src/HOL/Power.thy
author nipkow
Tue, 23 Oct 2007 23:27:23 +0200
changeset 25162 ad4d5365d9d8
parent 25134 3d4953e88449
child 25231 1aa9c8f022d0
permissions -rw-r--r--
went back to >0
paulson@3390
     1
(*  Title:      HOL/Power.thy
paulson@3390
     2
    ID:         $Id$
paulson@3390
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@3390
     4
    Copyright   1997  University of Cambridge
paulson@3390
     5
paulson@3390
     6
*)
paulson@3390
     7
nipkow@16733
     8
header{*Exponentiation*}
paulson@14348
     9
nipkow@15131
    10
theory Power
haftmann@21413
    11
imports Nat
nipkow@15131
    12
begin
paulson@14348
    13
haftmann@24996
    14
class power = type +
haftmann@25062
    15
  fixes power :: "'a \<Rightarrow> nat \<Rightarrow> 'a"            (infixr "^" 80)
haftmann@24996
    16
krauss@21199
    17
subsection{*Powers for Arbitrary Monoids*}
paulson@14348
    18
haftmann@22390
    19
class recpower = monoid_mult + power +
haftmann@25062
    20
  assumes power_0 [simp]: "a ^ 0       = 1"
haftmann@25062
    21
  assumes power_Suc:      "a ^ Suc n = a * (a ^ n)"
paulson@14348
    22
krauss@21199
    23
lemma power_0_Suc [simp]: "(0::'a::{recpower,semiring_0}) ^ (Suc n) = 0"
haftmann@23183
    24
  by (simp add: power_Suc)
paulson@14348
    25
paulson@14348
    26
text{*It looks plausible as a simprule, but its effect can be strange.*}
krauss@21199
    27
lemma power_0_left: "0^n = (if n=0 then 1 else (0::'a::{recpower,semiring_0}))"
haftmann@23183
    28
  by (induct n) simp_all
paulson@14348
    29
paulson@15004
    30
lemma power_one [simp]: "1^n = (1::'a::recpower)"
haftmann@23183
    31
  by (induct n) (simp_all add: power_Suc)
paulson@14348
    32
paulson@15004
    33
lemma power_one_right [simp]: "(a::'a::recpower) ^ 1 = a"
haftmann@23183
    34
  by (simp add: power_Suc)
paulson@14348
    35
krauss@21199
    36
lemma power_commutes: "(a::'a::recpower) ^ n * a = a * a ^ n"
haftmann@23183
    37
  by (induct n) (simp_all add: power_Suc mult_assoc)
krauss@21199
    38
paulson@15004
    39
lemma power_add: "(a::'a::recpower) ^ (m+n) = (a^m) * (a^n)"
haftmann@23183
    40
  by (induct m) (simp_all add: power_Suc mult_ac)
paulson@14348
    41
paulson@15004
    42
lemma power_mult: "(a::'a::recpower) ^ (m*n) = (a^m) ^ n"
haftmann@23183
    43
  by (induct n) (simp_all add: power_Suc power_add)
paulson@14348
    44
krauss@21199
    45
lemma power_mult_distrib: "((a::'a::{recpower,comm_monoid_mult}) * b) ^ n = (a^n) * (b^n)"
haftmann@23183
    46
  by (induct n) (simp_all add: power_Suc mult_ac)
paulson@14348
    47
paulson@14348
    48
lemma zero_less_power:
paulson@15004
    49
     "0 < (a::'a::{ordered_semidom,recpower}) ==> 0 < a^n"
paulson@15251
    50
apply (induct "n")
avigad@16775
    51
apply (simp_all add: power_Suc zero_less_one mult_pos_pos)
paulson@14348
    52
done
paulson@14348
    53
paulson@14348
    54
lemma zero_le_power:
paulson@15004
    55
     "0 \<le> (a::'a::{ordered_semidom,recpower}) ==> 0 \<le> a^n"
paulson@14348
    56
apply (simp add: order_le_less)
wenzelm@14577
    57
apply (erule disjE)
paulson@14348
    58
apply (simp_all add: zero_less_power zero_less_one power_0_left)
paulson@14348
    59
done
