src/HOL/Hyperreal/HyperNat.thy
author obua
Tue, 11 May 2004 20:11:08 +0200
changeset 14738 83f1a514dcb4
parent 14691 e1eedc8cad37
child 15053 405be2b48f5b
permissions -rw-r--r--
changes made due to new Ring_and_Field theory
paulson@10751
     1
(*  Title       : HyperNat.thy
paulson@10751
     2
    Author      : Jacques D. Fleuriot
paulson@10751
     3
    Copyright   : 1998  University of Cambridge
paulson@14415
     4
paulson@14415
     5
Converted to Isar and polished by lcp    
paulson@14371
     6
*)
paulson@10751
     7
paulson@14371
     8
header{*Construction of Hypernaturals using Ultrafilters*}
paulson@14371
     9
paulson@14371
    10
theory HyperNat = Star:
paulson@10751
    11
paulson@10751
    12
constdefs
paulson@10751
    13
    hypnatrel :: "((nat=>nat)*(nat=>nat)) set"
paulson@14371
    14
    "hypnatrel == {p. \<exists>X Y. p = ((X::nat=>nat),Y) &
paulson@14371
    15
                       {n::nat. X(n) = Y(n)} \<in> FreeUltrafilterNat}"
paulson@10751
    16
paulson@14371
    17
typedef hypnat = "UNIV//hypnatrel"
paulson@14371
    18
    by (auto simp add: quotient_def)
paulson@10751
    19
wenzelm@14691
    20
instance hypnat :: "{ord, zero, one, plus, times, minus}" ..
paulson@10751
    21
paulson@14371
    22
consts whn :: hypnat
paulson@10751
    23
paulson@14371
    24
paulson@14371
    25
defs (overloaded)
paulson@10778
    26
paulson@10778
    27
  (** hypernatural arithmetic **)
paulson@14371
    28
paulson@14371
    29
  hypnat_zero_def:  "0 == Abs_hypnat(hypnatrel``{%n::nat. 0})"
paulson@14371
    30
  hypnat_one_def:   "1 == Abs_hypnat(hypnatrel``{%n::nat. 1})"
paulson@10778
    31
paulson@10778
    32
  (* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *)
paulson@14371
    33
  hypnat_omega_def:  "whn == Abs_hypnat(hypnatrel``{%n::nat. n})"
paulson@14371
    34
paulson@14371
    35
  hypnat_add_def:
paulson@14371
    36
  "P + Q == Abs_hypnat(\<Union>X \<in> Rep_hypnat(P). \<Union>Y \<in> Rep_hypnat(Q).
nipkow@10834
    37
                hypnatrel``{%n::nat. X n + Y n})"
paulson@10751
    38
paulson@14371
    39
  hypnat_mult_def:
paulson@14371
    40
  "P * Q == Abs_hypnat(\<Union>X \<in> Rep_hypnat(P). \<Union>Y \<in> Rep_hypnat(Q).
nipkow@10834
    41
                hypnatrel``{%n::nat. X n * Y n})"
paulson@10751
    42
paulson@14371
    43
  hypnat_minus_def:
paulson@14371
    44
  "P - Q == Abs_hypnat(\<Union>X \<in> Rep_hypnat(P). \<Union>Y \<in> Rep_hypnat(Q).
nipkow@10834
    45
                hypnatrel``{%n::nat. X n - Y n})"
paulson@10751
    46
paulson@14371
    47
  hypnat_le_def:
paulson@14415
    48
  "P \<le> (Q::hypnat) == \<exists>X Y. X \<in> Rep_hypnat(P) & Y \<in> Rep_hypnat(Q) &
paulson@14415
    49
                            {n::nat. X n \<le> Y n} \<in> FreeUltrafilterNat"
paulson@14371
    50
paulson@14371
    51
  hypnat_less_def: "(x < (y::hypnat)) == (x \<le> y & x \<noteq> y)"
paulson@14371
    52
paulson@14371
    53
paulson@14371
    54
paulson@14371
    55
subsection{*Properties of @{term hypnatrel}*}
paulson@14371
    56
paulson@14371
    57
text{*Proving that @{term hypnatrel} is an equivalence relation*}
paulson@14371
    58
paulson@14371
    59
lemma hypnatrel_iff:
paulson@14371
    60
     "((X,Y) \<in> hypnatrel) = ({n. X n = Y n}: FreeUltrafilterNat)"
paulson@14468
    61
apply (simp add: hypnatrel_def)
paulson@14371
    62
done
paulson@14371
    63
paulson@14371
    64
lemma hypnatrel_refl: "(x,x) \<in> hypnatrel"
paulson@14468
    65
by (simp add: hypnatrel_def)
paulson@14371
    66
paulson@14371
    67
lemma hypnatrel_sym: "(x,y) \<in> hypnatrel ==> (y,x) \<in> hypnatrel"
paulson@14371
    68
by (auto simp add: hypnatrel_def eq_commute)
paulson@14371
    69
paulson@14371
    70
lemma hypnatrel_trans [rule_format (no_asm)]:
paulson@14371
    71
     "(x,y) \<in> hypnatrel --> (y,z) \<in> hypnatrel --> (x,z) \<in> hypnatrel"
paulson@14468
    72
by (auto simp add: hypnatrel_def, ultra)
paulson@14371
    73
paulson@14371
    74
lemma equiv_hypnatrel:
paulson@14371
    75
     "equiv UNIV hypnatrel"
paulson@14371
    76
apply (simp add: equiv_def refl_def sym_def trans_def hypnatrel_refl)
paulson@14371
    77
apply (blast intro: hypnatrel_sym hypnatrel_trans)
paulson@14371
    78
done
paulson@14371
    79
paulson@14371
    80
(* (hypnatrel `` {x} = hypnatrel `` {y}) = ((x,y) \<in> hypnatrel) *)
paulson@14371
    81
lemmas equiv_hypnatrel_iff =
paulson@14371
    82
    eq_equiv_class_iff [OF equiv_hypnatrel UNIV_I UNIV_I, simp]
paulson@14371
    83
paulson@14371
    84
lemma hypnatrel_in_hypnat [simp]: "hypnatrel``{x}:hypnat"
paulson@14468
    85
by (simp add: hypnat_def hypnatrel_def quotient_def, blast)
paulson@14371
    86
paulson@14371
    87
lemma inj_on_Abs_hypnat: "inj_on Abs_hypnat hypnat"
paulson@14371
    88
apply (rule inj_on_inverseI)
paulson@14371
    89
apply (erule Abs_hypnat_inverse)
paulson@14371
    90
done
paulson@14371
    91
paulson@14371
    92
declare inj_on_Abs_hypnat [THEN inj_on_iff, simp]
paulson@14371
    93
        Abs_hypnat_inverse [simp]
paulson@14371
    94
paulson@14371
    95
declare equiv_hypnatrel [THEN eq_equiv_class_iff, simp]
paulson@14371
    96
paulson@14371
    97
declare hypnatrel_iff [iff]
paulson@14371
    98
paulson@14371
    99
paulson@14371
   100
lemma inj_Rep_hypnat: "inj(Rep_hypnat)"
paulson@14371
   101
apply (rule inj_on_inverseI)
paulson@14371
   102
apply (rule Rep_hypnat_inverse)
paulson@14371
   103
done
paulson@14371
   104
paulson@14371
   105
lemma lemma_hypnatrel_refl: "x \<in> hypnatrel `` {x}"
paulson@14371
   106
by (simp add: hypnatrel_def)
paulson@14371
   107
paulson@14371
   108
declare lemma_hypnatrel_refl [simp]
paulson@14371
   109
paulson@14371
   110
lemma hypnat_empty_not_mem: "{} \<notin> hypnat"
paulson@14468
   111
apply (simp add: hypnat_def)
paulson@14371
   112
apply (auto elim!: quotientE equalityCE)
paulson@14371
   113
done
paulson@14371
   114
paulson@14371
   115
declare hypnat_empty_not_mem [simp]
paulson@14371
   116
paulson@14371
   117
lemma Rep_hypnat_nonempty: "Rep_hypnat x \<noteq> {}"
paulson@14371
   118
by (cut_tac x = x in Rep_hypnat, auto)
paulson@14371
   119
paulson@14371
   120
