src/HOL/Tools/Quotient/quotient_tacs.ML
author wenzelm
Wed, 29 Jun 2011 20:39:41 +0200
changeset 44469 78211f66cf8d
parent 44215 2bdec7f430d3
child 44805 2108763f298d
permissions -rw-r--r--
simplified/unified Simplifier.mk_solver;
haftmann@37743
     1
(*  Title:      HOL/Tools/Quotient/quotient_tacs.ML
kaliszyk@35222
     2
    Author:     Cezary Kaliszyk and Christian Urban
kaliszyk@35222
     3
wenzelm@35788
     4
Tactics for solving goal arising from lifting theorems to quotient
wenzelm@35788
     5
types.
kaliszyk@35222
     6
*)
kaliszyk@35222
     7
kaliszyk@35222
     8
signature QUOTIENT_TACS =
kaliszyk@35222
     9
sig
kaliszyk@35222
    10
  val regularize_tac: Proof.context -> int -> tactic
kaliszyk@35222
    11
  val injection_tac: Proof.context -> int -> tactic
kaliszyk@35222
    12
  val all_injection_tac: Proof.context -> int -> tactic
kaliszyk@35222
    13
  val clean_tac: Proof.context -> int -> tactic
wenzelm@41700
    14
urbanc@39088
    15
  val descend_procedure_tac: Proof.context -> thm list -> int -> tactic
urbanc@39088
    16
  val descend_tac: Proof.context -> thm list -> int -> tactic
wenzelm@41700
    17
urbanc@39088
    18
  val lift_procedure_tac: Proof.context -> thm list -> thm -> int -> tactic
urbanc@39088
    19
  val lift_tac: Proof.context -> thm list -> thm list -> int -> tactic
urbanc@37593
    20
urbanc@38848
    21
  val lifted: Proof.context -> typ list -> thm list -> thm -> thm
kaliszyk@35222
    22
  val lifted_attrib: attribute
kaliszyk@35222
    23
end;
kaliszyk@35222
    24
kaliszyk@35222
    25
structure Quotient_Tacs: QUOTIENT_TACS =
kaliszyk@35222
    26
struct
kaliszyk@35222
    27
kaliszyk@35222
    28
(** various helper fuctions **)
kaliszyk@35222
    29
kaliszyk@35222
    30
(* Since HOL_basic_ss is too "big" for us, we *)
kaliszyk@35222
    31
(* need to set up our own minimal simpset.    *)
kaliszyk@35222
    32
fun mk_minimal_ss ctxt =
kaliszyk@35222
    33
  Simplifier.context ctxt empty_ss
kaliszyk@35222
    34
    setsubgoaler asm_simp_tac
kaliszyk@35222
    35
    setmksimps (mksimps [])
kaliszyk@35222
    36
kaliszyk@35222
    37
(* composition of two theorems, used in maps *)
kaliszyk@35222
    38
fun OF1 thm1 thm2 = thm2 RS thm1
kaliszyk@35222
    39
kaliszyk@35222
    40
fun atomize_thm thm =
wenzelm@41700
    41
  let
wenzelm@41700
    42
    val thm' = Thm.legacy_freezeT (forall_intr_vars thm) (* FIXME/TODO: is this proper Isar-technology? no! *)
wenzelm@41700
    43
    val thm'' = Object_Logic.atomize (cprop_of thm')
wenzelm@41700
    44
  in
wenzelm@41700
    45
    @{thm equal_elim_rule1} OF [thm'', thm']
wenzelm@41700
    46
  end
kaliszyk@35222
    47
kaliszyk@35222
    48
kaliszyk@35222
    49
kaliszyk@35222
    50
(*** Regularize Tactic ***)
kaliszyk@35222
    51
kaliszyk@35222
    52
(** solvers for equivp and quotient assumptions **)
kaliszyk@35222
    53
kaliszyk@35222
    54
fun equiv_tac ctxt =
wenzelm@41707
    55
  REPEAT_ALL_NEW (resolve_tac (Quotient_Info.equiv_rules_get ctxt))
kaliszyk@35222
    56
kaliszyk@35222
    57
fun equiv_solver_tac ss = equiv_tac (Simplifier.the_context ss)
wenzelm@44469
    58
val equiv_solver = mk_solver "Equivalence goal solver" equiv_solver_tac
kaliszyk@35222
    59
kaliszyk@35222
    60
fun quotient_tac ctxt =
kaliszyk@35222
    61
  (REPEAT_ALL_NEW (FIRST'
kaliszyk@35222
    62
    [rtac @{thm identity_quotient},
wenzelm@41707
    63
     resolve_tac (Quotient_Info.quotient_rules_get ctxt)]))
kaliszyk@35222
    64
kaliszyk@35222
    65
fun quotient_solver_tac ss = quotient_tac (Simplifier.the_context ss)
wenzelm@44469
    66
val quotient_solver = mk_solver "Quotient goal solver" quotient_solver_tac
kaliszyk@35222
    67
kaliszyk@35222
    68
fun solve_quotient_assm ctxt thm =
kaliszyk@35222
    69
  case Seq.pull (quotient_tac ctxt 1 thm) of
kaliszyk@35222
    70
    SOME (t, _) => t
kaliszyk@35222
    71
  | _ => error "Solve_quotient_assm failed. Possibly a quotient theorem is missing."
kaliszyk@35222
    72
kaliszyk@35222
    73
kaliszyk@35222
    74
fun prep_trm thy (x, (T, t)) =
kaliszyk@35222
    75
  (cterm_of thy (Var (x, T)), cterm_of thy t)
kaliszyk@35222
    76
kaliszyk@35222
    77
fun prep_ty thy (x, (S, ty)) =
kaliszyk@35222
    78
  (ctyp_of thy (TVar (x, S)), ctyp_of thy ty)
kaliszyk@35222
    79
kaliszyk@35222
    80
fun get_match_inst thy pat trm =
wenzelm@41700
    81
  let
wenzelm@41700
    82
    val univ = Unify.matchers thy [(pat, trm)]
wenzelm@41700
    83
    val SOME (env, _) = Seq.pull univ           (* raises Bind, if no unifier *) (* FIXME fragile *)
wenzelm@41700
    84
    val tenv = Vartab.dest (Envir.term_env env)
wenzelm@41700
    85
    val tyenv = Vartab.dest (Envir.type_env env)
wenzelm@41700
    86
  in
wenzelm@41700
    87
    (map (prep_ty thy) tyenv, map (prep_trm thy) tenv)
wenzelm@41700
    88
  end
kaliszyk@35222
    89
kaliszyk@35222
    90
(* Calculates the instantiations for the lemmas:
kaliszyk@35222
    91
kaliszyk@35222
    92
      ball_reg_eqv_range and bex_reg_eqv_range
kaliszyk@35222
    93
kaliszyk@35222
    94
   Since the left-hand-side contains a non-pattern '?P (f ?x)'
kaliszyk@35222
    95
   we rely on unification/instantiation to check whether the
kaliszyk@35222
    96
   theorem applies and return NONE if it doesn't.
