}Za{\isachardot}{\isachardot}z} and \isa{digit\ {\isacharequal}\ {\isadigit{0}}{\isachardot}{\isachardot}{\isadigit{9}}}.  There are infinitely many
wenzelm@30296
   671
  regular symbols and control symbols, but a fixed collection of
wenzelm@30296
   672
  standard symbols is treated specifically.  For example,
wenzelm@30296
   673
  ``\verb,\,\verb,<alpha>,'' is classified as a letter, which means it
wenzelm@30296
   674
  may occur within regular Isabelle identifiers.
wenzelm@30296
   675
wenzelm@30296
   676
  Since the character set underlying Isabelle symbols is 7-bit ASCII
wenzelm@35001
   677
  and 8-bit characters are passed through transparently, Isabelle can
wenzelm@35001
   678
  also process Unicode/UCS data in UTF-8 encoding.\footnote{When
wenzelm@35001
   679
  counting precise source positions internally, bytes in the range of
wenzelm@35001
   680
  128\dots 191 are ignored.  In UTF-8 encoding, this interval covers
wenzelm@35001
   681
  the additional trailer bytes, so Isabelle happens to count Unicode
wenzelm@35001
   682
  characters here, not bytes in memory.  In ISO-Latin encoding, the
wenzelm@35001
   683
  ignored range merely includes some extra punctuation characters that
wenzelm@35001
   684
  even have replacements within the standard collection of Isabelle
wenzelm@35001
   685
  symbols; the accented letters range is counted properly.} Unicode
wenzelm@35001
   686
  provides its own collection of mathematical symbols, but within the
wenzelm@35001
   687
  core Isabelle/ML world there is no link to the standard collection
wenzelm@35001
   688
  of Isabelle regular symbols.
wenzelm@30296
   689
wenzelm@30296
   690
  \medskip Output of Isabelle symbols depends on the print mode
wenzelm@30296
   691
  (\secref{print-mode}).  For example, the standard {\LaTeX} setup of
wenzelm@30296
   692
  the Isabelle document preparation system would present
wenzelm@30296
   693
  ``\verb,\,\verb,<alpha>,'' as \isa{{\isasymalpha}}, and
wenzelm@35001
   694
  ``\verb,\,\verb,<^bold>,\verb,\,\verb,<alpha>,'' as \isa{\isactrlbold {\isasymalpha}}.  On-screen rendering usually works by mapping a finite
wenzelm@35001
   695
  subset of Isabelle symbols to suitable Unicode characters.%
wenzelm@30296
   696
\end{isamarkuptext}%
wenzelm@30296
   697
\isamarkuptrue%
wenzelm@30296
   698
%
wenzelm@30296
   699
\isadelimmlref
wenzelm@30296
   700
%
wenzelm@30296
   701
\endisadelimmlref
wenzelm@30296
   702
%
wenzelm@30296
   703
\isatagmlref
wenzelm@30296
   704
%
wenzelm@30296
   705
\begin{isamarkuptext}%
wenzelm@30296
   706
\begin{mldecls}
wenzelm@35001
   707
  \indexdef{}{ML type}{Symbol.symbol}\verb|type Symbol.symbol = string| \\
wenzelm@30296
   708
  \indexdef{}{ML}{Symbol.explode}\verb|Symbol.explode: string -> Symbol.symbol list| \\
wenzelm@30296
   709
  \indexdef{}{ML}{Symbol.is\_letter}\verb|Symbol.is_letter: Symbol.symbol -> bool| \\
wenzelm@30296
   710
  \indexdef{}{ML}{Symbol.is\_digit}\verb|Symbol.is_digit: Symbol.symbol -> bool| \\
wenzelm@30296
   711
  \indexdef{}{ML}{Symbol.is\_quasi}\verb|Symbol.is_quasi: Symbol.symbol -> bool| \\
wenzelm@30296
   712
  \indexdef{}{ML}{Symbol.is\_blank}\verb|Symbol.is_blank: Symbol.symbol -> bool| \\
wenzelm@30296
   713
  \end{mldecls}
wenzelm@30296
   714
  \begin{mldecls}
wenzelm@30296
   715
  \indexdef{}{ML type}{Symbol.sym}\verb|type Symbol.sym| \\
wenzelm@30296
   716
  \indexdef{}{ML}{Symbol.decode}\verb|Symbol.decode: Symbol.symbol -> Symbol.sym| \\
wenzelm@30296
   717
  \end{mldecls}
wenzelm@30296
   718
wenzelm@30296
   719
  \begin{description}
wenzelm@30296
   720
wenzelm@30296
   721
  \item \verb|Symbol.symbol| represents individual Isabelle
wenzelm@35001
   722
  symbols.
