src/HOL/Hyperreal/HyperNat.thy
author obua
Tue, 11 May 2004 20:11:08 +0200
changeset 14738 83f1a514dcb4
parent 14691 e1eedc8cad37
child 15053 405be2b48f5b
permissions -rw-r--r--
changes made due to new Ring_and_Field theory
     1 (*  Title       : HyperNat.thy
     2     Author      : Jacques D. Fleuriot
     3     Copyright   : 1998  University of Cambridge
     4 
     5 Converted to Isar and polished by lcp    
     6 *)
     7 
     8 header{*Construction of Hypernaturals using Ultrafilters*}
     9 
    10 theory HyperNat = Star:
    11 
    12 constdefs
    13     hypnatrel :: "((nat=>nat)*(nat=>nat)) set"
    14     "hypnatrel == {p. \<exists>X Y. p = ((X::nat=>nat),Y) &
    15                        {n::nat. X(n) = Y(n)} \<in> FreeUltrafilterNat}"
    16 
    17 typedef hypnat = "UNIV//hypnatrel"
    18     by (auto simp add: quotient_def)
    19 
    20 instance hypnat :: "{ord, zero, one, plus, times, minus}" ..
    21 
    22 consts whn :: hypnat
    23 
    24 
    25 defs (overloaded)
    26 
    27   (** hypernatural arithmetic **)
    28 
    29   hypnat_zero_def:  "0 == Abs_hypnat(hypnatrel``{%n::nat. 0})"
    30   hypnat_one_def:   "1 == Abs_hypnat(hypnatrel``{%n::nat. 1})"
    31 
    32   (* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *)
    33   hypnat_omega_def:  "whn == Abs_hypnat(hypnatrel``{%n::nat. n})"
    34 
    35   hypnat_add_def:
    36   "P + Q == Abs_hypnat(\<Union>X \<in> Rep_hypnat(P). \<Union>Y \<in> Rep_hypnat(Q).
    37                 hypnatrel``{%n::nat. X n + Y n})"
    38 
    39   hypnat_mult_def:
    40   "P * Q == Abs_hypnat(\<Union>X \<in> Rep_hypnat(P). \<Union>Y \<in> Rep_hypnat(Q).
    41                 hypnatrel``{%n::nat. X n * Y n})"
    42 
    43   hypnat_minus_def:
    44   "P - Q == Abs_hypnat(\<Union>X \<in> Rep_hypnat(P). \<Union>Y \<in> Rep_hypnat(Q).
    45                 hypnatrel``{%n::nat. X n - Y n})"
    46 
    47   hypnat_le_def:
    48   "P \<le> (Q::hypnat) == \<exists>X Y. X \<in> Rep_hypnat(P) & Y \<in> Rep_hypnat(Q) &
    49                             {n::nat. X n \<le> Y n} \<in> FreeUltrafilterNat"
    50 
    51   hypnat_less_def: "(x < (y::hypnat)) == (x \<le> y & x \<noteq> y)"
    52 
    53 
    54 
    55 subsection{*Properties of @{term hypnatrel}*}
    56 
    57 text{*Proving that @{term hypnatrel} is an equivalence relation*}
    58 
    59 lemma hypnatrel_iff:
    60      "((X,Y) \<in> hypnatrel) = ({n. X n = Y n}: FreeUltrafilterNat)"
    61 apply (simp add: hypnatrel_def)
    62 done
    63 
    64 lemma hypnatrel_refl: "(x,x) \<in> hypnatrel"
    65 by (simp add: hypnatrel_def)
    66 
    67 lemma hypnatrel_sym: "(x,y) \<in> hypnatrel ==> (y,x) \<in> hypnatrel"
    68 by (auto simp add: hypnatrel_def eq_commute)
    69 
    70 lemma hypnatrel_trans [rule_format (no_asm)]:
    71      "(x,y) \<in> hypnatrel --> (y,z) \<in> hypnatrel --> (x,z) \<in> hypnatrel"
    72 by (auto simp add: hypnatrel_def, ultra)
    73 
    74 lemma equiv_hypnatrel:
    75      "equiv UNIV hypnatrel"
    76 apply (simp add: equiv_def refl_def sym_def trans_def hypnatrel_refl)
    77 apply (blast intro: hypnatrel_sym hypnatrel_trans)
    78 done
    79 
    80 (* (hypnatrel `` {x} = hypnatrel `` {y}) = ((x,y) \<in> hypnatrel) *)
    81 lemmas equiv_hypnatrel_iff =
    82     eq_equiv_class_iff [OF equiv_hypnatrel UNIV_I UNIV_I, simp]
    83 
    84 lemma hypnatrel_in_hypnat [simp]: "hypnatrel``{x}:hypnat"
    85 by (simp add: hypnat_def hypnatrel_def quotient_def, blast)
    86 
    87 lemma inj_on_Abs_hypnat: "inj_on Abs_hypnat hypnat"
    88 apply (rule inj_on_inverseI)
    89 apply (erule Abs_hypnat_inverse)
    90 done
    91 
    92 declare inj_on_Abs_hypnat [THEN inj_on_iff, simp]
    93         Abs_hypnat_inverse [simp]
    94 
    95 declare equiv_hypnatrel [THEN eq_equiv_class_iff, simp]
    96 
    97 declare hypnatrel_iff [iff]
    98 
    99 
   100 lemma inj_Rep_hypnat: "inj(Rep_hypnat)"
   101 apply (rule inj_on_inverseI)
   102 apply (rule Rep_hypnat_inverse)
   103 done
   104 
   105 lemma lemma_hypnatrel_refl: "x \<in> hypnatrel `` {x}"
   106 by (simp add: hypnatrel_def)
   107 
   108 declare lemma_hypnatrel_refl [simp]
   109 
   110 lemma hypnat_empty_not_mem: "{} \<notin> hypnat"
   111 apply (simp add: hypnat_def)
   112 apply (auto elim!: quotientE equalityCE)
   113 done
   114 
   115 declare hypnat_empty_not_mem [simp]
   116 
   117 lemma Rep_hypnat_nonempty: "Rep_hypnat x \<noteq> {}"
   118 by (cut_tac x = x in Rep_hypnat, auto)
   119 
   120 declare Rep_hypnat_nonempty [simp]
   121 
   122 
   123 lemma eq_Abs_hypnat:
   124     "(!!x. z = Abs_hypnat(hypnatrel``{x}) ==> P) ==> P"
   125 apply (rule_tac x1=z in Rep_hypnat [unfolded hypnat_def, THEN quotientE])
   126 apply (drule_tac f = Abs_hypnat in arg_cong)
   127 apply (force simp add: Rep_hypnat_inverse)
   128 done
   129 
   130 theorem hypnat_cases [case_names Abs_hypnat, cases type: hypnat]:
