src/HOL/Fun.thy
author nipkow
Thu, 22 Oct 2009 09:27:48 +0200
changeset 33057 764547b68538
parent 33044 fd0a9c794ec1
child 33301 ddd97d9dfbfb
permissions -rw-r--r--
inv_onto -> inv_into
clasohm@1475
     1
(*  Title:      HOL/Fun.thy
clasohm@1475
     2
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
clasohm@923
     3
    Copyright   1994  University of Cambridge
huffman@18154
     4
*)
clasohm@923
     5
huffman@18154
     6
header {* Notions about functions *}
clasohm@923
     7
paulson@15510
     8
theory Fun
haftmann@32139
     9
imports Complete_Lattice
haftmann@32554
    10
uses ("Tools/transfer.ML")
nipkow@15131
    11
begin
nipkow@2912
    12
haftmann@26147
    13
text{*As a simplification rule, it replaces all function equalities by
haftmann@26147
    14
  first-order equalities.*}
haftmann@26147
    15
lemma expand_fun_eq: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"
haftmann@26147
    16
apply (rule iffI)
haftmann@26147
    17
apply (simp (no_asm_simp))
haftmann@26147
    18
apply (rule ext)
haftmann@26147
    19
apply (simp (no_asm_simp))
haftmann@26147
    20
done
paulson@6171
    21
haftmann@26147
    22
lemma apply_inverse:
haftmann@26357
    23
  "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"
haftmann@26147
    24
  by auto
oheimb@5305
    25
nipkow@2912
    26
haftmann@26147
    27
subsection {* The Identity Function @{text id} *}
nipkow@2912
    28
haftmann@22744
    29
definition
haftmann@22744
    30
  id :: "'a \<Rightarrow> 'a"
haftmann@22744
    31
where
haftmann@22744
    32
  "id = (\<lambda>x. x)"
nipkow@13910
    33
haftmann@26147
    34
lemma id_apply [simp]: "id x = x"
haftmann@26147
    35
  by (simp add: id_def)
haftmann@26147
    36
haftmann@26147
    37
lemma image_ident [simp]: "(%x. x) ` Y = Y"
haftmann@26147
    38
by blast
haftmann@26147
    39
haftmann@26147
    40
lemma image_id [simp]: "id ` Y = Y"
haftmann@26147
    41
by (simp add: id_def)
haftmann@26147
    42
haftmann@26147
    43
lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
haftmann@26147
    44
by blast
haftmann@26147
    45
haftmann@26147
    46
lemma vimage_id [simp]: "id -` A = A"
haftmann@26147
    47
by (simp add: id_def)
haftmann@26147
    48
haftmann@26147
    49
haftmann@26147
    50
subsection {* The Composition Operator @{text "f \<circ> g"} *}
haftmann@26147
    51
haftmann@22744
    52
definition
haftmann@22744
    53
  comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55)
haftmann@22744
    54
where
haftmann@22744
    55
  "f o g = (\<lambda>x. f (g x))"
oheimb@11123
    56
wenzelm@21210
    57
notation (xsymbols)
wenzelm@19656
    58
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    59
wenzelm@21210
    60
notation (HTML output)
wenzelm@19656
    61
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    62
paulson@13585
    63
text{*compatibility*}
paulson@13585
    64
lemmas o_def = comp_def
paulson@13585
    65
paulson@13585
    66
lemma o_apply [simp]: "(f o g) x = f (g x)"
paulson@13585
    67
by (simp add: comp_def)
paulson@13585
    68
paulson@13585
    69
lemma o_assoc: "f o (g o h) = f o g o h"
paulson@13585
    70
by (simp add: comp_def)
paulson@13585
    71
paulson@13585
    72
lemma id_o [simp]: "id o g = g"
paulson@13585
    73
by (simp add: comp_def)
paulson@13585
    74
paulson@13585
    75
lemma o_id [simp]: "f o id = f"
paulson@13585
    76
by (simp add: comp_def)
paulson@13585
    77
paulson@13585
    78
lemma image_compose: "(f o g) ` r = f`(g`r)"
paulson@13585
    79
by (simp add: comp_def, blast)
paulson@13585
    80
paulson@33044
    81
lemma vimage_compose: "(g \<circ> f) -` x = f -` (g -` x)"
paulson@33044
    82
  by auto
paulson@33044
    83
paulson@13585
    84
lemma UN_o: "UNION A (g o f) = UNION (f`A) g"