wenzelm@30296
   723
wenzelm@30296
   724
  \item \verb|Symbol.explode|~\isa{str} produces a symbol list
wenzelm@30296
   725
  from the packed form.  This function supercedes \verb|String.explode| for virtually all purposes of manipulating text in
wenzelm@35001
   726
  Isabelle!\footnote{The runtime overhead for exploded strings is
wenzelm@35001
   727
  mainly that of the list structure: individual symbols that happen to
wenzelm@35001
   728
  be a singleton string --- which is the most common case --- do not
wenzelm@35001
   729
  require extra memory in Poly/ML.}
wenzelm@30296
   730
wenzelm@30296
   731
  \item \verb|Symbol.is_letter|, \verb|Symbol.is_digit|, \verb|Symbol.is_quasi|, \verb|Symbol.is_blank| classify standard
wenzelm@30296
   732
  symbols according to fixed syntactic conventions of Isabelle, cf.\
wenzelm@30296
   733
  \cite{isabelle-isar-ref}.
wenzelm@30296
   734
wenzelm@30296
   735
  \item \verb|Symbol.sym| is a concrete datatype that represents
wenzelm@30296
   736
  the different kinds of symbols explicitly, with constructors \verb|Symbol.Char|, \verb|Symbol.Sym|, \verb|Symbol.Ctrl|, \verb|Symbol.Raw|.
wenzelm@30296
   737
wenzelm@30296
   738
  \item \verb|Symbol.decode| converts the string representation of a
wenzelm@30296
   739
  symbol into the datatype version.
wenzelm@30296
   740
wenzelm@35001
   741
  \end{description}
wenzelm@35001
   742
wenzelm@35001
   743
  \paragraph{Historical note.} In the original SML90 standard the
wenzelm@35001
   744
  primitive ML type \verb|char| did not exists, and the basic \verb|explode: string -> string list| operation would produce a list of
wenzelm@35001
   745
  singleton strings as in Isabelle/ML today.  When SML97 came out,
wenzelm@35001
   746
  Isabelle did not adopt its slightly anachronistic 8-bit characters,
wenzelm@35001
   747
  but the idea of exploding a string into a list of small strings was
wenzelm@35001
   748
  extended to ``symbols'' as explained above.  Thus Isabelle sources
wenzelm@35001
   749
  can refer to an infinite store of user-defined symbols, without
wenzelm@35001
   750
  having to worry about the multitude of Unicode encodings.%
wenzelm@30296
   751
\end{isamarkuptext}%
wenzelm@30296
   752
\isamarkuptrue%
wenzelm@30296
   753
%
wenzelm@30296
   754
\endisatagmlref
wenzelm@30296
   755
{\isafoldmlref}%
wenzelm@30296
   756
%
wenzelm@30296
   757
\isadelimmlref
wenzelm@30296
   758
%
wenzelm@30296
   759
\endisadelimmlref
wenzelm@30296
   760
%
wenzelm@35001
   761
\isamarkupsubsection{Basic names \label{sec:basic-name}%
wenzelm@30296
   762
}
wenzelm@30296
   763
\isamarkuptrue%
wenzelm@30296
   764
%
wenzelm@30296
   765
\begin{isamarkuptext}%
wenzelm@30296
   766
A \emph{basic name} essentially consists of a single Isabelle
wenzelm@30296
   767
  identifier.  There are conventions to mark separate classes of basic
wenzelm@30296
   768
  names, by attaching a suffix of underscores: one underscore means
wenzelm@30296
   769
  \emph{internal name}, two underscores means \emph{Skolem name},
wenzelm@30296
   770
  three underscores means \emph{internal Skolem name}.
wenzelm@30296
   771
wenzelm@30296
   772
  For example, the basic name \isa{foo} has the internal version
wenzelm@30296
   773
  \isa{foo{\isacharunderscore}}, with Skolem versions \isa{foo{\isacharunderscore}{\isacharunderscore}} and \isa{foo{\isacharunderscore}{\isacharunderscore}{\isacharunderscore}}, respectively.
wenzelm@30296
   774
wenzelm@30296
   775
  These special versions provide copies of the basic name space, apart
wenzelm@30296
   776
  from anything that normally appears in the user text.  For example,
wenzelm@30296
   777
  system generated variables in Isar proof contexts are usually marked
wenzelm@35001
   778
  as internal, which prevents mysterious names like \isa{xaa} to
wenzelm@35001
   779
  appear in human-readable text.
wenzelm@30296
   780
wenzelm@30296
   781
  \medskip Manipulating binding scopes often requires on-the-fly
wenzelm@30296
   782
  renamings.  A \emph{name context} contains a collection of already
wenzelm@30296
   783
  used names.  The \isa{declare} operation adds names to the
wenzelm@30296
   784
  context.
wenzelm@30296
   785
wenzelm@30296
   786
  The \isa{invents} operation derives a number of fresh names from
wenzelm@30296
   787
  a given starting point.  For example, the first three names derived
wenzelm@30296
   788
  from \isa{a} are \isa{a}, \isa{b}, \isa{c}.