paulson@14348
    60
paulson@14348
    61
lemma one_le_power:
paulson@15004
    62
     "1 \<le> (a::'a::{ordered_semidom,recpower}) ==> 1 \<le> a^n"
paulson@15251
    63
apply (induct "n")
paulson@14348
    64
apply (simp_all add: power_Suc)
wenzelm@14577
    65
apply (rule order_trans [OF _ mult_mono [of 1 _ 1]])
wenzelm@14577
    66
apply (simp_all add: zero_le_one order_trans [OF zero_le_one])
paulson@14348
    67
done
paulson@14348
    68
obua@14738
    69
lemma gt1_imp_ge0: "1 < a ==> 0 \<le> (a::'a::ordered_semidom)"
paulson@14348
    70
  by (simp add: order_trans [OF zero_le_one order_less_imp_le])
paulson@14348
    71
paulson@14348
    72
lemma power_gt1_lemma:
paulson@15004
    73
  assumes gt1: "1 < (a::'a::{ordered_semidom,recpower})"
wenzelm@14577
    74
  shows "1 < a * a^n"
paulson@14348
    75
proof -
wenzelm@14577
    76
  have "1*1 < a*1" using gt1 by simp
wenzelm@14577
    77
  also have "\<dots> \<le> a * a^n" using gt1
wenzelm@14577
    78
    by (simp only: mult_mono gt1_imp_ge0 one_le_power order_less_imp_le
wenzelm@14577
    79
        zero_le_one order_refl)
wenzelm@14577
    80
  finally show ?thesis by simp
paulson@14348
    81
qed
paulson@14348
    82
huffman@24376
    83
lemma one_less_power:
huffman@24376
    84
  "\<lbrakk>1 < (a::'a::{ordered_semidom,recpower}); 0 < n\<rbrakk> \<Longrightarrow> 1 < a ^ n"
huffman@24376
    85
by (cases n, simp_all add: power_gt1_lemma power_Suc)
huffman@24376
    86
paulson@14348
    87
lemma power_gt1:
paulson@15004
    88
     "1 < (a::'a::{ordered_semidom,recpower}) ==> 1 < a ^ (Suc n)"
paulson@14348
    89
by (simp add: power_gt1_lemma power_Suc)
paulson@14348
    90
paulson@14348
    91
lemma power_le_imp_le_exp:
paulson@15004
    92
  assumes gt1: "(1::'a::{recpower,ordered_semidom}) < a"
wenzelm@14577
    93
  shows "!!n. a^m \<le> a^n ==> m \<le> n"
wenzelm@14577
    94
proof (induct m)
paulson@14348
    95
  case 0
wenzelm@14577
    96
  show ?case by simp
paulson@14348
    97
next
paulson@14348
    98
  case (Suc m)
wenzelm@14577
    99
  show ?case
wenzelm@14577
   100
  proof (cases n)
wenzelm@14577
   101
    case 0
wenzelm@14577
   102
    from prems have "a * a^m \<le> 1" by (simp add: power_Suc)
wenzelm@14577
   103
    with gt1 show ?thesis
wenzelm@14577
   104
      by (force simp only: power_gt1_lemma
wenzelm@14577
   105
          linorder_not_less [symmetric])
wenzelm@14577
   106
  next
wenzelm@14577
   107
    case (Suc n)
wenzelm@14577
   108
    from prems show ?thesis
wenzelm@14577
   109
      by (force dest: mult_left_le_imp_le
wenzelm@14577
   110
          simp add: power_Suc order_less_trans [OF zero_less_one gt1])
wenzelm@14577
   111
  qed
paulson@14348
   112
qed
paulson@14348
   113
wenzelm@14577
   114
text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
paulson@14348
   115
lemma power_inject_exp [simp]:
paulson@15004
   116
     "1 < (a::'a::{ordered_semidom,recpower}) ==> (a^m = a^n) = (m=n)"
wenzelm@14577
   117
  by (force simp add: order_antisym power_le_imp_le_exp)
paulson@14348
   118
paulson@14348
   119
text{*Can relax the first premise to @{term "0<a"} in the case of the
paulson@14348
   120
natural numbers.*}
paulson@14348
   121