declare Rep_hypnat_nonempty [simp]
paulson@14371
   121
paulson@14371
   122
paulson@14371
   123
lemma eq_Abs_hypnat:
paulson@14371
   124
    "(!!x. z = Abs_hypnat(hypnatrel``{x}) ==> P) ==> P"
paulson@14371
   125
apply (rule_tac x1=z in Rep_hypnat [unfolded hypnat_def, THEN quotientE])
paulson@14371
   126
apply (drule_tac f = Abs_hypnat in arg_cong)
paulson@14371
   127
apply (force simp add: Rep_hypnat_inverse)
paulson@14371
   128
done
paulson@14371
   129
paulson@14468
   130
theorem hypnat_cases [case_names Abs_hypnat, cases type: hypnat]:
paulson@14468
   131
    "(!!x. z = Abs_hypnat(hypnatrel``{x}) ==> P) ==> P"
paulson@14468
   132
by (rule eq_Abs_hypnat [of z], blast)
paulson@14468
   133
paulson@14371
   134
subsection{*Hypernat Addition*}
paulson@14371
   135
paulson@14371
   136
lemma hypnat_add_congruent2:
paulson@14658
   137
     "congruent2 hypnatrel hypnatrel (%X Y. hypnatrel``{%n. X n + Y n})"
paulson@14658
   138
by (simp add: congruent2_def, auto, ultra)
paulson@14371
   139
paulson@14371
   140
lemma hypnat_add:
paulson@14371
   141
  "Abs_hypnat(hypnatrel``{%n. X n}) + Abs_hypnat(hypnatrel``{%n. Y n}) =
paulson@14371
   142
   Abs_hypnat(hypnatrel``{%n. X n + Y n})"
paulson@14658
   143
by (simp add: hypnat_add_def 
paulson@14658
   144
    UN_equiv_class2 [OF equiv_hypnatrel equiv_hypnatrel hypnat_add_congruent2])
paulson@14371
   145
paulson@14371
   146
lemma hypnat_add_commute: "(z::hypnat) + w = w + z"
paulson@14468
   147
apply (cases z, cases w)
paulson@14371
   148
apply (simp add: add_ac hypnat_add)
paulson@14371
   149
done
paulson@14371
   150
paulson@14371
   151
lemma hypnat_add_assoc: "((z1::hypnat) + z2) + z3 = z1 + (z2 + z3)"
paulson@14468
   152
apply (cases z1, cases z2, cases z3)
paulson@14371
   153
apply (simp add: hypnat_add nat_add_assoc)
paulson@14371
   154
done
paulson@14371
   155
paulson@14371
   156
lemma hypnat_add_zero_left: "(0::hypnat) + z = z"
paulson@14468
   157
apply (cases z)
paulson@14371
   158
apply (simp add: hypnat_zero_def hypnat_add)
paulson@14371
   159
done
paulson@14371
   160
obua@14738
   161
instance hypnat :: comm_monoid_add
wenzelm@14691
   162
  by intro_classes
wenzelm@14691
   163
    (assumption |
wenzelm@14691
   164
      rule hypnat_add_commute hypnat_add_assoc hypnat_add_zero_left)+
paulson@14371
   165
paulson@14371
   166
paulson@14371
   167
subsection{*Subtraction inverse on @{typ hypreal}*}
paulson@14371
   168
paulson@14371
   169
paulson@14371
   170
lemma hypnat_minus_congruent2:
paulson@14658
   171
    "congruent2 hypnatrel hypnatrel (%X Y. hypnatrel``{%n. X n - Y n})"
paulson@14658
   172
by (simp add: congruent2_def, auto, ultra)
paulson@14371
   173
paulson@14371
   174
lemma hypnat_minus:
paulson@14371
   175
  "Abs_hypnat(hypnatrel``{%n. X n}) - Abs_hypnat(hypnatrel``{%n. Y n}) =
paulson@14371
   176
   Abs_hypnat(hypnatrel``{%n. X n - Y n})"
paulson@14658
   177
by (simp add: hypnat_minus_def 
paulson@14658
   178
  UN_equiv_class2 [OF equiv_hypnatrel equiv_hypnatrel hypnat_minus_congruent2])
paulson@14371
   179
paulson@14371
   180
lemma hypnat_minus_zero: "z - z = (0::hypnat)"
paulson@14468
   181
apply (cases z)
paulson@14371
   182
apply (simp add: hypnat_zero_def hypnat_minus)
paulson@14371
   183
done
paulson@14371
   184
paulson@14371
   185
lemma hypnat_diff_0_eq_0: "(0::hypnat) - n = 0"
paulson@14468
   186
apply (cases n)
paulson@14371
   187
apply (simp add: hypnat_minus hypnat_zero_def)
paulson@14371
   188
done
paulson@14371
   189
paulson@14371
   190
declare hypnat_minus_zero [simp] hypnat_diff_0_eq_0 [simp]
paulson@14371
   191
paulson@14371
   192
lemma hypnat_add_is_0: "(m+n = (0::hypnat)) = (m=0 & n=0)"
paulson@14468
   193
apply (cases m, cases n)
paulson@14371
   194
apply (auto intro: FreeUltrafilterNat_subset dest: FreeUltrafilterNat_Int simp add: hypnat_zero_def hypnat_add)
paulson@14371
   195
done
paulson@14371
   196
paulson@14371
   197
declare hypnat_add_is_0 [iff]
paulson@14371
   198
paulson@14371
   199
lemma hypnat_diff_diff_left: "(i::hypnat) - j - k = i - (j+k)"
paulson@14468
   200
apply (cases i, cases j, cases k)
paulson@14371
   201
apply (simp add: hypnat_minus hypnat_add diff_diff_left)
paulson@14371
   202
done
paulson@14371
   203
paulson@14371
   204
lemma hypnat_diff_commute: "(i::hypnat) - j - k = i-k-j"
paulson@14371
   205
by (simp add: hypnat_diff_diff_left hypnat_add_commute)
paulson@14371
   206
paulson@14371
   207
lemma hypnat_diff_add_inverse: "((n::hypnat) + m) - n = m"
paulson@14468
   208
apply (cases m, cases n)
paulson@14371
   209
apply (simp add: hypnat_minus hypnat_add)
paulson@14371
   210
done
paulson@14371
   211
declare hypnat_diff_add_inverse [simp]
paulson@14371
   212
paulson@14371
   213
lemma hypnat_diff_add_inverse2:  "((m::hypnat) + n) - n = m"
paulson@14468
   214
apply (cases m, cases n)
paulson@14371
   215
apply (simp add: hypnat_minus hypnat_add)
paulson@14371
   216
done
paulson@14371
   217
declare hypnat_diff_add_inverse2 [simp]
paulson@14371
   218
paulson@14371
   219
lemma hypnat_diff_cancel: "((k::hypnat) + m) - (k+n) = m - n"
paulson@14468
   220
apply (cases k, cases m, cases n)
paulson@14371
   221
apply (simp add: hypnat_minus hypnat_add)
paulson@14371
   222
done
paulson@14371
   223
declare hypnat_diff_cancel [simp]
paulson@14371
   224
paulson@14371
   225
lemma hypnat_diff_cancel2: "((m::hypnat) + k) - (n+k) = m - n"
paulson@14371
   226
by (simp add: hypnat_add_commute [of _ k])
paulson@14371
   227
declare hypnat_diff_cancel2 [simp]
paulson@14371
   228
paulson@14371
   229
lemma hypnat_diff_add_0: "(n::hypnat) - (n+m) = (0::hypnat)"
paulson@14468
   230
apply (cases m, cases n)
paulson@14371
   231
apply (simp add: hypnat_zero_def hypnat_minus hypnat_add)
paulson@14371
   232
done
paulson@14371
   233
declare hypnat_diff_add_0 [simp]
paulson@14371
   234
paulson@14371
   235
paulson@14371
   236
subsection{*Hyperreal Multiplication*}
paulson@14371
   237
paulson@14371
   238
lemma hypnat_mult_congruent2:
paulson@14658
   239
    "congruent2 hypnatrel hypnatrel (%X Y. hypnatrel``{%n. X n * Y n})"
paulson@14468
   240
by (simp add: congruent2_def, auto, ultra)
paulson@14371