wenzelm@30296
   789
wenzelm@30296
   790
  The \isa{variants} operation produces fresh names by
wenzelm@30296
   791
  incrementing tentative names as base-26 numbers (with digits \isa{a{\isachardot}{\isachardot}z}) until all clashes are resolved.  For example, name \isa{foo} results in variants \isa{fooa}, \isa{foob}, \isa{fooc}, \dots, \isa{fooaa}, \isa{fooab} etc.; each renaming
wenzelm@30296
   792
  step picks the next unused variant from this sequence.%
wenzelm@30296
   793
\end{isamarkuptext}%
wenzelm@30296
   794
\isamarkuptrue%
wenzelm@30296
   795
%
wenzelm@30296
   796
\isadelimmlref
wenzelm@30296
   797
%
wenzelm@30296
   798
\endisadelimmlref
wenzelm@30296
   799
%
wenzelm@30296
   800
\isatagmlref
wenzelm@30296
   801
%
wenzelm@30296
   802
\begin{isamarkuptext}%
wenzelm@30296
   803
\begin{mldecls}
wenzelm@30296
   804
  \indexdef{}{ML}{Name.internal}\verb|Name.internal: string -> string| \\
wenzelm@30296
   805
  \indexdef{}{ML}{Name.skolem}\verb|Name.skolem: string -> string| \\
wenzelm@30296
   806
  \end{mldecls}
wenzelm@30296
   807
  \begin{mldecls}
wenzelm@30296
   808
  \indexdef{}{ML type}{Name.context}\verb|type Name.context| \\
wenzelm@30296
   809
  \indexdef{}{ML}{Name.context}\verb|Name.context: Name.context| \\
wenzelm@30296
   810
  \indexdef{}{ML}{Name.declare}\verb|Name.declare: string -> Name.context -> Name.context| \\
wenzelm@30296
   811
  \indexdef{}{ML}{Name.invents}\verb|Name.invents: Name.context -> string -> int -> string list| \\
wenzelm@30296
   812
  \indexdef{}{ML}{Name.variants}\verb|Name.variants: string list -> Name.context -> string list * Name.context| \\
wenzelm@30296
   813
  \end{mldecls}
wenzelm@35001
   814
  \begin{mldecls}
wenzelm@35001
   815
  \indexdef{}{ML}{Variable.names\_of}\verb|Variable.names_of: Proof.context -> Name.context| \\
wenzelm@35001
   816
  \end{mldecls}
wenzelm@30296
   817
wenzelm@30296
   818
  \begin{description}
wenzelm@30296
   819
wenzelm@30296
   820
  \item \verb|Name.internal|~\isa{name} produces an internal name
wenzelm@30296
   821
  by adding one underscore.
wenzelm@30296
   822
wenzelm@30296
   823
  \item \verb|Name.skolem|~\isa{name} produces a Skolem name by
wenzelm@30296
   824
  adding two underscores.
wenzelm@30296
   825
wenzelm@30296
   826
  \item \verb|Name.context| represents the context of already used
wenzelm@30296
   827
  names; the initial value is \verb|Name.context|.
wenzelm@30296
   828
wenzelm@30296
   829
  \item \verb|Name.declare|~\isa{name} enters a used name into the
wenzelm@30296
   830
  context.
wenzelm@30296
   831
wenzelm@30296
   832
  \item \verb|Name.invents|~\isa{context\ name\ n} produces \isa{n} fresh names derived from \isa{name}.
wenzelm@30296
   833
wenzelm@30296
   834
  \item \verb|Name.variants|~\isa{names\ context} produces fresh
wenzelm@30296
   835
  variants of \isa{names}; the result is entered into the context.
wenzelm@30296
   836
wenzelm@35001
   837
  \item \verb|Variable.names_of|~\isa{ctxt} retrieves the context
wenzelm@35001
   838
  of declared type and term variable names.  Projecting a proof
wenzelm@35001
   839
  context down to a primitive name context is occasionally useful when
wenzelm@35001
   840
  invoking lower-level operations.  Regular management of ``fresh
wenzelm@35001
   841
  variables'' is done by suitable operations of structure \verb|Variable|, which is also able to provide an official status of
wenzelm@35001
   842
  ``locally fixed variable'' within the logical environment (cf.\
wenzelm@35001
   843
  \secref{sec:variables}).