kaliszyk@35222
    97
*)
kaliszyk@35222
    98
fun calculate_inst ctxt ball_bex_thm redex R1 R2 =
wenzelm@41700
    99
  let
wenzelm@43232
   100
    val thy = Proof_Context.theory_of ctxt
wenzelm@41700
   101
    fun get_lhs thm = fst (Logic.dest_equals (Thm.concl_of thm))
wenzelm@41700
   102
    val ty_inst = map (SOME o ctyp_of thy) [domain_type (fastype_of R2)]
wenzelm@41700
   103
    val trm_inst = map (SOME o cterm_of thy) [R2, R1]
wenzelm@41700
   104
  in
wenzelm@41700
   105
    (case try (Drule.instantiate' ty_inst trm_inst) ball_bex_thm of
wenzelm@41700
   106
      NONE => NONE
wenzelm@41700
   107
    | SOME thm' =>
wenzelm@41700
   108
        (case try (get_match_inst thy (get_lhs thm')) redex of
wenzelm@41700
   109
          NONE => NONE
wenzelm@44215
   110
        | SOME inst2 => try (Drule.instantiate_normalize inst2) thm'))
wenzelm@41700
   111
  end
kaliszyk@35222
   112
kaliszyk@35222
   113
fun ball_bex_range_simproc ss redex =
wenzelm@41700
   114
  let
wenzelm@41700
   115
    val ctxt = Simplifier.the_context ss
wenzelm@41700
   116
  in
wenzelm@41700
   117
    case redex of
wenzelm@41700
   118
      (Const (@{const_name "Ball"}, _) $ (Const (@{const_name "Respects"}, _) $
wenzelm@41700
   119
        (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) =>
wenzelm@41700
   120
          calculate_inst ctxt @{thm ball_reg_eqv_range[THEN eq_reflection]} redex R1 R2
kaliszyk@35222
   121
wenzelm@41700
   122
    | (Const (@{const_name "Bex"}, _) $ (Const (@{const_name "Respects"}, _) $
wenzelm@41700
   123
        (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) =>
wenzelm@41700
   124
          calculate_inst ctxt @{thm bex_reg_eqv_range[THEN eq_reflection]} redex R1 R2
kaliszyk@35222
   125
wenzelm@41700
   126
    | _ => NONE
wenzelm@41700
   127
  end
kaliszyk@35222
   128
kaliszyk@35222
   129
(* Regularize works as follows:
kaliszyk@35222
   130
kaliszyk@35222
   131
  0. preliminary simplification step according to
kaliszyk@35222
   132
     ball_reg_eqv bex_reg_eqv babs_reg_eqv ball_reg_eqv_range bex_reg_eqv_range
kaliszyk@35222
   133
kaliszyk@35222
   134
  1. eliminating simple Ball/Bex instances (ball_reg_right bex_reg_left)
kaliszyk@35222
   135
kaliszyk@35222
   136
  2. monos
kaliszyk@35222
   137
kaliszyk@35222
   138
  3. commutation rules for ball and bex (ball_all_comm bex_ex_comm)
kaliszyk@35222
   139
kaliszyk@35222
   140
  4. then rel-equalities, which need to be instantiated with 'eq_imp_rel'
kaliszyk@35222
   141
     to avoid loops
kaliszyk@35222
   142
kaliszyk@35222
   143
  5. then simplification like 0
kaliszyk@35222
   144
kaliszyk@35222
   145
  finally jump back to 1
kaliszyk@35222
   146
*)
kaliszyk@35222
   147
kaliszyk@37493
   148
fun reflp_get ctxt =
kaliszyk@37493
   149
  map_filter (fn th => if prems_of th = [] then SOME (OF1 @{thm equivp_reflp} th) else NONE
wenzelm@41707
   150
    handle THM _ => NONE) (Quotient_Info.equiv_rules_get ctxt)
kaliszyk@37493
   151
kaliszyk@37493
   152
val eq_imp_rel = @{lemma "equivp R ==> a = b --> R a b" by (simp add: equivp_reflp)}
kaliszyk@37493
   153
wenzelm@41707
   154
fun eq_imp_rel_get ctxt = map (OF1 eq_imp_rel) (Quotient_Info.equiv_rules_get ctxt)
kaliszyk@37493
   155
kaliszyk@35222
   156
fun regularize_tac ctxt =
wenzelm@41700
   157
  let
wenzelm@43232
   158
    val thy = Proof_Context.theory_of ctxt
wenzelm@41700
   159
    val ball_pat = @{term "Ball (Respects (R1 ===> R2)) P"}
wenzelm@41700
   160
    val bex_pat = @{term "Bex (Respects (R1 ===> R2)) P"}
wenzelm@41700
   161
    val simproc =
wenzelm@41700
   162
      Simplifier.simproc_global_i thy "" [ball_pat, bex_pat] (K (ball_bex_range_simproc))
wenzelm@41700
   163
    val simpset =
wenzelm@41700
   164
      mk_minimal_ss ctxt
wenzelm@41700
   165
      addsimps @{thms ball_reg_eqv bex_reg_eqv babs_reg_eqv babs_simp}
wenzelm@41700
   166
      addsimprocs [simproc]
wenzelm@41700
   167
      addSolver equiv_solver addSolver quotient_solver
wenzelm@41700
   168
    val eq_eqvs = eq_imp_rel_get ctxt
wenzelm@41700
   169
  in
wenzelm@41700
   170
    simp_tac simpset THEN'
wenzelm@41700
   171
    REPEAT_ALL_NEW (CHANGED o FIRST'
wenzelm@41700
   172
      [resolve_tac @{thms ball_reg_right bex_reg_left bex1_bexeq_reg},
wenzelm@41700
   173
       resolve_tac (Inductive.get_monos ctxt),
wenzelm@41700
   174
       resolve_tac @{thms ball_all_comm bex_ex_comm},
wenzelm@41700
   175
       resolve_tac eq_eqvs,
wenzelm@41700
   176
       simp_tac simpset])
wenzelm@41700
   177
  end
kaliszyk@35222
   178
kaliszyk@35222
   179
kaliszyk@35222
   180
kaliszyk@35222
   181
(*** Injection Tactic ***)
kaliszyk@35222
   182
kaliszyk@35222
   183
(* Looks for Quot_True assumptions, and in case its parameter
kaliszyk@35222
   184
   is an application, it returns the function and the argument.
