haftmann@37743: (* Title: HOL/Tools/Quotient/quotient_tacs.ML kaliszyk@35222: Author: Cezary Kaliszyk and Christian Urban kaliszyk@35222: wenzelm@35788: Tactics for solving goal arising from lifting theorems to quotient wenzelm@35788: types. kaliszyk@35222: *) kaliszyk@35222: kaliszyk@35222: signature QUOTIENT_TACS = kaliszyk@35222: sig kaliszyk@35222: val regularize_tac: Proof.context -> int -> tactic kaliszyk@35222: val injection_tac: Proof.context -> int -> tactic kaliszyk@35222: val all_injection_tac: Proof.context -> int -> tactic kaliszyk@35222: val clean_tac: Proof.context -> int -> tactic wenzelm@41700: urbanc@39088: val descend_procedure_tac: Proof.context -> thm list -> int -> tactic urbanc@39088: val descend_tac: Proof.context -> thm list -> int -> tactic wenzelm@41700: urbanc@39088: val lift_procedure_tac: Proof.context -> thm list -> thm -> int -> tactic urbanc@39088: val lift_tac: Proof.context -> thm list -> thm list -> int -> tactic urbanc@37593: urbanc@38848: val lifted: Proof.context -> typ list -> thm list -> thm -> thm kaliszyk@35222: val lifted_attrib: attribute kaliszyk@35222: end; kaliszyk@35222: kaliszyk@35222: structure Quotient_Tacs: QUOTIENT_TACS = kaliszyk@35222: struct kaliszyk@35222: kaliszyk@35222: (** various helper fuctions **) kaliszyk@35222: kaliszyk@35222: (* Since HOL_basic_ss is too "big" for us, we *) kaliszyk@35222: (* need to set up our own minimal simpset. *) kaliszyk@35222: fun mk_minimal_ss ctxt = kaliszyk@35222: Simplifier.context ctxt empty_ss kaliszyk@35222: setsubgoaler asm_simp_tac kaliszyk@35222: setmksimps (mksimps []) kaliszyk@35222: kaliszyk@35222: (* composition of two theorems, used in maps *) kaliszyk@35222: fun OF1 thm1 thm2 = thm2 RS thm1 kaliszyk@35222: kaliszyk@35222: fun atomize_thm thm = wenzelm@41700: let wenzelm@41700: val thm' = Thm.legacy_freezeT (forall_intr_vars thm) (* FIXME/TODO: is this proper Isar-technology? no! *) wenzelm@41700: val thm'' = Object_Logic.atomize (cprop_of thm') wenzelm@41700: in wenzelm@41700: @{thm equal_elim_rule1} OF [thm'', thm'] wenzelm@41700: end kaliszyk@35222: kaliszyk@35222: kaliszyk@35222: kaliszyk@35222: (*** Regularize Tactic ***) kaliszyk@35222: kaliszyk@35222: (** solvers for equivp and quotient assumptions **) kaliszyk@35222: kaliszyk@35222: fun equiv_tac ctxt = wenzelm@41707: REPEAT_ALL_NEW (resolve_tac (Quotient_Info.equiv_rules_get ctxt)) kaliszyk@35222: kaliszyk@35222: fun equiv_solver_tac ss = equiv_tac (Simplifier.the_context ss) wenzelm@44469: val equiv_solver = mk_solver "Equivalence goal solver" equiv_solver_tac kaliszyk@35222: kaliszyk@35222: fun quotient_tac ctxt = kaliszyk@35222: (REPEAT_ALL_NEW (FIRST' kaliszyk@35222: [rtac @{thm identity_quotient}, wenzelm@41707: resolve_tac (Quotient_Info.quotient_rules_get ctxt)])) kaliszyk@35222: kaliszyk@35222: fun quotient_solver_tac ss = quotient_tac (Simplifier.the_context ss) wenzelm@44469: val quotient_solver = mk_solver "Quotient goal solver" quotient_solver_tac kaliszyk@35222: kaliszyk@35222: fun solve_quotient_assm ctxt thm = kaliszyk@35222: case Seq.pull (quotient_tac ctxt 1 thm) of kaliszyk@35222: SOME (t, _) => t kaliszyk@35222: | _ => error "Solve_quotient_assm failed. Possibly a quotient theorem is missing." kaliszyk@35222: kaliszyk@35222: kaliszyk@35222: fun prep_trm thy (x, (T, t)) = kaliszyk@35222: (cterm_of thy (Var (x, T)), cterm_of thy t) kaliszyk@35222: kaliszyk@35222: fun prep_ty thy (x, (S, ty)) = kaliszyk@35222: (ctyp_of thy (TVar (x, S)), ctyp_of thy ty) kaliszyk@35222: kaliszyk@35222: fun get_match_inst thy pat trm = wenzelm@41700: let wenzelm@41700: val univ = Unify.matchers thy [(pat, trm)] wenzelm@41700: val SOME (env, _) = Seq.pull univ (* raises Bind, if no unifier *) (* FIXME fragile *) wenzelm@41700: val tenv = Vartab.dest (Envir.term_env env) wenzelm@41700: val tyenv = Vartab.dest (Envir.type_env env) wenzelm@41700: in wenzelm@41700: (map (prep_ty thy) tyenv, map (prep_trm thy) tenv) wenzelm@41700: end kaliszyk@35222: kaliszyk@35222: (* Calculates the instantiations for the lemmas: kaliszyk@35222: kaliszyk@35222: ball_reg_eqv_range and bex_reg_eqv_range kaliszyk@35222: kaliszyk@35222: Since the left-hand-side contains a non-pattern '?P (f ?x)' kaliszyk@35222: we rely on unification/instantiation to check whether the kaliszyk@35222: theorem applies and return NONE if it doesn't. kaliszyk@35222: *) kaliszyk@35222: fun calculate_inst ctxt ball_bex_thm redex R1 R2 = wenzelm@41700: let wenzelm@43232: val thy = Proof_Context.theory_of ctxt wenzelm@41700: fun get_lhs thm = fst (Logic.dest_equals (Thm.concl_of thm)) wenzelm@41700: val ty_inst = map (SOME o ctyp_of thy) [domain_type (fastype_of R2)] wenzelm@41700: val trm_inst = map (SOME o cterm_of thy) [R2, R1] wenzelm@41700: in wenzelm@41700: (case try (Drule.instantiate' ty_inst trm_inst) ball_bex_thm of wenzelm@41700: NONE => NONE wenzelm@41700: | SOME thm' => wenzelm@41700: (case try (get_match_inst thy (get_lhs thm')) redex of wenzelm@41700: NONE => NONE wenzelm@44215: | SOME inst2 => try (Drule.instantiate_normalize inst2) thm')) wenzelm@41700: end kaliszyk@35222: kaliszyk@35222: fun ball_bex_range_simproc ss redex = wenzelm@41700: let wenzelm@41700: val ctxt = Simplifier.the_context ss wenzelm@41700: in wenzelm@41700: case redex of wenzelm@41700: (Const (@{const_name "Ball"}, _) $ (Const (@{const_name "Respects"}, _) $ wenzelm@41700: (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) => wenzelm@41700: calculate_inst ctxt @{thm ball_reg_eqv_range[THEN eq_reflection]} redex R1 R2 kaliszyk@35222: wenzelm@41700: | (Const (@{const_name "Bex"}, _) $ (Const (@{const_name "Respects"}, _) $ wenzelm@41700: (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) => wenzelm@41700: calculate_inst ctxt @{thm bex_reg_eqv_range[THEN eq_reflection]} redex R1 R2 kaliszyk@35222: wenzelm@41700: | _ => NONE wenzelm@41700: end kaliszyk@35222: kaliszyk@35222: (* Regularize works as follows: kaliszyk@35222: kaliszyk@35222: 0. preliminary simplification step according to kaliszyk@35222: ball_reg_eqv bex_reg_eqv babs_reg_eqv ball_reg_eqv_range bex_reg_eqv_range kaliszyk@35222: kaliszyk@35222: 1. eliminating simple Ball/Bex instances (ball_reg_right bex_reg_left) kaliszyk@35222: kaliszyk@35222: 2. monos kaliszyk@35222: kaliszyk@35222: 3. commutation rules for ball and bex (ball_all_comm bex_ex_comm) kaliszyk@35222: kaliszyk@35222: 4. then rel-equalities, which need to be instantiated with 'eq_imp_rel' kaliszyk@35222: to avoid loops kaliszyk@35222: kaliszyk@35222: 5. then simplification like 0 kaliszyk@35222: kaliszyk@35222: finally jump back to 1 kaliszyk@35222: *) kaliszyk@35222: kaliszyk@37493: fun reflp_get ctxt = kaliszyk@37493: map_filter (fn th => if prems_of th = [] then SOME (OF1 @{thm equivp_reflp} th) else NONE wenzelm@41707: handle THM _ => NONE) (Quotient_Info.equiv_rules_get ctxt) kaliszyk@37493: kaliszyk@37493: val eq_imp_rel = @{lemma "equivp R ==> a = b --> R a b" by (simp add: equivp_reflp)} kaliszyk@37493: wenzelm@41707: fun eq_imp_rel_get ctxt = map (OF1 eq_imp_rel) (Quotient_Info.equiv_rules_get ctxt) kaliszyk@37493: kaliszyk@35222: fun regularize_tac ctxt = wenzelm@41700: let wenzelm@43232: val thy = Proof_Context.theory_of ctxt wenzelm@41700: val ball_pat = @{term "Ball (Respects (R1 ===> R2)) P"} wenzelm@41700: val bex_pat = @{term "Bex (Respects (R1 ===> R2)) P"} wenzelm@41700: val simproc = wenzelm@41700: Simplifier.simproc_global_i thy "" [ball_pat, bex_pat] (K (ball_bex_range_simproc)) wenzelm@41700: val simpset = wenzelm@41700: mk_minimal_ss ctxt wenzelm@41700: addsimps @{thms ball_reg_eqv bex_reg_eqv babs_reg_eqv babs_simp} wenzelm@41700: addsimprocs [simproc] wenzelm@41700: addSolver equiv_solver addSolver quotient_solver wenzelm@41700: val eq_eqvs = eq_imp_rel_get ctxt wenzelm@41700: in wenzelm@41700: simp_tac simpset THEN' wenzelm@41700: REPEAT_ALL_NEW (CHANGED o FIRST' wenzelm@41700: [resolve_tac @{thms ball_reg_right bex_reg_left bex1_bexeq_reg}, wenzelm@41700: resolve_tac (Inductive.get_monos