wenzelm@35001
   844
wenzelm@30296
   845
  \end{description}%
wenzelm@30296
   846
\end{isamarkuptext}%
wenzelm@30296
   847
\isamarkuptrue%
wenzelm@30296
   848
%
wenzelm@30296
   849
\endisatagmlref
wenzelm@30296
   850
{\isafoldmlref}%
wenzelm@30296
   851
%
wenzelm@30296
   852
\isadelimmlref
wenzelm@30296
   853
%
wenzelm@30296
   854
\endisadelimmlref
wenzelm@30296
   855
%
wenzelm@35001
   856
\isamarkupsubsection{Indexed names \label{sec:indexname}%
wenzelm@30296
   857
}
wenzelm@30296
   858
\isamarkuptrue%
wenzelm@30296
   859
%
wenzelm@30296
   860
\begin{isamarkuptext}%
wenzelm@30296
   861
An \emph{indexed name} (or \isa{indexname}) is a pair of a basic
wenzelm@30296
   862
  name and a natural number.  This representation allows efficient
wenzelm@30296
   863
  renaming by incrementing the second component only.  The canonical
wenzelm@30296
   864
  way to rename two collections of indexnames apart from each other is
wenzelm@30296
   865
  this: determine the maximum index \isa{maxidx} of the first
wenzelm@30296
   866
  collection, then increment all indexes of the second collection by
wenzelm@30296
   867
  \isa{maxidx\ {\isacharplus}\ {\isadigit{1}}}; the maximum index of an empty collection is
wenzelm@30296
   868
  \isa{{\isacharminus}{\isadigit{1}}}.
wenzelm@30296
   869
wenzelm@35001
   870
  Occasionally, basic names are injected into the same pair type of
wenzelm@35001
   871
  indexed names: then \isa{{\isacharparenleft}x{\isacharcomma}\ {\isacharminus}{\isadigit{1}}{\isacharparenright}} is used to encode the basic
wenzelm@35001
   872
  name \isa{x}.
wenzelm@30296
   873
wenzelm@30296
   874
  \medskip Isabelle syntax observes the following rules for
wenzelm@30296
   875
  representing an indexname \isa{{\isacharparenleft}x{\isacharcomma}\ i{\isacharparenright}} as a packed string:
wenzelm@30296
   876
wenzelm@30296
   877
  \begin{itemize}
wenzelm@30296
   878
wenzelm@30296
   879
  \item \isa{{\isacharquery}x} if \isa{x} does not end with a digit and \isa{i\ {\isacharequal}\ {\isadigit{0}}},
wenzelm@30296
   880
wenzelm@30296
   881
  \item \isa{{\isacharquery}xi} if \isa{x} does not end with a digit,
wenzelm@30296
   882
wenzelm@30296
   883
  \item \isa{{\isacharquery}x{\isachardot}i} otherwise.
wenzelm@30296
   884
wenzelm@30296
   885
  \end{itemize}
wenzelm@30296
   886
wenzelm@35001
   887
  Indexnames may acquire large index numbers after several maxidx
wenzelm@35001
   888
  shifts have been applied.  Results are usually normalized towards
wenzelm@35001
   889
  \isa{{\isadigit{0}}} at certain checkpoints, notably at the end of a proof.
wenzelm@35001
   890
  This works by producing variants of the corresponding basic name
wenzelm@35001
   891
  components.  For example, the collection \isa{{\isacharquery}x{\isadigit{1}}{\isacharcomma}\ {\isacharquery}x{\isadigit{7}}{\isacharcomma}\ {\isacharquery}x{\isadigit{4}}{\isadigit{2}}}
wenzelm@35001
   892
  becomes \isa{{\isacharquery}x{\isacharcomma}\ {\isacharquery}xa{\isacharcomma}\ {\isacharquery}xb}.%
wenzelm@30296
   893
\end{isamarkuptext}%
wenzelm@30296
   894
\isamarkuptrue%
wenzelm@30296
   895
%
wenzelm@30296
   896
\isadelimmlref
wenzelm@30296
   897
%
wenzelm@30296
   898
\endisadelimmlref
wenzelm@30296
   899
%
wenzelm@30296
   900
\isatagmlref
wenzelm@30296
   901
%
wenzelm@30296
   902
\begin{isamarkuptext}%
wenzelm@30296
   903
\begin{mldecls}
wenzelm@30296
   904
  \indexdef{}{ML type}{indexname}\verb|type indexname| \\
wenzelm@30296
   905
  \end{mldecls}
wenzelm@30296
   906
wenzelm@30296
   907
  \begin{description}
wenzelm@30296
   908
wenzelm@30296
   909
  \item \verb|indexname| represents indexed names.  This is an
wenzelm@30296
   910
  abbreviation for \verb|string * int|.  The second component is
wenzelm@30296
   911
  usually non-negative, except for situations where \isa{{\isacharparenleft}x{\isacharcomma}\ {\isacharminus}{\isadigit{1}}{\isacharparenright}}
wenzelm@35001
   912
  is used to inject basic names into this type.  Other negative
wenzelm@35001
   913
  indexes should not be used.
