src/HOL/Power.thy
author huffman
Mon, 11 Jun 2007 02:24:39 +0200
changeset 23305 8ae6f7b0903b
parent 23183 af27d3ad9baf
child 23431 25ca91279a9b
permissions -rw-r--r--
add lemma of_nat_power
paulson@3390
     1
(*  Title:      HOL/Power.thy
paulson@3390
     2
    ID:         $Id$
paulson@3390
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@3390
     4
    Copyright   1997  University of Cambridge
paulson@3390
     5
paulson@3390
     6
*)
paulson@3390
     7
nipkow@16733
     8
header{*Exponentiation*}
paulson@14348
     9
nipkow@15131
    10
theory Power
haftmann@21413
    11
imports Nat
nipkow@15131
    12
begin
paulson@14348
    13
krauss@21199
    14
subsection{*Powers for Arbitrary Monoids*}
paulson@14348
    15
haftmann@22390
    16
class recpower = monoid_mult + power +
haftmann@22390
    17
  assumes power_0 [simp]: "a \<^loc>^ 0       = \<^loc>1"
haftmann@22390
    18
  assumes power_Suc:      "a \<^loc>^ Suc n = a \<^loc>* (a \<^loc>^ n)"
paulson@14348
    19
krauss@21199
    20
lemma power_0_Suc [simp]: "(0::'a::{recpower,semiring_0}) ^ (Suc n) = 0"
haftmann@23183
    21
  by (simp add: power_Suc)
paulson@14348
    22
paulson@14348
    23
text{*It looks plausible as a simprule, but its effect can be strange.*}
krauss@21199
    24
lemma power_0_left: "0^n = (if n=0 then 1 else (0::'a::{recpower,semiring_0}))"
haftmann@23183
    25
  by (induct n) simp_all
paulson@14348
    26
paulson@15004
    27
lemma power_one [simp]: "1^n = (1::'a::recpower)"
haftmann@23183
    28
  by (induct n) (simp_all add: power_Suc)
paulson@14348
    29
paulson@15004
    30
lemma power_one_right [simp]: "(a::'a::recpower) ^ 1 = a"
haftmann@23183
    31
  by (simp add: power_Suc)
paulson@14348
    32
krauss@21199
    33
lemma power_commutes: "(a::'a::recpower) ^ n * a = a * a ^ n"
haftmann@23183
    34
  by (induct n) (simp_all add: power_Suc mult_assoc)
krauss@21199
    35
paulson@15004
    36
lemma power_add: "(a::'a::recpower) ^ (m+n) = (a^m) * (a^n)"
haftmann@23183
    37
  by (induct m) (simp_all add: power_Suc mult_ac)
paulson@14348
    38
paulson@15004
    39
lemma power_mult: "(a::'a::recpower) ^ (m*n) = (a^m) ^ n"
haftmann@23183
    40
  by (induct n) (simp_all add: power_Suc power_add)
paulson@14348
    41
krauss@21199
    42
lemma power_mult_distrib: "((a::'a::{recpower,comm_monoid_mult}) * b) ^ n = (a^n) * (b^n)"
haftmann@23183
    43
  by (induct n) (simp_all add: power_Suc mult_ac)
paulson@14348
    44
paulson@14348
    45
lemma zero_less_power:
paulson@15004
    46
     "0 < (a::'a::{ordered_semidom,recpower}) ==> 0 < a^n"
paulson@15251
    47
apply (induct "n")
avigad@16775
    48
apply (simp_all add: power_Suc zero_less_one mult_pos_pos)
paulson@14348
    49
done
paulson@14348
    50
paulson@14348
    51
lemma zero_le_power:
paulson@15004
    52
     "0 \<le> (a::'a::{ordered_semidom,recpower}) ==> 0 \<le> a^n"
paulson@14348
    53
apply (simp add: order_le_less)
wenzelm@14577
    54
apply (erule disjE)
paulson@14348
    55
apply (simp_all add: zero_less_power zero_less_one power_0_left)
paulson@14348
    56
done
paulson@14348
    57
paulson@14348
    58
lemma one_le_power:
paulson@15004
    59