   241
paulson@14371
   242
lemma hypnat_mult:
paulson@14371
   243
  "Abs_hypnat(hypnatrel``{%n. X n}) * Abs_hypnat(hypnatrel``{%n. Y n}) =
paulson@14371
   244
   Abs_hypnat(hypnatrel``{%n. X n * Y n})"
paulson@14658
   245
by (simp add: hypnat_mult_def
paulson@14658
   246
   UN_equiv_class2 [OF equiv_hypnatrel equiv_hypnatrel hypnat_mult_congruent2])
paulson@14371
   247
paulson@14371
   248
lemma hypnat_mult_commute: "(z::hypnat) * w = w * z"
paulson@14658
   249
by (cases z, cases w, simp add: hypnat_mult mult_ac)
paulson@14371
   250
paulson@14371
   251
lemma hypnat_mult_assoc: "((z1::hypnat) * z2) * z3 = z1 * (z2 * z3)"
paulson@14468
   252
apply (cases z1, cases z2, cases z3)
paulson@14371
   253
apply (simp add: hypnat_mult mult_assoc)
paulson@14371
   254
done
paulson@14371
   255
paulson@14371
   256
lemma hypnat_mult_1: "(1::hypnat) * z = z"
paulson@14468
   257
apply (cases z)
paulson@14371
   258
apply (simp add: hypnat_mult hypnat_one_def)
paulson@14371
   259
done
paulson@14371
   260
paulson@14371
   261
lemma hypnat_diff_mult_distrib: "((m::hypnat) - n) * k = (m * k) - (n * k)"
paulson@14468
   262
apply (cases k, cases m, cases n)
paulson@14371
   263
apply (simp add: hypnat_mult hypnat_minus diff_mult_distrib)
paulson@14371
   264
done
paulson@14371
   265
paulson@14371
   266
lemma hypnat_diff_mult_distrib2: "(k::hypnat) * (m - n) = (k * m) - (k * n)"
paulson@14371
   267
by (simp add: hypnat_diff_mult_distrib hypnat_mult_commute [of k])
paulson@14371
   268
paulson@14371
   269
lemma hypnat_add_mult_distrib: "((z1::hypnat) + z2) * w = (z1 * w) + (z2 * w)"
paulson@14468
   270
apply (cases z1, cases z2, cases w)
paulson@14371
   271
apply (simp add: hypnat_mult hypnat_add add_mult_distrib)
paulson@14371
   272
done
paulson@14371
   273
paulson@14371
   274
lemma hypnat_add_mult_distrib2: "(w::hypnat) * (z1 + z2) = (w * z1) + (w * z2)"
paulson@14371
   275
by (simp add: hypnat_mult_commute [of w] hypnat_add_mult_distrib)
paulson@14371
   276
paulson@14371
   277
text{*one and zero are distinct*}
paulson@14371
   278
lemma hypnat_zero_not_eq_one: "(0::hypnat) \<noteq> (1::hypnat)"
paulson@14371
   279
by (auto simp add: hypnat_zero_def hypnat_one_def)
paulson@14371
   280
declare hypnat_zero_not_eq_one [THEN not_sym, simp]
paulson@14371
   281
paulson@14371
   282
obua@14738
   283
text{*The Hypernaturals Form A comm_semiring_1_cancel*}
obua@14738
   284
instance hypnat :: comm_semiring_1_cancel
paulson@14371
   285
proof
paulson@14371
   286
  fix i j k :: hypnat
paulson@14371
   287
  show "(i * j) * k = i * (j * k)" by (rule hypnat_mult_assoc)
paulson@14371
   288
  show "i * j = j * i" by (rule hypnat_mult_commute)
paulson@14371
   289
  show "1 * i = i" by (rule hypnat_mult_1)
paulson@14371
   290
  show "(i + j) * k = i * k + j * k" by (simp add: hypnat_add_mult_distrib)
paulson@14371
   291
  show "0 \<noteq> (1::hypnat)" by (rule hypnat_zero_not_eq_one)
paulson@14371
   292
  assume "k+i = k+j"
paulson@14371
   293
  hence "(k+i) - k = (k+j) - k" by simp
paulson@14371
   294
  thus "i=j" by simp
paulson@14371
   295
qed
paulson@14371
   296
paulson@14371
   297
paulson@14371
   298
subsection{*Properties of The @{text "\<le>"} Relation*}
paulson@14371
   299
paulson@14371
   300
lemma hypnat_le:
paulson@14371
   301
      "(Abs_hypnat(hypnatrel``{%n. X n}) \<le> Abs_hypnat(hypnatrel``{%n. Y n})) =
paulson@14371
   302
       ({n. X n \<le> Y n} \<in> FreeUltrafilterNat)"
paulson@14468
   303
apply (simp add: hypnat_le_def)
paulson@14371
   304
apply (auto intro!: lemma_hypnatrel_refl, ultra)
paulson@14371
   305
done
paulson@14371
   306
paulson@14371
   307
lemma hypnat_le_refl: "w \<le> (w::hypnat)"
paulson@14468
   308
apply (cases w)
paulson@14371
   309
apply (simp add: hypnat_le)
paulson@14371
   310
done
paulson@14371
   311
paulson@14371
   312
lemma hypnat_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::hypnat)"
paulson@14468
   313
apply (cases i, cases j, cases k)
paulson@14371
   314
apply (simp add: hypnat_le, ultra)
paulson@14371
   315
done
paulson@14371
   316
paulson@14371
   317
lemma hypnat_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::hypnat)"
paulson@14468
   318
apply (cases z, cases w)
paulson@14371
   319
apply (simp add: hypnat_le, ultra)
paulson@14371
   320
done
paulson@14371
   321
paulson@14371
   322
(* Axiom 'order_less_le' of class 'order': *)
paulson@14371
   323
lemma hypnat_less_le: "((w::hypnat) < z) = (w \<le> z & w \<noteq> z)"
paulson@14371
   324
by (simp add: hypnat_less_def)
paulson@14371
   325
paulson@14371
   326
instance hypnat :: order
wenzelm@14691
   327
  by intro_classes
wenzelm@14691
   328
    (assumption |
wenzelm@14691
   329
      rule hypnat_le_refl hypnat_le_trans hypnat_le_anti_sym hypnat_less_le)+
paulson@14371
   330
paulson@14371
   331
(* Axiom 'linorder_linear' of class 'linorder': *)
paulson@14371
   332
lemma hypnat_le_linear: "(z::hypnat) \<le> w | w \<le> z"
paulson@14468
   333
apply (cases z, cases w)
paulson@14371
   334
apply (auto simp add: hypnat_le, ultra)
paulson@14371
   335
done
paulson@14371
   336
paulson@14371
   337
instance hypnat :: linorder
wenzelm@14691
   338
  by intro_classes (rule hypnat_le_linear)
paulson@14371
   339
paulson@14371
   340
lemma hypnat_add_left_mono: "x \<le> y ==> z + x \<le> z + (y::hypnat)"
paulson@14468
   341
apply (cases x, cases y, cases z)
paulson@14371
   342
apply (auto simp add: hypnat_le hypnat_add)
paulson@14371
   343
done
paulson@14371
   344
paulson@14371
   345
lemma hypnat_mult_less_mono2: "[| (0::hypnat)<z; x<y |] ==> z*x<z*y"
paulson@14468
   346
apply (cases x, cases y, cases z)
paulson@14371
   347
apply (simp add: hypnat_zero_def  hypnat_mult linorder_not_le [symmetric])
paulson@14371
   348
apply (auto simp add: hypnat_le, ultra)
paulson@14371
   349
done
paulson@14371
   350
paulson@14371
   351
obua@14738
   352
subsection{*The Hypernaturals Form an Ordered comm_semiring_1_cancel*}
paulson@14371
   353
obua@14738
   354
instance hypnat :: ordered_semidom
paulson@14371
   355
proof
paulson@14371
   356
  fix x y z :: hypnat
paulson@14371
   357
  show "0 < (1::hypnat)"
paulson@14371
   358