wenzelm@30296
   914
wenzelm@30296
   915
  \end{description}%
wenzelm@30296
   916
\end{isamarkuptext}%
wenzelm@30296
   917
\isamarkuptrue%
wenzelm@30296
   918
%
wenzelm@30296
   919
\endisatagmlref
wenzelm@30296
   920
{\isafoldmlref}%
wenzelm@30296
   921
%
wenzelm@30296
   922
\isadelimmlref
wenzelm@30296
   923
%
wenzelm@30296
   924
\endisadelimmlref
wenzelm@30296
   925
%
wenzelm@35001
   926
\isamarkupsubsection{Long names \label{sec:long-name}%
wenzelm@30296
   927
}
wenzelm@30296
   928
\isamarkuptrue%
wenzelm@30296
   929
%
wenzelm@30296
   930
\begin{isamarkuptext}%
wenzelm@35001
   931
A \emph{long name} consists of a sequence of non-empty name
wenzelm@35001
   932
  components.  The packed representation uses a dot as separator, as
wenzelm@35001
   933
  in ``\isa{A{\isachardot}b{\isachardot}c}''.  The last component is called \emph{base
wenzelm@35001
   934
  name}, the remaining prefix is called \emph{qualifier} (which may be
wenzelm@35001
   935
  empty).  The qualifier can be understood as the access path to the
wenzelm@35001
   936
  named entity while passing through some nested block-structure,
wenzelm@35001
   937
  although our free-form long names do not really enforce any strict
wenzelm@35001
   938
  discipline.
wenzelm@35001
   939
wenzelm@35001
   940
  For example, an item named ``\isa{A{\isachardot}b{\isachardot}c}'' may be understood as
wenzelm@35001
   941
  a local entity \isa{c}, within a local structure \isa{b},
wenzelm@35001
   942
  within a global structure \isa{A}.  In practice, long names
wenzelm@35001
   943
  usually represent 1--3 levels of qualification.  User ML code should
wenzelm@35001
   944
  not make any assumptions about the particular structure of long
wenzelm@35001
   945
  names!
wenzelm@30296
   946
wenzelm@30296
   947
  The empty name is commonly used as an indication of unnamed
wenzelm@35001
   948
  entities, or entities that are not entered into the corresponding
wenzelm@35001
   949
  name space, whenever this makes any sense.  The basic operations on
wenzelm@35001
   950
  long names map empty names again to empty names.%
wenzelm@30296
   951
\end{isamarkuptext}%
wenzelm@30296
   952
\isamarkuptrue%
wenzelm@30296
   953
%
wenzelm@30296
   954
\isadelimmlref
wenzelm@30296
   955
%
wenzelm@30296
   956
\endisadelimmlref
wenzelm@30296
   957
%
wenzelm@30296
   958
\isatagmlref
wenzelm@30296
   959
%
wenzelm@30296
   960
\begin{isamarkuptext}%
wenzelm@30296
   961
\begin{mldecls}
wenzelm@30365
   962
  \indexdef{}{ML}{Long\_Name.base\_name}\verb|Long_Name.base_name: string -> string| \\
wenzelm@30365
   963
  \indexdef{}{ML}{Long\_Name.qualifier}\verb|Long_Name.qualifier: string -> string| \\
wenzelm@30365
   964
  \indexdef{}{ML}{Long\_Name.append}\verb|Long_Name.append: string -> string -> string| \\
wenzelm@30365
   965
  \indexdef{}{ML}{Long\_Name.implode}\verb|Long_Name.implode: string list -> string| \\
wenzelm@30365
   966
  \indexdef{}{ML}{Long\_Name.explode}\verb|Long_Name.explode: string -> string list| \\
wenzelm@30296
   967
  \end{mldecls}
wenzelm@35001
   968
wenzelm@35001
   969
  \begin{description}
wenzelm@35001
   970
wenzelm@35001
   971
  \item \verb|Long_Name.base_name|~\isa{name} returns the base name
wenzelm@35001
   972
  of a long name.
wenzelm@35001
   973
wenzelm@35001
   974
  \item \verb|Long_Name.qualifier|~\isa{name} returns the qualifier
wenzelm@35001
   975
  of a long name.
wenzelm@35001
   976
wenzelm@35001
   977
  \item \verb|Long_Name.append|~\isa{name\isactrlisub {\isadigit{1}}\ name\isactrlisub {\isadigit{2}}} appends two long
wenzelm@35001
   978
  names.
wenzelm@35001
   979
wenzelm@35001
   980
  \item \verb|Long_Name.implode|~\isa{names} and \verb|Long_Name.explode|~\isa{name} convert between the packed string
wenzelm@35001
   981
  representation and the explicit list form of long names.