kaliszyk@35222
   185
*)
kaliszyk@35222
   186
fun find_qt_asm asms =
wenzelm@41700
   187
  let
wenzelm@41700
   188
    fun find_fun trm =
wenzelm@41700
   189
      (case trm of
wenzelm@41700
   190
        (Const (@{const_name Trueprop}, _) $ (Const (@{const_name Quot_True}, _) $ _)) => true
wenzelm@41700
   191
      | _ => false)
wenzelm@41700
   192
  in
wenzelm@41700
   193
     (case find_first find_fun asms of
wenzelm@41700
   194
       SOME (_ $ (_ $ (f $ a))) => SOME (f, a)
wenzelm@41700
   195
     | _ => NONE)
wenzelm@41700
   196
  end
kaliszyk@35222
   197
kaliszyk@35222
   198
fun quot_true_simple_conv ctxt fnctn ctrm =
wenzelm@41700
   199
  case term_of ctrm of
kaliszyk@35222
   200
    (Const (@{const_name Quot_True}, _) $ x) =>
wenzelm@41700
   201
      let
wenzelm@41700
   202
        val fx = fnctn x;
wenzelm@43232
   203
        val thy = Proof_Context.theory_of ctxt;
wenzelm@41700
   204
        val cx = cterm_of thy x;
wenzelm@41700
   205
        val cfx = cterm_of thy fx;
wenzelm@41700
   206
        val cxt = ctyp_of thy (fastype_of x);
wenzelm@41700
   207
        val cfxt = ctyp_of thy (fastype_of fx);
wenzelm@41700
   208
        val thm = Drule.instantiate' [SOME cxt, SOME cfxt] [SOME cx, SOME cfx] @{thm QT_imp}
wenzelm@41700
   209
      in
wenzelm@41700
   210
        Conv.rewr_conv thm ctrm
wenzelm@41700
   211
      end
kaliszyk@35222
   212
kaliszyk@35222
   213
fun quot_true_conv ctxt fnctn ctrm =
wenzelm@41700
   214
  (case term_of ctrm of
kaliszyk@35222
   215
    (Const (@{const_name Quot_True}, _) $ _) =>
kaliszyk@35222
   216
      quot_true_simple_conv ctxt fnctn ctrm
kaliszyk@35222
   217
  | _ $ _ => Conv.comb_conv (quot_true_conv ctxt fnctn) ctrm
kaliszyk@35222
   218
  | Abs _ => Conv.abs_conv (fn (_, ctxt) => quot_true_conv ctxt fnctn) ctxt ctrm
wenzelm@41700
   219
  | _ => Conv.all_conv ctrm)
kaliszyk@35222
   220
kaliszyk@35222
   221
fun quot_true_tac ctxt fnctn =
wenzelm@41700
   222
  CONVERSION
kaliszyk@35222
   223
    ((Conv.params_conv ~1 (fn ctxt =>
wenzelm@41700
   224
        (Conv.prems_conv ~1 (quot_true_conv ctxt fnctn)))) ctxt)
kaliszyk@35222
   225
kaliszyk@35222
   226
fun dest_comb (f $ a) = (f, a)
kaliszyk@35222
   227
fun dest_bcomb ((_ $ l) $ r) = (l, r)
kaliszyk@35222
   228
kaliszyk@35222
   229
fun unlam t =
wenzelm@41700
   230
  (case t of
wenzelm@41700
   231
    Abs a => snd (Term.dest_abs a)
wenzelm@41700
   232
  | _ => unlam (Abs("", domain_type (fastype_of t), (incr_boundvars 1 t) $ (Bound 0))))
kaliszyk@35222
   233
kaliszyk@35222
   234
val bare_concl = HOLogic.dest_Trueprop o Logic.strip_assums_concl
kaliszyk@35222
   235
kaliszyk@35222
   236
(* We apply apply_rsp only in case if the type needs lifting.
kaliszyk@35222
   237
   This is the case if the type of the data in the Quot_True
kaliszyk@35222
   238
   assumption is different from the corresponding type in the goal.