   131     "(!!x. z = Abs_hypnat(hypnatrel``{x}) ==> P) ==> P"
   132 by (rule eq_Abs_hypnat [of z], blast)
   133 
   134 subsection{*Hypernat Addition*}
   135 
   136 lemma hypnat_add_congruent2:
   137      "congruent2 hypnatrel hypnatrel (%X Y. hypnatrel``{%n. X n + Y n})"
   138 by (simp add: congruent2_def, auto, ultra)
   139 
   140 lemma hypnat_add:
   141   "Abs_hypnat(hypnatrel``{%n. X n}) + Abs_hypnat(hypnatrel``{%n. Y n}) =
   142    Abs_hypnat(hypnatrel``{%n. X n + Y n})"
   143 by (simp add: hypnat_add_def 
   144     UN_equiv_class2 [OF equiv_hypnatrel equiv_hypnatrel hypnat_add_congruent2])
   145 
   146 lemma hypnat_add_commute: "(z::hypnat) + w = w + z"
   147 apply (cases z, cases w)
   148 apply (simp add: add_ac hypnat_add)
   149 done
   150 
   151 lemma hypnat_add_assoc: "((z1::hypnat) + z2) + z3 = z1 + (z2 + z3)"
   152 apply (cases z1, cases z2, cases z3)
   153 apply (simp add: hypnat_add nat_add_assoc)
   154 done
   155 
   156 lemma hypnat_add_zero_left: "(0::hypnat) + z = z"
   157 apply (cases z)
   158 apply (simp add: hypnat_zero_def hypnat_add)
   159 done
   160 
   161 instance hypnat :: comm_monoid_add
   162   by intro_classes
   163     (assumption |
   164       rule hypnat_add_commute hypnat_add_assoc hypnat_add_zero_left)+
   165 
   166 
   167 subsection{*Subtraction inverse on @{typ hypreal}*}
   168 
   169 
   170 lemma hypnat_minus_congruent2:
   171     "congruent2 hypnatrel hypnatrel (%X Y. hypnatrel``{%n. X n - Y n})"
   172 by (simp add: congruent2_def, auto, ultra)
   173 
   174 lemma hypnat_minus:
   175   "Abs_hypnat(hypnatrel``{%n. X n}) - Abs_hypnat(hypnatrel``{%n. Y n}) =
   176    Abs_hypnat(hypnatrel``{%n. X n - Y n})"
   177 by (simp add: hypnat_minus_def 
   178   UN_equiv_class2 [OF equiv_hypnatrel equiv_hypnatrel hypnat_minus_congruent2])
   179 
   180 lemma hypnat_minus_zero: "z - z = (0::hypnat)"
   181 apply (cases z)
   182 apply (simp add: hypnat_zero_def hypnat_minus)
   183 done
   184 
   185 lemma hypnat_diff_0_eq_0: "(0::hypnat) - n = 0"
   186 apply (cases n)
   187 apply (simp add: hypnat_minus hypnat_zero_def)
   188 done
   189 
   190 declare hypnat_minus_zero [simp] hypnat_diff_0_eq_0 [simp]
   191 
   192 lemma hypnat_add_is_0: "(m+n = (0::hypnat)) = (m=0 & n=0)"
   193 apply (cases m, cases n)
   194 apply (auto intro: FreeUltrafilterNat_subset dest: FreeUltrafilterNat_Int simp add: hypnat_zero_def hypnat_add)
   195 done
   196 
   197 declare hypnat_add_is_0 [iff]
   198 
   199 lemma hypnat_diff_diff_left: "(i::hypnat) - j - k = i - (j+k)"
   200 apply (cases i, cases j, cases k)
   201 apply (simp add: hypnat_minus hypnat_add diff_diff_left)
   202 done
   203 
   204 lemma hypnat_diff_commute: "(i::hypnat) - j - k = i-k-j"
   205 by (simp add: hypnat_diff_diff_left hypnat_add_commute)
   206 
   207 lemma hypnat_diff_add_inverse: "((n::hypnat) + m) - n = m"
   208 apply (cases m, cases n)
   209 apply (simp add: hypnat_minus hypnat_add)
   210 done
   211 declare hypnat_diff_add_inverse [simp]
   212 
   213 lemma hypnat_diff_add_inverse2:  "((m::hypnat) + n) - n = m"
   214 apply (cases m, cases n)
   215 apply (simp add: hypnat_minus hypnat_add)
   216 done
   217 declare hypnat_diff_add_inverse2 [simp]
   218 
   219 lemma hypnat_diff_cancel: "((k::hypnat) + m) - (k+n) = m - n"
   220 apply (cases k, cases m, cases n)
   221 apply (simp add: hypnat_minus hypnat_add)
   222 done
   223 declare hypnat_diff_cancel [simp]
   224 
   225 lemma hypnat_diff_cancel2: "((m::hypnat) + k) - (n+k) = m - n"
   226 by (simp add: hypnat_add_commute [of _ k])
   227 declare hypnat_diff_cancel2 [simp]
   228 
   229 lemma hypnat_diff_add_0: "(n::hypnat) - (n+m) = (0::hypnat)"
   230 apply (cases m, cases n)
   231 apply (simp add: hypnat_zero_def hypnat_minus hypnat_add)
   232 done
   233 declare hypnat_diff_add_0 [simp]
   234 
   235 
   236 subsection{*Hyperreal Multiplication*}
   237 
   238 lemma hypnat_mult_congruent2:
   239     "congruent2 hypnatrel hypnatrel (%X Y. hypnatrel``{%n. X n * Y n})"
   240 by (simp add: congruent2_def, auto, ultra)
   241 
   242 lemma hypnat_mult:
   243   "Abs_hypnat(hypnatrel``{%n. X n}) * Abs_hypnat(hypnatrel``{%n. Y n}) =
   244    Abs_hypnat(hypnatrel``{%n. X n * Y n})"
   245 by (simp add: hypnat_mult_def
   246    UN_equiv_class2 [OF equiv_hypnatrel equiv_hypnatrel hypnat_mult_congruent2])
   247 
   248 lemma hypnat_mult_commute: "(z::hypnat) * w = w * z"
   249 by (cases z, cases w, simp add: hypnat_mult mult_ac)
   250 
   251 lemma hypnat_mult_assoc: "((z1::hypnat) * z2) * z3 = z1 * (z2 * z3)"
   252 apply (cases z1, cases z2, cases z3)
   253 apply (simp add: hypnat_mult mult_assoc)
   254 done
   255 
   256 lemma hypnat_mult_1: "(1::hypnat) * z = z"
   257 apply (cases z)
   258 apply (simp add: hypnat_mult hypnat_one_def)
   259 done
   260 
   261 lemma hypnat_diff_mult_distrib: "((m::hypnat) - n) * k = (m * k) - (n * k)"