lemma power_less_imp_less_exp:
paulson@15004
   122
     "[| (1::'a::{recpower,ordered_semidom}) < a; a^m < a^n |] ==> m < n"
wenzelm@14577
   123
by (simp add: order_less_le [of m n] order_less_le [of "a^m" "a^n"]
wenzelm@14577
   124
              power_le_imp_le_exp)
paulson@14348
   125
paulson@14348
   126
paulson@14348
   127
lemma power_mono:
paulson@15004
   128
     "[|a \<le> b; (0::'a::{recpower,ordered_semidom}) \<le> a|] ==> a^n \<le> b^n"
paulson@15251
   129
apply (induct "n")
paulson@14348
   130
apply (simp_all add: power_Suc)
paulson@14348
   131
apply (auto intro: mult_mono zero_le_power order_trans [of 0 a b])
paulson@14348
   132
done
paulson@14348
   133
paulson@14348
   134
lemma power_strict_mono [rule_format]:
paulson@15004
   135
     "[|a < b; (0::'a::{recpower,ordered_semidom}) \<le> a|]
wenzelm@14577
   136
      ==> 0 < n --> a^n < b^n"
paulson@15251
   137
apply (induct "n")
paulson@14348
   138
apply (auto simp add: mult_strict_mono zero_le_power power_Suc
paulson@14348
   139
                      order_le_less_trans [of 0 a b])
paulson@14348
   140
done
paulson@14348
   141
paulson@14348
   142
lemma power_eq_0_iff [simp]:
nipkow@25162
   143
  "(a^n = 0) = (a = (0::'a::{ring_1_no_zero_divisors,recpower}) & n>0)"
paulson@15251
   144
apply (induct "n")
paulson@14348
   145
apply (auto simp add: power_Suc zero_neq_one [THEN not_sym])
paulson@14348
   146
done
paulson@14348
   147
nipkow@25134
   148
lemma field_power_not_zero:
nipkow@25134
   149
  "a \<noteq> (0::'a::{ring_1_no_zero_divisors,recpower}) ==> a^n \<noteq> 0"
paulson@14348
   150
by force
paulson@14348
   151
paulson@14353
   152
lemma nonzero_power_inverse:
huffman@22991
   153
  fixes a :: "'a::{division_ring,recpower}"
huffman@22991
   154
  shows "a \<noteq> 0 ==> inverse (a ^ n) = (inverse a) ^ n"
paulson@15251
   155
apply (induct "n")
huffman@22988
   156
apply (auto simp add: power_Suc nonzero_inverse_mult_distrib power_commutes)
huffman@22991
   157
done (* TODO: reorient or rename to nonzero_inverse_power *)
paulson@14353
   158
paulson@14348
   159
text{*Perhaps these should be simprules.*}
paulson@14348
   160
lemma power_inverse:
huffman@22991
   161
  fixes a :: "'a::{division_ring,division_by_zero,recpower}"
huffman@22991
   162
  shows "inverse (a ^ n) = (inverse a) ^ n"
huffman@22991
   163
apply (cases "a = 0")
huffman@22991
   164
apply (simp add: power_0_left)
huffman@22991
   165
apply (simp add: nonzero_power_inverse)
huffman@22991
   166
done (* TODO: reorient or rename to inverse_power *)
paulson@14348
   167
avigad@16775
   168
lemma power_one_over: "1 / (a::'a::{field,division_by_zero,recpower})^n = 
avigad@16775
   169
    (1 / a)^n"
avigad@16775
   170
apply (simp add: divide_inverse)
avigad@16775
   171
apply (rule power_inverse)
avigad@16775
   172
done
avigad@16775
   173
wenzelm@14577
   174
lemma nonzero_power_divide:
paulson@15004
   175
    "b \<noteq> 0 ==> (a/b) ^ n = ((a::'a::{field,recpower}) ^ n) / (b ^ n)"
paulson@14353
   176
by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse)
paulson@14353
   177
wenzelm@14577
   178
lemma power_divide:
paulson@15004
   179
    "(a/b) ^ n = ((a::'a::{field,division_by_zero,recpower}) ^ n / b ^ n)"