kaliszyk@35222
   239
*)
kaliszyk@35222
   240
val apply_rsp_tac =
kaliszyk@35222
   241
  Subgoal.FOCUS (fn {concl, asms, context,...} =>
wenzelm@41700
   242
    let
wenzelm@41700
   243
      val bare_concl = HOLogic.dest_Trueprop (term_of concl)
wenzelm@41700
   244
      val qt_asm = find_qt_asm (map term_of asms)
wenzelm@41700
   245
    in
wenzelm@41700
   246
      case (bare_concl, qt_asm) of
wenzelm@41700
   247
        (R2 $ (f $ x) $ (g $ y), SOME (qt_fun, qt_arg)) =>
wenzelm@41700
   248
          if fastype_of qt_fun = fastype_of f
wenzelm@41700
   249
          then no_tac
wenzelm@41700
   250
          else
wenzelm@41700
   251
            let
wenzelm@41700
   252
              val ty_x = fastype_of x
wenzelm@41700
   253
              val ty_b = fastype_of qt_arg
wenzelm@41700
   254
              val ty_f = range_type (fastype_of f)
wenzelm@43232
   255
              val thy = Proof_Context.theory_of context
wenzelm@41700
   256
              val ty_inst = map (SOME o (ctyp_of thy)) [ty_x, ty_b, ty_f]
wenzelm@41700
   257
              val t_inst = map (SOME o (cterm_of thy)) [R2, f, g, x, y];
wenzelm@41700
   258
              val inst_thm = Drule.instantiate' ty_inst
wenzelm@41700
   259
                ([NONE, NONE, NONE] @ t_inst) @{thm apply_rsp}
wenzelm@41700
   260
            in
wenzelm@41700
   261
              (rtac inst_thm THEN' SOLVED' (quotient_tac context)) 1
wenzelm@41700
   262
            end
wenzelm@41700
   263
      | _ => no_tac
wenzelm@41700
   264
    end)
kaliszyk@35222
   265
kaliszyk@35222
   266
(* Instantiates and applies 'equals_rsp'. Since the theorem is
kaliszyk@35222
   267
   complex we rely on instantiation to tell us if it applies
kaliszyk@35222
   268
*)
kaliszyk@35222
   269
fun equals_rsp_tac R ctxt =
wenzelm@41700
   270
  let
wenzelm@43232
   271
    val thy = Proof_Context.theory_of ctxt
wenzelm@41700
   272
  in
wenzelm@41700
   273
    case try (cterm_of thy) R of (* There can be loose bounds in R *)
wenzelm@41700
   274
      SOME ctm =>
wenzelm@41700
   275
        let
wenzelm@41700
   276
          val ty = domain_type (fastype_of R)
wenzelm@41700
   277
        in
wenzelm@41700
   278
          case try (Drule.instantiate' [SOME (ctyp_of thy ty)]
wenzelm@41700
   279
              [SOME (cterm_of thy R)]) @{thm equals_rsp} of
wenzelm@41700
   280
            SOME thm => rtac thm THEN' quotient_tac ctxt
wenzelm@41700
   281
          | NONE => K no_tac
wenzelm@41700
   282
        end
wenzelm@41700
   283
    | _ => K no_tac
wenzelm@41700
   284
  end
kaliszyk@35222
   285
kaliszyk@35222
   286
fun rep_abs_rsp_tac ctxt =
kaliszyk@35222
   287
  SUBGOAL (fn (goal, i) =>
wenzelm@41700
   288
    (case try bare_concl goal of
kaliszyk@35843
   289
      SOME (rel $ _ $ (rep $ (Bound _ $ _))) => no_tac
kaliszyk@35843
   290
    | SOME (rel $ _ $ (rep $ (abs $ _))) =>
kaliszyk@35222
   291
        let
wenzelm@43232
   292
          val thy = Proof_Context.theory_of ctxt;
wenzelm@41089
   293
          val (ty_a, ty_b) = dest_funT (fastype_of abs);
kaliszyk@35222
   294
          val ty_inst = map (SOME o (ctyp_of thy)) [ty_a, ty_b];
kaliszyk@35222
   295
        in
kaliszyk@35222
   296
          case try (map (SOME o (cterm_of thy))) [rel, abs, rep] of
kaliszyk@35222
   297
            SOME t_inst =>
kaliszyk@35222
   298
              (case try (Drule.instantiate' ty_inst t_inst) @{thm rep_abs_rsp} of
kaliszyk@35222
   299
                SOME inst_thm => (rtac inst_thm THEN' quotient_tac ctxt) i
kaliszyk@35222
   300
              | NONE => no_tac)
kaliszyk@35222
   301
          | NONE => no_tac
kaliszyk@35222
   302
        end
wenzelm@41700
   303
    | _ => no_tac))
kaliszyk@35222
   304
kaliszyk@35222
   305
kaliszyk@35222
   306
urbanc@38955
   307
(* Injection means to prove that the regularized theorem implies
kaliszyk@35222
   308
   the abs/rep injected one.
kaliszyk@35222
   309
kaliszyk@35222
   310
   The deterministic part:
kaliszyk@35222
   311
    - remove lambdas from both sides
kaliszyk@35222
   312
    - prove Ball/Bex/Babs equalities using ball_rsp, bex_rsp, babs_rsp
urbanc@38541
   313
    - prove Ball/Bex relations using fun_relI
kaliszyk@35222
   314
    - reflexivity of equality
kaliszyk@35222
   315
    - prove equality of relations using equals_rsp
kaliszyk@35222
   316
    - use user-supplied RSP theorems
kaliszyk@35222
   317
    - solve 'relation of relations' goals using quot_rel_rsp
kaliszyk@35222
   318
    - remove rep_abs from the right side
kaliszyk@35222
   319
      (Lambdas under respects may have left us some assumptions)
kaliszyk@35222
   320
kaliszyk@35222
   321
   Then in order:
kaliszyk@35222
   322
    - split applications of lifted type (apply_rsp)
kaliszyk@35222
   323
    - split applications of non-lifted type (cong_tac)
kaliszyk@35222
   324
    - apply extentionality
kaliszyk@35222
   325
    - assumption
kaliszyk@35222
   326
    - reflexivity of the relation
kaliszyk@35222
   327
*)
kaliszyk@35222
   328
fun injection_match_tac ctxt = SUBGOAL (fn (goal, i) =>
wenzelm@41700
   329
  (case bare_concl goal of
wenzelm@41700
   330
      (* (R1 ===> R2) (%x...) (%x...) ----> [|R1 x y|] ==> R2 (...x) (...y) *)