   262 apply (cases k, cases m, cases n)
   263 apply (simp add: hypnat_mult hypnat_minus diff_mult_distrib)
   264 done
   265 
   266 lemma hypnat_diff_mult_distrib2: "(k::hypnat) * (m - n) = (k * m) - (k * n)"
   267 by (simp add: hypnat_diff_mult_distrib hypnat_mult_commute [of k])
   268 
   269 lemma hypnat_add_mult_distrib: "((z1::hypnat) + z2) * w = (z1 * w) + (z2 * w)"
   270 apply (cases z1, cases z2, cases w)
   271 apply (simp add: hypnat_mult hypnat_add add_mult_distrib)
   272 done
   273 
   274 lemma hypnat_add_mult_distrib2: "(w::hypnat) * (z1 + z2) = (w * z1) + (w * z2)"
   275 by (simp add: hypnat_mult_commute [of w] hypnat_add_mult_distrib)
   276 
   277 text{*one and zero are distinct*}
   278 lemma hypnat_zero_not_eq_one: "(0::hypnat) \<noteq> (1::hypnat)"
   279 by (auto simp add: hypnat_zero_def hypnat_one_def)
   280 declare hypnat_zero_not_eq_one [THEN not_sym, simp]
   281 
   282 
   283 text{*The Hypernaturals Form A comm_semiring_1_cancel*}
   284 instance hypnat :: comm_semiring_1_cancel
   285 proof
   286   fix i j k :: hypnat
   287   show "(i * j) * k = i * (j * k)" by (rule hypnat_mult_assoc)
   288   show "i * j = j * i" by (rule hypnat_mult_commute)
   289   show "1 * i = i" by (rule hypnat_mult_1)
   290   show "(i + j) * k = i * k + j * k" by (simp add: hypnat_add_mult_distrib)
   291   show "0 \<noteq> (1::hypnat)" by (rule hypnat_zero_not_eq_one)
   292   assume "k+i = k+j"
   293   hence "(k+i) - k = (k+j) - k" by simp
   294   thus "i=j" by simp
   295 qed
   296 
   297 
   298 subsection{*Properties of The @{text "\<le>"} Relation*}
   299 
   300 lemma hypnat_le:
   301       "(Abs_hypnat(hypnatrel``{%n. X n}) \<le> Abs_hypnat(hypnatrel``{%n. Y n})) =
   302        ({n. X n \<le> Y n} \<in> FreeUltrafilterNat)"
   303 apply (simp add: hypnat_le_def)
   304 apply (auto intro!: lemma_hypnatrel_refl, ultra)
   305 done
   306 
   307 lemma hypnat_le_refl: "w \<le> (w::hypnat)"
   308 apply (cases w)
   309 apply (simp add: hypnat_le)
   310 done
   311 
   312 lemma hypnat_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::hypnat)"
   313 apply (cases i, cases j, cases k)
   314 apply (simp add: hypnat_le, ultra)
   315 done
   316 
   317 lemma hypnat_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::hypnat)"
   318 apply (cases z, cases w)
   319 apply (simp add: hypnat_le, ultra)
   320 done
   321 
   322 (* Axiom 'order_less_le' of class 'order': *)
   323 lemma hypnat_less_le: "((w::hypnat) < z) = (w \<le> z & w \<noteq> z)"
   324 by (simp add: hypnat_less_def)
   325 
   326 instance hypnat :: order
   327   by intro_classes
   328     (assumption |
   329       rule hypnat_le_refl hypnat_le_trans hypnat_le_anti_sym hypnat_less_le)+
   330 
   331 (* Axiom 'linorder_linear' of class 'linorder': *)
   332 lemma hypnat_le_linear: "(z::hypnat) \<le> w | w \<le> z"
   333 apply (cases z, cases w)
   334 apply (auto simp add: hypnat_le, ultra)
   335 done
   336 
   337 instance hypnat :: linorder
   338   by intro_classes (rule hypnat_le_linear)
   339 
   340 lemma hypnat_add_left_mono: "x \<le> y ==> z + x \<le> z + (y::hypnat)"
   341 apply (cases x, cases y, cases z)
   342 apply (auto simp add: hypnat_le hypnat_add)
   343 done
   344 
   345 lemma hypnat_mult_less_mono2: "[| (0::hypnat)<z; x<y |] ==> z*x<z*y"
   346 apply (cases x, cases y, cases z)
   347 apply (simp add: hypnat_zero_def  hypnat_mult linorder_not_le [symmetric])
   348 apply (auto simp add: hypnat_le, ultra)
   349 done
   350 
   351 
   352 subsection{*The Hypernaturals Form an Ordered comm_semiring_1_cancel*}
   353 
   354 instance hypnat :: ordered_semidom
   355 proof
   356   fix x y z :: hypnat
   357   show "0 < (1::hypnat)"
   358     by (simp add: hypnat_zero_def hypnat_one_def linorder_not_le [symmetric],
   359         simp add: hypnat_le)
   360   show "x \<le> y ==> z + x \<le> z + y"
   361     by (rule hypnat_add_left_mono)
   362   show "x < y ==> 0 < z ==> z * x < z * y"
   363     by (simp add: hypnat_mult_less_mono2)
   364 qed
   365 
   366 lemma hypnat_le_zero_cancel [iff]: "(n \<le> (0::hypnat)) = (n = 0)"
   367 apply (cases n)
   368 apply (simp add: hypnat_zero_def hypnat_le)
   369 done
   370 
   371 lemma hypnat_mult_is_0 [simp]: "(m*n = (0::hypnat)) = (m=0 | n=0)"
   372 apply (cases m, cases n)
   373 apply (auto simp add: hypnat_zero_def hypnat_mult, ultra+)
   374 done
   375 
   376 lemma hypnat_diff_is_0_eq [simp]: "((m::hypnat) - n = 0) = (m \<le> n)"
   377 apply (cases m, cases n)
   378 apply (simp add: hypnat_le hypnat_minus hypnat_zero_def)
   379 done
   380 
   381 
   382 
   383 subsection{*Theorems for Ordering*}
   384 
   385 lemma hypnat_less:
   386       "(Abs_hypnat(hypnatrel``{%n. X n}) < Abs_hypnat(hypnatrel``{%n. Y n})) =
   387        ({n. X n < Y n} \<in> FreeUltrafilterNat)"
   388 apply (auto simp add: hypnat_le  linorder_not_le [symmetric])
   389 apply (ultra+)