     "1 \<le> (a::'a::{ordered_semidom,recpower}) ==> 1 \<le> a^n"
paulson@15251
    60
apply (induct "n")
paulson@14348
    61
apply (simp_all add: power_Suc)
wenzelm@14577
    62
apply (rule order_trans [OF _ mult_mono [of 1 _ 1]])
wenzelm@14577
    63
apply (simp_all add: zero_le_one order_trans [OF zero_le_one])
paulson@14348
    64
done
paulson@14348
    65
obua@14738
    66
lemma gt1_imp_ge0: "1 < a ==> 0 \<le> (a::'a::ordered_semidom)"
paulson@14348
    67
  by (simp add: order_trans [OF zero_le_one order_less_imp_le])
paulson@14348
    68
paulson@14348
    69
lemma power_gt1_lemma:
paulson@15004
    70
  assumes gt1: "1 < (a::'a::{ordered_semidom,recpower})"
wenzelm@14577
    71
  shows "1 < a * a^n"
paulson@14348
    72
proof -
wenzelm@14577
    73
  have "1*1 < a*1" using gt1 by simp
wenzelm@14577
    74
  also have "\<dots> \<le> a * a^n" using gt1
wenzelm@14577
    75
    by (simp only: mult_mono gt1_imp_ge0 one_le_power order_less_imp_le
wenzelm@14577
    76
        zero_le_one order_refl)
wenzelm@14577
    77
  finally show ?thesis by simp
paulson@14348
    78
qed
paulson@14348
    79
paulson@14348
    80
lemma power_gt1:
paulson@15004
    81
     "1 < (a::'a::{ordered_semidom,recpower}) ==> 1 < a ^ (Suc n)"
paulson@14348
    82
by (simp add: power_gt1_lemma power_Suc)
paulson@14348
    83
paulson@14348
    84
lemma power_le_imp_le_exp:
paulson@15004
    85
  assumes gt1: "(1::'a::{recpower,ordered_semidom}) < a"
wenzelm@14577
    86
  shows "!!n. a^m \<le> a^n ==> m \<le> n"
wenzelm@14577
    87
proof (induct m)
paulson@14348
    88
  case 0
wenzelm@14577
    89
  show ?case by simp
paulson@14348
    90
next
paulson@14348
    91
  case (Suc m)
wenzelm@14577
    92
  show ?case
wenzelm@14577
    93
  proof (cases n)
wenzelm@14577
    94
    case 0
wenzelm@14577
    95
    from prems have "a * a^m \<le> 1" by (simp add: power_Suc)
wenzelm@14577
    96
    with gt1 show ?thesis
wenzelm@14577
    97
      by (force simp only: power_gt1_lemma
wenzelm@14577
    98
          linorder_not_less [symmetric])
wenzelm@14577
    99
  next
wenzelm@14577
   100
    case (Suc n)
wenzelm@14577
   101
    from prems show ?thesis
wenzelm@14577
   102
      by (force dest: mult_left_le_imp_le
wenzelm@14577
   103
          simp add: power_Suc order_less_trans [OF zero_less_one gt1])
wenzelm@14577
   104
  qed
paulson@14348
   105
qed
paulson@14348
   106
wenzelm@14577
   107
text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
paulson@14348
   108
lemma power_inject_exp [simp]:
paulson@15004
   109
     "1 < (a::'a::{ordered_semidom,recpower}) ==> (a^m = a^n) = (m=n)"
wenzelm@14577
   110
  by (force simp add: order_antisym power_le_imp_le_exp)
paulson@14348
   111
paulson@14348
   112
text{*Can relax the first premise to @{term "0<a"} in the case of the
paulson@14348
   113
natural numbers.*}
paulson@14348
   114
lemma power_less_imp_less_exp:
paulson@15004
   115
     "[| (1::'a::{recpower,ordered_semidom}) < a; a^m < a^n |] ==> m < n"
wenzelm@14577
   116
by (simp add: order_less_le [of m n] order_less_le [of "a^m" "a^n"]
wenzelm@14577
   117
              power_le_imp_le_exp)
paulson@14348
   118
paulson@14348
   119
paulson@14348