paulson@14353
   180
apply (case_tac "b=0", simp add: power_0_left)
wenzelm@14577
   181
apply (rule nonzero_power_divide)
wenzelm@14577
   182
apply assumption
paulson@14353
   183
done
paulson@14353
   184
paulson@15004
   185
lemma power_abs: "abs(a ^ n) = abs(a::'a::{ordered_idom,recpower}) ^ n"
paulson@15251
   186
apply (induct "n")
paulson@14348
   187
apply (auto simp add: power_Suc abs_mult)
paulson@14348
   188
done
paulson@14348
   189
paulson@24286
   190
lemma zero_less_power_abs_iff [simp,noatp]:
paulson@15004
   191
     "(0 < (abs a)^n) = (a \<noteq> (0::'a::{ordered_idom,recpower}) | n=0)"
paulson@14353
   192
proof (induct "n")
paulson@14353
   193
  case 0
paulson@14353
   194
    show ?case by (simp add: zero_less_one)
paulson@14353
   195
next
paulson@14353
   196
  case (Suc n)
paulson@14353
   197
    show ?case by (force simp add: prems power_Suc zero_less_mult_iff)
paulson@14353
   198
qed
paulson@14353
   199
paulson@14353
   200
lemma zero_le_power_abs [simp]:
paulson@15004
   201
     "(0::'a::{ordered_idom,recpower}) \<le> (abs a)^n"
huffman@22957
   202
by (rule zero_le_power [OF abs_ge_zero])
paulson@14353
   203
paulson@15004
   204
lemma power_minus: "(-a) ^ n = (- 1)^n * (a::'a::{comm_ring_1,recpower}) ^ n"
paulson@14348
   205
proof -
paulson@14348
   206
  have "-a = (- 1) * a"  by (simp add: minus_mult_left [symmetric])
paulson@14348
   207
  thus ?thesis by (simp only: power_mult_distrib)
paulson@14348
   208
qed
paulson@14348
   209
paulson@14348
   210
text{*Lemma for @{text power_strict_decreasing}*}
paulson@14348
   211
lemma power_Suc_less:
paulson@15004
   212
     "[|(0::'a::{ordered_semidom,recpower}) < a; a < 1|]
paulson@14348
   213
      ==> a * a^n < a^n"
paulson@15251
   214
apply (induct n)
wenzelm@14577
   215
apply (auto simp add: power_Suc mult_strict_left_mono)
paulson@14348
   216
done
paulson@14348
   217
paulson@14348
   218
lemma power_strict_decreasing:
paulson@15004
   219
     "[|n < N; 0 < a; a < (1::'a::{ordered_semidom,recpower})|]
paulson@14348
   220
      ==> a^N < a^n"
wenzelm@14577
   221
apply (erule rev_mp)
paulson@15251
   222
apply (induct "N")
wenzelm@14577
   223
apply (auto simp add: power_Suc power_Suc_less less_Suc_eq)
wenzelm@14577
   224
apply (rename_tac m)
paulson@14348
   225
apply (subgoal_tac "a * a^m < 1 * a^n", simp)
wenzelm@14577
   226
apply (rule mult_strict_mono)
paulson@14348
   227
apply (auto simp add: zero_le_power zero_less_one order_less_imp_le)
paulson@14348
   228
done
paulson@14348
   229
paulson@14348
   230
text{*Proof resembles that of @{text power_strict_decreasing}*}
paulson@14348
   231
lemma power_decreasing:
paulson@15004
   232
     "[|n \<le> N; 0 \<le> a; a \<le> (1::'a::{ordered_semidom,recpower})|]
paulson@14348
   233
      ==> a^N \<le> a^n"
wenzelm@14577
   234
apply (erule rev_mp)
paulson@15251
   235
apply (induct "N")
wenzelm@14577
   236
apply (auto simp add: power_Suc  le_Suc_eq)
wenzelm@14577
   237
apply (rename_tac m)
paulson@14348
   238
apply (subgoal_tac "a * a^m \<le> 1 * a^n", simp)
wenzelm@14577
   239
apply (rule mult_mono)
paulson@14348
   240
apply (auto simp add: zero_le_power zero_le_one)
paulson@14348