   390 done
   391 
   392 lemma hypnat_not_less0 [iff]: "~ n < (0::hypnat)"
   393 apply (cases n)
   394 apply (auto simp add: hypnat_zero_def hypnat_less)
   395 done
   396 
   397 lemma hypnat_less_one [iff]:
   398       "(n < (1::hypnat)) = (n=0)"
   399 apply (cases n)
   400 apply (auto simp add: hypnat_zero_def hypnat_one_def hypnat_less)
   401 done
   402 
   403 lemma hypnat_add_diff_inverse: "~ m<n ==> n+(m-n) = (m::hypnat)"
   404 apply (cases m, cases n)
   405 apply (simp add: hypnat_minus hypnat_add hypnat_less split: nat_diff_split, ultra)
   406 done
   407 
   408 lemma hypnat_le_add_diff_inverse [simp]: "n \<le> m ==> n+(m-n) = (m::hypnat)"
   409 by (simp add: hypnat_add_diff_inverse linorder_not_less [symmetric])
   410 
   411 lemma hypnat_le_add_diff_inverse2 [simp]: "n\<le>m ==> (m-n)+n = (m::hypnat)"
   412 by (simp add: hypnat_le_add_diff_inverse hypnat_add_commute)
   413 
   414 declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le]
   415 
   416 lemma hypnat_le0 [iff]: "(0::hypnat) \<le> n"
   417 by (simp add: linorder_not_less [symmetric])
   418 
   419 lemma hypnat_add_self_le [simp]: "(x::hypnat) \<le> n + x"
   420 by (insert add_right_mono [of 0 n x], simp)
   421 
   422 lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)"
   423 by (insert add_strict_left_mono [OF zero_less_one], auto)
   424 
   425 lemma hypnat_neq0_conv [iff]: "(n \<noteq> 0) = (0 < (n::hypnat))"
   426 by (simp add: order_less_le)
   427 
   428 lemma hypnat_gt_zero_iff: "((0::hypnat) < n) = ((1::hypnat) \<le> n)"
   429 by (auto simp add: linorder_not_less [symmetric])
   430 
   431 lemma hypnat_gt_zero_iff2: "(0 < n) = (\<exists>m. n = m + (1::hypnat))"
   432 apply safe
   433  apply (rule_tac x = "n - (1::hypnat) " in exI)
   434  apply (simp add: hypnat_gt_zero_iff) 
   435 apply (insert add_le_less_mono [OF _ zero_less_one, of 0], auto) 
   436 done
   437 
   438 lemma hypnat_add_self_not_less: "~ (x + y < (x::hypnat))"
   439 by (simp add: linorder_not_le [symmetric] add_commute [of x]) 
   440 
   441 lemma hypnat_diff_split:
   442     "P(a - b::hypnat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
   443     -- {* elimination of @{text -} on @{text hypnat} *}
   444 proof (cases "a<b" rule: case_split)
   445   case True
   446     thus ?thesis
   447       by (auto simp add: hypnat_add_self_not_less order_less_imp_le 
   448                          hypnat_diff_is_0_eq [THEN iffD2])
   449 next
   450   case False
   451     thus ?thesis
   452       by (auto simp add: linorder_not_less dest: order_le_less_trans) 
   453 qed
   454 
   455 
   456 subsection{*The Embedding @{term hypnat_of_nat} Preserves comm_ring_1 and 
   457       Order Properties*}
   458 
   459 constdefs
   460 
   461   hypnat_of_nat   :: "nat => hypnat"
   462   "hypnat_of_nat m  == of_nat m"
   463 
   464   (* the set of infinite hypernatural numbers *)
   465   HNatInfinite :: "hypnat set"
   466   "HNatInfinite == {n. n \<notin> Nats}"
   467 
   468 
   469 lemma hypnat_of_nat_add:
   470       "hypnat_of_nat ((z::nat) + w) = hypnat_of_nat z + hypnat_of_nat w"
   471 by (simp add: hypnat_of_nat_def)
   472 
   473 lemma hypnat_of_nat_mult:
   474       "hypnat_of_nat (z * w) = hypnat_of_nat z * hypnat_of_nat w"
   475 by (simp add: hypnat_of_nat_def)
   476 
   477 lemma hypnat_of_nat_less_iff [simp]:
   478       "(hypnat_of_nat z < hypnat_of_nat w) = (z < w)"
   479 by (simp add: hypnat_of_nat_def)
   480 
   481 lemma hypnat_of_nat_le_iff [simp]:
   482       "(hypnat_of_nat z \<le> hypnat_of_nat w) = (z \<le> w)"
   483 by (simp add: hypnat_of_nat_def)
   484 
   485 lemma hypnat_of_nat_eq_iff [simp]:
   486       "(hypnat_of_nat z = hypnat_of_nat w) = (z = w)"
   487 by (simp add: hypnat_of_nat_def)
   488 
   489 lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = (1::hypnat)"
   490 by (simp add: hypnat_of_nat_def)
   491 
   492 lemma hypnat_of_nat_zero [simp]: "hypnat_of_nat 0 = 0"
   493 by (simp add: hypnat_of_nat_def)
   494 
   495 lemma hypnat_of_nat_zero_iff [simp]: "(hypnat_of_nat n = 0) = (n = 0)"
   496 by (simp add: hypnat_of_nat_def)
   497 
   498 lemma hypnat_of_nat_Suc [simp]:
   499      "hypnat_of_nat (Suc n) = hypnat_of_nat n + (1::hypnat)"
   500 by (simp add: hypnat_of_nat_def)
   501 
   502 lemma hypnat_of_nat_minus:
   503       "hypnat_of_nat ((j::nat) - k) = hypnat_of_nat j - hypnat_of_nat k"
   504 by (simp add: hypnat_of_nat_def split: nat_diff_split hypnat_diff_split)
   505 
   506 
   507 subsection{*Existence of an Infinite Hypernatural Number*}
   508 
   509 lemma hypnat_omega: "hypnatrel``{%n::nat. n} \<in> hypnat"
   510 by auto
   511 
   512 lemma Rep_hypnat_omega: "Rep_hypnat(whn) \<in> hypnat"
   513 by (simp add: hypnat_omega_def)
   514 
   515 text{*Existence of infinite number not corresponding to any natural number
   516 follows because member @{term FreeUltrafilterNat} is not finite.