   120
lemma power_mono:
paulson@15004
   121
     "[|a \<le> b; (0::'a::{recpower,ordered_semidom}) \<le> a|] ==> a^n \<le> b^n"
paulson@15251
   122
apply (induct "n")
paulson@14348
   123
apply (simp_all add: power_Suc)
paulson@14348
   124
apply (auto intro: mult_mono zero_le_power order_trans [of 0 a b])
paulson@14348
   125
done
paulson@14348
   126
paulson@14348
   127
lemma power_strict_mono [rule_format]:
paulson@15004
   128
     "[|a < b; (0::'a::{recpower,ordered_semidom}) \<le> a|]
wenzelm@14577
   129
      ==> 0 < n --> a^n < b^n"
paulson@15251
   130
apply (induct "n")
paulson@14348
   131
apply (auto simp add: mult_strict_mono zero_le_power power_Suc
paulson@14348
   132
                      order_le_less_trans [of 0 a b])
paulson@14348
   133
done
paulson@14348
   134
paulson@14348
   135
lemma power_eq_0_iff [simp]:
huffman@22991
   136
     "(a^n = 0) = (a = (0::'a::{dom,recpower}) & 0<n)"
paulson@15251
   137
apply (induct "n")
paulson@14348
   138
apply (auto simp add: power_Suc zero_neq_one [THEN not_sym])
paulson@14348
   139
done
paulson@14348
   140
huffman@22991
   141
lemma field_power_eq_0_iff:
huffman@22988
   142
     "(a^n = 0) = (a = (0::'a::{division_ring,recpower}) & 0<n)"
huffman@22991
   143
by simp (* TODO: delete *)
paulson@14348
   144
huffman@22991
   145
lemma field_power_not_zero: "a \<noteq> (0::'a::{dom,recpower}) ==> a^n \<noteq> 0"
paulson@14348
   146
by force
paulson@14348
   147
paulson@14353
   148
lemma nonzero_power_inverse:
huffman@22991
   149
  fixes a :: "'a::{division_ring,recpower}"
huffman@22991
   150
  shows "a \<noteq> 0 ==> inverse (a ^ n) = (inverse a) ^ n"
paulson@15251
   151
apply (induct "n")
huffman@22988
   152
apply (auto simp add: power_Suc nonzero_inverse_mult_distrib power_commutes)
huffman@22991
   153
done (* TODO: reorient or rename to nonzero_inverse_power *)
paulson@14353
   154
paulson@14348
   155
text{*Perhaps these should be simprules.*}
paulson@14348
   156
lemma power_inverse:
huffman@22991
   157
  fixes a :: "'a::{division_ring,division_by_zero,recpower}"
huffman@22991
   158
  shows "inverse (a ^ n) = (inverse a) ^ n"
huffman@22991
   159
apply (cases "a = 0")
huffman@22991
   160
apply (simp add: power_0_left)
huffman@22991
   161
apply (simp add: nonzero_power_inverse)
huffman@22991
   162
done (* TODO: reorient or rename to inverse_power *)
paulson@14348
   163
avigad@16775
   164
lemma power_one_over: "1 / (a::'a::{field,division_by_zero,recpower})^n = 
avigad@16775
   165
    (1 / a)^n"
avigad@16775
   166
apply (simp add: divide_inverse)
avigad@16775
   167
apply (rule power_inverse)
avigad@16775
   168
done
avigad@16775
   169
wenzelm@14577
   170
lemma nonzero_power_divide:
paulson@15004
   171
    "b \<noteq> 0 ==> (a/b) ^ n = ((a::'a::{field,recpower}) ^ n) / (b ^ n)"
paulson@14353
   172
by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse)
paulson@14353
   173
wenzelm@14577
   174
lemma power_divide:
paulson@15004
   175
    "(a/b) ^ n = ((a::'a::{field,division_by_zero,recpower}) ^ n / b ^ n)"
paulson@14353
   176
apply (case_tac "b=0", simp add: power_0_left)
wenzelm@14577
   177
apply (rule nonzero_power_divide)