   241
done
paulson@14348
   242
paulson@14348
   243
lemma power_Suc_less_one:
paulson@15004
   244
     "[| 0 < a; a < (1::'a::{ordered_semidom,recpower}) |] ==> a ^ Suc n < 1"
wenzelm@14577
   245
apply (insert power_strict_decreasing [of 0 "Suc n" a], simp)
paulson@14348
   246
done
paulson@14348
   247
paulson@14348
   248
text{*Proof again resembles that of @{text power_strict_decreasing}*}
paulson@14348
   249
lemma power_increasing:
paulson@15004
   250
     "[|n \<le> N; (1::'a::{ordered_semidom,recpower}) \<le> a|] ==> a^n \<le> a^N"
wenzelm@14577
   251
apply (erule rev_mp)
paulson@15251
   252
apply (induct "N")
wenzelm@14577
   253
apply (auto simp add: power_Suc le_Suc_eq)
paulson@14348
   254
apply (rename_tac m)
paulson@14348
   255
apply (subgoal_tac "1 * a^n \<le> a * a^m", simp)
wenzelm@14577
   256
apply (rule mult_mono)
paulson@14348
   257
apply (auto simp add: order_trans [OF zero_le_one] zero_le_power)
paulson@14348
   258
done
paulson@14348
   259
paulson@14348
   260
text{*Lemma for @{text power_strict_increasing}*}
paulson@14348
   261
lemma power_less_power_Suc:
paulson@15004
   262
     "(1::'a::{ordered_semidom,recpower}) < a ==> a^n < a * a^n"
paulson@15251
   263
apply (induct n)
wenzelm@14577
   264
apply (auto simp add: power_Suc mult_strict_left_mono order_less_trans [OF zero_less_one])
paulson@14348
   265
done
paulson@14348
   266
paulson@14348
   267
lemma power_strict_increasing:
paulson@15004
   268
     "[|n < N; (1::'a::{ordered_semidom,recpower}) < a|] ==> a^n < a^N"
wenzelm@14577
   269
apply (erule rev_mp)
paulson@15251
   270
apply (induct "N")
wenzelm@14577
   271
apply (auto simp add: power_less_power_Suc power_Suc less_Suc_eq)
paulson@14348
   272
apply (rename_tac m)
paulson@14348
   273
apply (subgoal_tac "1 * a^n < a * a^m", simp)
wenzelm@14577
   274
apply (rule mult_strict_mono)
paulson@14348
   275
apply (auto simp add: order_less_trans [OF zero_less_one] zero_le_power
paulson@14348
   276
                 order_less_imp_le)
paulson@14348
   277
done
paulson@14348
   278
nipkow@25134
   279
lemma power_increasing_iff [simp]:
nipkow@25134
   280
  "1 < (b::'a::{ordered_semidom,recpower}) ==> (b ^ x \<le> b ^ y) = (x \<le> y)"
nipkow@25134
   281
by (blast intro: power_le_imp_le_exp power_increasing order_less_imp_le) 
paulson@15066
   282
paulson@15066
   283
lemma power_strict_increasing_iff [simp]:
nipkow@25134
   284
  "1 < (b::'a::{ordered_semidom,recpower}) ==> (b ^ x < b ^ y) = (x < y)"
nipkow@25134
   285
by (blast intro: power_less_imp_less_exp power_strict_increasing) 
paulson@15066
   286
paulson@14348
   287
lemma power_le_imp_le_base:
nipkow@25134
   288
assumes le: "a ^ Suc n \<le> b ^ Suc n"
nipkow@25134
   289
    and ynonneg: "(0::'a::{ordered_semidom,recpower}) \<le> b"
nipkow@25134
   290
shows "a \<le> b"
nipkow@25134
   291
proof (rule ccontr)
nipkow@25134
   292
  assume "~ a \<le> b"
nipkow@25134
   293
  then have "b < a" by (simp only: linorder_not_le)
nipkow@25134
   294
  then have "b ^ Suc n < a ^ Suc n"
nipkow@25134
   295
    by (simp only: prems power_strict_mono)
nipkow@25134
   296
  from le and this show "False"
nipkow@25134
   297
    by (simp add: linorder_not_less [symmetric])