    by (simp add: hypnat_zero_def hypnat_one_def linorder_not_le [symmetric],
paulson@14371
   359
        simp add: hypnat_le)
paulson@14371
   360
  show "x \<le> y ==> z + x \<le> z + y"
paulson@14371
   361
    by (rule hypnat_add_left_mono)
paulson@14371
   362
  show "x < y ==> 0 < z ==> z * x < z * y"
paulson@14371
   363
    by (simp add: hypnat_mult_less_mono2)
paulson@14371
   364
qed
paulson@14371
   365
paulson@14420
   366
lemma hypnat_le_zero_cancel [iff]: "(n \<le> (0::hypnat)) = (n = 0)"
paulson@14468
   367
apply (cases n)
paulson@14420
   368
apply (simp add: hypnat_zero_def hypnat_le)
paulson@14420
   369
done
paulson@14420
   370
paulson@14371
   371
lemma hypnat_mult_is_0 [simp]: "(m*n = (0::hypnat)) = (m=0 | n=0)"
paulson@14468
   372
apply (cases m, cases n)
paulson@14371
   373
apply (auto simp add: hypnat_zero_def hypnat_mult, ultra+)
paulson@14371
   374
done
paulson@14371
   375
paulson@14378
   376
lemma hypnat_diff_is_0_eq [simp]: "((m::hypnat) - n = 0) = (m \<le> n)"
paulson@14468
   377
apply (cases m, cases n)
paulson@14378
   378
apply (simp add: hypnat_le hypnat_minus hypnat_zero_def)
paulson@14378
   379
done
paulson@14378
   380
paulson@14378
   381
paulson@14371
   382
paulson@14371
   383
subsection{*Theorems for Ordering*}
paulson@14371
   384
paulson@14371
   385
lemma hypnat_less:
paulson@14371
   386
      "(Abs_hypnat(hypnatrel``{%n. X n}) < Abs_hypnat(hypnatrel``{%n. Y n})) =
paulson@14371
   387
       ({n. X n < Y n} \<in> FreeUltrafilterNat)"
paulson@14371
   388
apply (auto simp add: hypnat_le  linorder_not_le [symmetric])
paulson@14371
   389
apply (ultra+)
paulson@14371
   390
done
paulson@14371
   391
paulson@14371
   392
lemma hypnat_not_less0 [iff]: "~ n < (0::hypnat)"
paulson@14468
   393
apply (cases n)
paulson@14371
   394
apply (auto simp add: hypnat_zero_def hypnat_less)
paulson@14371
   395
done
paulson@14371
   396
paulson@14371
   397
lemma hypnat_less_one [iff]:
paulson@14371
   398
      "(n < (1::hypnat)) = (n=0)"
paulson@14468
   399
apply (cases n)
paulson@14371
   400
apply (auto simp add: hypnat_zero_def hypnat_one_def hypnat_less)
paulson@14371
   401
done
paulson@14371
   402
paulson@14371
   403
lemma hypnat_add_diff_inverse: "~ m<n ==> n+(m-n) = (m::hypnat)"
paulson@14468
   404
apply (cases m, cases n)
paulson@14371
   405
apply (simp add: hypnat_minus hypnat_add hypnat_less split: nat_diff_split, ultra)
paulson@14371
   406
done
paulson@14371
   407
paulson@14371
   408
lemma hypnat_le_add_diff_inverse [simp]: "n \<le> m ==> n+(m-n) = (m::hypnat)"
paulson@14371
   409
by (simp add: hypnat_add_diff_inverse linorder_not_less [symmetric])
paulson@14371
   410
paulson@14371
   411
lemma hypnat_le_add_diff_inverse2 [simp]: "n\<le>m ==> (m-n)+n = (m::hypnat)"
paulson@14371
   412
by (simp add: hypnat_le_add_diff_inverse hypnat_add_commute)
paulson@14371
   413
paulson@14371
   414
declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le]
paulson@14371
   415
paulson@14371
   416
lemma hypnat_le0 [iff]: "(0::hypnat) \<le> n"
paulson@14371
   417
by (simp add: linorder_not_less [symmetric])
paulson@14371
   418
paulson@14371
   419
lemma hypnat_add_self_le [simp]: "(x::hypnat) \<le> n + x"
paulson@14371
   420
by (insert add_right_mono [of 0 n x], simp)
paulson@14371
   421
paulson@14371
   422
lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)"
paulson@14371
   423
by (insert add_strict_left_mono [OF zero_less_one], auto)
paulson@14371
   424
paulson@14371
   425
lemma hypnat_neq0_conv [iff]: "(n \<noteq> 0) = (0 < (n::hypnat))"
paulson@14371
   426
by (simp add: order_less_le)
paulson@14371
   427
paulson@14371
   428
lemma hypnat_gt_zero_iff: "((0::hypnat) < n) = ((1::hypnat) \<le> n)"
paulson@14371
   429
by (auto simp add: linorder_not_less [symmetric])
paulson@14371
   430
paulson@14371
   431
lemma hypnat_gt_zero_iff2: "(0 < n) = (\<exists>m. n = m + (1::hypnat))"
paulson@14371
   432
apply safe
paulson@14371
   433
 apply (rule_tac x = "n - (1::hypnat) " in exI)
paulson@14371
   434
 apply (simp add: hypnat_gt_zero_iff) 
paulson@14371
   435
apply (insert add_le_less_mono [OF _ zero_less_one, of 0], auto) 
paulson@14371
   436
done
paulson@14371
   437
paulson@14378
   438
lemma hypnat_add_self_not_less: "~ (x + y < (x::hypnat))"
paulson@14378
   439
by (simp add: linorder_not_le [symmetric] add_commute [of x]) 
paulson@14378
   440
paulson@14378
   441
lemma hypnat_diff_split:
paulson@14378
   442
    "P(a - b::hypnat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
paulson@14378
   443
    -- {* elimination of @{text -} on @{text hypnat} *}
paulson@14378
   444
proof (cases "a<b" rule: case_split)
paulson@14378
   445
  case True
paulson@14378
   446
    thus ?thesis
paulson@14378
   447
      by (auto simp add: hypnat_add_self_not_less order_less_imp_le 
paulson@14378
   448
                         hypnat_diff_is_0_eq [THEN iffD2])
paulson@14378
   449
next
paulson@14378
   450
  case False
paulson@14378
   451
    thus ?thesis
paulson@14468
   452
      by (auto simp add: linorder_not_less dest: order_le_less_trans) 
paulson@14378
   453
qed
paulson@14378
   454
paulson@14378
   455
obua@14738
   456
subsection{*The Embedding @{term hypnat_of_nat} Preserves comm_ring_1 and 
paulson@14371
   457
      Order Properties*}
paulson@14371
   458
paulson@14378
   459
constdefs
paulson@14378
   460
paulson@14378
   461
  hypnat_of_nat   :: "nat => hypnat"
paulson@14378
   462
  "hypnat_of_nat m  == of_nat m"
paulson@14378
   463
paulson@14378
   464
  (* the set of infinite hypernatural numbers *)
paulson@14378
   465
  HNatInfinite :: "hypnat set"
paulson@14378
   466
  "HNatInfinite == {n. n \<notin> Nats}"
paulson@14378
   467
paulson@14378
   468
paulson@14371
   469
lemma hypnat_of_nat_add:
paulson@14371
   470
      "hypnat_of_nat ((z::nat) + w) = hypnat_of_nat z + hypnat_of_nat w"
paulson@14378
   471
by (simp add: hypnat_of_nat_def)
paulson@14371
   472
paulson@14371
   473
lemma hypnat_of_nat_mult:
paulson@14371
   474
      "hypnat_of_nat (z * w) = hypnat_of_nat z * hypnat_of_nat w"
paulson@14378
   475
by (simp add: hypnat_of_nat_def)
paulson@14371
   476
paulson@14371