wenzelm@14577
   178
apply assumption
paulson@14353
   179
done
paulson@14353
   180
paulson@15004
   181
lemma power_abs: "abs(a ^ n) = abs(a::'a::{ordered_idom,recpower}) ^ n"
paulson@15251
   182
apply (induct "n")
paulson@14348
   183
apply (auto simp add: power_Suc abs_mult)
paulson@14348
   184
done
paulson@14348
   185
paulson@14353
   186
lemma zero_less_power_abs_iff [simp]:
paulson@15004
   187
     "(0 < (abs a)^n) = (a \<noteq> (0::'a::{ordered_idom,recpower}) | n=0)"
paulson@14353
   188
proof (induct "n")
paulson@14353
   189
  case 0
paulson@14353
   190
    show ?case by (simp add: zero_less_one)
paulson@14353
   191
next
paulson@14353
   192
  case (Suc n)
paulson@14353
   193
    show ?case by (force simp add: prems power_Suc zero_less_mult_iff)
paulson@14353
   194
qed
paulson@14353
   195
paulson@14353
   196
lemma zero_le_power_abs [simp]:
paulson@15004
   197
     "(0::'a::{ordered_idom,recpower}) \<le> (abs a)^n"
huffman@22957
   198
by (rule zero_le_power [OF abs_ge_zero])
paulson@14353
   199
paulson@15004
   200
lemma power_minus: "(-a) ^ n = (- 1)^n * (a::'a::{comm_ring_1,recpower}) ^ n"
paulson@14348
   201
proof -
paulson@14348
   202
  have "-a = (- 1) * a"  by (simp add: minus_mult_left [symmetric])
paulson@14348
   203
  thus ?thesis by (simp only: power_mult_distrib)
paulson@14348
   204
qed
paulson@14348
   205
paulson@14348
   206
text{*Lemma for @{text power_strict_decreasing}*}
paulson@14348
   207
lemma power_Suc_less:
paulson@15004
   208
     "[|(0::'a::{ordered_semidom,recpower}) < a; a < 1|]
paulson@14348
   209
      ==> a * a^n < a^n"
paulson@15251
   210
apply (induct n)
wenzelm@14577
   211
apply (auto simp add: power_Suc mult_strict_left_mono)
paulson@14348
   212
done
paulson@14348
   213
paulson@14348
   214
lemma power_strict_decreasing:
paulson@15004
   215
     "[|n < N; 0 < a; a < (1::'a::{ordered_semidom,recpower})|]
paulson@14348
   216
      ==> a^N < a^n"
wenzelm@14577
   217
apply (erule rev_mp)
paulson@15251
   218
apply (induct "N")
wenzelm@14577
   219
apply (auto simp add: power_Suc power_Suc_less less_Suc_eq)
wenzelm@14577
   220
apply (rename_tac m)
paulson@14348
   221
apply (subgoal_tac "a * a^m < 1 * a^n", simp)
wenzelm@14577
   222
apply (rule mult_strict_mono)
paulson@14348
   223
apply (auto simp add: zero_le_power zero_less_one order_less_imp_le)
paulson@14348
   224
done
paulson@14348
   225
paulson@14348
   226
text{*Proof resembles that of @{text power_strict_decreasing}*}
paulson@14348
   227
lemma power_decreasing:
paulson@15004
   228
     "[|n \<le> N; 0 \<le> a; a \<le> (1::'a::{ordered_semidom,recpower})|]
paulson@14348
   229
      ==> a^N \<le> a^n"
wenzelm@14577
   230
apply (erule rev_mp)
paulson@15251
   231
apply (induct "N")
wenzelm@14577
   232
apply (auto simp add: power_Suc  le_Suc_eq)
wenzelm@14577
   233
apply (rename_tac m)
paulson@14348
   234
apply (subgoal_tac "a * a^m \<le> 1 * a^n", simp)
wenzelm@14577
   235
apply (rule mult_mono)
paulson@14348
   236
apply (auto simp add: zero_le_power zero_le_one)
paulson@14348
   237
done
paulson@14348
   238
paulson@14348
   239
lemma power_Suc_less_one:
paulson@15004
   240