ctxt), wenzelm@41700: resolve_tac @{thms ball_all_comm bex_ex_comm}, wenzelm@41700: resolve_tac eq_eqvs, wenzelm@41700: simp_tac simpset]) wenzelm@41700: end kaliszyk@35222: kaliszyk@35222: kaliszyk@35222: kaliszyk@35222: (*** Injection Tactic ***) kaliszyk@35222: kaliszyk@35222: (* Looks for Quot_True assumptions, and in case its parameter kaliszyk@35222: is an application, it returns the function and the argument. kaliszyk@35222: *) kaliszyk@35222: fun find_qt_asm asms = wenzelm@41700: let wenzelm@41700: fun find_fun trm = wenzelm@41700: (case trm of wenzelm@41700: (Const (@{const_name Trueprop}, _) $ (Const (@{const_name Quot_True}, _) $ _)) => true wenzelm@41700: | _ => false) wenzelm@41700: in wenzelm@41700: (case find_first find_fun asms of wenzelm@41700: SOME (_ $ (_ $ (f $ a))) => SOME (f, a) wenzelm@41700: | _ => NONE) wenzelm@41700: end kaliszyk@35222: kaliszyk@35222: fun quot_true_simple_conv ctxt fnctn ctrm = wenzelm@41700: case term_of ctrm of kaliszyk@35222: (Const (@{const_name Quot_True}, _) $ x) => wenzelm@41700: let wenzelm@41700: val fx = fnctn x; wenzelm@43232: val thy = Proof_Context.theory_of ctxt; wenzelm@41700: val cx = cterm_of thy x; wenzelm@41700: val cfx = cterm_of thy fx; wenzelm@41700: val cxt = ctyp_of thy (fastype_of x); wenzelm@41700: val cfxt = ctyp_of thy (fastype_of fx); wenzelm@41700: val thm = Drule.instantiate' [SOME cxt, SOME cfxt] [SOME cx, SOME cfx] @{thm QT_imp} wenzelm@41700: in wenzelm@41700: Conv.rewr_conv thm ctrm wenzelm@41700: end kaliszyk@35222: kaliszyk@35222: fun quot_true_conv ctxt fnctn ctrm = wenzelm@41700: (case term_of ctrm of kaliszyk@35222: (Const (@{const_name Quot_True}, _) $ _) => kaliszyk@35222: quot_true_simple_conv ctxt fnctn ctrm kaliszyk@35222: | _ $ _ => Conv.comb_conv (quot_true_conv ctxt fnctn) ctrm kaliszyk@35222: | Abs _ => Conv.abs_conv (fn (_, ctxt) => quot_true_conv ctxt fnctn) ctxt ctrm wenzelm@41700: | _ => Conv.all_conv ctrm) kaliszyk@35222: kaliszyk@35222: fun quot_true_tac ctxt fnctn = wenzelm@41700: CONVERSION kaliszyk@35222: ((Conv.params_conv ~1 (fn ctxt => wenzelm@41700: (Conv.prems_conv ~1 (quot_true_conv ctxt fnctn)))) ctxt) kaliszyk@35222: kaliszyk@35222: fun dest_comb (f $ a) = (f, a) kaliszyk@35222: fun dest_bcomb ((_ $ l) $ r) = (l, r) kaliszyk@35222: kaliszyk@35222: fun unlam t = wenzelm@41700: (case t of wenzelm@41700: Abs a => snd (Term.dest_abs a) wenzelm@41700: | _ => unlam (Abs("", domain_type (fastype_of t), (incr_boundvars 1 t) $ (Bound 0)))) kaliszyk@35222: kaliszyk@35222: val bare_concl = HOLogic.dest_Trueprop o Logic.strip_assums_concl kaliszyk@35222: kaliszyk@35222: (* We apply apply_rsp only in case if the type needs lifting. kaliszyk@35222: This is the case if the type of the data in the Quot_True kaliszyk@35222: assumption is different from the corresponding type in the goal. kaliszyk@35222: *) kaliszyk@35222: val apply_rsp_tac = kaliszyk@35222: Subgoal.FOCUS (fn {concl, asms, context,...} => wenzelm@41700: let wenzelm@41700: val bare_concl = HOLogic.dest_Trueprop (term_of concl) wenzelm@41700: val qt_asm = find_qt_asm (map term_of asms) wenzelm@41700: in wenzelm@41700: case (bare_concl, qt_asm) of wenzelm@41700: (R2 $ (f $ x) $ (g $ y), SOME (qt_fun, qt_arg)) => wenzelm@41700: if fastype_of qt_fun = fastype_of f wenzelm@41700: then no_tac wenzelm@41700: else wenzelm@41700: let wenzelm@41700: val ty_x = fastype_of x wenzelm@41700: val ty_b = fastype_of qt_arg wenzelm@41700: val ty_f = range_type (fastype_of f) wenzelm@43232: val thy = Proof_Context.theory_of context wenzelm@41700: val ty_inst = map (SOME o (ctyp_of thy)) [ty_x, ty_b, ty_f] wenzelm@41700: val t_inst = map (SOME o (cterm_of thy)) [R2, f, g, x, y]; wenzelm@41700: val inst_thm = Drule.instantiate' ty_inst wenzelm@41700: ([NONE, NONE, NONE] @ t_inst) @{thm apply_rsp} wenzelm@41700: in wenzelm@41700: (rtac inst_thm THEN' SOLVED' (quotient_tac context)) 1 wenzelm@41700: end wenzelm@41700: | _ => no_tac wenzelm@41700: end) kaliszyk@35222: kaliszyk@35222: (* Instantiates