   517 See @{text HyperDef.thy} for similar argument.*}
   518 
   519 
   520 subsection{*Properties of the set @{term Nats} of Embedded Natural Numbers*}
   521 
   522 lemma of_nat_eq_add [rule_format]:
   523      "\<forall>d::hypnat. of_nat m = of_nat n + d --> d \<in> range of_nat"
   524 apply (induct n) 
   525 apply (auto simp add: add_assoc) 
   526 apply (case_tac x) 
   527 apply (auto simp add: add_commute [of 1]) 
   528 done
   529 
   530 lemma Nats_diff [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> (a-b :: hypnat) \<in> Nats"
   531 by (auto simp add: of_nat_eq_add Nats_def split: hypnat_diff_split)
   532 
   533 lemma lemma_unbounded_set [simp]: "{n::nat. m < n} \<in> FreeUltrafilterNat"
   534 apply (insert finite_atMost [of m]) 
   535 apply (simp add: atMost_def) 
   536 apply (drule FreeUltrafilterNat_finite) 
   537 apply (drule FreeUltrafilterNat_Compl_mem, ultra)
   538 done
   539 
   540 lemma Compl_Collect_le: "- {n::nat. N \<le> n} = {n. n < N}"
   541 by (simp add: Collect_neg_eq [symmetric] linorder_not_le) 
   542 
   543 
   544 lemma hypnat_of_nat_eq:
   545      "hypnat_of_nat m  = Abs_hypnat(hypnatrel``{%n::nat. m})"
   546 apply (induct m) 
   547 apply (simp_all add: hypnat_zero_def hypnat_one_def hypnat_add) 
   548 done
   549 
   550 lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}"
   551 by (force simp add: hypnat_of_nat_def Nats_def) 
   552 
   553 lemma hypnat_omega_gt_SHNat:
   554      "n \<in> Nats ==> n < whn"
   555 apply (auto simp add: hypnat_of_nat_eq hypnat_less_def hypnat_le_def
   556                       hypnat_omega_def SHNat_eq)
   557  prefer 2 apply (force dest: FreeUltrafilterNat_not_finite)
   558 apply (auto intro!: exI)
   559 apply (rule cofinite_mem_FreeUltrafilterNat)
   560 apply (simp add: Compl_Collect_le finite_nat_segment) 
   561 done
   562 
   563 (* Infinite hypernatural not in embedded Nats *)
   564 lemma SHNAT_omega_not_mem [simp]: "whn \<notin> Nats"
   565 by (blast dest: hypnat_omega_gt_SHNat)
   566 
   567 lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn"
   568 apply (insert hypnat_omega_gt_SHNat [of "hypnat_of_nat n"])
   569 apply (simp add: hypnat_of_nat_def) 
   570 done
   571 
   572 lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn"
   573 by (rule hypnat_of_nat_less_whn [THEN order_less_imp_le])
   574 
   575 lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn"
   576 by (simp add: hypnat_omega_gt_SHNat)
   577 
   578 lemma hypnat_one_less_hypnat_omega [simp]: "(1::hypnat) < whn"
   579 by (simp add: hypnat_omega_gt_SHNat)
   580 
   581 
   582 subsection{*Infinite Hypernatural Numbers -- @{term HNatInfinite}*}
   583 
   584 lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite"
   585 by (simp add: HNatInfinite_def)
   586 
   587 lemma Nats_not_HNatInfinite_iff: "(x \<in> Nats) = (x \<notin> HNatInfinite)"
   588 by (simp add: HNatInfinite_def)
   589 
   590 lemma HNatInfinite_not_Nats_iff: "(x \<in> HNatInfinite) = (x \<notin> Nats)"
   591 by (simp add: HNatInfinite_def)
   592 
   593 
   594 subsection{*Alternative Characterization of the Set of Infinite Hypernaturals:
   595 @{term "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"}*}
   596 
   597 (*??delete? similar reasoning in hypnat_omega_gt_SHNat above*)
   598 lemma HNatInfinite_FreeUltrafilterNat_lemma:
   599      "\<forall>N::nat. {n. f n \<noteq> N} \<in> FreeUltrafilterNat
   600       ==> {n. N < f n} \<in> FreeUltrafilterNat"
   601 apply (induct_tac "N")
   602 apply (drule_tac x = 0 in spec)
   603 apply (rule ccontr, drule FreeUltrafilterNat_Compl_mem, drule FreeUltrafilterNat_Int, assumption, simp)
   604 apply (drule_tac x = "Suc n" in spec, ultra)
   605 done
   606 
   607 lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
   608 apply (auto simp add: HNatInfinite_def SHNat_eq hypnat_of_nat_eq)
   609 apply (rule_tac z = x in eq_Abs_hypnat)
   610 apply (auto elim: HNatInfinite_FreeUltrafilterNat_lemma 
   611             simp add: hypnat_less FreeUltrafilterNat_Compl_iff1 
   612                       Collect_neg_eq [symmetric])
   613 done
   614 
   615 
   616 subsection{*Alternative Characterization of @{term HNatInfinite} using 
   617 Free Ultrafilter*}
   618 
   619 lemma HNatInfinite_FreeUltrafilterNat:
   620      "x \<in> HNatInfinite 