     "[| 0 < a; a < (1::'a::{ordered_semidom,recpower}) |] ==> a ^ Suc n < 1"
wenzelm@14577
   241
apply (insert power_strict_decreasing [of 0 "Suc n" a], simp)
paulson@14348
   242
done
paulson@14348
   243
paulson@14348
   244
text{*Proof again resembles that of @{text power_strict_decreasing}*}
paulson@14348
   245
lemma power_increasing:
paulson@15004
   246
     "[|n \<le> N; (1::'a::{ordered_semidom,recpower}) \<le> a|] ==> a^n \<le> a^N"
wenzelm@14577
   247
apply (erule rev_mp)
paulson@15251
   248
apply (induct "N")
wenzelm@14577
   249
apply (auto simp add: power_Suc le_Suc_eq)
paulson@14348
   250
apply (rename_tac m)
paulson@14348
   251
apply (subgoal_tac "1 * a^n \<le> a * a^m", simp)
wenzelm@14577
   252
apply (rule mult_mono)
paulson@14348
   253
apply (auto simp add: order_trans [OF zero_le_one] zero_le_power)
paulson@14348
   254
done
paulson@14348
   255
paulson@14348
   256
text{*Lemma for @{text power_strict_increasing}*}
paulson@14348
   257
lemma power_less_power_Suc:
paulson@15004
   258
     "(1::'a::{ordered_semidom,recpower}) < a ==> a^n < a * a^n"
paulson@15251
   259
apply (induct n)
wenzelm@14577
   260
apply (auto simp add: power_Suc mult_strict_left_mono order_less_trans [OF zero_less_one])
paulson@14348
   261
done
paulson@14348
   262
paulson@14348
   263
lemma power_strict_increasing:
paulson@15004
   264
     "[|n < N; (1::'a::{ordered_semidom,recpower}) < a|] ==> a^n < a^N"
wenzelm@14577
   265
apply (erule rev_mp)
paulson@15251
   266
apply (induct "N")
wenzelm@14577
   267
apply (auto simp add: power_less_power_Suc power_Suc less_Suc_eq)
paulson@14348
   268
apply (rename_tac m)
paulson@14348
   269
apply (subgoal_tac "1 * a^n < a * a^m", simp)
wenzelm@14577
   270
apply (rule mult_strict_mono)
paulson@14348
   271
apply (auto simp add: order_less_trans [OF zero_less_one] zero_le_power
paulson@14348
   272
                 order_less_imp_le)
paulson@14348
   273
done
paulson@14348
   274
paulson@15066
   275
lemma power_increasing_iff [simp]: 
paulson@15066
   276
     "1 < (b::'a::{ordered_semidom,recpower}) ==> (b ^ x \<le> b ^ y) = (x \<le> y)"
paulson@15066
   277
  by (blast intro: power_le_imp_le_exp power_increasing order_less_imp_le) 
paulson@15066
   278
paulson@15066
   279
lemma power_strict_increasing_iff [simp]:
paulson@15066
   280
     "1 < (b::'a::{ordered_semidom,recpower}) ==> (b ^ x < b ^ y) = (x < y)"
paulson@15066
   281
  by (blast intro: power_less_imp_less_exp power_strict_increasing) 
paulson@15066
   282
paulson@14348
   283
lemma power_le_imp_le_base:
paulson@14348
   284
  assumes le: "a ^ Suc n \<le> b ^ Suc n"
huffman@22624
   285
      and ynonneg: "(0::'a::{ordered_semidom,recpower}) \<le> b"
paulson@14348
   286
  shows "a \<le> b"
paulson@14348
   287
 proof (rule ccontr)
paulson@14348
   288
   assume "~ a \<le> b"
paulson@14348
   289
   then have "b < a" by (simp only: linorder_not_le)
paulson@14348
   290
   then have "b ^ Suc n < a ^ Suc n"
wenzelm@14577
   291
     by (simp only: prems power_strict_mono)
paulson@14348
   292
   from le and this show "False"
paulson@14348
   293
      by (simp add: linorder_not_less [symmetric])
paulson@14348
   294