nipkow@25134
   298
qed
wenzelm@14577
   299
huffman@22853
   300
lemma power_less_imp_less_base:
huffman@22853
   301
  fixes a b :: "'a::{ordered_semidom,recpower}"
huffman@22853
   302
  assumes less: "a ^ n < b ^ n"
huffman@22853
   303
  assumes nonneg: "0 \<le> b"
huffman@22853
   304
  shows "a < b"
huffman@22853
   305
proof (rule contrapos_pp [OF less])
huffman@22853
   306
  assume "~ a < b"
huffman@22853
   307
  hence "b \<le> a" by (simp only: linorder_not_less)
huffman@22853
   308
  hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono)
huffman@22853
   309
  thus "~ a ^ n < b ^ n" by (simp only: linorder_not_less)
huffman@22853
   310
qed
huffman@22853
   311
paulson@14348
   312
lemma power_inject_base:
wenzelm@14577
   313
     "[| a ^ Suc n = b ^ Suc n; 0 \<le> a; 0 \<le> b |]
paulson@15004
   314
      ==> a = (b::'a::{ordered_semidom,recpower})"
paulson@14348
   315
by (blast intro: power_le_imp_le_base order_antisym order_eq_refl sym)
paulson@14348
   316
huffman@22955
   317
lemma power_eq_imp_eq_base:
huffman@22955
   318
  fixes a b :: "'a::{ordered_semidom,recpower}"
huffman@22955
   319
  shows "\<lbrakk>a ^ n = b ^ n; 0 \<le> a; 0 \<le> b; 0 < n\<rbrakk> \<Longrightarrow> a = b"
huffman@22955
   320
by (cases n, simp_all, rule power_inject_base)
huffman@22955
   321
paulson@14348
   322
paulson@14348
   323
subsection{*Exponentiation for the Natural Numbers*}
paulson@3390
   324
haftmann@21456
   325
instance nat :: power ..
haftmann@21456
   326
wenzelm@8844
   327
primrec (power)
paulson@3390
   328
  "p ^ 0 = 1"
paulson@3390
   329
  "p ^ (Suc n) = (p::nat) * (p ^ n)"
wenzelm@14577
   330
paulson@15004
   331
instance nat :: recpower
paulson@14348
   332
proof
paulson@14438
   333
  fix z n :: nat
paulson@14348
   334
  show "z^0 = 1" by simp
paulson@14348
   335
  show "z^(Suc n) = z * (z^n)" by simp
paulson@14348
   336
qed
paulson@14348
   337
huffman@23305
   338
lemma of_nat_power:
huffman@23305
   339
  "of_nat (m ^ n) = (of_nat m::'a::{semiring_1,recpower}) ^ n"
huffman@23431
   340
by (induct n, simp_all add: power_Suc of_nat_mult)
huffman@23305
   341
paulson@14348
   342
lemma nat_one_le_power [simp]: "1 \<le> i ==> Suc 0 \<le> i^n"
paulson@14348
   343
by (insert one_le_power [of i n], simp)
paulson@14348
   344
nipkow@25162
   345
lemma nat_zero_less_power_iff [simp]: "(x^n > 0) = (x > (0::nat) | n=0)"
haftmann@21413
   346
by (induct "n", auto)
paulson@14348
   347
paulson@14348
   348
text{*Valid for the naturals, but what if @{text"0<i<1"}?
paulson@14348
   349
Premises cannot be weakened: consider the case where @{term "i=0"},
paulson@14348
   350
@{term "m=1"} and @{term "n=0"}.*}
haftmann@21413
   351
lemma nat_power_less_imp_less:
haftmann@21413
   352
  assumes nonneg: "0 < (i\<Colon>nat)"
haftmann@21413
   353
  assumes less: "i^m < i^n"
haftmann@21413
   354
  shows "m < n"
haftmann@21413
   355
proof (cases "i = 1")
haftmann@21413
   356
  case True with less power_one [where 'a = nat] show ?thesis by simp
haftmann@21413
   357
next
haftmann@21413
   358
  case False with nonneg have "1 < i" by auto
haftmann@21413
   359
  from power_strict_increasing_iff [OF this] less show ?thesis ..