paulson@13585
    85
by (unfold comp_def, blast)
paulson@13585
    86
paulson@13585
    87
haftmann@26588
    88
subsection {* The Forward Composition Operator @{text fcomp} *}
haftmann@26357
    89
haftmann@26357
    90
definition
haftmann@26357
    91
  fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o>" 60)
haftmann@26357
    92
where
haftmann@26357
    93
  "f o> g = (\<lambda>x. g (f x))"
haftmann@26357
    94
haftmann@26357
    95
lemma fcomp_apply:  "(f o> g) x = g (f x)"
haftmann@26357
    96
  by (simp add: fcomp_def)
haftmann@26357
    97
haftmann@26357
    98
lemma fcomp_assoc: "(f o> g) o> h = f o> (g o> h)"
haftmann@26357
    99
  by (simp add: fcomp_def)
haftmann@26357
   100
haftmann@26357
   101
lemma id_fcomp [simp]: "id o> g = g"
haftmann@26357
   102
  by (simp add: fcomp_def)
haftmann@26357
   103
haftmann@26357
   104
lemma fcomp_id [simp]: "f o> id = f"
haftmann@26357
   105
  by (simp add: fcomp_def)
haftmann@26357
   106
haftmann@31202
   107
code_const fcomp
haftmann@31202
   108
  (Eval infixl 1 "#>")
haftmann@31202
   109
haftmann@26588
   110
no_notation fcomp (infixl "o>" 60)
haftmann@26588
   111
haftmann@26357
   112
haftmann@26147
   113
subsection {* Injectivity and Surjectivity *}
paulson@13585
   114
haftmann@26147
   115
constdefs
haftmann@26147
   116
  inj_on :: "['a => 'b, 'a set] => bool"  -- "injective"
haftmann@26147
   117
  "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
paulson@13585
   118
haftmann@26147
   119
text{*A common special case: functions injective over the entire domain type.*}
haftmann@26147
   120
haftmann@26147
   121
abbreviation
haftmann@26147
   122
  "inj f == inj_on f UNIV"
haftmann@26147
   123
haftmann@26147
   124
definition
haftmann@26147
   125
  bij_betw :: "('a => 'b) => 'a set => 'b set => bool" where -- "bijective"
haftmann@28562
   126
  [code del]: "bij_betw f A B \<longleftrightarrow> inj_on f A & f ` A = B"
haftmann@26147
   127
haftmann@26147
   128
constdefs
haftmann@26147
   129
  surj :: "('a => 'b) => bool"                   (*surjective*)
haftmann@26147
   130
  "surj f == ! y. ? x. y=f(x)"
haftmann@26147
   131
haftmann@26147
   132
  bij :: "('a => 'b) => bool"                    (*bijective*)
haftmann@26147
   133
  "bij f == inj f & surj f"
haftmann@26147
   134
haftmann@26147
   135
lemma injI:
haftmann@26147
   136
  assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"
haftmann@26147
   137
  shows "inj f"
haftmann@26147
   138
  using assms unfolding inj_on_def by auto
paulson@13585
   139
haftmann@31771
   140
text{*For Proofs in @{text "Tools/Datatype/datatype_rep_proofs"}*}
paulson@13585
   141
lemma datatype_injI:
paulson@13585
   142
    "(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)"
paulson@13585
   143
by (simp add: inj_on_def)
paulson@13585
   144
berghofe@13637
   145
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)"
berghofe@13637
   146
  by (unfold inj_on_def, blast)
berghofe@13637
   147
paulson@13585
   148
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"
paulson@13585
   149
by (simp add: inj_on_def)
paulson@13585
   150
nipkow@32988
   151
lemma inj_on_eq_iff: "inj_on f A ==> x:A ==> y:A ==> (f(x) = f(y)) = (x=y)"
paulson@13585
   152
by (force simp add: inj_on_def)
paulson@13585
   153
nipkow@32988
   154
lemma inj_eq: "inj f ==> (f(x) = f(y)) = (x=y)"
nipkow@32988
   155
by (simp add: inj_on_eq_iff)
nipkow@32988
   156
haftmann@26147
   157
lemma inj_on_id[simp]: "inj_on id A"
haftmann@26147
   158
  by (simp add: inj_on_def) 
paulson@13585
   159
haftmann@26147
   160
lemma inj_on_id2[simp]: "inj_on (%x. x) A"
haftmann@26147
   161
by (simp add: inj_on_def) 
haftmann@26147
   162
haftmann@26147
   163
lemma surj_id[simp]: "surj id"
haftmann@26147
   164