 qed
wenzelm@14577
   295
huffman@22853
   296
lemma power_less_imp_less_base:
huffman@22853
   297
  fixes a b :: "'a::{ordered_semidom,recpower}"
huffman@22853
   298
  assumes less: "a ^ n < b ^ n"
huffman@22853
   299
  assumes nonneg: "0 \<le> b"
huffman@22853
   300
  shows "a < b"
huffman@22853
   301
proof (rule contrapos_pp [OF less])
huffman@22853
   302
  assume "~ a < b"
huffman@22853
   303
  hence "b \<le> a" by (simp only: linorder_not_less)
huffman@22853
   304
  hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono)
huffman@22853
   305
  thus "~ a ^ n < b ^ n" by (simp only: linorder_not_less)
huffman@22853
   306
qed
huffman@22853
   307
paulson@14348
   308
lemma power_inject_base:
wenzelm@14577
   309
     "[| a ^ Suc n = b ^ Suc n; 0 \<le> a; 0 \<le> b |]
paulson@15004
   310
      ==> a = (b::'a::{ordered_semidom,recpower})"
paulson@14348
   311
by (blast intro: power_le_imp_le_base order_antisym order_eq_refl sym)
paulson@14348
   312
huffman@22955
   313
lemma power_eq_imp_eq_base:
huffman@22955
   314
  fixes a b :: "'a::{ordered_semidom,recpower}"
huffman@22955
   315
  shows "\<lbrakk>a ^ n = b ^ n; 0 \<le> a; 0 \<le> b; 0 < n\<rbrakk> \<Longrightarrow> a = b"
huffman@22955
   316
by (cases n, simp_all, rule power_inject_base)
huffman@22955
   317
paulson@14348
   318
paulson@14348
   319
subsection{*Exponentiation for the Natural Numbers*}
paulson@3390
   320
haftmann@21456
   321
instance nat :: power ..
haftmann@21456
   322
wenzelm@8844
   323
primrec (power)
paulson@3390
   324
  "p ^ 0 = 1"
paulson@3390
   325
  "p ^ (Suc n) = (p::nat) * (p ^ n)"
wenzelm@14577
   326
paulson@15004
   327
instance nat :: recpower
paulson@14348
   328
proof
paulson@14438
   329
  fix z n :: nat
paulson@14348
   330
  show "z^0 = 1" by simp
paulson@14348
   331
  show "z^(Suc n) = z * (z^n)" by simp
paulson@14348
   332
qed
paulson@14348
   333
huffman@23305
   334
lemma of_nat_power:
huffman@23305
   335
  "of_nat (m ^ n) = (of_nat m::'a::{semiring_1,recpower}) ^ n"
huffman@23305
   336
by (induct n, simp_all add: power_Suc)
huffman@23305
   337
paulson@14348
   338
lemma nat_one_le_power [simp]: "1 \<le> i ==> Suc 0 \<le> i^n"
paulson@14348
   339
by (insert one_le_power [of i n], simp)
paulson@14348
   340
haftmann@21413
   341
lemma nat_zero_less_power_iff [simp]: "(0 < x^n) = (x \<noteq> (0::nat) | n=0)"
haftmann@21413
   342
by (induct "n", auto)
paulson@14348
   343
paulson@14348
   344
text{*Valid for the naturals, but what if @{text"0<i<1"}?
paulson@14348
   345
Premises cannot be weakened: consider the case where @{term "i=0"},
paulson@14348
   346
@{term "m=1"} and @{term "n=0"}.*}
haftmann@21413
   347
lemma nat_power_less_imp_less:
haftmann@21413
   348
  assumes nonneg: "0 < (i\<Colon>nat)"
haftmann@21413
   349
  assumes less: "i^m < i^n"
haftmann@21413
   350
  shows "m < n"
haftmann@21413
   351
proof (cases "i = 1")
haftmann@21413
   352
  case True with less power_one [where 'a = nat] show ?thesis by simp
haftmann@21413
   353
next
haftmann@21413
   354
  case False with nonneg have "1 < i" by auto
haftmann@21413
   355
  from power_strict_increasing_iff [OF this] less show ?thesis ..