   477
lemma hypnat_of_nat_less_iff [simp]:
paulson@14371
   478
      "(hypnat_of_nat z < hypnat_of_nat w) = (z < w)"
paulson@14378
   479
by (simp add: hypnat_of_nat_def)
paulson@14371
   480
paulson@14371
   481
lemma hypnat_of_nat_le_iff [simp]:
paulson@14371
   482
      "(hypnat_of_nat z \<le> hypnat_of_nat w) = (z \<le> w)"
paulson@14378
   483
by (simp add: hypnat_of_nat_def)
paulson@14371
   484
paulson@14378
   485
lemma hypnat_of_nat_eq_iff [simp]:
paulson@14378
   486
      "(hypnat_of_nat z = hypnat_of_nat w) = (z = w)"
paulson@14378
   487
by (simp add: hypnat_of_nat_def)
paulson@14371
   488
paulson@14378
   489
lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = (1::hypnat)"
paulson@14378
   490
by (simp add: hypnat_of_nat_def)
paulson@14371
   491
paulson@14378
   492
lemma hypnat_of_nat_zero [simp]: "hypnat_of_nat 0 = 0"
paulson@14378
   493
by (simp add: hypnat_of_nat_def)
paulson@14371
   494
paulson@14378
   495
lemma hypnat_of_nat_zero_iff [simp]: "(hypnat_of_nat n = 0) = (n = 0)"
paulson@14378
   496
by (simp add: hypnat_of_nat_def)
paulson@14378
   497
paulson@14378
   498
lemma hypnat_of_nat_Suc [simp]:
paulson@14371
   499
     "hypnat_of_nat (Suc n) = hypnat_of_nat n + (1::hypnat)"
paulson@14378
   500
by (simp add: hypnat_of_nat_def)
paulson@14378
   501
paulson@14378
   502
lemma hypnat_of_nat_minus:
paulson@14378
   503
      "hypnat_of_nat ((j::nat) - k) = hypnat_of_nat j - hypnat_of_nat k"
paulson@14378
   504
by (simp add: hypnat_of_nat_def split: nat_diff_split hypnat_diff_split)
paulson@14371
   505
paulson@14371
   506
paulson@14371
   507
subsection{*Existence of an Infinite Hypernatural Number*}
paulson@14371
   508
paulson@14371
   509
lemma hypnat_omega: "hypnatrel``{%n::nat. n} \<in> hypnat"
paulson@14371
   510
by auto
paulson@14371
   511
paulson@14371
   512
lemma Rep_hypnat_omega: "Rep_hypnat(whn) \<in> hypnat"
paulson@14371
   513
by (simp add: hypnat_omega_def)
paulson@14371
   514
paulson@14371
   515
text{*Existence of infinite number not corresponding to any natural number
paulson@14371
   516
follows because member @{term FreeUltrafilterNat} is not finite.
paulson@14371
   517
See @{text HyperDef.thy} for similar argument.*}
paulson@14371
   518
paulson@14371
   519
paulson@14371
   520
subsection{*Properties of the set @{term Nats} of Embedded Natural Numbers*}
paulson@14371
   521
paulson@14378
   522
lemma of_nat_eq_add [rule_format]:
paulson@14378
   523
     "\<forall>d::hypnat. of_nat m = of_nat n + d --> d \<in> range of_nat"
paulson@14378
   524
apply (induct n) 
paulson@14378
   525
apply (auto simp add: add_assoc) 
paulson@14378
   526
apply (case_tac x) 
paulson@14378
   527
apply (auto simp add: add_commute [of 1]) 
paulson@14371
   528
done
paulson@14371
   529
paulson@14378
   530
lemma Nats_diff [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> (a-b :: hypnat) \<in> Nats"
paulson@14468
   531
by (auto simp add: of_nat_eq_add Nats_def split: hypnat_diff_split)
paulson@14371
   532
paulson@14371
   533
lemma lemma_unbounded_set [simp]: "{n::nat. m < n} \<in> FreeUltrafilterNat"
paulson@14378
   534
apply (insert finite_atMost [of m]) 
paulson@14378
   535
apply (simp add: atMost_def) 
paulson@14378
   536
apply (drule FreeUltrafilterNat_finite) 
paulson@14468
   537
apply (drule FreeUltrafilterNat_Compl_mem, ultra)
paulson@14371
   538
done
paulson@14371
   539
paulson@14371
   540
lemma Compl_Collect_le: "- {n::nat. N \<le> n} = {n. n < N}"
paulson@14371
   541
by (simp add: Collect_neg_eq [symmetric] linorder_not_le) 
paulson@14371
   542
paulson@14378
   543
paulson@14378
   544
lemma hypnat_of_nat_eq:
paulson@14378
   545
     "hypnat_of_nat m  = Abs_hypnat(hypnatrel``{%n::nat. m})"
paulson@14378
   546
apply (induct m) 
paulson@14468
   547
apply (simp_all add: hypnat_zero_def hypnat_one_def hypnat_add) 
paulson@14378
   548
done
paulson@14378
   549
paulson@14378
   550
lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}"
paulson@14378
   551
by (force simp add: hypnat_of_nat_def Nats_def) 
paulson@14378
   552
paulson@14371
   553
lemma hypnat_omega_gt_SHNat:
paulson@14371
   554
     "n \<in> Nats ==> n < whn"
paulson@14378
   555
apply (auto simp add: hypnat_of_nat_eq hypnat_less_def hypnat_le_def
paulson@14378
   556
                      hypnat_omega_def SHNat_eq)
paulson@14371
   557
 prefer 2 apply (force dest: FreeUltrafilterNat_not_finite)
paulson@14371
   558
apply (auto intro!: exI)
paulson@14371
   559
apply (rule cofinite_mem_FreeUltrafilterNat)
paulson@14371
   560
apply (simp add: Compl_Collect_le finite_nat_segment) 
paulson@14371
   561
done
paulson@14371
   562
paulson@14378
   563
(* Infinite hypernatural not in embedded Nats *)
paulson@14378
   564
lemma SHNAT_omega_not_mem [simp]: "whn \<notin> Nats"
paulson@14468
   565
by (blast dest: hypnat_omega_gt_SHNat)
paulson@14371
   566
paulson@14378
   567
lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn"
paulson@14378
   568
apply (insert hypnat_omega_gt_SHNat [of "hypnat_of_nat n"])
paulson@14378
   569
apply (simp add: hypnat_of_nat_def) 
paulson@14378
   570
done
paulson@14378
   571
paulson@14378
   572
lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn"
paulson@14371
   573
by (rule hypnat_of_nat_less_whn [THEN order_less_imp_le])
paulson@14371
   574
paulson@14371
   575
lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn"
paulson@14371
   576
by (simp add: hypnat_omega_gt_SHNat)
paulson@14371
   577
paulson@14371
   578
lemma hypnat_one_less_hypnat_omega [simp]: "(1::hypnat) < whn"
paulson@14371
   579
by (simp add: hypnat_omega_gt_SHNat)
paulson@14371
   580
paulson@14371
   581
paulson@14371
   582
subsection{*Infinite Hypernatural Numbers -- @{term HNatInfinite}*}
paulson@14371
   583
paulson@14378
   584
lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite"
paulson@14371
   585
by (simp add: HNatInfinite_def)
paulson@14371
   586
paulson@14378
   587
lemma Nats_not_HNatInfinite_iff: "(x \<in> Nats) = (x \<notin> HNatInfinite)"
paulson@14371
   588
by (simp add: HNatInfinite_def)
paulson@14371
   589
paulson@14378
   590
lemma HNatInfinite_not_Nats_iff: "(x \<in> HNatInfinite) = (x \<notin> Nats)"