by (simp add: surj_def) 
haftmann@26147
   165
haftmann@26147
   166
lemma bij_id[simp]: "bij id"
haftmann@26147
   167
by (simp add: bij_def inj_on_id surj_id) 
paulson@13585
   168
paulson@13585
   169
lemma inj_onI:
paulson@13585
   170
    "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
paulson@13585
   171
by (simp add: inj_on_def)
paulson@13585
   172
paulson@13585
   173
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"
paulson@13585
   174
by (auto dest:  arg_cong [of concl: g] simp add: inj_on_def)
paulson@13585
   175
paulson@13585
   176
lemma inj_onD: "[| inj_on f A;  f(x)=f(y);  x:A;  y:A |] ==> x=y"
paulson@13585
   177
by (unfold inj_on_def, blast)
paulson@13585
   178
paulson@13585
   179
lemma inj_on_iff: "[| inj_on f A;  x:A;  y:A |] ==> (f(x)=f(y)) = (x=y)"
paulson@13585
   180
by (blast dest!: inj_onD)
paulson@13585
   181
paulson@13585
   182
lemma comp_inj_on:
paulson@13585
   183
     "[| inj_on f A;  inj_on g (f`A) |] ==> inj_on (g o f) A"
paulson@13585
   184
by (simp add: comp_def inj_on_def)
paulson@13585
   185
nipkow@15303
   186
lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)"
nipkow@15303
   187
apply(simp add:inj_on_def image_def)
nipkow@15303
   188
apply blast
nipkow@15303
   189
done
nipkow@15303
   190
nipkow@15439
   191
lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y);
nipkow@15439
   192
  inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A"
nipkow@15439
   193
apply(unfold inj_on_def)
nipkow@15439
   194
apply blast
nipkow@15439
   195
done
nipkow@15439
   196
paulson@13585
   197
lemma inj_on_contraD: "[| inj_on f A;  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)"
paulson@13585
   198
by (unfold inj_on_def, blast)
paulson@13585
   199
paulson@13585
   200
lemma inj_singleton: "inj (%s. {s})"
paulson@13585
   201
by (simp add: inj_on_def)
paulson@13585
   202
nipkow@15111
   203
lemma inj_on_empty[iff]: "inj_on f {}"
nipkow@15111
   204
by(simp add: inj_on_def)
nipkow@15111
   205
nipkow@15303
   206
lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A"
paulson@13585
   207
by (unfold inj_on_def, blast)
paulson@13585
   208
nipkow@15111
   209
lemma inj_on_Un:
nipkow@15111
   210
 "inj_on f (A Un B) =
nipkow@15111
   211
  (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
nipkow@15111
   212
apply(unfold inj_on_def)
nipkow@15111
   213
apply (blast intro:sym)
nipkow@15111
   214
done
nipkow@15111
   215
nipkow@15111
   216
lemma inj_on_insert[iff]:
nipkow@15111
   217
  "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
nipkow@15111
   218
apply(unfold inj_on_def)
nipkow@15111
   219
apply (blast intro:sym)
nipkow@15111
   220
done
nipkow@15111
   221
nipkow@15111
   222
lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)"
nipkow@15111
   223
apply(unfold inj_on_def)
nipkow@15111
   224
apply (blast)
nipkow@15111
   225
done
nipkow@15111
   226
paulson@13585
   227
lemma surjI: "(!! x. g(f x) = x) ==> surj g"
paulson@13585
   228
apply (simp add: surj_def)
paulson@13585
   229
apply (blast intro: sym)
paulson@13585
   230
done
paulson@13585
   231
paulson@13585
   232
lemma surj_range: "surj f ==> range f = UNIV"
paulson@13585
   233
by (auto simp add: surj_def)
paulson@13585
   234
paulson@13585
   235
lemma surjD: "surj f ==> EX x. y = f x"
paulson@13585
   236
by (simp add: surj_def)
paulson@13585
   237
paulson@13585
   238
lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C"
paulson@13585
   239
by (simp add: surj_def, blast)
paulson@13585
   240
paulson@13585
   241
lemma comp_surj: "[| surj f;  surj g |] ==> surj (g o f)"
paulson@13585
   242
apply (simp add: comp_def surj_def, clarify)
paulson@13585
   243
apply (drule_tac x = y in spec, clarify)
paulson@13585
   244