wenzelm@41700
   331
    (Const (@{const_name fun_rel}, _) $ _ $ _) $ (Abs _) $ (Abs _)
wenzelm@41700
   332
        => rtac @{thm fun_relI} THEN' quot_true_tac ctxt unlam
kaliszyk@35222
   333
wenzelm@41700
   334
      (* (op =) (Ball...) (Ball...) ----> (op =) (...) (...) *)
wenzelm@41700
   335
  | (Const (@{const_name HOL.eq},_) $
wenzelm@41700
   336
      (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
wenzelm@41700
   337
      (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _))
wenzelm@41700
   338
        => rtac @{thm ball_rsp} THEN' dtac @{thm QT_all}
kaliszyk@35222
   339
wenzelm@41700
   340
      (* (R1 ===> op =) (Ball...) (Ball...) ----> [|R1 x y|] ==> (Ball...x) = (Ball...y) *)
wenzelm@41700
   341
  | (Const (@{const_name fun_rel}, _) $ _ $ _) $
wenzelm@41700
   342
      (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
wenzelm@41700
   343
      (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
wenzelm@41700
   344
        => rtac @{thm fun_relI} THEN' quot_true_tac ctxt unlam
kaliszyk@35222
   345
wenzelm@41700
   346
      (* (op =) (Bex...) (Bex...) ----> (op =) (...) (...) *)
wenzelm@41700
   347
  | Const (@{const_name HOL.eq},_) $
wenzelm@41700
   348
      (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
wenzelm@41700
   349
      (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
wenzelm@41700
   350
        => rtac @{thm bex_rsp} THEN' dtac @{thm QT_ex}
kaliszyk@35222
   351
wenzelm@41700
   352
      (* (R1 ===> op =) (Bex...) (Bex...) ----> [|R1 x y|] ==> (Bex...x) = (Bex...y) *)
wenzelm@41700
   353
  | (Const (@{const_name fun_rel}, _) $ _ $ _) $
wenzelm@41700
   354
      (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
wenzelm@41700
   355
      (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
wenzelm@41700
   356
        => rtac @{thm fun_relI} THEN' quot_true_tac ctxt unlam
kaliszyk@35222
   357
wenzelm@41700
   358
  | (Const (@{const_name fun_rel}, _) $ _ $ _) $
wenzelm@41700
   359
      (Const(@{const_name Bex1_rel},_) $ _) $ (Const(@{const_name Bex1_rel},_) $ _)
wenzelm@41700
   360
        => rtac @{thm bex1_rel_rsp} THEN' quotient_tac ctxt
kaliszyk@35222
   361
wenzelm@41700
   362
  | (_ $
wenzelm@41700
   363
      (Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
wenzelm@41700
   364
      (Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _))
wenzelm@41700
   365
        => rtac @{thm babs_rsp} THEN' RANGE [quotient_tac ctxt]
kaliszyk@35222
   366
wenzelm@41700
   367
  | Const (@{const_name HOL.eq},_) $ (R $ _ $ _) $ (_ $ _ $ _) =>
wenzelm@41700
   368
     (rtac @{thm refl} ORELSE'
wenzelm@41700
   369
      (equals_rsp_tac R ctxt THEN' RANGE [
wenzelm@41700
   370
         quot_true_tac ctxt (fst o dest_bcomb), quot_true_tac ctxt (snd o dest_bcomb)]))
kaliszyk@35222
   371
wenzelm@41700
   372
      (* reflexivity of operators arising from Cong_tac *)
wenzelm@41700
   373
  | Const (@{const_name HOL.eq},_) $ _ $ _ => rtac @{thm refl}
kaliszyk@35222
   374
wenzelm@41700
   375
     (* respectfulness of constants; in particular of a simple relation *)
wenzelm@41700
   376
  | _ $ (Const _) $ (Const _)  (* fun_rel, list_rel, etc but not equality *)
wenzelm@41707
   377
      => resolve_tac (Quotient_Info.rsp_rules_get ctxt) THEN_ALL_NEW quotient_tac ctxt
kaliszyk@35222
   378
wenzelm@41700
   379
      (* R (...) (Rep (Abs ...)) ----> R (...) (...) *)
wenzelm@41700
   380
      (* observe map_fun *)
wenzelm@41700
   381
  | _ $ _ $ _
wenzelm@41700
   382
      => (rtac @{thm quot_rel_rsp} THEN_ALL_NEW quotient_tac ctxt)
wenzelm@41700
   383
         ORELSE' rep_abs_rsp_tac ctxt
kaliszyk@35222
   384
wenzelm@41700
   385
  | _ => K no_tac) i)
kaliszyk@35222
   386
kaliszyk@35222
   387
fun injection_step_tac ctxt rel_refl =
wenzelm@41700
   388
  FIRST' [
kaliszyk@35222
   389
    injection_match_tac ctxt,
kaliszyk@35222
   390
kaliszyk@35222
   391
    (* R (t $ ...) (t' $ ...) ----> apply_rsp   provided type of t needs lifting *)
kaliszyk@35222
   392
    apply_rsp_tac ctxt THEN'
kaliszyk@35222
   393
                 RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)],
kaliszyk@35222
   394
kaliszyk@35222
   395
    (* (op =) (t $ ...) (t' $ ...) ----> Cong   provided type of t does not need lifting *)
kaliszyk@35222
   396
    (* merge with previous tactic *)
kaliszyk@35222
   397
    Cong_Tac.cong_tac @{thm cong} THEN'
kaliszyk@35222
   398
                 RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)],
kaliszyk@35222
   399
kaliszyk@35222
   400
    (* (op =) (%x...) (%y...) ----> (op =) (...) (...) *)
kaliszyk@35222
   401
    rtac @{thm ext} THEN' quot_true_tac ctxt unlam,
kaliszyk@35222
   402
kaliszyk@35222
   403
    (* resolving with R x y assumptions *)
kaliszyk@35222
   404
    atac,
kaliszyk@35222
   405
kaliszyk@35222
   406
    (* reflexivity of the basic relations *)
kaliszyk@35222
   407
    (* R ... ... *)
kaliszyk@35222
   408
    resolve_tac rel_refl]
kaliszyk@35222
   409
kaliszyk@35222
   410
fun injection_tac ctxt =
wenzelm@41700
   411
  let
wenzelm@41700
   412
    val rel_refl = reflp_get ctxt
wenzelm@41700
   413
  in
wenzelm@41700