paulson@14371
   591
by (simp add: HNatInfinite_def)
paulson@14371
   592
paulson@14371
   593
paulson@14371
   594
subsection{*Alternative Characterization of the Set of Infinite Hypernaturals:
paulson@14371
   595
@{term "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"}*}
paulson@14371
   596
paulson@14371
   597
(*??delete? similar reasoning in hypnat_omega_gt_SHNat above*)
paulson@14378
   598
lemma HNatInfinite_FreeUltrafilterNat_lemma:
paulson@14378
   599
     "\<forall>N::nat. {n. f n \<noteq> N} \<in> FreeUltrafilterNat
paulson@14371
   600
      ==> {n. N < f n} \<in> FreeUltrafilterNat"
paulson@14371
   601
apply (induct_tac "N")
paulson@14371
   602
apply (drule_tac x = 0 in spec)
paulson@14371
   603
apply (rule ccontr, drule FreeUltrafilterNat_Compl_mem, drule FreeUltrafilterNat_Int, assumption, simp)
paulson@14371
   604
apply (drule_tac x = "Suc n" in spec, ultra)
paulson@14371
   605
done
paulson@14371
   606
paulson@14371
   607
lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
paulson@14378
   608
apply (auto simp add: HNatInfinite_def SHNat_eq hypnat_of_nat_eq)
paulson@14371
   609
apply (rule_tac z = x in eq_Abs_hypnat)
paulson@14378
   610
apply (auto elim: HNatInfinite_FreeUltrafilterNat_lemma 
paulson@14378
   611
            simp add: hypnat_less FreeUltrafilterNat_Compl_iff1 
paulson@14378
   612
                      Collect_neg_eq [symmetric])
paulson@14371
   613
done
paulson@14371
   614
paulson@14378
   615
paulson@14371
   616
subsection{*Alternative Characterization of @{term HNatInfinite} using 
paulson@14371
   617
Free Ultrafilter*}
paulson@14371
   618
paulson@14371
   619
lemma HNatInfinite_FreeUltrafilterNat:
paulson@14371
   620
     "x \<in> HNatInfinite 
paulson@14371
   621
      ==> \<exists>X \<in> Rep_hypnat x. \<forall>u. {n. u < X n}:  FreeUltrafilterNat"
paulson@14468
   622
apply (cases x)
paulson@14378
   623
apply (auto simp add: HNatInfinite_iff SHNat_eq hypnat_of_nat_eq)
paulson@14371
   624
apply (rule bexI [OF _ lemma_hypnatrel_refl], clarify) 
paulson@14371
   625
apply (auto simp add: hypnat_of_nat_def hypnat_less)
paulson@14371
   626
done
paulson@14371
   627
paulson@14371
   628
lemma FreeUltrafilterNat_HNatInfinite:
paulson@14371
   629
     "\<exists>X \<in> Rep_hypnat x. \<forall>u. {n. u < X n}:  FreeUltrafilterNat
paulson@14371
   630
      ==> x \<in> HNatInfinite"
paulson@14468
   631
apply (cases x)
paulson@14378
   632
apply (auto simp add: hypnat_less HNatInfinite_iff SHNat_eq hypnat_of_nat_eq)
paulson@14371
   633
apply (drule spec, ultra, auto) 
paulson@14371
   634
done
paulson@14371
   635
paulson@14371
   636
lemma HNatInfinite_FreeUltrafilterNat_iff:
paulson@14371
   637
     "(x \<in> HNatInfinite) = 
paulson@14371
   638
      (\<exists>X \<in> Rep_hypnat x. \<forall>u. {n. u < X n}:  FreeUltrafilterNat)"
paulson@14378
   639
by (blast intro: HNatInfinite_FreeUltrafilterNat 
paulson@14378
   640
                 FreeUltrafilterNat_HNatInfinite)
paulson@14371
   641
paulson@14378
   642
lemma HNatInfinite_gt_one [simp]: "x \<in> HNatInfinite ==> (1::hypnat) < x"
paulson@14371
   643
by (auto simp add: HNatInfinite_iff)
paulson@14371
   644
paulson@14378
   645
lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite"
paulson@14371
   646
apply (auto simp add: HNatInfinite_iff)
paulson@14371
   647
apply (drule_tac a = " (1::hypnat) " in equals0D)
paulson@14371
   648
apply simp
paulson@14371
   649
done
paulson@14371
   650
paulson@14371
   651
lemma HNatInfinite_not_eq_zero: "x \<in> HNatInfinite ==> 0 < x"
paulson@14371
   652
apply (drule HNatInfinite_gt_one) 
paulson@14371
   653
apply (auto simp add: order_less_trans [OF zero_less_one])
paulson@14371
   654
done
paulson@14371
   655
paulson@14371
   656
lemma HNatInfinite_ge_one [simp]: "x \<in> HNatInfinite ==> (1::hypnat) \<le> x"
paulson@14371
   657
by (blast intro: order_less_imp_le HNatInfinite_gt_one)
paulson@14371
   658
paulson@14371
   659
paulson@14371
   660
subsection{*Closure Rules*}
paulson@14371
   661
paulson@14378
   662
lemma HNatInfinite_add:
paulson@14378
   663
     "[| x \<in> HNatInfinite; y \<in> HNatInfinite |] ==> x + y \<in> HNatInfinite"
paulson@14371
   664
apply (auto simp add: HNatInfinite_iff)
paulson@14371
   665
apply (drule bspec, assumption)
paulson@14378
   666
apply (drule bspec [OF _ Nats_0])
paulson@14371
   667
apply (drule add_strict_mono, assumption, simp)
paulson@14371
   668
done
paulson@14371
   669
paulson@14378
   670
lemma HNatInfinite_SHNat_add:
paulson@14378
   671
     "[| x \<in> HNatInfinite; y \<in> Nats |] ==> x + y \<in> HNatInfinite"
paulson@14378
   672
apply (auto simp add: HNatInfinite_not_Nats_iff) 
paulson@14468
   673
apply (drule_tac a = "x + y" in Nats_diff, auto) 
paulson@14371
   674
done
paulson@14371
   675
paulson@14378
   676
lemma HNatInfinite_Nats_imp_less: "[| x \<in> HNatInfinite; y \<in> Nats |] ==> y < x"
paulson@14378
   677
by (simp add: HNatInfinite_iff) 
paulson@14378
   678
paulson@14378
   679
lemma HNatInfinite_SHNat_diff:
paulson@14378
   680
  assumes x: "x \<in> HNatInfinite" and y: "y \<in> Nats" 
paulson@14378
   681
  shows "x - y \<in> HNatInfinite"
paulson@14378
   682
proof -
paulson@14378
   683
  have "y < x" by (simp add: HNatInfinite_Nats_imp_less prems)
paulson@14378
   684
  hence "x - y + y = x" by (simp add: order_less_imp_le)
paulson@14378
   685
  with x show ?thesis
paulson@14378
   686
    by (force simp add: HNatInfinite_not_Nats_iff 
paulson@14378
   687
              dest: Nats_add [of "x-y", OF _ y]) 
paulson@14378
   688
qed
paulson@14371
   689
paulson@14415
   690
lemma HNatInfinite_add_one:
paulson@14415
   691
     "x \<in> HNatInfinite ==> x + (1::hypnat) \<in> HNatInfinite"
paulson@14371
   692
by (auto intro: HNatInfinite_SHNat_add)
paulson@14371
   693
paulson@14371
   694
lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite ==> \<exists>y. x = y + (1::hypnat)"
paulson@14371
   695
apply (rule_tac x = "x - (1::hypnat) " in exI)
paulson@14371
   696
apply auto
paulson@14371
   697
done
paulson@14371
   698
paulson@14371
   699
paulson@14378
   700
subsection{*Embedding of the Hypernaturals into the Hyperreals*}