apply (drule_tac x = x in spec, blast)
paulson@13585
   245
done
paulson@13585
   246
paulson@13585
   247
lemma bijI: "[| inj f; surj f |] ==> bij f"
paulson@13585
   248
by (simp add: bij_def)
paulson@13585
   249
paulson@13585
   250
lemma bij_is_inj: "bij f ==> inj f"
paulson@13585
   251
by (simp add: bij_def)
paulson@13585
   252
paulson@13585
   253
lemma bij_is_surj: "bij f ==> surj f"
paulson@13585
   254
by (simp add: bij_def)
paulson@13585
   255
nipkow@26105
   256
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
nipkow@26105
   257
by (simp add: bij_betw_def)
nipkow@26105
   258
nipkow@32337
   259
lemma bij_comp: "bij f \<Longrightarrow> bij g \<Longrightarrow> bij (g o f)"
nipkow@32337
   260
by(fastsimp intro: comp_inj_on comp_surj simp: bij_def surj_range)
nipkow@32337
   261
nipkow@31424
   262
lemma bij_betw_trans:
nipkow@31424
   263
  "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (g o f) A C"
nipkow@31424
   264
by(auto simp add:bij_betw_def comp_inj_on)
nipkow@31424
   265
nipkow@26105
   266
lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A"
nipkow@26105
   267
proof -
nipkow@26105
   268
  have i: "inj_on f A" and s: "f ` A = B"
nipkow@26105
   269
    using assms by(auto simp:bij_betw_def)
nipkow@26105
   270
  let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)"
nipkow@26105
   271
  { fix a b assume P: "?P b a"
nipkow@26105
   272
    hence ex1: "\<exists>a. ?P b a" using s unfolding image_def by blast
nipkow@26105
   273
    hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i])
nipkow@26105
   274
    hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp
nipkow@26105
   275
  } note g = this
nipkow@26105
   276
  have "inj_on ?g B"
nipkow@26105
   277
  proof(rule inj_onI)
nipkow@26105
   278
    fix x y assume "x:B" "y:B" "?g x = ?g y"
nipkow@26105
   279
    from s `x:B` obtain a1 where a1: "?P x a1" unfolding image_def by blast
nipkow@26105
   280
    from s `y:B` obtain a2 where a2: "?P y a2" unfolding image_def by blast
nipkow@26105
   281
    from g[OF a1] a1 g[OF a2] a2 `?g x = ?g y` show "x=y" by simp
nipkow@26105
   282
  qed
nipkow@26105
   283
  moreover have "?g ` B = A"
nipkow@26105
   284
  proof(auto simp:image_def)
nipkow@26105
   285
    fix b assume "b:B"
nipkow@26105
   286
    with s obtain a where P: "?P b a" unfolding image_def by blast
nipkow@26105
   287
    thus "?g b \<in> A" using g[OF P] by auto
nipkow@26105
   288
  next
nipkow@26105
   289
    fix a assume "a:A"
nipkow@26105
   290
    then obtain b where P: "?P b a" using s unfolding image_def by blast
nipkow@26105
   291
    then have "b:B" using s unfolding image_def by blast
nipkow@26105
   292
    with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast
nipkow@26105
   293
  qed
nipkow@26105
   294
  ultimately show ?thesis by(auto simp:bij_betw_def)
nipkow@26105
   295
qed
nipkow@26105
   296
paulson@13585
   297
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"
paulson@13585
   298
by (simp add: surj_range)
paulson@13585
   299
paulson@13585
   300
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"
paulson@13585
   301
by (simp add: inj_on_def, blast)
paulson@13585
   302
paulson@13585
   303
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"
paulson@13585
   304
apply (unfold surj_def)
paulson@13585
   305
apply (blast intro: sym)
paulson@13585
   306
done
paulson@13585
   307
paulson@13585
   308
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"
paulson@13585
   309
by (unfold inj_on_def, blast)
paulson@13585
   310
paulson@13585
   311
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"
paulson@13585
   312
apply (unfold bij_def)
paulson@13585
   313
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
paulson@13585
   314
done
paulson@13585