   414
    injection_step_tac ctxt rel_refl
wenzelm@41700
   415
  end
kaliszyk@35222
   416
kaliszyk@35222
   417
fun all_injection_tac ctxt =
kaliszyk@35222
   418
  REPEAT_ALL_NEW (injection_tac ctxt)
kaliszyk@35222
   419
kaliszyk@35222
   420
kaliszyk@35222
   421
kaliszyk@35222
   422
(*** Cleaning of the Theorem ***)
kaliszyk@35222
   423
haftmann@40850
   424
(* expands all map_funs, except in front of the (bound) variables listed in xs *)
haftmann@40850
   425
fun map_fun_simple_conv xs ctrm =
wenzelm@41700
   426
  (case term_of ctrm of
haftmann@40850
   427
    ((Const (@{const_name "map_fun"}, _) $ _ $ _) $ h $ _) =>
kaliszyk@35222
   428
        if member (op=) xs h
kaliszyk@35222
   429
        then Conv.all_conv ctrm
haftmann@40850
   430
        else Conv.rewr_conv @{thm map_fun_apply [THEN eq_reflection]} ctrm
wenzelm@41700
   431
  | _ => Conv.all_conv ctrm)
kaliszyk@35222
   432
haftmann@40850
   433
fun map_fun_conv xs ctxt ctrm =
wenzelm@41700
   434
  (case term_of ctrm of
wenzelm@41700
   435
    _ $ _ =>
wenzelm@41700
   436
      (Conv.comb_conv (map_fun_conv xs ctxt) then_conv
wenzelm@41700
   437
        map_fun_simple_conv xs) ctrm
wenzelm@41700
   438
  | Abs _ => Conv.abs_conv (fn (x, ctxt) => map_fun_conv ((term_of x)::xs) ctxt) ctxt ctrm
wenzelm@41700
   439
  | _ => Conv.all_conv ctrm)
kaliszyk@35222
   440
haftmann@40850
   441
fun map_fun_tac ctxt = CONVERSION (map_fun_conv [] ctxt)
kaliszyk@35222
   442
kaliszyk@35222
   443
(* custom matching functions *)
kaliszyk@35222
   444
fun mk_abs u i t =
wenzelm@41700
   445
  if incr_boundvars i u aconv t then Bound i
wenzelm@41700
   446
  else
wenzelm@41700
   447
    case t of
wenzelm@41700
   448
      t1 $ t2 => mk_abs u i t1 $ mk_abs u i t2
wenzelm@41700
   449
    | Abs (s, T, t') => Abs (s, T, mk_abs u (i + 1) t')
wenzelm@41700
   450
    | Bound j => if i = j then error "make_inst" else t
wenzelm@41700
   451
    | _ => t
kaliszyk@35222
   452
kaliszyk@35222
   453
fun make_inst lhs t =
wenzelm@41700
   454
  let
wenzelm@41700
   455
    val _ $ (Abs (_, _, (_ $ ((f as Var (_, Type ("fun", [T, _]))) $ u)))) = lhs;
wenzelm@41700
   456
    val _ $ (Abs (_, _, (_ $ g))) = t;
wenzelm@41700
   457
  in
wenzelm@41700
   458
    (f, Abs ("x", T, mk_abs u 0 g))
wenzelm@41700
   459
  end
kaliszyk@35222
   460
kaliszyk@35222
   461
fun make_inst_id lhs t =
wenzelm@41700
   462
  let
wenzelm@41700
   463
    val _ $ (Abs (_, _, (f as Var (_, Type ("fun", [T, _]))) $ u)) = lhs;
wenzelm@41700
   464
    val _ $ (Abs (_, _, g)) = t;
wenzelm@41700
   465
  in
wenzelm@41700
   466
    (f, Abs ("x", T, mk_abs u 0 g))
wenzelm@41700
   467
  end
kaliszyk@35222
   468
kaliszyk@35222
   469
(* Simplifies a redex using the 'lambda_prs' theorem.
kaliszyk@35222
   470
   First instantiates the types and known subterms.
kaliszyk@35222
   471
   Then solves the quotient assumptions to get Rep2 and Abs1
kaliszyk@35222
   472
   Finally instantiates the function f using make_inst
kaliszyk@35222
   473
   If Rep2 is an identity then the pattern is simpler and
kaliszyk@35222
   474
   make_inst_id is used
kaliszyk@35222
   475
*)
kaliszyk@35222
   476
fun lambda_prs_simple_conv ctxt ctrm =
wenzelm@41700
   477
  (case term_of ctrm of
haftmann@40850
   478
    (Const (@{const_name map_fun}, _) $ r1 $ a2) $ (Abs _) =>
kaliszyk@35222
   479
      let
wenzelm@43232
   480
        val thy = Proof_Context.theory_of ctxt
wenzelm@41089
   481
        val (ty_b, ty_a) = dest_funT (fastype_of r1)
wenzelm@41089
   482
        val (ty_c, ty_d) = dest_funT (fastype_of a2)
kaliszyk@35222
   483
        val tyinst = map (SOME o (ctyp_of thy)) [ty_a, ty_b, ty_c, ty_d]
kaliszyk@35222
   484
        val tinst = [NONE, NONE, SOME (cterm_of thy r1), NONE, SOME (cterm_of thy a2)]
kaliszyk@35222
   485
        val thm1 = Drule.instantiate' tyinst tinst @{thm lambda_prs[THEN eq_reflection]}
kaliszyk@35222
   486
        val thm2 = solve_quotient_assm ctxt (solve_quotient_assm ctxt thm1)
wenzelm@41494
   487
        val thm3 = Raw_Simplifier.rewrite_rule @{thms id_apply[THEN eq_reflection]} thm2
kaliszyk@35222
   488
        val (insp, inst) =
kaliszyk@35222
   489
          if ty_c = ty_d
kaliszyk@35222
   490
          then make_inst_id (term_of (Thm.lhs_of thm3)) (term_of ctrm)
kaliszyk@35222
   491
          else make_inst (term_of (Thm.lhs_of thm3)) (term_of ctrm)
wenzelm@44215
   492
        val thm4 = Drule.instantiate_normalize ([], [(cterm_of thy insp, cterm_of thy inst)]) thm3
kaliszyk@35222
   493
      in
kaliszyk@35222
   494
        Conv.rewr_conv thm4 ctrm
kaliszyk@35222
   495
      end
wenzelm@41700
   496
  | _ => Conv.all_conv ctrm)
kaliszyk@35222
   497
wenzelm@36938
   498
fun lambda_prs_conv ctxt = Conv.top_conv lambda_prs_simple_conv ctxt
kaliszyk@35222
   499
fun lambda_prs_tac ctxt = CONVERSION (lambda_prs_conv ctxt)
kaliszyk@35222
   500
kaliszyk@35222
   501
kaliszyk@35222
   502
(* Cleaning consists of:
kaliszyk@35222
   503
kaliszyk@35222
   504
  1. unfolding of ---> in front of everything, except
kaliszyk@35222
   505
     bound variables (this prevents lambda_prs from
kaliszyk@35222
   506
     becoming stuck)
kaliszyk@35222