wenzelm@35001
   982
wenzelm@35001
   983
  \end{description}%
wenzelm@35001
   984
\end{isamarkuptext}%
wenzelm@35001
   985
\isamarkuptrue%
wenzelm@35001
   986
%
wenzelm@35001
   987
\endisatagmlref
wenzelm@35001
   988
{\isafoldmlref}%
wenzelm@35001
   989
%
wenzelm@35001
   990
\isadelimmlref
wenzelm@35001
   991
%
wenzelm@35001
   992
\endisadelimmlref
wenzelm@35001
   993
%
wenzelm@35001
   994
\isamarkupsubsection{Name spaces \label{sec:name-space}%
wenzelm@35001
   995
}
wenzelm@35001
   996
\isamarkuptrue%
wenzelm@35001
   997
%
wenzelm@35001
   998
\begin{isamarkuptext}%
wenzelm@35001
   999
A \isa{name\ space} manages a collection of long names,
wenzelm@35001
  1000
  together with a mapping between partially qualified external names
wenzelm@35001
  1001
  and fully qualified internal names (in both directions).  Note that
wenzelm@35001
  1002
  the corresponding \isa{intern} and \isa{extern} operations
wenzelm@35001
  1003
  are mostly used for parsing and printing only!  The \isa{declare} operation augments a name space according to the accesses
wenzelm@35001
  1004
  determined by a given binding, and a naming policy from the context.
wenzelm@35001
  1005
wenzelm@35001
  1006
  \medskip A \isa{binding} specifies details about the prospective
wenzelm@35001
  1007
  long name of a newly introduced formal entity.  It consists of a
wenzelm@35001
  1008
  base name, prefixes for qualification (separate ones for system
wenzelm@35001
  1009
  infrastructure and user-space mechanisms), a slot for the original
wenzelm@35001
  1010
  source position, and some additional flags.
wenzelm@35001
  1011
wenzelm@35001
  1012
  \medskip A \isa{naming} provides some additional details for
wenzelm@35001
  1013
  producing a long name from a binding.  Normally, the naming is
wenzelm@35001
  1014
  implicit in the theory or proof context.  The \isa{full}
wenzelm@35001
  1015
  operation (and its variants for different context types) produces a
wenzelm@35001
  1016
  fully qualified internal name to be entered into a name space.  The
wenzelm@35001
  1017
  main equation of this ``chemical reaction'' when binding new
wenzelm@35001
  1018
  entities in a context is as follows:
wenzelm@35001
  1019
wenzelm@35001
  1020
  \smallskip
wenzelm@35001
  1021
  \begin{tabular}{l}
wenzelm@35001
  1022
  \isa{binding\ {\isacharplus}\ naming\ {\isasymlongrightarrow}\ long\ name\ {\isacharplus}\ name\ space\ accesses}
wenzelm@35001
  1023
  \end{tabular}
wenzelm@35001
  1024
  \smallskip
wenzelm@35001
  1025
wenzelm@35001
  1026
  \medskip As a general principle, there is a separate name space for
wenzelm@35001
  1027
  each kind of formal entity, e.g.\ fact, logical constant, type
wenzelm@35001
  1028
  constructor, type class.  It is usually clear from the occurrence in
wenzelm@35001
  1029
  concrete syntax (or from the scope) which kind of entity a name
wenzelm@35001
  1030
  refers to.  For example, the very same name \isa{c} may be used
wenzelm@35001
  1031
  uniformly for a constant, type constructor, and type class.
wenzelm@35001
  1032
wenzelm@35001
  1033
  There are common schemes to name derived entities systematically
wenzelm@35001
  1034
  according to the name of the main logical entity involved, e.g.\
wenzelm@35001
  1035
  fact \isa{c{\isachardot}intro} for a canonical introduction rule related to
wenzelm@35001
  1036
  constant \isa{c}.  This technique of mapping names from one
wenzelm@35001
  1037
  space into another requires some care in order to avoid conflicts.
wenzelm@35001
  1038
  In particular, theorem names derived from a type constructor or type
wenzelm@35001
  1039
  class are better suffixed in addition to the usual qualification,
wenzelm@35001
  1040
  e.g.\ \isa{c{\isacharunderscore}type{\isachardot}intro} and \isa{c{\isacharunderscore}class{\isachardot}intro} for
wenzelm@35001
  1041
  theorems related to type \isa{c} and class \isa{c},
wenzelm@35001
  1042
  respectively.%
wenzelm@35001
  1043
\end{isamarkuptext}%
wenzelm@35001
  1044
\isamarkuptrue%
wenzelm@35001
  1045
%
wenzelm@35001
  1046
\isadelimmlref
wenzelm@35001
  1047
%
wenzelm@35001
  1048
\endisadelimmlref
wenzelm@35001
  1049
%
wenzelm@35001
  1050
\isatagmlref
wenzelm@35001
  1051
%
wenzelm@35001
  1052
\begin{isamarkuptext}%
wenzelm@35001
  1053
\begin{mldecls}
wenzelm@35001