and applies 'equals_rsp'. Since the theorem is kaliszyk@35222: complex we rely on instantiation to tell us if it applies kaliszyk@35222: *) kaliszyk@35222: fun equals_rsp_tac R ctxt = wenzelm@41700: let wenzelm@43232: val thy = Proof_Context.theory_of ctxt wenzelm@41700: in wenzelm@41700: case try (cterm_of thy) R of (* There can be loose bounds in R *) wenzelm@41700: SOME ctm => wenzelm@41700: let wenzelm@41700: val ty = domain_type (fastype_of R) wenzelm@41700: in wenzelm@41700: case try (Drule.instantiate' [SOME (ctyp_of thy ty)] wenzelm@41700: [SOME (cterm_of thy R)]) @{thm equals_rsp} of wenzelm@41700: SOME thm => rtac thm THEN' quotient_tac ctxt wenzelm@41700: | NONE => K no_tac wenzelm@41700: end wenzelm@41700: | _ => K no_tac wenzelm@41700: end kaliszyk@35222: kaliszyk@35222: fun rep_abs_rsp_tac ctxt = kaliszyk@35222: SUBGOAL (fn (goal, i) => wenzelm@41700: (case try bare_concl goal of kaliszyk@35843: SOME (rel $ _ $ (rep $ (Bound _ $ _))) => no_tac kaliszyk@35843: | SOME (rel $ _ $ (rep $ (abs $ _))) => kaliszyk@35222: let wenzelm@43232: val thy = Proof_Context.theory_of ctxt; wenzelm@41089: val (ty_a, ty_b) = dest_funT (fastype_of abs); kaliszyk@35222: val ty_inst = map (SOME o (ctyp_of thy)) [ty_a, ty_b]; kaliszyk@35222: in kaliszyk@35222: case try (map (SOME o (cterm_of thy))) [rel, abs, rep] of kaliszyk@35222: SOME t_inst => kaliszyk@35222: (case try (Drule.instantiate' ty_inst t_inst) @{thm rep_abs_rsp} of kaliszyk@35222: SOME inst_thm => (rtac inst_thm THEN' quotient_tac ctxt) i kaliszyk@35222: | NONE => no_tac) kaliszyk@35222: | NONE => no_tac kaliszyk@35222: end wenzelm@41700: | _ => no_tac)) kaliszyk@35222: kaliszyk@35222: kaliszyk@35222: urbanc@38955: (* Injection means to prove that the regularized theorem implies kaliszyk@35222: the abs/rep injected one. kaliszyk@35222: kaliszyk@35222: The deterministic part: kaliszyk@35222: - remove lambdas from both sides kaliszyk@35222: - prove Ball/Bex/Babs equalities using ball_rsp, bex_rsp, babs_rsp urbanc@38541: - prove Ball/Bex relations using fun_relI kaliszyk@35222: - reflexivity of equality kaliszyk@35222: - prove equality of relations using equals_rsp kaliszyk@35222: - use user-supplied RSP theorems kaliszyk@35222: - solve 'relation of relations' goals using quot_rel_rsp kaliszyk@35222: - remove rep_abs from the right side kaliszyk@35222: (Lambdas under respects may have left us some assumptions) kaliszyk@35222: kaliszyk@35222: Then in order: kaliszyk@35222: - split applications of lifted type (apply_rsp) kaliszyk@35222: - split applications of non-lifted type (cong_tac) kaliszyk@35222: - apply extentionality kaliszyk@35222: - assumption kaliszyk@35222: - reflexivity of the relation kaliszyk@35222: *) kaliszyk@35222: fun injection_match_tac ctxt = SUBGOAL (fn (goal, i) => wenzelm@41700: (case bare_concl goal of wenzelm@41700: (* (R1 ===> R2) (%x...) (%x...) ----> [|R1 x y|] ==> R2 (...x) (...y) *) wenzelm@41700: (Const (@{const_name fun_rel}, _) $ _ $ _) $ (Abs _) $ (Abs _) wenzelm@41700: => rtac @{thm fun_relI} THEN' quot_true_tac ctxt unlam kaliszyk@35222: wenzelm@41700: (* (op =) (Ball...) (Ball...) ----> (op =) (...) (...) *) wenzelm@41700: | (Const (@{const_name HOL.eq},_) $ wenzelm@41700: (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $ wenzelm@41700: (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _)) wenzelm@41700: => rtac @{thm ball_rsp} THEN' dtac @{thm QT_all} kaliszyk@35222: wenzelm@41700: (* (R1 ===> op =) (Ball...) (Ball...) ----> [|R1 x y|] ==> (Ball...x) = (Ball...y) *) wenzelm@41700: | (Const (@{const_name fun_rel}, _) $ _ $ _) $ wenzelm@41700: (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $ wenzelm@41700: (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) wenzelm@41700: => rtac @{thm fun_relI} THEN' quot_true_tac ctxt unlam kaliszyk@35222: wenzelm@41700: (* (op =) (Bex...) (Bex...) ----> (op =) (...) (...) *) wenzelm@41700: | Const (@{const_name HOL.eq},_) $ wenzelm@41700: (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $ wenzelm@41700: (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) wenzelm@41700: => rtac @{thm bex_rsp} THEN' dtac @{thm QT_ex} kaliszyk@35222: wenzelm@41700: (* (R1 ===> op =) (Bex...) (Bex...) ----> [|R1 x y|] ==> (Bex...x) = (Bex...y) *) wenzelm@41700: | (Const (@{const_name fun_rel}, _) $ _ $ _) $ wenzelm@41700: (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $ wenzelm@41700: (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) wenzelm@41700: => rtac @{thm fun_relI} THEN' quot_true_tac ctxt unlam kaliszyk@35222: wenzelm@41700: | (Const (@{const_name fun_rel}, _) $ _ $ _) $ wenzelm@41700: (Const(@{const_name Bex1_rel},_) $ _) $ (Const(@{const_name Bex1_rel},_) $ _) wenzelm@41700: => rtac @{thm bex1_rel_rsp} THEN' quotient_tac ctxt kaliszyk@35222: wenzelm@41700: | (_ $ wenzelm@41700: (Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $ wenzelm@41700: (Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _)) wenzelm@41700: => rtac @{thm babs_rsp} THEN' RANGE [quotient_tac ctxt] kaliszyk@35222: wenzelm@41700: | Const (@{const_name HOL.eq},_) $ (R $ _ $ _) $ (_ $ _ $ _) => wenzelm@41700: (rtac @{thm refl} ORELSE' wenzelm@41700: (equals_rsp_tac R ctxt THEN' RANGE [ wenzelm@41700: quot_true_tac ctxt (fst o dest_bcomb), quot_true_tac ctxt (snd o dest_bcomb)])) kaliszyk@35222: wenzelm@41700: (* reflexivity of operators arising from Cong_tac *) wenzelm@41700: | Const (@{const_name HOL.eq},_) $ _ $ _ => rtac @{thm refl} kaliszyk@35222: wenzelm@41700: (* respectfulness of constants; in particular of a simple relation *) wenzelm@41700: | _ $ (Const _) $ (Const _) (* fun_rel, list_rel, etc but not equality *) wenzelm@41707: => resolve_tac (Quotient_Info.rsp_rules_get ctxt) THEN_ALL_NEW quotient_tac ctxt kaliszyk@35222: wenzelm@41700: (* R (...) (Rep (Abs ...)) ----> R (...) (...) *) wenzelm@41700: (* observe map_fun *) wenzelm@41700: | _ $ _ $ _ wenzelm@41700: => (rtac @{thm quot_rel_rsp} THEN_ALL_NEW quotient_tac ctxt) wenzelm@41700: ORELSE' rep_abs_rsp_tac ctxt kaliszyk@35222: wenzelm@41700: | _ => K no_tac) i) kaliszyk@35222: kaliszyk@35222: fun injection_step_tac ctxt rel_refl = wenzelm@41700: FIRST' [ kaliszyk@35222: injection_match_tac ctxt, kaliszyk@35222: kaliszyk@35222: (* R (t $ ...) (t' $ ...) ----> apply_rsp provided type of t needs lifting *) kaliszyk@35222: apply_rsp_tac ctxt THEN' kaliszyk@35222: RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)], kaliszyk@35222: kaliszyk@35222: (* (op =) (t $ ...) (t' $ ...) ----> Cong provided type of t does not need lifting *) kaliszyk@35222: (* merge with previous tactic *) kaliszyk@35222: Cong_Tac.cong_tac @{thm cong} THEN' kaliszyk@35222: RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)], kaliszyk@35222: kaliszyk@35222: (* (op =) (%x...) (%y...) ----> (op =) (...) (...) *) kaliszyk@35222: rtac @{thm ext} THEN' quot_true_tac ctxt unlam, kaliszyk@35222: kaliszyk@35222: (* resolving with R x y assumptions *) kaliszyk@35222: atac, kaliszyk@35222: kaliszyk@35222: (* reflexivity of the basic relations *) kaliszyk@35222: (* R ... ... *) kaliszyk@35222: resolve_tac rel_refl] kaliszyk@35222: kaliszyk@35222: fun injection_tac ctxt = wenzelm@41700: let wenzelm@41700: val rel_refl = reflp_get ctxt wenzelm@41700: in wenzelm@41700: injection_step_tac ctxt rel_refl wenzelm@41700: end kaliszyk@35222: kaliszyk@35222: fun all_injection_tac ctxt = kaliszyk@35222: REPEAT_ALL_NEW (injection_tac ctxt) kaliszyk@35222: kaliszyk@35222: kaliszyk@35222: kaliszyk@35222: (*** Cleaning of the Theorem ***) kaliszyk@35222: haftmann@40850: (* expands all map_funs, except in front of the (bound) variables listed in xs *) haftmann@40850: fun map_fun_simple_conv xs ctrm = wenzelm@41700: (case term_of ctrm of haftmann@40850: ((Const (@{const_name "map_fun"}, _) $ _ $ _) $ h $ _) => kaliszyk@35222: if member (op=) xs h kaliszyk@35222: then Conv.all_conv ctrm haftmann@40850: else Conv.rewr_conv @{thm map_fun_apply [THEN eq_reflection]} ctrm wenzelm@41700: | _ => Conv.all_conv