   507
kaliszyk@35222
   508
  2. simplification with lambda_prs
kaliszyk@35222
   509
kaliszyk@35222
   510
  3. simplification with:
kaliszyk@35222
   511
kaliszyk@35222
   512
      - Quotient_abs_rep Quotient_rel_rep
kaliszyk@35222
   513
        babs_prs all_prs ex_prs ex1_prs
kaliszyk@35222
   514
kaliszyk@35222
   515
      - id_simps and preservation lemmas and
kaliszyk@35222
   516
kaliszyk@35222
   517
      - symmetric versions of the definitions
kaliszyk@35222
   518
        (that is definitions of quotient constants
kaliszyk@35222
   519
         are folded)
kaliszyk@35222
   520
kaliszyk@35222
   521
  4. test for refl
kaliszyk@35222
   522
*)
kaliszyk@35222
   523
fun clean_tac lthy =
wenzelm@41700
   524
  let
wenzelm@41707
   525
    val defs = map (Thm.symmetric o #def) (Quotient_Info.qconsts_dest lthy)
wenzelm@41707
   526
    val prs = Quotient_Info.prs_rules_get lthy
wenzelm@41707
   527
    val ids = Quotient_Info.id_simps_get lthy
wenzelm@41700
   528
    val thms =
wenzelm@41700
   529
      @{thms Quotient_abs_rep Quotient_rel_rep babs_prs all_prs ex_prs ex1_prs} @ ids @ prs @ defs
kaliszyk@35222
   530
wenzelm@41700
   531
    val ss = (mk_minimal_ss lthy) addsimps thms addSolver quotient_solver
wenzelm@41700
   532
  in
wenzelm@41707
   533
    EVERY' [
wenzelm@41707
   534
      map_fun_tac lthy,
wenzelm@41707
   535
      lambda_prs_tac lthy,
wenzelm@41707
   536
      simp_tac ss,
wenzelm@41707
   537
      TRY o rtac refl]
wenzelm@41700
   538
  end
kaliszyk@35222
   539
kaliszyk@35222
   540
urbanc@38955
   541
(* Tactic for Generalising Free Variables in a Goal *)
kaliszyk@35222
   542
kaliszyk@35222
   543
fun inst_spec ctrm =
wenzelm@41700
   544
  Drule.instantiate' [SOME (ctyp_of_term ctrm)] [NONE, SOME ctrm] @{thm spec}
kaliszyk@35222
   545
kaliszyk@35222
   546
fun inst_spec_tac ctrms =
kaliszyk@35222
   547
  EVERY' (map (dtac o inst_spec) ctrms)
kaliszyk@35222
   548
kaliszyk@35222
   549
fun all_list xs trm =
kaliszyk@35222
   550
  fold (fn (x, T) => fn t' => HOLogic.mk_all (x, T, t')) xs trm
kaliszyk@35222
   551
kaliszyk@35222
   552
fun apply_under_Trueprop f =
kaliszyk@35222
   553
  HOLogic.dest_Trueprop #> f #> HOLogic.mk_Trueprop
kaliszyk@35222
   554
kaliszyk@35222
   555
fun gen_frees_tac ctxt =
kaliszyk@35222
   556
  SUBGOAL (fn (concl, i) =>
kaliszyk@35222
   557
    let
wenzelm@43232
   558
      val thy = Proof_Context.theory_of ctxt
kaliszyk@35222
   559
      val vrs = Term.add_frees concl []
kaliszyk@35222
   560
      val cvrs = map (cterm_of thy o Free) vrs
kaliszyk@35222
   561
      val concl' = apply_under_Trueprop (all_list vrs) concl
kaliszyk@35222
   562
      val goal = Logic.mk_implies (concl', concl)
kaliszyk@35222
   563
      val rule = Goal.prove ctxt [] [] goal
kaliszyk@35222
   564
        (K (EVERY1 [inst_spec_tac (rev cvrs), atac]))
kaliszyk@35222
   565
    in
kaliszyk@35222
   566
      rtac rule i
kaliszyk@35222
   567
    end)
kaliszyk@35222
   568
kaliszyk@35222
   569
kaliszyk@35222
   570
(** The General Shape of the Lifting Procedure **)
kaliszyk@35222
   571
kaliszyk@35222
   572
(* - A is the original raw theorem
kaliszyk@35222
   573
   - B is the regularized theorem
kaliszyk@35222
   574
   - C is the rep/abs injected version of B
kaliszyk@35222
   575
   - D is the lifted theorem
kaliszyk@35222
   576
kaliszyk@35222
   577
   - 1st prem is the regularization step
kaliszyk@35222
   578
   - 2nd prem is the rep/abs injection step
kaliszyk@35222
   579
   - 3rd prem is the cleaning part
kaliszyk@35222
   580
kaliszyk@35222
   581
   the Quot_True premise in 2nd records the lifted theorem
kaliszyk@35222
   582
*)
kaliszyk@35222
   583
val lifting_procedure_thm =
kaliszyk@35222
   584
  @{lemma  "[|A;
kaliszyk@35222
   585
              A --> B;
kaliszyk@35222
   586
              Quot_True D ==> B = C;
kaliszyk@35222
   587
              C = D|] ==> D"
kaliszyk@35222
   588
      by (simp add: Quot_True_def)}
kaliszyk@35222
   589
kaliszyk@35222
   590
fun lift_match_error ctxt msg rtrm qtrm =
wenzelm@41700
   591
  let
wenzelm@41700
   592
    val rtrm_str = Syntax.string_of_term ctxt rtrm
wenzelm@41700
   593
    val qtrm_str = Syntax.string_of_term ctxt qtrm
wenzelm@41700
   594
    val msg = cat_lines [enclose "[" "]" msg, "The quotient theorem", qtrm_str,
wenzelm@41700
   595
      "", "does not match with original theorem", rtrm_str]
wenzelm@41700
   596
  in
wenzelm@41700
   597
    error msg
wenzelm@41700
   598
  end
kaliszyk@35222
   599
kaliszyk@35222
   600
fun procedure_inst ctxt rtrm qtrm =
wenzelm@41700
   601
  let
wenzelm@43232
   602
    val thy = Proof_Context.theory_of ctxt
wenzelm@41700
   603
    val rtrm' = HOLogic.dest_Trueprop rtrm
wenzelm@41700
   604
    val qtrm' = HOLogic.dest_Trueprop qtrm
wenzelm@41707
   605
    val reg_goal = Quotient_Term.regularize_trm_chk ctxt (rtrm', qtrm')
wenzelm@41707
   606
      handle Quotient_Term.LIFT_MATCH msg => lift_match_error ctxt msg rtrm qtrm
wenzelm@41707
   607
    val inj_goal = Quotient_Term.inj_repabs_trm_chk ctxt (reg_goal, qtrm')
wenzelm@41707
   608
      handle Quotient_Term.LIFT_MATCH msg => lift_match_error ctxt msg rtrm qtrm