   621       ==> \<exists>X \<in> Rep_hypnat x. \<forall>u. {n. u < X n}:  FreeUltrafilterNat"
   622 apply (cases x)
   623 apply (auto simp add: HNatInfinite_iff SHNat_eq hypnat_of_nat_eq)
   624 apply (rule bexI [OF _ lemma_hypnatrel_refl], clarify) 
   625 apply (auto simp add: hypnat_of_nat_def hypnat_less)
   626 done
   627 
   628 lemma FreeUltrafilterNat_HNatInfinite:
   629      "\<exists>X \<in> Rep_hypnat x. \<forall>u. {n. u < X n}:  FreeUltrafilterNat
   630       ==> x \<in> HNatInfinite"
   631 apply (cases x)
   632 apply (auto simp add: hypnat_less HNatInfinite_iff SHNat_eq hypnat_of_nat_eq)
   633 apply (drule spec, ultra, auto) 
   634 done
   635 
   636 lemma HNatInfinite_FreeUltrafilterNat_iff:
   637      "(x \<in> HNatInfinite) = 
   638       (\<exists>X \<in> Rep_hypnat x. \<forall>u. {n. u < X n}:  FreeUltrafilterNat)"
   639 by (blast intro: HNatInfinite_FreeUltrafilterNat 
   640                  FreeUltrafilterNat_HNatInfinite)
   641 
   642 lemma HNatInfinite_gt_one [simp]: "x \<in> HNatInfinite ==> (1::hypnat) < x"
   643 by (auto simp add: HNatInfinite_iff)
   644 
   645 lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite"
   646 apply (auto simp add: HNatInfinite_iff)
   647 apply (drule_tac a = " (1::hypnat) " in equals0D)
   648 apply simp
   649 done
   650 
   651 lemma HNatInfinite_not_eq_zero: "x \<in> HNatInfinite ==> 0 < x"
   652 apply (drule HNatInfinite_gt_one) 
   653 apply (auto simp add: order_less_trans [OF zero_less_one])
   654 done
   655 
   656 lemma HNatInfinite_ge_one [simp]: "x \<in> HNatInfinite ==> (1::hypnat) \<le> x"
   657 by (blast intro: order_less_imp_le HNatInfinite_gt_one)
   658 
   659 
   660 subsection{*Closure Rules*}
   661 
   662 lemma HNatInfinite_add:
   663      "[| x \<in> HNatInfinite; y \<in> HNatInfinite |] ==> x + y \<in> HNatInfinite"
   664 apply (auto simp add: HNatInfinite_iff)
   665 apply (drule bspec, assumption)
   666 apply (drule bspec [OF _ Nats_0])
   667 apply (drule add_strict_mono, assumption, simp)
   668 done
   669 
   670 lemma HNatInfinite_SHNat_add:
   671      "[| x \<in> HNatInfinite; y \<in> Nats |] ==> x + y \<in> HNatInfinite"
   672 apply (auto simp add: HNatInfinite_not_Nats_iff) 
   673 apply (drule_tac a = "x + y" in Nats_diff, auto) 
   674 done
   675 
   676 lemma HNatInfinite_Nats_imp_less: "[| x \<in> HNatInfinite; y \<in> Nats |] ==> y < x"
   677 by (simp add: HNatInfinite_iff) 
   678 
   679 lemma HNatInfinite_SHNat_diff:
   680   assumes x: "x \<in> HNatInfinite" and y: "y \<in> Nats" 
   681   shows "x - y \<in> HNatInfinite"
   682 proof -
   683   have "y < x" by (simp add: HNatInfinite_Nats_imp_less prems)
   684   hence "x - y + y = x" by (simp add: order_less_imp_le)
   685   with x show ?thesis
   686     by (force simp add: HNatInfinite_not_Nats_iff 
   687               dest: Nats_add [of "x-y", OF _ y]) 
   688 qed
   689 
   690 lemma HNatInfinite_add_one:
   691      "x \<in> HNatInfinite ==> x + (1::hypnat) \<in> HNatInfinite"
   692 by (auto intro: HNatInfinite_SHNat_add)
   693 
   694 lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite ==> \<exists>y. x = y + (1::hypnat)"
   695 apply (rule_tac x = "x - (1::hypnat) " in exI)
   696 apply auto
   697 done
   698 
   699 
   700 subsection{*Embedding of the Hypernaturals into the Hyperreals*}
   701 text{*Obtained using the nonstandard extension of the naturals*}
   702 
   703 constdefs
   704   hypreal_of_hypnat :: "hypnat => hypreal"
   705    "hypreal_of_hypnat N  == 
   706       Abs_hypreal(\<Union>X \<in> Rep_hypnat(N). hyprel``{%n::nat. real (X n)})"
   707 
   708 
   709 lemma HNat_hypreal_of_nat [simp]: "hypreal_of_nat N \<in> Nats"
   710 by (simp add: hypreal_of_nat_def) 
   711 
   712 (*WARNING: FRAGILE!*)
   713 lemma lemma_hyprel_FUFN:
   714      "(Ya \<in> hyprel ``{%n. f(n)}) = ({n. f n = Ya n} \<in> FreeUltrafilterNat)"
   715 by force
   716 
   717 lemma hypreal_of_hypnat:
   718       "hypreal_of_hypnat (Abs_hypnat(hypnatrel``{%n. X n})) =
   719        Abs_hypreal(hyprel `` {%n. real (X n)})"
   720 apply (simp add: hypreal_of_hypnat_def)
   721 apply (rule_tac f = Abs_hypreal in arg_cong)
   722 apply (auto elim: FreeUltrafilterNat_Int [THEN FreeUltrafilterNat_subset] 
   723        simp add: lemma_hyprel_FUFN)
   724 done
   725 