ctrm) kaliszyk@35222: haftmann@40850: fun map_fun_conv xs ctxt ctrm = wenzelm@41700: (case term_of ctrm of wenzelm@41700: _ $ _ => wenzelm@41700: (Conv.comb_conv (map_fun_conv xs ctxt) then_conv wenzelm@41700: map_fun_simple_conv xs) ctrm wenzelm@41700: | Abs _ => Conv.abs_conv (fn (x, ctxt) => map_fun_conv ((term_of x)::xs) ctxt) ctxt ctrm wenzelm@41700: | _ => Conv.all_conv ctrm) kaliszyk@35222: haftmann@40850: fun map_fun_tac ctxt = CONVERSION (map_fun_conv [] ctxt) kaliszyk@35222: kaliszyk@35222: (* custom matching functions *) kaliszyk@35222: fun mk_abs u i t = wenzelm@41700: if incr_boundvars i u aconv t then Bound i wenzelm@41700: else wenzelm@41700: case t of wenzelm@41700: t1 $ t2 => mk_abs u i t1 $ mk_abs u i t2 wenzelm@41700: | Abs (s, T, t') => Abs (s, T, mk_abs u (i + 1) t') wenzelm@41700: | Bound j => if i = j then error "make_inst" else t wenzelm@41700: | _ => t kaliszyk@35222: kaliszyk@35222: fun make_inst lhs t = wenzelm@41700: let wenzelm@41700: val _ $ (Abs (_, _, (_ $ ((f as Var (_, Type ("fun", [T, _]))) $ u)))) = lhs; wenzelm@41700: val _ $ (Abs (_, _, (_ $ g))) = t; wenzelm@41700: in wenzelm@41700: (f, Abs ("x", T, mk_abs u 0 g)) wenzelm@41700: end kaliszyk@35222: kaliszyk@35222: fun make_inst_id lhs t = wenzelm@41700: let wenzelm@41700: val _ $ (Abs (_, _, (f as Var (_, Type ("fun", [T, _]))) $ u)) = lhs; wenzelm@41700: val _ $ (Abs (_, _, g)) = t; wenzelm@41700: in wenzelm@41700: (f, Abs ("x", T, mk_abs u 0 g)) wenzelm@41700: end kaliszyk@35222: kaliszyk@35222: (* Simplifies a redex using the 'lambda_prs' theorem. kaliszyk@35222: First instantiates the types and known subterms. kaliszyk@35222: Then solves the quotient assumptions to get Rep2 and Abs1 kaliszyk@35222: Finally instantiates the function f using make_inst kaliszyk@35222: If Rep2 is an identity then the pattern is simpler and kaliszyk@35222: make_inst_id is used kaliszyk@35222: *) kaliszyk@35222: fun lambda_prs_simple_conv ctxt ctrm = wenzelm@41700: (case term_of ctrm of haftmann@40850: (Const (@{const_name map_fun}, _) $ r1 $ a2) $ (Abs _) => kaliszyk@35222: let wenzelm@43232: val thy = Proof_Context.theory_of ctxt wenzelm@41089: val (ty_b, ty_a) = dest_funT (fastype_of r1) wenzelm@41089: val (ty_c, ty_d) = dest_funT (fastype_of a2) kaliszyk@35222: val tyinst = map (SOME o (ctyp_of thy)) [ty_a, ty_b, ty_c, ty_d] kaliszyk@35222: val tinst = [NONE, NONE, SOME (cterm_of thy r1), NONE, SOME (cterm_of thy a2)] kaliszyk@35222: val thm1 = Drule.instantiate' tyinst tinst @{thm lambda_prs[THEN eq_reflection]} kaliszyk@35222: val thm2 = solve_quotient_assm ctxt (solve_quotient_assm ctxt thm1) wenzelm@41494: val thm3 = Raw_Simplifier.rewrite_rule @{thms id_apply[THEN eq_reflection]} thm2 kaliszyk@35222: val (insp, inst) = kaliszyk@35222: if ty_c = ty_d kaliszyk@35222: then make_inst_id (term_of (Thm.lhs_of thm3)) (term_of ctrm) kaliszyk@35222: else make_inst (term_of (Thm.lhs_of thm3)) (term_of ctrm) wenzelm@44215: val thm4 = Drule.instantiate_normalize ([], [(cterm_of thy insp, cterm_of thy inst)]) thm3 kaliszyk@35222: in kaliszyk@35222: Conv.rewr_conv thm4 ctrm kaliszyk@35222: end wenzelm@41700: | _ => Conv.all_conv ctrm) kaliszyk@35222: wenzelm@36938: fun lambda_prs_conv ctxt = Conv.top_conv lambda_prs_simple_conv ctxt kaliszyk@35222: fun lambda_prs_tac ctxt = CONVERSION (lambda_prs_conv ctxt) kaliszyk@35222: kaliszyk@35222: kaliszyk@35222: (* Cleaning consists of: kaliszyk@35222: kaliszyk@35222: 1. unfolding of ---> in front of everything, except kaliszyk@35222: bound variables (this prevents lambda_prs from kaliszyk@35222: becoming stuck) kaliszyk@35222: kaliszyk@35222: 2. simplification with lambda_prs kaliszyk@35222: kaliszyk@35222: 3. simplification with: kaliszyk@35222: kaliszyk@35222: - Quotient_abs_rep Quotient_rel_rep kaliszyk@35222: babs_prs all_prs ex_prs ex1_prs kaliszyk@35222: kaliszyk@35222: - id_simps and preservation lemmas and kaliszyk@35222: kaliszyk@35222: - symmetric versions of the definitions kaliszyk@35222: (that is