   315
nipkow@31424
   316
lemma inj_on_Un_image_eq_iff: "inj_on f (A \<union> B) \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"
nipkow@31424
   317
by(blast dest: inj_onD)
nipkow@31424
   318
paulson@13585
   319
lemma inj_on_image_Int:
paulson@13585
   320
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   321
apply (simp add: inj_on_def, blast)
paulson@13585
   322
done
paulson@13585
   323
paulson@13585
   324
lemma inj_on_image_set_diff:
paulson@13585
   325
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A-B) = f`A - f`B"
paulson@13585
   326
apply (simp add: inj_on_def, blast)
paulson@13585
   327
done
paulson@13585
   328
paulson@13585
   329
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   330
by (simp add: inj_on_def, blast)
paulson@13585
   331
paulson@13585
   332
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"
paulson@13585
   333
by (simp add: inj_on_def, blast)
paulson@13585
   334
paulson@13585
   335
lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)"
paulson@13585
   336
by (blast dest: injD)
paulson@13585
   337
paulson@13585
   338
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"
paulson@13585
   339
by (simp add: inj_on_def, blast)
paulson@13585
   340
paulson@13585
   341
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"
paulson@13585
   342
by (blast dest: injD)
paulson@13585
   343
paulson@13585
   344
(*injectivity's required.  Left-to-right inclusion holds even if A is empty*)
paulson@13585
   345
lemma image_INT:
paulson@13585
   346
   "[| inj_on f C;  ALL x:A. B x <= C;  j:A |]
paulson@13585
   347
    ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   348
apply (simp add: inj_on_def, blast)
paulson@13585
   349
done
paulson@13585
   350
paulson@13585
   351
(*Compare with image_INT: no use of inj_on, and if f is surjective then
paulson@13585
   352
  it doesn't matter whether A is empty*)
paulson@13585
   353
lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   354
apply (simp add: bij_def)
paulson@13585
   355
apply (simp add: inj_on_def surj_def, blast)
paulson@13585
   356
done
paulson@13585
   357
paulson@13585
   358
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"
paulson@13585
   359
by (auto simp add: surj_def)
paulson@13585
   360
paulson@13585
   361
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"
paulson@13585
   362
by (auto simp add: inj_on_def)
paulson@13585
   363
paulson@13585
   364
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"
paulson@13585
   365
apply (simp add: bij_def)
paulson@13585
   366
apply (rule equalityI)
paulson@13585
   367
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)
paulson@13585
   368
done
paulson@13585
   369
paulson@13585
   370
paulson@13585
   371
subsection{*Function Updating*}
paulson@13585
   372
haftmann@26147
   373
constdefs
haftmann@26147
   374
  fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
haftmann@26147
   375
  "fun_upd f a b == % x. if x=a then b else f x"
haftmann@26147
   376
haftmann@26147
   377
nonterminals
haftmann@26147
   378
  updbinds updbind
haftmann@26147
   379
syntax
haftmann@26147
   380
  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
haftmann@26147
   381
  ""         :: "updbind => updbinds"             ("_")
haftmann@26147
   382
  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
haftmann@26147
   383
  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000,0] 900)
haftmann@26147
   384
haftmann@26147
   385
translations
haftmann@26147
   386
  "_Update f (_updbinds b bs)"  == "_Update (_Update f b) bs"
haftmann@26147
   387
  "f(x:=y)"                     == "fun_upd f x y"
haftmann@26147
   388
haftmann@26147
   389
(* Hint: to define the sum of two functions (or maps), use sum_case.