   726 lemma hypreal_of_hypnat_inject [simp]:
   727      "(hypreal_of_hypnat m = hypreal_of_hypnat n) = (m=n)"
   728 apply (cases m, cases n)
   729 apply (auto simp add: hypreal_of_hypnat)
   730 done
   731 
   732 lemma hypreal_of_hypnat_zero: "hypreal_of_hypnat 0 = 0"
   733 by (simp add: hypnat_zero_def hypreal_zero_def hypreal_of_hypnat)
   734 
   735 lemma hypreal_of_hypnat_one: "hypreal_of_hypnat (1::hypnat) = 1"
   736 by (simp add: hypnat_one_def hypreal_one_def hypreal_of_hypnat)
   737 
   738 lemma hypreal_of_hypnat_add [simp]:
   739      "hypreal_of_hypnat (m + n) = hypreal_of_hypnat m + hypreal_of_hypnat n"
   740 apply (cases m, cases n)
   741 apply (simp add: hypreal_of_hypnat hypreal_add hypnat_add real_of_nat_add)
   742 done
   743 
   744 lemma hypreal_of_hypnat_mult [simp]:
   745      "hypreal_of_hypnat (m * n) = hypreal_of_hypnat m * hypreal_of_hypnat n"
   746 apply (cases m, cases n)
   747 apply (simp add: hypreal_of_hypnat hypreal_mult hypnat_mult real_of_nat_mult)
   748 done
   749 
   750 lemma hypreal_of_hypnat_less_iff [simp]:
   751      "(hypreal_of_hypnat n < hypreal_of_hypnat m) = (n < m)"
   752 apply (cases m, cases n)
   753 apply (simp add: hypreal_of_hypnat hypreal_less hypnat_less)
   754 done
   755 
   756 lemma hypreal_of_hypnat_eq_zero_iff: "(hypreal_of_hypnat N = 0) = (N = 0)"
   757 by (simp add: hypreal_of_hypnat_zero [symmetric])
   758 declare hypreal_of_hypnat_eq_zero_iff [simp]
   759 
   760 lemma hypreal_of_hypnat_ge_zero [simp]: "0 \<le> hypreal_of_hypnat n"
   761 apply (cases n)
   762 apply (simp add: hypreal_of_hypnat hypreal_zero_num hypreal_le)
   763 done
   764 
   765 lemma HNatInfinite_inverse_Infinitesimal [simp]:
   766      "n \<in> HNatInfinite ==> inverse (hypreal_of_hypnat n) \<in> Infinitesimal"
   767 apply (cases n)
   768 apply (auto simp add: hypreal_of_hypnat hypreal_inverse 
   769       HNatInfinite_FreeUltrafilterNat_iff Infinitesimal_FreeUltrafilterNat_iff2)
   770 apply (rule bexI, rule_tac [2] lemma_hyprel_refl, auto)
   771 apply (drule_tac x = "m + 1" in spec, ultra)
   772 done
   773 
   774 lemma HNatInfinite_hypreal_of_hypnat_gt_zero:
   775      "N \<in> HNatInfinite ==> 0 < hypreal_of_hypnat N"
   776 apply (rule ccontr)
   777 apply (simp add: hypreal_of_hypnat_zero [symmetric] linorder_not_less)
   778 done
   779 
   780 
   781 ML
   782 {*
   783 val hypnat_of_nat_def = thm"hypnat_of_nat_def";
   784 val HNatInfinite_def = thm"HNatInfinite_def";
   785 val hypreal_of_hypnat_def = thm"hypreal_of_hypnat_def";
   786 val hypnat_zero_def = thm"hypnat_zero_def";
   787 val hypnat_one_def = thm"hypnat_one_def";
   788 val hypnat_omega_def = thm"hypnat_omega_def";
   789 
   790 val hypnatrel_iff = thm "hypnatrel_iff";
   791 val hypnatrel_in_hypnat = thm "hypnatrel_in_hypnat";
   792 val inj_on_Abs_hypnat = thm "inj_on_Abs_hypnat";
   793 val inj_Rep_hypnat = thm "inj_Rep_hypnat";
   794 val lemma_hypnatrel_refl = thm "lemma_hypnatrel_refl";
   795 val hypnat_empty_not_mem = thm "hypnat_empty_not_mem";
   796 val Rep_hypnat_nonempty = thm "Rep_hypnat_nonempty";
   797 val eq_Abs_hypnat = thm "eq_Abs_hypnat";
   798 val hypnat_add = thm "hypnat_add";
   799 val hypnat_add_commute = thm "hypnat_add_commute";
   800 val hypnat_add_assoc = thm "hypnat_add_assoc";
   801 val hypnat_add_zero_left = thm "hypnat_add_zero_left";
   802 val hypnat_minus_congruent2 = thm "hypnat_minus_congruent2";
   803 val hypnat_minus = thm "hypnat_minus";
   804 val hypnat_minus_zero = thm "hypnat_minus_zero";
   805 val hypnat_diff_0_eq_0 = thm "hypnat_diff_0_eq_0";
   806 val hypnat_add_is_0 = thm "hypnat_add_is_0";
   807 val hypnat_diff_diff_left = thm "hypnat_diff_diff_left";
   808 val hypnat_diff_commute = thm "hypnat_diff_commute";
   809 val hypnat_diff_add_inverse = thm "hypnat_diff_add_inverse";
   810 val hypnat_diff_add_inverse2 = thm "hypnat_diff_add_inverse2";
   811 val hypnat_diff_cancel = thm "hypnat_diff_cancel";
   812 val hypnat_diff_cancel2 = thm "hypnat_diff_cancel2";
   813 val hypnat_diff_add_0 = thm "hypnat_diff_add_0";
   814 val hypnat_mult_congruent2 = thm "hypnat_mult_congruent2";
   815 val hypnat_mult = thm "hypnat_mult";
   816 val hypnat_mult_commute = thm "hypnat_mult_commute";
   817 val hypnat_mult_assoc = thm "hypnat_mult_assoc";
   818 val hypnat_mult_1 = thm "hypnat_mult_1";