definitions of quotient constants kaliszyk@35222: are folded) kaliszyk@35222: kaliszyk@35222: 4. test for refl kaliszyk@35222: *) kaliszyk@35222: fun clean_tac lthy = wenzelm@41700: let wenzelm@41707: val defs = map (Thm.symmetric o #def) (Quotient_Info.qconsts_dest lthy) wenzelm@41707: val prs = Quotient_Info.prs_rules_get lthy wenzelm@41707: val ids = Quotient_Info.id_simps_get lthy wenzelm@41700: val thms = wenzelm@41700: @{thms Quotient_abs_rep Quotient_rel_rep babs_prs all_prs ex_prs ex1_prs} @ ids @ prs @ defs kaliszyk@35222: wenzelm@41700: val ss = (mk_minimal_ss lthy) addsimps thms addSolver quotient_solver wenzelm@41700: in wenzelm@41707: EVERY' [ wenzelm@41707: map_fun_tac lthy, wenzelm@41707: lambda_prs_tac lthy, wenzelm@41707: simp_tac ss, wenzelm@41707: TRY o rtac refl] wenzelm@41700: end kaliszyk@35222: kaliszyk@35222: urbanc@38955: (* Tactic for Generalising Free Variables in a Goal *) kaliszyk@35222: kaliszyk@35222: fun inst_spec ctrm = wenzelm@41700: Drule.instantiate' [SOME (ctyp_of_term ctrm)] [NONE, SOME ctrm] @{thm spec} kaliszyk@35222: kaliszyk@35222: fun inst_spec_tac ctrms = kaliszyk@35222: EVERY' (map (dtac o inst_spec) ctrms) kaliszyk@35222: kaliszyk@35222: fun all_list xs trm = kaliszyk@35222: fold (fn (x, T) => fn t' => HOLogic.mk_all (x, T, t')) xs trm kaliszyk@35222: kaliszyk@35222: fun apply_under_Trueprop f = kaliszyk@35222: HOLogic.dest_Trueprop #> f #> HOLogic.mk_Trueprop kaliszyk@35222: kaliszyk@35222: fun gen_frees_tac ctxt = kaliszyk@35222: SUBGOAL (fn (concl, i) => kaliszyk@35222: let wenzelm@43232: val thy = Proof_Context.theory_of ctxt kaliszyk@35222: val vrs = Term.add_frees concl [] kaliszyk@35222: val cvrs = map (cterm_of thy o Free) vrs kaliszyk@35222: val concl' = apply_under_Trueprop (all_list vrs) concl kaliszyk@35222: val goal = Logic.mk_implies (concl', concl) kaliszyk@35222: val rule = Goal.prove ctxt [] [] goal kaliszyk@35222: (K (EVERY1 [inst_spec_tac (rev cvrs), atac])) kaliszyk@35222: in kaliszyk@35222: rtac rule i kaliszyk@35222: end) kaliszyk@35222: kaliszyk@35222: kaliszyk@35222: (** The General Shape of the Lifting Procedure **) kaliszyk@35222: kaliszyk@35222: (* - A is the original raw theorem kaliszyk@35222: - B is the regularized theorem kaliszyk@35222: - C is the rep/abs injected version of B kaliszyk@35222: - D is the lifted theorem kaliszyk@35222: kaliszyk@35222: - 1st prem is the regularization step kaliszyk@35222: - 2nd prem is the rep/abs injection step kaliszyk@35222: - 3rd prem is the cleaning part kaliszyk@35222: kaliszyk@35222: the Quot_True premise in 2nd records the lifted theorem kaliszyk@35222: *) kaliszyk@35222: val lifting_procedure_thm = kaliszyk@35222: @{lemma "[|A; kaliszyk@35222: A --> B; kaliszyk@35222: Quot_True D ==> B = C; kaliszyk@35222: C = D|] ==> D" kaliszyk@35222: by (simp add: Quot_True_def)} kaliszyk@35222: kaliszyk@35222: fun lift_match_error ctxt msg rtrm qtrm = wenzelm@41700: let wenzelm@41700: val rtrm_str = Syntax.string_of_term ctxt rtrm wenzelm@41700: val qtrm_str = Syntax.string_of_term ctxt qtrm wenzelm@41700: val msg = cat_lines [enclose "[" "]" msg, "The quotient theorem", qtrm_str, wenzelm@41700: "", "does not match with original theorem", rtrm_str] wenzelm@41700: in wenzelm@41700: error msg wenzelm@41700: end kaliszyk@35222: kaliszyk@35222: fun procedure_inst ctxt rtrm qtrm = wenzelm@41700: let wenzelm@43232: val thy = Proof_Context.theory_of ctxt wenzelm@41700: val rtrm' = HOLogic.dest_Trueprop rtrm wenzelm@41700: val qtrm' = HOLogic.dest_Trueprop qtrm wenzelm@41707: val reg_goal = Quotient_Term.regularize_trm_chk ctxt (rtrm', qtrm') wenzelm@41707: handle Quotient_Term.LIFT_MATCH msg => lift_match_error ctxt msg rtrm qtrm wenzelm@41707: val inj_goal = Quotient_Term.inj_repabs_trm_chk ctxt (reg_goal, qtrm') wenzelm@41707: handle Quotient_Term.LIFT_MATCH msg => lift_match_error ctxt msg rtrm qtrm wenzelm@41700: in wenzelm@41700: Drule.instantiate' [] wenzelm@41700: [SOME (cterm_of thy rtrm'), wenzelm@41700: SOME (cterm_of thy reg_goal), wenzelm@41700: NONE, wenzelm@41700: SOME (cterm_of thy inj_goal)] lifting_procedure_thm wenzelm@41700: end kaliszyk@35222: urbanc@37593: urbanc@39089: (* Since we use Ball and Bex during the lifting and descending, kaliszyk@39091: we cannot deal with lemmas containing them, unless we unfold kaliszyk@39091: them by default. *) urbanc@39089: kaliszyk@39091: val default_unfolds = @{thms Ball_def Bex_def} urbanc@39089: urbanc@39089: urbanc@37593: (** descending as tactic **) urbanc@37593: urbanc@39088: fun descend_procedure_tac ctxt simps = wenzelm@41700: let wenzelm@41700: val ss = (mk_minimal_ss ctxt) addsimps (simps @ default_unfolds) wenzelm@41700: in wenzelm@41700: full_simp_tac ss wenzelm@41700: THEN' Object_Logic.full_atomize_tac wenzelm@41700: THEN' gen_frees_tac ctxt wenzelm@41700: THEN' SUBGOAL (fn (goal, i) => wenzelm@41700: let wenzelm@41700: val qtys = map #qtyp (Quotient_Info.quotdata_dest ctxt) wenzelm@41707: val rtrm = Quotient_Term.derive_rtrm ctxt qtys goal wenzelm@41700: val rule = procedure_inst ctxt rtrm goal wenzelm@41700: in wenzelm@41700: rtac rule i wenzelm@41700: end) wenzelm@41700: end kaliszyk@35222: urbanc@39088: fun descend_tac ctxt simps = wenzelm@41700: let wenzelm@41700: val mk_tac_raw = wenzelm@41700: descend_procedure_tac ctxt simps wenzelm@41700: THEN' RANGE wenzelm@41700: [Object_Logic.rulify_tac THEN' (K all_tac), wenzelm@41700: regularize_tac ctxt, wenzelm@41700: all_injection_tac ctxt, wenzelm@41700: clean_tac ctxt] wenzelm@41700: in wenzelm@41700: Goal.conjunction_tac THEN_ALL_NEW mk_tac_raw wenzelm@41700: end kaliszyk@35222: urbanc@37593: urbanc@38848: (** lifting as a tactic **) urbanc@37593: urbanc@38955: urbanc@37593: (* the tactic leaves three subgoals to be proved *) urbanc@39088: fun lift_procedure_tac ctxt simps rthm = wenzelm@41700: let wenzelm@41700: val ss = (mk_minimal_ss ctxt) addsimps (simps @ default_unfolds) wenzelm@41700: in wenzelm@41700: full_simp_tac ss wenzelm@41700: THEN' Object_Logic.full_atomize_tac wenzelm@41700: THEN' gen_frees_tac ctxt wenzelm@41700: THEN' SUBGOAL (fn (goal, i) => wenzelm@41700: let wenzelm@41700: (* full_atomize_tac contracts eta redexes, wenzelm@41700: so we do it also in the original theorem *) wenzelm@41700: val rthm' = wenzelm@41700: rthm |> full_simplify ss wenzelm@41700: |> Drule.eta_contraction_rule wenzelm@41700: |> Thm.forall_intr_frees wenzelm@41700: |> atomize_thm urbanc@38954: wenzelm@41700: val rule = procedure_inst ctxt (prop_of rthm') goal wenzelm@41700: in wenzelm@41700: (rtac rule THEN' rtac rthm') i wenzelm@41700: end) wenzelm@41700: end kaliszyk@35222: wenzelm@41700: fun lift_single_tac ctxt simps rthm = urbanc@39088: lift_procedure_tac ctxt simps rthm urbanc@38848: THEN' RANGE urbanc@38848: [ regularize_tac ctxt, urbanc@38848: all_injection_tac ctxt, urbanc@38848: clean_tac ctxt ] urbanc@38848: urbanc@39088: fun lift_tac ctxt simps rthms = wenzelm@41700: Goal.conjunction_tac urbanc@39088: THEN' RANGE (map (lift_single_tac ctxt simps) rthms) kaliszyk@35222: urbanc@37593: urbanc@38848: (* automated lifting with pre-simplification of the theorems; urbanc@38848: for internal usage *) urbanc@38848: fun lifted ctxt qtys simps rthm = wenzelm@41700: let wenzelm@41700: val ((_, [rthm']), ctxt') = Variable.import true [rthm] ctxt wenzelm@41707: val goal = Quotient_Term.derive_qtrm ctxt' qtys (prop_of rthm') wenzelm@41700: in wenzelm@41700: Goal.prove ctxt' [] [] goal wenzelm@41700: (K (HEADGOAL (lift_single_tac ctxt' simps rthm'))) wenzelm@43232: |> singleton (Proof_Context.export ctxt' ctxt) wenzelm@41700: end urbanc@38848: urbanc@38848: urbanc@38848: (* lifting as an attribute *) kaliszyk@35222: wenzelm@41700: val lifted_attrib = Thm.rule_attribute (fn context => urbanc@37593: let urbanc@37593: val ctxt = Context.proof_of context urbanc@37593: val qtys = map #qtyp (Quotient_Info.quotdata_dest ctxt) urbanc@37593: in urbanc@38848: lifted ctxt qtys [] urbanc@37593: end) kaliszyk@35222: kaliszyk@35222: end; (* structure *)