wenzelm@41700
   609
  in
wenzelm@41700
   610
    Drule.instantiate' []
wenzelm@41700
   611
      [SOME (cterm_of thy rtrm'),
wenzelm@41700
   612
       SOME (cterm_of thy reg_goal),
wenzelm@41700
   613
       NONE,
wenzelm@41700
   614
       SOME (cterm_of thy inj_goal)] lifting_procedure_thm
wenzelm@41700
   615
  end
kaliszyk@35222
   616
urbanc@37593
   617
urbanc@39089
   618
(* Since we use Ball and Bex during the lifting and descending,
kaliszyk@39091
   619
   we cannot deal with lemmas containing them, unless we unfold
kaliszyk@39091
   620
   them by default. *)
urbanc@39089
   621
kaliszyk@39091
   622
val default_unfolds = @{thms Ball_def Bex_def}
urbanc@39089
   623
urbanc@39089
   624
urbanc@37593
   625
(** descending as tactic **)
urbanc@37593
   626
urbanc@39088
   627
fun descend_procedure_tac ctxt simps =
wenzelm@41700
   628
  let
wenzelm@41700
   629
    val ss = (mk_minimal_ss ctxt) addsimps (simps @ default_unfolds)
wenzelm@41700
   630
  in
wenzelm@41700
   631
    full_simp_tac ss
wenzelm@41700
   632
    THEN' Object_Logic.full_atomize_tac
wenzelm@41700
   633
    THEN' gen_frees_tac ctxt
wenzelm@41700
   634
    THEN' SUBGOAL (fn (goal, i) =>
wenzelm@41700
   635
      let
wenzelm@41700
   636
        val qtys = map #qtyp (Quotient_Info.quotdata_dest ctxt)
wenzelm@41707
   637
        val rtrm = Quotient_Term.derive_rtrm ctxt qtys goal
wenzelm@41700
   638
        val rule = procedure_inst ctxt rtrm  goal
wenzelm@41700
   639
      in
wenzelm@41700
   640
        rtac rule i
wenzelm@41700
   641
      end)
wenzelm@41700
   642
  end
kaliszyk@35222
   643
urbanc@39088
   644
fun descend_tac ctxt simps =
wenzelm@41700
   645
  let
wenzelm@41700
   646
    val mk_tac_raw =
wenzelm@41700
   647
      descend_procedure_tac ctxt simps
wenzelm@41700
   648
      THEN' RANGE
wenzelm@41700
   649
        [Object_Logic.rulify_tac THEN' (K all_tac),
wenzelm@41700
   650
         regularize_tac ctxt,
wenzelm@41700
   651
         all_injection_tac ctxt,
wenzelm@41700
   652
         clean_tac ctxt]
wenzelm@41700
   653
  in
wenzelm@41700
   654
    Goal.conjunction_tac THEN_ALL_NEW mk_tac_raw
wenzelm@41700
   655
  end
kaliszyk@35222
   656
urbanc@37593
   657
urbanc@38848
   658
(** lifting as a tactic **)
urbanc@37593
   659
urbanc@38955
   660
urbanc@37593
   661
(* the tactic leaves three subgoals to be proved *)
urbanc@39088
   662
fun lift_procedure_tac ctxt simps rthm =
wenzelm@41700
   663
  let
wenzelm@41700
   664
    val ss = (mk_minimal_ss ctxt) addsimps (simps @ default_unfolds)
wenzelm@41700
   665
  in
wenzelm@41700
   666
    full_simp_tac ss
wenzelm@41700
   667
    THEN' Object_Logic.full_atomize_tac
wenzelm@41700
   668
    THEN' gen_frees_tac ctxt
wenzelm@41700
   669
    THEN' SUBGOAL (fn (goal, i) =>
wenzelm@41700
   670
      let
wenzelm@41700
   671
        (* full_atomize_tac contracts eta redexes,
wenzelm@41700
   672
           so we do it also in the original theorem *)
wenzelm@41700
   673
        val rthm' =
wenzelm@41700
   674
          rthm |> full_simplify ss
wenzelm@41700
   675
               |> Drule.eta_contraction_rule
wenzelm@41700
   676
               |> Thm.forall_intr_frees
wenzelm@41700
   677
               |> atomize_thm
urbanc@38954
   678
wenzelm@41700
   679
        val rule = procedure_inst ctxt (prop_of rthm') goal
wenzelm@41700
   680
      in
wenzelm@41700
   681
        (rtac rule THEN' rtac rthm') i
wenzelm@41700
   682
      end)
wenzelm@41700
   683
  end
kaliszyk@35222
   684
wenzelm@41700
   685
fun lift_single_tac ctxt simps rthm =
urbanc@39088
   686
  lift_procedure_tac ctxt simps rthm
urbanc@38848
   687
  THEN' RANGE
urbanc@38848
   688
    [ regularize_tac ctxt,
urbanc@38848
   689
      all_injection_tac ctxt,
urbanc@38848
   690
      clean_tac ctxt ]
urbanc@38848
   691
urbanc@39088
   692
fun lift_tac ctxt simps rthms =
wenzelm@41700
   693
  Goal.conjunction_tac
urbanc@39088
   694
  THEN' RANGE (map (lift_single_tac ctxt simps) rthms)
kaliszyk@35222
   695
urbanc@37593
   696
urbanc@38848
   697
(* automated lifting with pre-simplification of the theorems;
urbanc@38848
   698
   for internal usage *)
urbanc@38848
   699
fun lifted ctxt qtys simps rthm =
wenzelm@41700
   700
  let
wenzelm@41700
   701
    val ((_, [rthm']), ctxt') = Variable.import true [rthm] ctxt
wenzelm@41707
   702
    val goal = Quotient_Term.derive_qtrm ctxt' qtys (prop_of rthm')
wenzelm@41700
   703
  in
wenzelm@41700
   704
    Goal.prove ctxt' [] [] goal
wenzelm@41700
   705
      (K (HEADGOAL (lift_single_tac ctxt' simps rthm')))
wenzelm@43232
   706
    |> singleton (Proof_Context.export ctxt' ctxt)
wenzelm@41700
   707
  end
urbanc@38848
   708
urbanc@38848
   709
urbanc@38848
   710
(* lifting as an attribute *)
kaliszyk@35222
   711
wenzelm@41700
   712
val lifted_attrib = Thm.rule_attribute (fn context =>
urbanc@37593
   713
  let
urbanc@37593
   714
    val ctxt = Context.proof_of context
urbanc@37593
   715
    val qtys = map #qtyp (Quotient_Info.quotdata_dest ctxt)
urbanc@37593
   716
  in
urbanc@38848
   717
    lifted ctxt qtys []
urbanc@37593
   718
  end)
kaliszyk@35222
   719
kaliszyk@35222
   720
end; (* structure *)