haftmann@26147
   390
         A nice infix syntax could be defined (in Datatype.thy or below) by
haftmann@26147
   391
consts
haftmann@26147
   392
  fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
haftmann@26147
   393
translations
haftmann@26147
   394
 "fun_sum" == sum_case
haftmann@26147
   395
*)
haftmann@26147
   396
paulson@13585
   397
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"
paulson@13585
   398
apply (simp add: fun_upd_def, safe)
paulson@13585
   399
apply (erule subst)
paulson@13585
   400
apply (rule_tac [2] ext, auto)
paulson@13585
   401
done
paulson@13585
   402
paulson@13585
   403
(* f x = y ==> f(x:=y) = f *)
paulson@13585
   404
lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard]
paulson@13585
   405
paulson@13585
   406
(* f(x := f x) = f *)
paulson@17084
   407
lemmas fun_upd_triv = refl [THEN fun_upd_idem]
paulson@17084
   408
declare fun_upd_triv [iff]
paulson@13585
   409
paulson@13585
   410
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"
paulson@17084
   411
by (simp add: fun_upd_def)
paulson@13585
   412
paulson@13585
   413
(* fun_upd_apply supersedes these two,   but they are useful
paulson@13585
   414
   if fun_upd_apply is intentionally removed from the simpset *)
paulson@13585
   415
lemma fun_upd_same: "(f(x:=y)) x = y"
paulson@13585
   416
by simp
paulson@13585
   417
paulson@13585
   418
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"
paulson@13585
   419
by simp
paulson@13585
   420
paulson@13585
   421
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"
paulson@13585
   422
by (simp add: expand_fun_eq)
paulson@13585
   423
paulson@13585
   424
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"
paulson@13585
   425
by (rule ext, auto)
paulson@13585
   426
nipkow@15303
   427
lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A"
nipkow@15303
   428
by(fastsimp simp:inj_on_def image_def)
nipkow@15303
   429
paulson@15510
   430
lemma fun_upd_image:
paulson@15510
   431
     "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
paulson@15510
   432
by auto
paulson@15510
   433
nipkow@31080
   434
lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)"
nipkow@31080
   435
by(auto intro: ext)
nipkow@31080
   436
haftmann@26147
   437
haftmann@26147
   438
subsection {* @{text override_on} *}
haftmann@26147
   439
haftmann@26147
   440
definition
haftmann@26147
   441
  override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
haftmann@26147
   442
where
haftmann@26147
   443
  "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"
nipkow@13910
   444
nipkow@15691
   445
lemma override_on_emptyset[simp]: "override_on f g {} = f"
nipkow@15691
   446
by(simp add:override_on_def)
nipkow@13910
   447
nipkow@15691
   448
lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a"
nipkow@15691
   449
by(simp add:override_on_def)
nipkow@13910
   450
nipkow@15691
   451
lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a"
nipkow@15691
   452
by(simp add:override_on_def)
nipkow@13910
   453
haftmann@26147
   454
haftmann@26147
   455
subsection {* @{text swap} *}
paulson@15510
   456
haftmann@22744
   457
definition
haftmann@22744
   458
  swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
haftmann@22744
   459
where
haftmann@22744
   460
  "swap a b f = f (a := f b, b:= f a)"
paulson@15510
   461
paulson@15510
   462
lemma swap_self: "swap a a f = f"
nipkow@15691
   463
by (simp add: swap_def)
paulson@15510
   464
paulson@15510
   465
lemma swap_commute: "swap a b f = swap b a f"
paulson@15510
   466
by (rule ext, simp add: fun_upd_def swap_def)
paulson@15510
   467
paulson@15510
   468
lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f"
paulson@15510
   469
by (rule ext, simp add: fun_upd_def swap_def)
paulson@15510
   470
paulson@15510
   471
lemma inj_on_imp_inj_on_swap:
haftmann@22744
   472
  "[|inj_on f A; a \<in> A; b \<in> A|] ==> inj_on (swap a b f) A"
paulson@15510
   473
by (simp add: inj_on_def swap_def, blast)
paulson@15510
   474
paulson@15510
   475
lemma inj_on_swap_iff [simp]:
paulson@15510
   476
  assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A = inj_on f A"