haftmann@21413
   356
qed
paulson@14348
   357
ballarin@17149
   358
lemma power_diff:
ballarin@17149
   359
  assumes nz: "a ~= 0"
ballarin@17149
   360
  shows "n <= m ==> (a::'a::{recpower, field}) ^ (m-n) = (a^m) / (a^n)"
ballarin@17149
   361
  by (induct m n rule: diff_induct)
ballarin@17149
   362
    (simp_all add: power_Suc nonzero_mult_divide_cancel_left nz)
ballarin@17149
   363
ballarin@17149
   364
paulson@14348
   365
text{*ML bindings for the general exponentiation theorems*}
paulson@14348
   366
ML
paulson@14348
   367
{*
paulson@14348
   368
val power_0 = thm"power_0";
paulson@14348
   369
val power_Suc = thm"power_Suc";
paulson@14348
   370
val power_0_Suc = thm"power_0_Suc";
paulson@14348
   371
val power_0_left = thm"power_0_left";
paulson@14348
   372
val power_one = thm"power_one";
paulson@14348
   373
val power_one_right = thm"power_one_right";
paulson@14348
   374
val power_add = thm"power_add";
paulson@14348
   375
val power_mult = thm"power_mult";
paulson@14348
   376
val power_mult_distrib = thm"power_mult_distrib";
paulson@14348
   377
val zero_less_power = thm"zero_less_power";
paulson@14348
   378
val zero_le_power = thm"zero_le_power";
paulson@14348
   379
val one_le_power = thm"one_le_power";
paulson@14348
   380
val gt1_imp_ge0 = thm"gt1_imp_ge0";
paulson@14348
   381
val power_gt1_lemma = thm"power_gt1_lemma";
paulson@14348
   382
val power_gt1 = thm"power_gt1";
paulson@14348
   383
val power_le_imp_le_exp = thm"power_le_imp_le_exp";
paulson@14348
   384
val power_inject_exp = thm"power_inject_exp";
paulson@14348
   385
val power_less_imp_less_exp = thm"power_less_imp_less_exp";
paulson@14348
   386
val power_mono = thm"power_mono";
paulson@14348
   387
val power_strict_mono = thm"power_strict_mono";
paulson@14348
   388
val power_eq_0_iff = thm"power_eq_0_iff";
paulson@14348
   389
val field_power_eq_0_iff = thm"field_power_eq_0_iff";
paulson@14348
   390
val field_power_not_zero = thm"field_power_not_zero";
paulson@14348
   391
val power_inverse = thm"power_inverse";
paulson@14353
   392
val nonzero_power_divide = thm"nonzero_power_divide";
paulson@14353
   393
val power_divide = thm"power_divide";
paulson@14348
   394
val power_abs = thm"power_abs";
paulson@14353
   395
val zero_less_power_abs_iff = thm"zero_less_power_abs_iff";
paulson@14353
   396
val zero_le_power_abs = thm "zero_le_power_abs";
paulson@14348
   397
val power_minus = thm"power_minus";
paulson@14348
   398
val power_Suc_less = thm"power_Suc_less";
paulson@14348
   399
val power_strict_decreasing = thm"power_strict_decreasing";
paulson@14348
   400
val power_decreasing = thm"power_decreasing";
paulson@14348
   401
val power_Suc_less_one = thm"power_Suc_less_one";
paulson@14348
   402
val power_increasing = thm"power_increasing";
paulson@14348
   403
val power_strict_increasing = thm"power_strict_increasing";
paulson@14348
   404
val power_le_imp_le_base = thm"power_le_imp_le_base";
paulson@14348
   405
val power_inject_base = thm"power_inject_base";
paulson@14348
   406
*}
wenzelm@14577
   407
paulson@14348
   408
text{*ML bindings for the remaining theorems*}
paulson@14348
   409
ML
paulson@14348
   410
{*
paulson@14348
   411
val nat_one_le_power = thm"nat_one_le_power";
paulson@14348
   412
val nat_power_less_imp_less = thm"nat_power_less_imp_less";
paulson@14348
   413
val nat_zero_less_power_iff = thm"nat_zero_less_power_iff";
paulson@14348
   414
*}
paulson@3390
   415
paulson@3390
   416
end
paulson@3390
   417