haftmann@21413
   360
qed
paulson@14348
   361
ballarin@17149
   362
lemma power_diff:
ballarin@17149
   363
  assumes nz: "a ~= 0"
ballarin@17149
   364
  shows "n <= m ==> (a::'a::{recpower, field}) ^ (m-n) = (a^m) / (a^n)"
ballarin@17149
   365
  by (induct m n rule: diff_induct)
ballarin@17149
   366
    (simp_all add: power_Suc nonzero_mult_divide_cancel_left nz)
ballarin@17149
   367
ballarin@17149
   368
paulson@14348
   369
text{*ML bindings for the general exponentiation theorems*}
paulson@14348
   370
ML
paulson@14348
   371
{*
paulson@14348
   372
val power_0 = thm"power_0";
paulson@14348
   373
val power_Suc = thm"power_Suc";
paulson@14348
   374
val power_0_Suc = thm"power_0_Suc";
paulson@14348
   375
val power_0_left = thm"power_0_left";
paulson@14348
   376
val power_one = thm"power_one";
paulson@14348
   377
val power_one_right = thm"power_one_right";
paulson@14348
   378
val power_add = thm"power_add";
paulson@14348
   379
val power_mult = thm"power_mult";
paulson@14348
   380
val power_mult_distrib = thm"power_mult_distrib";
paulson@14348
   381
val zero_less_power = thm"zero_less_power";
paulson@14348
   382
val zero_le_power = thm"zero_le_power";
paulson@14348
   383
val one_le_power = thm"one_le_power";
paulson@14348
   384
val gt1_imp_ge0 = thm"gt1_imp_ge0";
paulson@14348
   385
val power_gt1_lemma = thm"power_gt1_lemma";
paulson@14348
   386
val power_gt1 = thm"power_gt1";
paulson@14348
   387
val power_le_imp_le_exp = thm"power_le_imp_le_exp";
paulson@14348
   388
val power_inject_exp = thm"power_inject_exp";
paulson@14348
   389
val power_less_imp_less_exp = thm"power_less_imp_less_exp";
paulson@14348
   390
val power_mono = thm"power_mono";
paulson@14348
   391
val power_strict_mono = thm"power_strict_mono";
paulson@14348
   392
val power_eq_0_iff = thm"power_eq_0_iff";
nipkow@25134
   393
val field_power_eq_0_iff = thm"power_eq_0_iff";
paulson@14348
   394
val field_power_not_zero = thm"field_power_not_zero";
paulson@14348
   395
val power_inverse = thm"power_inverse";
paulson@14353
   396
val nonzero_power_divide = thm"nonzero_power_divide";
paulson@14353
   397
val power_divide = thm"power_divide";
paulson@14348
   398
val power_abs = thm"power_abs";
paulson@14353
   399
val zero_less_power_abs_iff = thm"zero_less_power_abs_iff";
paulson@14353
   400
val zero_le_power_abs = thm "zero_le_power_abs";
paulson@14348
   401
val power_minus = thm"power_minus";
paulson@14348
   402
val power_Suc_less = thm"power_Suc_less";
paulson@14348
   403
val power_strict_decreasing = thm"power_strict_decreasing";
paulson@14348
   404
val power_decreasing = thm"power_decreasing";
paulson@14348
   405
val power_Suc_less_one = thm"power_Suc_less_one";
paulson@14348
   406
val power_increasing = thm"power_increasing";
paulson@14348
   407
val power_strict_increasing = thm"power_strict_increasing";
paulson@14348
   408
val power_le_imp_le_base = thm"power_le_imp_le_base";
paulson@14348
   409
val power_inject_base = thm"power_inject_base";
paulson@14348
   410
*}
wenzelm@14577
   411
paulson@14348
   412
text{*ML bindings for the remaining theorems*}
paulson@14348
   413
ML
paulson@14348
   414
{*
paulson@14348
   415
val nat_one_le_power = thm"nat_one_le_power";
paulson@14348
   416
val nat_power_less_imp_less = thm"nat_power_less_imp_less";
paulson@14348
   417
val nat_zero_less_power_iff = thm"nat_zero_less_power_iff";
paulson@14348
   418
*}
paulson@3390
   419
paulson@3390
   420
end
paulson@3390
   421