paulson@15510
   477
proof 
paulson@15510
   478
  assume "inj_on (swap a b f) A"
paulson@15510
   479
  with A have "inj_on (swap a b (swap a b f)) A" 
nipkow@17589
   480
    by (iprover intro: inj_on_imp_inj_on_swap) 
paulson@15510
   481
  thus "inj_on f A" by simp 
paulson@15510
   482
next
paulson@15510
   483
  assume "inj_on f A"
nipkow@27165
   484
  with A show "inj_on (swap a b f) A" by(iprover intro: inj_on_imp_inj_on_swap)
paulson@15510
   485
qed
paulson@15510
   486
paulson@15510
   487
lemma surj_imp_surj_swap: "surj f ==> surj (swap a b f)"
paulson@15510
   488
apply (simp add: surj_def swap_def, clarify)
wenzelm@27125
   489
apply (case_tac "y = f b", blast)
wenzelm@27125
   490
apply (case_tac "y = f a", auto)
paulson@15510
   491
done
paulson@15510
   492
paulson@15510
   493
lemma surj_swap_iff [simp]: "surj (swap a b f) = surj f"
paulson@15510
   494
proof 
paulson@15510
   495
  assume "surj (swap a b f)"
paulson@15510
   496
  hence "surj (swap a b (swap a b f))" by (rule surj_imp_surj_swap) 
paulson@15510
   497
  thus "surj f" by simp 
paulson@15510
   498
next
paulson@15510
   499
  assume "surj f"
paulson@15510
   500
  thus "surj (swap a b f)" by (rule surj_imp_surj_swap) 
paulson@15510
   501
qed
paulson@15510
   502
paulson@15510
   503
lemma bij_swap_iff: "bij (swap a b f) = bij f"
paulson@15510
   504
by (simp add: bij_def)
haftmann@21547
   505
nipkow@27188
   506
hide (open) const swap
haftmann@21547
   507
haftmann@31949
   508
haftmann@31949
   509
subsection {* Inversion of injective functions *}
haftmann@31949
   510
nipkow@33057
   511
definition the_inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
nipkow@33057
   512
"the_inv_into A f == %x. THE y. y : A & f y = x"
nipkow@32957
   513
nipkow@33057
   514
lemma the_inv_into_f_f:
nipkow@33057
   515
  "[| inj_on f A;  x : A |] ==> the_inv_into A f (f x) = x"
nipkow@33057
   516
apply (simp add: the_inv_into_def inj_on_def)
nipkow@32957
   517
apply (blast intro: the_equality)
nipkow@32957
   518
done
nipkow@32957
   519
nipkow@33057
   520
lemma f_the_inv_into_f:
nipkow@33057
   521
  "inj_on f A ==> y : f`A  ==> f (the_inv_into A f y) = y"
nipkow@33057
   522
apply (simp add: the_inv_into_def)
nipkow@32957
   523
apply (rule the1I2)
nipkow@32957
   524
 apply(blast dest: inj_onD)
nipkow@32957
   525
apply blast
nipkow@32957
   526
done
nipkow@32957
   527
nipkow@33057
   528
lemma the_inv_into_into:
nipkow@33057
   529
  "[| inj_on f A; x : f ` A; A <= B |] ==> the_inv_into A f x : B"
nipkow@33057
   530
apply (simp add: the_inv_into_def)
nipkow@32957
   531
apply (rule the1I2)
nipkow@32957
   532
 apply(blast dest: inj_onD)
nipkow@32957
   533
apply blast
nipkow@32957
   534
done
nipkow@32957
   535
nipkow@33057
   536
lemma the_inv_into_onto[simp]:
nipkow@33057
   537
  "inj_on f A ==> the_inv_into A f ` (f ` A) = A"
nipkow@33057
   538
by (fast intro:the_inv_into_into the_inv_into_f_f[symmetric])
nipkow@32957
   539
nipkow@33057
   540
lemma the_inv_into_f_eq:
nipkow@33057
   541
  "[| inj_on f A; f x = y; x : A |] ==> the_inv_into A f y = x"
nipkow@32957
   542
  apply (erule subst)
nipkow@33057
   543
  apply (erule the_inv_into_f_f, assumption)
nipkow@32957
   544
  done
nipkow@32957
   545
nipkow@33057
   546
lemma the_inv_into_comp:
nipkow@32957
   547
  "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==>
nipkow@33057
   548
  the_inv_into A (f o g) x = (the_inv_into A g o the_inv_into (g ` A) f) x"
nipkow@33057
   549
apply (rule the_inv_into_f_eq)
nipkow@32957
   550
  apply (fast intro: comp_inj_on)
nipkow@33057
   551
 apply (simp add: f_the_inv_into_f the_inv_into_into)
nipkow@33057
   552
apply (simp add: the_inv_into_into)
nipkow@32957
   553
done
nipkow@32957
   554
nipkow@33057
   555
lemma inj_on_the_inv_into:
nipkow@33057
   556
  "inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)"
nipkow@33057
   557
by (auto intro: inj_onI simp: image_def the_inv_into_f_f)
nipkow@32957
   558
nipkow@33057
   559
lemma bij_betw_the_inv_into:
nipkow@33057
   560
  "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A"
nipkow@33057
   561
by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into)