paulson@14371
   701
text{*Obtained using the nonstandard extension of the naturals*}
paulson@14371
   702
paulson@14378
   703
constdefs
paulson@14378
   704
  hypreal_of_hypnat :: "hypnat => hypreal"
paulson@14378
   705
   "hypreal_of_hypnat N  == 
paulson@14378
   706
      Abs_hypreal(\<Union>X \<in> Rep_hypnat(N). hyprel``{%n::nat. real (X n)})"
paulson@14371
   707
paulson@14371
   708
paulson@14378
   709
lemma HNat_hypreal_of_nat [simp]: "hypreal_of_nat N \<in> Nats"
paulson@14378
   710
by (simp add: hypreal_of_nat_def) 
paulson@14371
   711
paulson@14371
   712
(*WARNING: FRAGILE!*)
paulson@14378
   713
lemma lemma_hyprel_FUFN:
paulson@14378
   714
     "(Ya \<in> hyprel ``{%n. f(n)}) = ({n. f n = Ya n} \<in> FreeUltrafilterNat)"
paulson@14378
   715
by force
paulson@14371
   716
paulson@14371
   717
lemma hypreal_of_hypnat:
paulson@14371
   718
      "hypreal_of_hypnat (Abs_hypnat(hypnatrel``{%n. X n})) =
paulson@14371
   719
       Abs_hypreal(hyprel `` {%n. real (X n)})"
paulson@14371
   720
apply (simp add: hypreal_of_hypnat_def)
paulson@14371
   721
apply (rule_tac f = Abs_hypreal in arg_cong)
paulson@14371
   722
apply (auto elim: FreeUltrafilterNat_Int [THEN FreeUltrafilterNat_subset] 
paulson@14371
   723
       simp add: lemma_hyprel_FUFN)
paulson@14371
   724
done
paulson@14371
   725
paulson@14378
   726
lemma hypreal_of_hypnat_inject [simp]:
paulson@14378
   727
     "(hypreal_of_hypnat m = hypreal_of_hypnat n) = (m=n)"
paulson@14468
   728
apply (cases m, cases n)
paulson@14371
   729
apply (auto simp add: hypreal_of_hypnat)
paulson@14371
   730
done
paulson@14371
   731
paulson@14371
   732
lemma hypreal_of_hypnat_zero: "hypreal_of_hypnat 0 = 0"
paulson@14371
   733
by (simp add: hypnat_zero_def hypreal_zero_def hypreal_of_hypnat)
paulson@14371
   734
paulson@14371
   735
lemma hypreal_of_hypnat_one: "hypreal_of_hypnat (1::hypnat) = 1"
paulson@14371
   736
by (simp add: hypnat_one_def hypreal_one_def hypreal_of_hypnat)
paulson@14371
   737
paulson@14371
   738
lemma hypreal_of_hypnat_add [simp]:
paulson@14371
   739
     "hypreal_of_hypnat (m + n) = hypreal_of_hypnat m + hypreal_of_hypnat n"
paulson@14468
   740
apply (cases m, cases n)
paulson@14371
   741
apply (simp add: hypreal_of_hypnat hypreal_add hypnat_add real_of_nat_add)
paulson@14371
   742
done
paulson@14371
   743
paulson@14371
   744
lemma hypreal_of_hypnat_mult [simp]:
paulson@14371
   745
     "hypreal_of_hypnat (m * n) = hypreal_of_hypnat m * hypreal_of_hypnat n"
paulson@14468
   746
apply (cases m, cases n)
paulson@14371
   747
apply (simp add: hypreal_of_hypnat hypreal_mult hypnat_mult real_of_nat_mult)
paulson@14371
   748
done
paulson@14371
   749
paulson@14371
   750
lemma hypreal_of_hypnat_less_iff [simp]:
paulson@14371
   751
     "(hypreal_of_hypnat n < hypreal_of_hypnat m) = (n < m)"
paulson@14468
   752
apply (cases m, cases n)
paulson@14371
   753
apply (simp add: hypreal_of_hypnat hypreal_less hypnat_less)
paulson@14371
   754
done
paulson@14371
   755
paulson@14371
   756
lemma hypreal_of_hypnat_eq_zero_iff: "(hypreal_of_hypnat N = 0) = (N = 0)"
paulson@14371
   757
by (simp add: hypreal_of_hypnat_zero [symmetric])
paulson@14371
   758
declare hypreal_of_hypnat_eq_zero_iff [simp]
paulson@14371
   759
paulson@14371
   760
lemma hypreal_of_hypnat_ge_zero [simp]: "0 \<le> hypreal_of_hypnat n"
paulson@14468
   761
apply (cases n)
paulson@14371
   762
apply (simp add: hypreal_of_hypnat hypreal_zero_num hypreal_le)
paulson@14371
   763
done
paulson@14371
   764
paulson@14378
   765
lemma HNatInfinite_inverse_Infinitesimal [simp]:
paulson@14378
   766
     "n \<in> HNatInfinite ==> inverse (hypreal_of_hypnat n) \<in> Infinitesimal"
paulson@14468
   767
apply (cases n)
paulson@14378
   768
apply (auto simp add: hypreal_of_hypnat hypreal_inverse 
paulson@14378
   769
      HNatInfinite_FreeUltrafilterNat_iff Infinitesimal_FreeUltrafilterNat_iff2)
paulson@14371
   770
apply (rule bexI, rule_tac [2] lemma_hyprel_refl, auto)
paulson@14371
   771
apply (drule_tac x = "m + 1" in spec, ultra)
paulson@14371
   772
done
paulson@14371
   773
paulson@14420
   774
lemma HNatInfinite_hypreal_of_hypnat_gt_zero:
paulson@14420
   775
     "N \<in> HNatInfinite ==> 0 < hypreal_of_hypnat N"
paulson@14420
   776
apply (rule ccontr)
paulson@14420
   777
apply (simp add: hypreal_of_hypnat_zero [symmetric] linorder_not_less)
paulson@14420
   778
done
paulson@14420
   779
paulson@14371
   780
paulson@14371
   781
ML
paulson@14371
   782
{*
paulson@14371
   783
val hypnat_of_nat_def = thm"hypnat_of_nat_def";
paulson@14371
   784
val HNatInfinite_def = thm"HNatInfinite_def";
paulson@14371
   785
val hypreal_of_hypnat_def = thm"hypreal_of_hypnat_def";
paulson@14371
   786
val hypnat_zero_def = thm"hypnat_zero_def";
paulson@14371
   787
val hypnat_one_def = thm"hypnat_one_def";
paulson@14371
   788
val hypnat_omega_def = thm"hypnat_omega_def";
paulson@14371
   789
paulson@14371
   790
val hypnatrel_iff = thm "hypnatrel_iff";
paulson@14371
   791
val hypnatrel_in_hypnat = thm "hypnatrel_in_hypnat";
paulson@14371
   792
val inj_on_Abs_hypnat = thm "inj_on_Abs_hypnat";
paulson@14371
   793
val inj_Rep_hypnat = thm "inj_Rep_hypnat";
paulson@14371
   794
val lemma_hypnatrel_refl = thm "lemma_hypnatrel_refl";
paulson@14371
   795
val hypnat_empty_not_mem = thm "hypnat_empty_not_mem";
paulson@14371
   796
val Rep_hypnat_nonempty = thm "Rep_hypnat_nonempty";
paulson@14371
   797
val eq_Abs_hypnat = thm "eq_Abs_hypnat";
paulson@14371
   798
val hypnat_add = thm "hypnat_add";
paulson@14371
   799
val hypnat_add_commute = thm "hypnat_add_commute";
paulson@14371
   800
val hypnat_add_assoc = thm "hypnat_add_assoc";
paulson@14371
   801
val hypnat_add_zero_left = thm "hypnat_add_zero_left";
paulson@14371
   802
val hypnat_minus_congruent2 = thm "hypnat_minus_congruent2";
paulson@14371
   803
val hypnat_minus = thm "hypnat_minus";
paulson@14371
   804
val hypnat_minus_zero = thm "hypnat_minus_zero";
paulson@14371
   805
val hypnat_diff_0_eq_0 = thm "hypnat_diff_0_eq_0";
paulson@14371
   806
val hypnat_add_is_0 = thm "hypnat_add_is_0";
paulson@14371
   807