  1054
  \indexdef{}{ML type}{binding}\verb|type binding| \\
wenzelm@35001
  1055
  \indexdef{}{ML}{Binding.empty}\verb|Binding.empty: binding| \\
wenzelm@35001
  1056
  \indexdef{}{ML}{Binding.name}\verb|Binding.name: string -> binding| \\
wenzelm@35001
  1057
  \indexdef{}{ML}{Binding.qualify}\verb|Binding.qualify: bool -> string -> binding -> binding| \\
wenzelm@35001
  1058
  \indexdef{}{ML}{Binding.prefix}\verb|Binding.prefix: bool -> string -> binding -> binding| \\
wenzelm@35001
  1059
  \indexdef{}{ML}{Binding.conceal}\verb|Binding.conceal: binding -> binding| \\
wenzelm@35001
  1060
  \indexdef{}{ML}{Binding.str\_of}\verb|Binding.str_of: binding -> string| \\
wenzelm@35001
  1061
  \end{mldecls}
wenzelm@30296
  1062
  \begin{mldecls}
haftmann@33174
  1063
  \indexdef{}{ML type}{Name\_Space.naming}\verb|type Name_Space.naming| \\
haftmann@33174
  1064
  \indexdef{}{ML}{Name\_Space.default\_naming}\verb|Name_Space.default_naming: Name_Space.naming| \\
haftmann@33174
  1065
  \indexdef{}{ML}{Name\_Space.add\_path}\verb|Name_Space.add_path: string -> Name_Space.naming -> Name_Space.naming| \\
haftmann@33174
  1066
  \indexdef{}{ML}{Name\_Space.full\_name}\verb|Name_Space.full_name: Name_Space.naming -> binding -> string| \\
wenzelm@30296
  1067
  \end{mldecls}
wenzelm@30296
  1068
  \begin{mldecls}
haftmann@33174
  1069
  \indexdef{}{ML type}{Name\_Space.T}\verb|type Name_Space.T| \\
haftmann@33174
  1070
  \indexdef{}{ML}{Name\_Space.empty}\verb|Name_Space.empty: string -> Name_Space.T| \\
haftmann@33174
  1071
  \indexdef{}{ML}{Name\_Space.merge}\verb|Name_Space.merge: Name_Space.T * Name_Space.T -> Name_Space.T| \\
haftmann@33174
  1072
  \indexdef{}{ML}{Name\_Space.declare}\verb|Name_Space.declare: bool -> Name_Space.naming -> binding -> Name_Space.T ->|\isasep\isanewline%
haftmann@33174
  1073
\verb|  string * Name_Space.T| \\
haftmann@33174
  1074
  \indexdef{}{ML}{Name\_Space.intern}\verb|Name_Space.intern: Name_Space.T -> string -> string| \\
haftmann@33174
  1075
  \indexdef{}{ML}{Name\_Space.extern}\verb|Name_Space.extern: Name_Space.T -> string -> string| \\
wenzelm@35001
  1076
  \indexdef{}{ML}{Name\_Space.is\_concealed}\verb|Name_Space.is_concealed: Name_Space.T -> string -> bool|
wenzelm@30296
  1077
  \end{mldecls}
wenzelm@30296
  1078
wenzelm@30296
  1079
  \begin{description}
wenzelm@30296
  1080
wenzelm@35001
  1081
  \item \verb|binding| represents the abstract concept of name
wenzelm@35001
  1082
  bindings.
wenzelm@30296
  1083
wenzelm@35001
  1084
  \item \verb|Binding.empty| is the empty binding.
wenzelm@30296
  1085
wenzelm@35001
  1086
  \item \verb|Binding.name|~\isa{name} produces a binding with base
wenzelm@35001
  1087
  name \isa{name}.
wenzelm@30296
  1088
wenzelm@35001
  1089
  \item \verb|Binding.qualify|~\isa{mandatory\ name\ binding}
wenzelm@35001
  1090
  prefixes qualifier \isa{name} to \isa{binding}.  The \isa{mandatory} flag tells if this name component always needs to be
wenzelm@35001
  1091
  given in name space accesses --- this is mostly \isa{false} in
wenzelm@35001
  1092
  practice.  Note that this part of qualification is typically used in
wenzelm@35001
  1093
  derived specification mechanisms.
wenzelm@35001
  1094
wenzelm@35001
  1095
  \item \verb|Binding.prefix| is similar to \verb|Binding.qualify|, but
wenzelm@35001
  1096
  affects the system prefix.  This part of extra qualification is
wenzelm@35001
  1097
  typically used in the infrastructure for modular specifications,
wenzelm@35001
  1098
  notably ``local theory targets'' (see also \chref{ch:local-theory}).
wenzelm@35001
  1099
wenzelm@35001
  1100
  \item \verb|Binding.conceal|~\isa{binding} indicates that the
wenzelm@35001
  1101
  binding shall refer to an entity that serves foundational purposes
wenzelm@35001
  1102
  only.  This flag helps to mark implementation details of
wenzelm@35001
  1103
  specification mechanism etc.  Other tools should not depend on the
wenzelm@35001
  1104
  particulars of concealed entities (cf.\ \verb|Name_Space.is_concealed|).
wenzelm@35001
  1105
wenzelm@35001
  1106
  \item \verb|Binding.str_of|~\isa{binding} produces a string
wenzelm@35001
  1107
  representation for human-readable output, together with some formal
wenzelm@35001
  1108
  markup that might get used in GUI front-ends, for example.