nipkow@32957
   562
berghofe@32998
   563
abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
nipkow@33057
   564
  "the_inv f \<equiv> the_inv_into UNIV f"
berghofe@32998
   565
berghofe@32998
   566
lemma the_inv_f_f:
berghofe@32998
   567
  assumes "inj f"
berghofe@32998
   568
  shows "the_inv f (f x) = x" using assms UNIV_I
nipkow@33057
   569
  by (rule the_inv_into_f_f)
berghofe@32998
   570
haftmann@31949
   571
haftmann@22845
   572
subsection {* Proof tool setup *} 
haftmann@22845
   573
haftmann@22845
   574
text {* simplifies terms of the form
haftmann@22845
   575
  f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *}
haftmann@22845
   576
wenzelm@24017
   577
simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ =>
haftmann@22845
   578
let
haftmann@22845
   579
  fun gen_fun_upd NONE T _ _ = NONE
wenzelm@24017
   580
    | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
haftmann@22845
   581
  fun dest_fun_T1 (Type (_, T :: Ts)) = T
haftmann@22845
   582
  fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
haftmann@22845
   583
    let
haftmann@22845
   584
      fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
haftmann@22845
   585
            if v aconv x then SOME g else gen_fun_upd (find g) T v w
haftmann@22845
   586
        | find t = NONE
haftmann@22845
   587
    in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
wenzelm@24017
   588
wenzelm@24017
   589
  fun proc ss ct =
wenzelm@24017
   590
    let
wenzelm@24017
   591
      val ctxt = Simplifier.the_context ss
wenzelm@24017
   592
      val t = Thm.term_of ct
wenzelm@24017
   593
    in
wenzelm@24017
   594
      case find_double t of
wenzelm@24017
   595
        (T, NONE) => NONE
wenzelm@24017
   596
      | (T, SOME rhs) =>
wenzelm@27330
   597
          SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs))
wenzelm@24017
   598
            (fn _ =>
wenzelm@24017
   599
              rtac eq_reflection 1 THEN
wenzelm@24017
   600
              rtac ext 1 THEN
wenzelm@24017
   601
              simp_tac (Simplifier.inherit_context ss @{simpset}) 1))
wenzelm@24017
   602
    end
wenzelm@24017
   603
in proc end
haftmann@22845
   604
*}
haftmann@22845
   605
haftmann@22845
   606
haftmann@32554
   607
subsection {* Generic transfer procedure *}
haftmann@32554
   608
haftmann@32554
   609
definition TransferMorphism:: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> bool"
haftmann@32554
   610
  where "TransferMorphism a B \<longleftrightarrow> True"
haftmann@32554
   611
haftmann@32554
   612
use "Tools/transfer.ML"
haftmann@32554
   613
haftmann@32554
   614
setup Transfer.setup
haftmann@32554
   615
haftmann@32554
   616
haftmann@21870
   617
subsection {* Code generator setup *}
haftmann@21870
   618
berghofe@25886
   619
types_code
berghofe@25886
   620
  "fun"  ("(_ ->/ _)")
berghofe@25886
   621
attach (term_of) {*
berghofe@25886
   622
fun term_of_fun_type _ aT _ bT _ = Free ("<function>", aT --> bT);
berghofe@25886
   623
*}
berghofe@25886
   624
attach (test) {*
berghofe@25886
   625
fun gen_fun_type aF aT bG bT i =
berghofe@25886
   626
  let
wenzelm@32740
   627
    val tab = Unsynchronized.ref [];
berghofe@25886
   628
    fun mk_upd (x, (_, y)) t = Const ("Fun.fun_upd",
berghofe@25886
   629
      (aT --> bT) --> aT --> bT --> aT --> bT) $ t $ aF x $ y ()
berghofe@25886
   630
  in
berghofe@25886
   631
    (fn x =>
berghofe@25886
   632
       case AList.lookup op = (!tab) x of
berghofe@25886
   633
         NONE =>
berghofe@25886
   634
           let val p as (y, _) = bG i
berghofe@25886
   635
           in (tab := (x, p) :: !tab; y) end
berghofe@25886
   636
       | SOME (y, _) => y,
berghofe@28711
   637
     fn () => Basics.fold mk_upd (!tab) (Const ("HOL.undefined", aT --> bT)))
berghofe@25886
   638
  end;
berghofe@25886
   639
*}
berghofe@25886
   640
haftmann@21870
   641
code_const "op \<circ>"
haftmann@21870
   642
  (SML infixl 5 "o")
haftmann@21870
   643
  (Haskell infixr 9 ".")
haftmann@21870
   644
haftmann@21906
   645
code_const "id"
haftmann@21906
   646
  (Haskell "id")
haftmann@21906
   647
nipkow@2912
   648
end