   819 val hypnat_diff_mult_distrib = thm "hypnat_diff_mult_distrib";
   820 val hypnat_diff_mult_distrib2 = thm "hypnat_diff_mult_distrib2";
   821 val hypnat_add_mult_distrib = thm "hypnat_add_mult_distrib";
   822 val hypnat_add_mult_distrib2 = thm "hypnat_add_mult_distrib2";
   823 val hypnat_zero_not_eq_one = thm "hypnat_zero_not_eq_one";
   824 val hypnat_le = thm "hypnat_le";
   825 val hypnat_le_refl = thm "hypnat_le_refl";
   826 val hypnat_le_trans = thm "hypnat_le_trans";
   827 val hypnat_le_anti_sym = thm "hypnat_le_anti_sym";
   828 val hypnat_less_le = thm "hypnat_less_le";
   829 val hypnat_le_linear = thm "hypnat_le_linear";
   830 val hypnat_add_left_mono = thm "hypnat_add_left_mono";
   831 val hypnat_mult_less_mono2 = thm "hypnat_mult_less_mono2";
   832 val hypnat_mult_is_0 = thm "hypnat_mult_is_0";
   833 val hypnat_less = thm "hypnat_less";
   834 val hypnat_not_less0 = thm "hypnat_not_less0";
   835 val hypnat_less_one = thm "hypnat_less_one";
   836 val hypnat_add_diff_inverse = thm "hypnat_add_diff_inverse";
   837 val hypnat_le_add_diff_inverse = thm "hypnat_le_add_diff_inverse";
   838 val hypnat_le_add_diff_inverse2 = thm "hypnat_le_add_diff_inverse2";
   839 val hypnat_le0 = thm "hypnat_le0";
   840 val hypnat_add_self_le = thm "hypnat_add_self_le";
   841 val hypnat_add_one_self_less = thm "hypnat_add_one_self_less";
   842 val hypnat_neq0_conv = thm "hypnat_neq0_conv";
   843 val hypnat_gt_zero_iff = thm "hypnat_gt_zero_iff";
   844 val hypnat_gt_zero_iff2 = thm "hypnat_gt_zero_iff2";
   845 val hypnat_of_nat_add = thm "hypnat_of_nat_add";
   846 val hypnat_of_nat_minus = thm "hypnat_of_nat_minus";
   847 val hypnat_of_nat_mult = thm "hypnat_of_nat_mult";
   848 val hypnat_of_nat_less_iff = thm "hypnat_of_nat_less_iff";
   849 val hypnat_of_nat_le_iff = thm "hypnat_of_nat_le_iff";
   850 val hypnat_of_nat_eq = thm"hypnat_of_nat_eq"
   851 val SHNat_eq = thm"SHNat_eq"
   852 val hypnat_of_nat_one = thm "hypnat_of_nat_one";
   853 val hypnat_of_nat_zero = thm "hypnat_of_nat_zero";
   854 val hypnat_of_nat_zero_iff = thm "hypnat_of_nat_zero_iff";
   855 val hypnat_of_nat_Suc = thm "hypnat_of_nat_Suc";
   856 val hypnat_omega = thm "hypnat_omega";
   857 val Rep_hypnat_omega = thm "Rep_hypnat_omega";
   858 val SHNAT_omega_not_mem = thm "SHNAT_omega_not_mem";
   859 val cofinite_mem_FreeUltrafilterNat = thm "cofinite_mem_FreeUltrafilterNat";
   860 val hypnat_omega_gt_SHNat = thm "hypnat_omega_gt_SHNat";
   861 val hypnat_of_nat_less_whn = thm "hypnat_of_nat_less_whn";
   862 val hypnat_of_nat_le_whn = thm "hypnat_of_nat_le_whn";
   863 val hypnat_zero_less_hypnat_omega = thm "hypnat_zero_less_hypnat_omega";
   864 val hypnat_one_less_hypnat_omega = thm "hypnat_one_less_hypnat_omega";
   865 val HNatInfinite_whn = thm "HNatInfinite_whn";
   866 val HNatInfinite_iff = thm "HNatInfinite_iff";
   867 val HNatInfinite_FreeUltrafilterNat = thm "HNatInfinite_FreeUltrafilterNat";
   868 val FreeUltrafilterNat_HNatInfinite = thm "FreeUltrafilterNat_HNatInfinite";
   869 val HNatInfinite_FreeUltrafilterNat_iff = thm "HNatInfinite_FreeUltrafilterNat_iff";
   870 val HNatInfinite_gt_one = thm "HNatInfinite_gt_one";
   871 val zero_not_mem_HNatInfinite = thm "zero_not_mem_HNatInfinite";
   872 val HNatInfinite_not_eq_zero = thm "HNatInfinite_not_eq_zero";
   873 val HNatInfinite_ge_one = thm "HNatInfinite_ge_one";
   874 val HNatInfinite_add = thm "HNatInfinite_add";
   875 val HNatInfinite_SHNat_add = thm "HNatInfinite_SHNat_add";
   876 val HNatInfinite_SHNat_diff = thm "HNatInfinite_SHNat_diff";
   877 val HNatInfinite_add_one = thm "HNatInfinite_add_one";
   878 val HNatInfinite_is_Suc = thm "HNatInfinite_is_Suc";
   879 val HNat_hypreal_of_nat = thm "HNat_hypreal_of_nat";
   880 val hypreal_of_hypnat = thm "hypreal_of_hypnat";
   881 val hypreal_of_hypnat_zero = thm "hypreal_of_hypnat_zero";
   882 val hypreal_of_hypnat_one = thm "hypreal_of_hypnat_one";
   883 val hypreal_of_hypnat_add = thm "hypreal_of_hypnat_add";
   884 val hypreal_of_hypnat_mult = thm "hypreal_of_hypnat_mult";
   885 val hypreal_of_hypnat_less_iff = thm "hypreal_of_hypnat_less_iff";
   886 val hypreal_of_hypnat_ge_zero = thm "hypreal_of_hypnat_ge_zero";
   887 val HNatInfinite_inverse_Infinitesimal = thm "HNatInfinite_inverse_Infinitesimal";
   888 *}
   889 
   890 end