val hypnat_diff_diff_left = thm "hypnat_diff_diff_left";
paulson@14371
   808
val hypnat_diff_commute = thm "hypnat_diff_commute";
paulson@14371
   809
val hypnat_diff_add_inverse = thm "hypnat_diff_add_inverse";
paulson@14371
   810
val hypnat_diff_add_inverse2 = thm "hypnat_diff_add_inverse2";
paulson@14371
   811
val hypnat_diff_cancel = thm "hypnat_diff_cancel";
paulson@14371
   812
val hypnat_diff_cancel2 = thm "hypnat_diff_cancel2";
paulson@14371
   813
val hypnat_diff_add_0 = thm "hypnat_diff_add_0";
paulson@14371
   814
val hypnat_mult_congruent2 = thm "hypnat_mult_congruent2";
paulson@14371
   815
val hypnat_mult = thm "hypnat_mult";
paulson@14371
   816
val hypnat_mult_commute = thm "hypnat_mult_commute";
paulson@14371
   817
val hypnat_mult_assoc = thm "hypnat_mult_assoc";
paulson@14371
   818
val hypnat_mult_1 = thm "hypnat_mult_1";
paulson@14371
   819
val hypnat_diff_mult_distrib = thm "hypnat_diff_mult_distrib";
paulson@14371
   820
val hypnat_diff_mult_distrib2 = thm "hypnat_diff_mult_distrib2";
paulson@14371
   821
val hypnat_add_mult_distrib = thm "hypnat_add_mult_distrib";
paulson@14371
   822
val hypnat_add_mult_distrib2 = thm "hypnat_add_mult_distrib2";
paulson@14371
   823
val hypnat_zero_not_eq_one = thm "hypnat_zero_not_eq_one";
paulson@14371
   824
val hypnat_le = thm "hypnat_le";
paulson@14371
   825
val hypnat_le_refl = thm "hypnat_le_refl";
paulson@14371
   826
val hypnat_le_trans = thm "hypnat_le_trans";
paulson@14371
   827
val hypnat_le_anti_sym = thm "hypnat_le_anti_sym";
paulson@14371
   828
val hypnat_less_le = thm "hypnat_less_le";
paulson@14371
   829
val hypnat_le_linear = thm "hypnat_le_linear";
paulson@14371
   830
val hypnat_add_left_mono = thm "hypnat_add_left_mono";
paulson@14371
   831
val hypnat_mult_less_mono2 = thm "hypnat_mult_less_mono2";
paulson@14371
   832
val hypnat_mult_is_0 = thm "hypnat_mult_is_0";
paulson@14371
   833
val hypnat_less = thm "hypnat_less";
paulson@14371
   834
val hypnat_not_less0 = thm "hypnat_not_less0";
paulson@14371
   835
val hypnat_less_one = thm "hypnat_less_one";
paulson@14371
   836
val hypnat_add_diff_inverse = thm "hypnat_add_diff_inverse";
paulson@14371
   837
val hypnat_le_add_diff_inverse = thm "hypnat_le_add_diff_inverse";
paulson@14371
   838
val hypnat_le_add_diff_inverse2 = thm "hypnat_le_add_diff_inverse2";
paulson@14371
   839
val hypnat_le0 = thm "hypnat_le0";
paulson@14371
   840
val hypnat_add_self_le = thm "hypnat_add_self_le";
paulson@14371
   841
val hypnat_add_one_self_less = thm "hypnat_add_one_self_less";
paulson@14371
   842
val hypnat_neq0_conv = thm "hypnat_neq0_conv";
paulson@14371
   843
val hypnat_gt_zero_iff = thm "hypnat_gt_zero_iff";
paulson@14371
   844
val hypnat_gt_zero_iff2 = thm "hypnat_gt_zero_iff2";
paulson@14371
   845
val hypnat_of_nat_add = thm "hypnat_of_nat_add";
paulson@14371
   846
val hypnat_of_nat_minus = thm "hypnat_of_nat_minus";
paulson@14371
   847
val hypnat_of_nat_mult = thm "hypnat_of_nat_mult";
paulson@14371
   848
val hypnat_of_nat_less_iff = thm "hypnat_of_nat_less_iff";
paulson@14371
   849
val hypnat_of_nat_le_iff = thm "hypnat_of_nat_le_iff";
paulson@14415
   850
val hypnat_of_nat_eq = thm"hypnat_of_nat_eq"
paulson@14415
   851
val SHNat_eq = thm"SHNat_eq"
paulson@14371
   852
val hypnat_of_nat_one = thm "hypnat_of_nat_one";
paulson@14371
   853
val hypnat_of_nat_zero = thm "hypnat_of_nat_zero";
paulson@14371
   854
val hypnat_of_nat_zero_iff = thm "hypnat_of_nat_zero_iff";
paulson@14371
   855
val hypnat_of_nat_Suc = thm "hypnat_of_nat_Suc";
paulson@14371
   856
val hypnat_omega = thm "hypnat_omega";
paulson@14371
   857
val Rep_hypnat_omega = thm "Rep_hypnat_omega";
paulson@14371
   858
val SHNAT_omega_not_mem = thm "SHNAT_omega_not_mem";
paulson@14371
   859
val cofinite_mem_FreeUltrafilterNat = thm "cofinite_mem_FreeUltrafilterNat";
paulson@14371
   860
val hypnat_omega_gt_SHNat = thm "hypnat_omega_gt_SHNat";
paulson@14371
   861
val hypnat_of_nat_less_whn = thm "hypnat_of_nat_less_whn";
paulson@14371
   862
val hypnat_of_nat_le_whn = thm "hypnat_of_nat_le_whn";
paulson@14371
   863
val hypnat_zero_less_hypnat_omega = thm "hypnat_zero_less_hypnat_omega";
paulson@14371
   864
val hypnat_one_less_hypnat_omega = thm "hypnat_one_less_hypnat_omega";
paulson@14371
   865
val HNatInfinite_whn = thm "HNatInfinite_whn";
paulson@14371
   866
val HNatInfinite_iff = thm "HNatInfinite_iff";
paulson@14371
   867
val HNatInfinite_FreeUltrafilterNat = thm "HNatInfinite_FreeUltrafilterNat";
paulson@14371
   868
val FreeUltrafilterNat_HNatInfinite = thm "FreeUltrafilterNat_HNatInfinite";
paulson@14371
   869
val HNatInfinite_FreeUltrafilterNat_iff = thm "HNatInfinite_FreeUltrafilterNat_iff";
paulson@14371
   870
val HNatInfinite_gt_one = thm "HNatInfinite_gt_one";
paulson@14371
   871
val zero_not_mem_HNatInfinite = thm "zero_not_mem_HNatInfinite";
paulson@14371
   872
val HNatInfinite_not_eq_zero = thm "HNatInfinite_not_eq_zero";
paulson@14371
   873
val HNatInfinite_ge_one = thm "HNatInfinite_ge_one";
paulson@14371
   874
val HNatInfinite_add = thm "HNatInfinite_add";
paulson@14371
   875
val HNatInfinite_SHNat_add = thm "HNatInfinite_SHNat_add";
paulson@14371
   876
val HNatInfinite_SHNat_diff = thm "HNatInfinite_SHNat_diff";
paulson@14371
   877
val HNatInfinite_add_one = thm "HNatInfinite_add_one";
paulson@14371
   878
val HNatInfinite_is_Suc = thm "HNatInfinite_is_Suc";
paulson@14371
   879
val HNat_hypreal_of_nat = thm "HNat_hypreal_of_nat";
paulson@14371
   880
val hypreal_of_hypnat = thm "hypreal_of_hypnat";
paulson@14371
   881
val hypreal_of_hypnat_zero = thm "hypreal_of_hypnat_zero";
paulson@14371
   882
val hypreal_of_hypnat_one = thm "hypreal_of_hypnat_one";
paulson@14371
   883
val hypreal_of_hypnat_add = thm "hypreal_of_hypnat_add";
paulson@14371
   884
val hypreal_of_hypnat_mult = thm "hypreal_of_hypnat_mult";
paulson@14371
   885
val hypreal_of_hypnat_less_iff = thm "hypreal_of_hypnat_less_iff";
paulson@14371
   886
val hypreal_of_hypnat_ge_zero = thm "hypreal_of_hypnat_ge_zero";
paulson@14371
   887
val HNatInfinite_inverse_Infinitesimal = thm "HNatInfinite_inverse_Infinitesimal";
paulson@14371
   888
*}
paulson@10751
   889
paulson@10751
   890
end