wenzelm@30296
  1109
haftmann@33174
  1110
  \item \verb|Name_Space.naming| represents the abstract concept of
wenzelm@30296
  1111
  a naming policy.
wenzelm@30296
  1112
haftmann@33174
  1113
  \item \verb|Name_Space.default_naming| is the default naming policy.
wenzelm@30296
  1114
  In a theory context, this is usually augmented by a path prefix
wenzelm@30296
  1115
  consisting of the theory name.
wenzelm@30296
  1116
haftmann@33174
  1117
  \item \verb|Name_Space.add_path|~\isa{path\ naming} augments the
wenzelm@30296
  1118
  naming policy by extending its path component.
wenzelm@30296
  1119
haftmann@33174
  1120
  \item \verb|Name_Space.full_name|~\isa{naming\ binding} turns a
wenzelm@30296
  1121
  name binding (usually a basic name) into the fully qualified
wenzelm@30296
  1122
  internal name, according to the given naming policy.
wenzelm@30296
  1123
haftmann@33174
  1124
  \item \verb|Name_Space.T| represents name spaces.
wenzelm@30296
  1125
haftmann@33174
  1126
  \item \verb|Name_Space.empty|~\isa{kind} and \verb|Name_Space.merge|~\isa{{\isacharparenleft}space\isactrlisub {\isadigit{1}}{\isacharcomma}\ space\isactrlisub {\isadigit{2}}{\isacharparenright}} are the canonical operations for
wenzelm@30296
  1127
  maintaining name spaces according to theory data management
haftmann@33174
  1128
  (\secref{sec:context-data}); \isa{kind} is a formal comment
haftmann@33174
  1129
  to characterize the purpose of a name space.
wenzelm@30296
  1130
haftmann@33174
  1131
  \item \verb|Name_Space.declare|~\isa{strict\ naming\ bindings\ space} enters a name binding as fully qualified internal name into
haftmann@33174
  1132
  the name space, with external accesses determined by the naming
haftmann@33174
  1133
  policy.
wenzelm@30296
  1134
haftmann@33174
  1135
  \item \verb|Name_Space.intern|~\isa{space\ name} internalizes a
wenzelm@30296
  1136
  (partially qualified) external name.
wenzelm@30296
  1137
wenzelm@30296
  1138
  This operation is mostly for parsing!  Note that fully qualified
haftmann@33174
  1139
  names stemming from declarations are produced via \verb|Name_Space.full_name| and \verb|Name_Space.declare|
wenzelm@30296
  1140
  (or their derivatives for \verb|theory| and
wenzelm@30296
  1141
  \verb|Proof.context|).
wenzelm@30296
  1142
haftmann@33174
  1143
  \item \verb|Name_Space.extern|~\isa{space\ name} externalizes a
wenzelm@30296
  1144
  (fully qualified) internal name.
wenzelm@30296
  1145
wenzelm@30296
  1146
  This operation is mostly for printing!  User code should not rely on
wenzelm@30296
  1147
  the precise result too much.
wenzelm@30296
  1148
wenzelm@35001
  1149
  \item \verb|Name_Space.is_concealed|~\isa{space\ name} indicates
wenzelm@35001
  1150
  whether \isa{name} refers to a strictly private entity that
wenzelm@35001
  1151
  other tools are supposed to ignore!
wenzelm@35001
  1152
wenzelm@30296
  1153
  \end{description}%
wenzelm@30296
  1154
\end{isamarkuptext}%
wenzelm@30296
  1155
\isamarkuptrue%
wenzelm@30296
  1156
%
wenzelm@30296
  1157
\endisatagmlref
wenzelm@30296
  1158
{\isafoldmlref}%
wenzelm@30296
  1159
%
wenzelm@30296
  1160
\isadelimmlref
wenzelm@30296
  1161
%
wenzelm@30296
  1162
\endisadelimmlref
wenzelm@30296
  1163
%
wenzelm@30296
  1164
\isadelimtheory
wenzelm@30296
  1165
%
wenzelm@30296
  1166
\endisadelimtheory
wenzelm@30296
  1167
%
wenzelm@30296
  1168
\isatagtheory
wenzelm@30296
  1169
\isacommand{end}\isamarkupfalse%
wenzelm@30296
  1170
%
wenzelm@30296
  1171
\endisatagtheory
wenzelm@30296
  1172
{\isafoldtheory}%
wenzelm@30296
  1173
%
wenzelm@30296
  1174
\isadelimtheory
wenzelm@30296
  1175
%
wenzelm@30296
  1176
\endisadelimtheory
wenzelm@30296
  1177
\isanewline
wenzelm@30296
  1178
\end{isabellebody}%
wenzelm@30296
  1179
%%% Local Variables:
wenzelm@30296
  1180
%%% mode: latex
wenzelm@30296
  1181
%%% TeX-master: "root"
wenzelm@30296
  1182
%%% End: