src/HOL/Fun.thy
author nipkow
Mon, 16 Aug 2004 14:22:27 +0200
changeset 15131 c69542757a4d
parent 15111 c108189645f8
child 15140 322485b816ac
permissions -rw-r--r--
New theory header syntax.
clasohm@1475
     1
(*  Title:      HOL/Fun.thy
clasohm@923
     2
    ID:         $Id$
clasohm@1475
     3
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1994  University of Cambridge
clasohm@923
     5
nipkow@2912
     6
Notions about functions.
clasohm@923
     7
*)
clasohm@923
     8
nipkow@15131
     9
theory Fun 
nipkow@15131
    10
import Typedef
nipkow@15131
    11
begin
nipkow@2912
    12
wenzelm@12338
    13
instance set :: (type) order
paulson@13585
    14
  by (intro_classes,
paulson@13585
    15
      (assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+)
paulson@13585
    16
paulson@13585
    17
constdefs
paulson@13585
    18
  fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
paulson@13585
    19
   "fun_upd f a b == % x. if x=a then b else f x"
paulson@6171
    20
wenzelm@9141
    21
nonterminals
wenzelm@9141
    22
  updbinds updbind
oheimb@5305
    23
syntax
paulson@13585
    24
  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
paulson@13585
    25
  ""         :: "updbind => updbinds"             ("_")
paulson@13585
    26
  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
paulson@13585
    27
  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000,0] 900)
oheimb@5305
    28
oheimb@5305
    29
translations
oheimb@5305
    30
  "_Update f (_updbinds b bs)"  == "_Update (_Update f b) bs"
oheimb@5305
    31
  "f(x:=y)"                     == "fun_upd f x y"
nipkow@2912
    32
oheimb@9340
    33
(* Hint: to define the sum of two functions (or maps), use sum_case.
oheimb@9340
    34
         A nice infix syntax could be defined (in Datatype.thy or below) by
oheimb@9340
    35
consts
oheimb@9340
    36
  fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
oheimb@9340
    37
translations
paulson@13585
    38
 "fun_sum" == sum_case
oheimb@9340
    39
*)
wenzelm@12258
    40
paulson@6171
    41
constdefs
nipkow@13910
    42
 overwrite :: "('a => 'b) => ('a => 'b) => 'a set => ('a => 'b)"
nipkow@13910
    43
              ("_/'(_|/_')"  [900,0,0]900)
nipkow@13910
    44
"f(g|A) == %a. if a : A then g a else f a"
nipkow@2912
    45
nipkow@13910
    46
 id :: "'a => 'a"
nipkow@13910
    47
"id == %x. x"
nipkow@13910
    48
nipkow@13910
    49
 comp :: "['b => 'c, 'a => 'b, 'a] => 'c"   (infixl "o" 55)
nipkow@13910
    50
"f o g == %x. f(g(x))"
oheimb@11123
    51
paulson@13585
    52
text{*compatibility*}
paulson@13585
    53
lemmas o_def = comp_def
paulson@13585
    54
paulson@13585
    55
syntax (xsymbols)
paulson@13585
    56
  comp :: "['b => 'c, 'a => 'b, 'a] => 'c"        (infixl "\<circ>" 55)
kleing@14565
    57
syntax (HTML output)
kleing@14565
    58
  comp :: "['b => 'c, 'a => 'b, 'a] => 'c"        (infixl "\<circ>" 55)
paulson@13585
    59
paulson@13585
    60
paulson@13585
    61
constdefs
paulson@13585
    62
  inj_on :: "['a => 'b, 'a set] => bool"         (*injective*)
paulson@6171
    63
    "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
paulson@6171
    64
paulson@13585
    65
text{*A common special case: functions injective over the entire domain type.*}
paulson@13585
    66
syntax inj   :: "('a => 'b) => bool"
paulson@6171
    67
translations
paulson@6171
    68
  "inj f" == "inj_on f UNIV"
paulson@5852
    69
paulson@7374
    70
constdefs
paulson@13585
    71
  surj :: "('a => 'b) => bool"                   (*surjective*)
paulson@7374
    72
    "surj f == ! y. ? x. y=f(x)"
wenzelm@12258
    73
paulson@13585
    74
  bij :: "('a => 'b) => bool"                    (*bijective*)
paulson@7374
    75
    "bij f == inj f & surj f"
wenzelm@12258
    76
paulson@7374
    77
wenzelm@12258
    78
paulson@13585
    79
text{*As a simplification rule, it replaces all function equalities by
paulson@13585
    80
  first-order equalities.*}
paulson@13585
    81
lemma expand_fun_eq: "(f = g) = (! x. f(x)=g(x))"
paulson@13585
    82
apply (rule iffI)
paulson@13585
    83
apply (simp (no_asm_simp))
paulson@13585
    84
apply (rule ext, simp (no_asm_simp))
paulson@13585
    85
done
paulson@5852
    86
paulson@13585
    87
lemma apply_inverse:
paulson@13585
    88
    "[| f(x)=u;  !!x. P(x) ==> g(f(x)) = x;  P(x) |] ==> x=g(u)"
paulson@13585
    89
by auto
paulson@5852
    90
paulson@5852
    91
paulson@13585
    92
text{*The Identity Function: @{term id}*}
paulson@13585
    93
lemma id_apply [simp]: "id x = x"
paulson@13585
    94
by (simp add: id_def)
paulson@11451
    95
paulson@5852
    96
paulson@13585
    97
subsection{*The Composition Operator: @{term "f \<circ> g"}*}
paulson@5852
    98
paulson@13585
    99
lemma o_apply [simp]: "(f o g) x = f (g x)"
paulson@13585
   100
by (simp add: comp_def)
paulson@13585
   101
paulson@13585
   102
lemma o_assoc: "f o (g o h) = f o g o h"
paulson@13585
   103
by (simp add: comp_def)
paulson@13585
   104
paulson@13585
   105
lemma id_o [simp]: "id o g = g"
paulson@13585
   106
by (simp add: comp_def)
paulson@13585
   107
paulson@13585
   108
lemma o_id [simp]: "f o id = f"
paulson@13585
   109
by (simp add: comp_def)
paulson@13585
   110
paulson@13585
   111
lemma image_compose: "(f o g) ` r = f`(g`r)"
paulson@13585
   112
by (simp add: comp_def, blast)
paulson@13585
   113
paulson@13585
   114
lemma image_eq_UN: "f`A = (UN x:A. {f x})"
paulson@13585
   115
by blast
paulson@13585
   116
paulson@13585
   117
lemma UN_o: "UNION A (g o f) = UNION (f`A) g"
paulson@13585
   118
by (unfold comp_def, blast)
paulson@13585
   119
paulson@13585
   120
paulson@13585
   121
subsection{*The Injectivity Predicate, @{term inj}*}
paulson@13585
   122
paulson@13585
   123
text{*NB: @{term inj} now just translates to @{term inj_on}*}
paulson@13585
   124
paulson@13585
   125
paulson@13585
   126
text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*}
paulson@13585
   127
lemma datatype_injI:
paulson@13585
   128
    "(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)"
paulson@13585
   129
by (simp add: inj_on_def)
paulson@13585
   130
berghofe@13637
   131
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)"
berghofe@13637
   132
  by (unfold inj_on_def, blast)
berghofe@13637
   133
paulson@13585
   134
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"
paulson@13585
   135
by (simp add: inj_on_def)
paulson@13585
   136
paulson@13585
   137
(*Useful with the simplifier*)
paulson@13585
   138
lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)"
paulson@13585
   139
by (force simp add: inj_on_def)
paulson@13585
   140
paulson@13585
   141
paulson@13585
   142
subsection{*The Predicate @{term inj_on}: Injectivity On A Restricted Domain*}
paulson@13585
   143
paulson@13585
   144
lemma inj_onI:
paulson@13585
   145
    "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
paulson@13585
   146
by (simp add: inj_on_def)
paulson@13585
   147
paulson@13585
   148
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"
paulson@13585
   149
by (auto dest:  arg_cong [of concl: g] simp add: inj_on_def)
paulson@13585
   150
paulson@13585
   151
lemma inj_onD: "[| inj_on f A;  f(x)=f(y);  x:A;  y:A |] ==> x=y"
paulson@13585
   152
by (unfold inj_on_def, blast)
paulson@13585
   153
paulson@13585
   154
lemma inj_on_iff: "[| inj_on f A;  x:A;  y:A |] ==> (f(x)=f(y)) = (x=y)"
paulson@13585
   155
by (blast dest!: inj_onD)
paulson@13585
   156
paulson@13585
   157
lemma comp_inj_on:
paulson@13585
   158
     "[| inj_on f A;  inj_on g (f`A) |] ==> inj_on (g o f) A"
paulson@13585
   159
by (simp add: comp_def inj_on_def)
paulson@13585
   160
paulson@13585
   161
lemma inj_on_contraD: "[| inj_on f A;  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)"
paulson@13585
   162
by (unfold inj_on_def, blast)
paulson@13585
   163
paulson@13585
   164
lemma inj_singleton: "inj (%s. {s})"
paulson@13585
   165
by (simp add: inj_on_def)
paulson@13585
   166
nipkow@15111
   167
lemma inj_on_empty[iff]: "inj_on f {}"
nipkow@15111
   168
by(simp add: inj_on_def)
nipkow@15111
   169
paulson@13585
   170
lemma subset_inj_on: "[| A<=B; inj_on f B |] ==> inj_on f A"
paulson@13585
   171
by (unfold inj_on_def, blast)
paulson@13585
   172
nipkow@15111
   173
lemma inj_on_Un:
nipkow@15111
   174
 "inj_on f (A Un B) =
nipkow@15111
   175
  (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
nipkow@15111
   176
apply(unfold inj_on_def)
nipkow@15111
   177
apply (blast intro:sym)
nipkow@15111
   178
done
nipkow@15111
   179
nipkow@15111
   180
lemma inj_on_insert[iff]:
nipkow@15111
   181
  "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
nipkow@15111
   182
apply(unfold inj_on_def)
nipkow@15111
   183
apply (blast intro:sym)
nipkow@15111
   184
done
nipkow@15111
   185
nipkow@15111
   186
lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)"
nipkow@15111
   187
apply(unfold inj_on_def)
nipkow@15111
   188
apply (blast)
nipkow@15111
   189
done
nipkow@15111
   190
paulson@13585
   191
paulson@13585
   192
subsection{*The Predicate @{term surj}: Surjectivity*}
paulson@13585
   193
paulson@13585
   194
lemma surjI: "(!! x. g(f x) = x) ==> surj g"
paulson@13585
   195
apply (simp add: surj_def)
paulson@13585
   196
apply (blast intro: sym)
paulson@13585
   197
done
paulson@13585
   198
paulson@13585
   199
lemma surj_range: "surj f ==> range f = UNIV"
paulson@13585
   200
by (auto simp add: surj_def)
paulson@13585
   201
paulson@13585
   202
lemma surjD: "surj f ==> EX x. y = f x"
paulson@13585
   203
by (simp add: surj_def)
paulson@13585
   204
paulson@13585
   205
lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C"
paulson@13585
   206
by (simp add: surj_def, blast)
paulson@13585
   207
paulson@13585
   208
lemma comp_surj: "[| surj f;  surj g |] ==> surj (g o f)"
paulson@13585
   209
apply (simp add: comp_def surj_def, clarify)
paulson@13585
   210
apply (drule_tac x = y in spec, clarify)
paulson@13585
   211
apply (drule_tac x = x in spec, blast)
paulson@13585
   212
done
paulson@13585
   213
paulson@13585
   214
paulson@13585
   215
paulson@13585
   216
subsection{*The Predicate @{term bij}: Bijectivity*}
paulson@13585
   217
paulson@13585
   218
lemma bijI: "[| inj f; surj f |] ==> bij f"
paulson@13585
   219
by (simp add: bij_def)
paulson@13585
   220
paulson@13585
   221
lemma bij_is_inj: "bij f ==> inj f"
paulson@13585
   222
by (simp add: bij_def)
paulson@13585
   223
paulson@13585
   224
lemma bij_is_surj: "bij f ==> surj f"
paulson@13585
   225
by (simp add: bij_def)
paulson@13585
   226
paulson@13585
   227
paulson@13585
   228
subsection{*Facts About the Identity Function*}
paulson@13585
   229
paulson@13585
   230
text{*We seem to need both the @{term id} forms and the @{term "\<lambda>x. x"}
paulson@13585
   231
forms. The latter can arise by rewriting, while @{term id} may be used
paulson@13585
   232
explicitly.*}
paulson@13585
   233
paulson@13585
   234
lemma image_ident [simp]: "(%x. x) ` Y = Y"
paulson@13585
   235
by blast
paulson@13585
   236
paulson@13585
   237
lemma image_id [simp]: "id ` Y = Y"
paulson@13585
   238
by (simp add: id_def)
paulson@13585
   239
paulson@13585
   240
lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
paulson@13585
   241
by blast
paulson@13585
   242
paulson@13585
   243
lemma vimage_id [simp]: "id -` A = A"
paulson@13585
   244
by (simp add: id_def)
paulson@13585
   245
paulson@13585
   246
lemma vimage_image_eq: "f -` (f ` A) = {y. EX x:A. f x = f y}"
paulson@13585
   247
by (blast intro: sym)
paulson@13585
   248
paulson@13585
   249
lemma image_vimage_subset: "f ` (f -` A) <= A"
paulson@13585
   250
by blast
paulson@13585
   251
paulson@13585
   252
lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f"
paulson@13585
   253
by blast
paulson@13585
   254
paulson@13585
   255
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"
paulson@13585
   256
by (simp add: surj_range)
paulson@13585
   257
paulson@13585
   258
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"
paulson@13585
   259
by (simp add: inj_on_def, blast)
paulson@13585
   260
paulson@13585
   261
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"
paulson@13585
   262
apply (unfold surj_def)
paulson@13585
   263
apply (blast intro: sym)
paulson@13585
   264
done
paulson@13585
   265
paulson@13585
   266
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"
paulson@13585
   267
by (unfold inj_on_def, blast)
paulson@13585
   268
paulson@13585
   269
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"
paulson@13585
   270
apply (unfold bij_def)
paulson@13585
   271
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
paulson@13585
   272
done
paulson@13585
   273
paulson@13585
   274
lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B"
paulson@13585
   275
by blast
paulson@13585
   276
paulson@13585
   277
lemma image_diff_subset: "f`A - f`B <= f`(A - B)"
paulson@13585
   278
by blast
paulson@13585
   279
paulson@13585
   280
lemma inj_on_image_Int:
paulson@13585
   281
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   282
apply (simp add: inj_on_def, blast)
paulson@13585
   283
done
paulson@13585
   284
paulson@13585
   285
lemma inj_on_image_set_diff:
paulson@13585
   286
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A-B) = f`A - f`B"
paulson@13585
   287
apply (simp add: inj_on_def, blast)
paulson@13585
   288
done
paulson@13585
   289
paulson@13585
   290
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   291
by (simp add: inj_on_def, blast)
paulson@13585
   292
paulson@13585
   293
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"
paulson@13585
   294
by (simp add: inj_on_def, blast)
paulson@13585
   295
paulson@13585
   296
lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)"
paulson@13585
   297
by (blast dest: injD)
paulson@13585
   298
paulson@13585
   299
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"
paulson@13585
   300
by (simp add: inj_on_def, blast)
paulson@13585
   301
paulson@13585
   302
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"
paulson@13585
   303
by (blast dest: injD)
paulson@13585
   304
paulson@13585
   305
lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))"
paulson@13585
   306
by blast
paulson@13585
   307
paulson@13585
   308
(*injectivity's required.  Left-to-right inclusion holds even if A is empty*)
paulson@13585
   309
lemma image_INT:
paulson@13585
   310
   "[| inj_on f C;  ALL x:A. B x <= C;  j:A |]
paulson@13585
   311
    ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   312
apply (simp add: inj_on_def, blast)
paulson@13585
   313
done
paulson@13585
   314
paulson@13585
   315
(*Compare with image_INT: no use of inj_on, and if f is surjective then
paulson@13585
   316
  it doesn't matter whether A is empty*)
paulson@13585
   317
lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   318
apply (simp add: bij_def)
paulson@13585
   319
apply (simp add: inj_on_def surj_def, blast)
paulson@13585
   320
done
paulson@13585
   321
paulson@13585
   322
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"
paulson@13585
   323
by (auto simp add: surj_def)
paulson@13585
   324
paulson@13585
   325
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"
paulson@13585
   326
by (auto simp add: inj_on_def)
paulson@13585
   327
paulson@13585
   328
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"
paulson@13585
   329
apply (simp add: bij_def)
paulson@13585
   330
apply (rule equalityI)
paulson@13585
   331
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)
paulson@13585
   332
done
paulson@13585
   333
paulson@13585
   334
paulson@13585
   335
subsection{*Function Updating*}
paulson@13585
   336
paulson@13585
   337
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"
paulson@13585
   338
apply (simp add: fun_upd_def, safe)
paulson@13585
   339
apply (erule subst)
paulson@13585
   340
apply (rule_tac [2] ext, auto)
paulson@13585
   341
done
paulson@13585
   342
paulson@13585
   343
(* f x = y ==> f(x:=y) = f *)
paulson@13585
   344
lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard]
paulson@13585
   345
paulson@13585
   346
(* f(x := f x) = f *)
paulson@13585
   347
declare refl [THEN fun_upd_idem, iff]
paulson@13585
   348
paulson@13585
   349
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"
paulson@13585
   350
apply (simp (no_asm) add: fun_upd_def)
paulson@13585
   351
done
paulson@13585
   352
paulson@13585
   353
(* fun_upd_apply supersedes these two,   but they are useful
paulson@13585
   354
   if fun_upd_apply is intentionally removed from the simpset *)
paulson@13585
   355
lemma fun_upd_same: "(f(x:=y)) x = y"
paulson@13585
   356
by simp
paulson@13585
   357
paulson@13585
   358
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"
paulson@13585
   359
by simp
paulson@13585
   360
paulson@13585
   361
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"
paulson@13585
   362
by (simp add: expand_fun_eq)
paulson@13585
   363
paulson@13585
   364
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"
paulson@13585
   365
by (rule ext, auto)
paulson@13585
   366
nipkow@13910
   367
subsection{* overwrite *}
nipkow@13910
   368
nipkow@13910
   369
lemma overwrite_emptyset[simp]: "f(g|{}) = f"
nipkow@13910
   370
by(simp add:overwrite_def)
nipkow@13910
   371
nipkow@13910
   372
lemma overwrite_apply_notin[simp]: "a ~: A ==> (f(g|A)) a = f a"
nipkow@13910
   373
by(simp add:overwrite_def)
nipkow@13910
   374
nipkow@13910
   375
lemma overwrite_apply_in[simp]: "a : A ==> (f(g|A)) a = g a"
nipkow@13910
   376
by(simp add:overwrite_def)
nipkow@13910
   377
paulson@13585
   378
text{*The ML section includes some compatibility bindings and a simproc
paulson@13585
   379
for function updates, in addition to the usual ML-bindings of theorems.*}
paulson@13585
   380
ML
paulson@13585
   381
{*
paulson@13585
   382
val id_def = thm "id_def";
paulson@13585
   383
val inj_on_def = thm "inj_on_def";
paulson@13585
   384
val surj_def = thm "surj_def";
paulson@13585
   385
val bij_def = thm "bij_def";
paulson@13585
   386
val fun_upd_def = thm "fun_upd_def";
paulson@13585
   387
paulson@13585
   388
val o_def = thm "comp_def";
paulson@13585
   389
val injI = thm "inj_onI";
paulson@13585
   390
val inj_inverseI = thm "inj_on_inverseI";
paulson@13585
   391
val set_cs = claset() delrules [equalityI];
paulson@13585
   392
paulson@13585
   393
val print_translation = [("Pi", dependent_tr' ("@Pi", "op funcset"))];
paulson@13585
   394
paulson@13585
   395
(* simplifies terms of the form f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *)
paulson@13585
   396
local
paulson@13585
   397
  fun gen_fun_upd None T _ _ = None
paulson@13585
   398
    | gen_fun_upd (Some f) T x y = Some (Const ("Fun.fun_upd",T) $ f $ x $ y)
paulson@13585
   399
  fun dest_fun_T1 (Type (_, T :: Ts)) = T
paulson@13585
   400
  fun find_double (t as Const ("Fun.fun_upd",T) $ f $ x $ y) =
paulson@13585
   401
    let
paulson@13585
   402
      fun find (Const ("Fun.fun_upd",T) $ g $ v $ w) =
paulson@13585
   403
            if v aconv x then Some g else gen_fun_upd (find g) T v w
paulson@13585
   404
        | find t = None
paulson@13585
   405
    in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
paulson@13585
   406
paulson@13585
   407
  val ss = simpset ()
paulson@13585
   408
  val fun_upd_prover = K (rtac eq_reflection 1 THEN rtac ext 1 THEN simp_tac ss 1)
paulson@13585
   409
in
paulson@13585
   410
  val fun_upd2_simproc =
paulson@13585
   411
    Simplifier.simproc (Theory.sign_of (the_context ()))
paulson@13585
   412
      "fun_upd2" ["f(v := w, x := y)"]
paulson@13585
   413
      (fn sg => fn _ => fn t =>
paulson@13585
   414
        case find_double t of (T, None) => None
paulson@13585
   415
        | (T, Some rhs) => Some (Tactic.prove sg [] [] (Term.equals T $ t $ rhs) fun_upd_prover))
paulson@13585
   416
end;
paulson@13585
   417
Addsimprocs[fun_upd2_simproc];
paulson@13585
   418
paulson@13585
   419
val expand_fun_eq = thm "expand_fun_eq";
paulson@13585
   420
val apply_inverse = thm "apply_inverse";
paulson@13585
   421
val id_apply = thm "id_apply";
paulson@13585
   422
val o_apply = thm "o_apply";
paulson@13585
   423
val o_assoc = thm "o_assoc";
paulson@13585
   424
val id_o = thm "id_o";
paulson@13585
   425
val o_id = thm "o_id";
paulson@13585
   426
val image_compose = thm "image_compose";
paulson@13585
   427
val image_eq_UN = thm "image_eq_UN";
paulson@13585
   428
val UN_o = thm "UN_o";
paulson@13585
   429
val datatype_injI = thm "datatype_injI";
paulson@13585
   430
val injD = thm "injD";
paulson@13585
   431
val inj_eq = thm "inj_eq";
paulson@13585
   432
val inj_onI = thm "inj_onI";
paulson@13585
   433
val inj_on_inverseI = thm "inj_on_inverseI";
paulson@13585
   434
val inj_onD = thm "inj_onD";
paulson@13585
   435
val inj_on_iff = thm "inj_on_iff";
paulson@13585
   436
val comp_inj_on = thm "comp_inj_on";
paulson@13585
   437
val inj_on_contraD = thm "inj_on_contraD";
paulson@13585
   438
val inj_singleton = thm "inj_singleton";
paulson@13585
   439
val subset_inj_on = thm "subset_inj_on";
paulson@13585
   440
val surjI = thm "surjI";
paulson@13585
   441
val surj_range = thm "surj_range";
paulson@13585
   442
val surjD = thm "surjD";
paulson@13585
   443
val surjE = thm "surjE";
paulson@13585
   444
val comp_surj = thm "comp_surj";
paulson@13585
   445
val bijI = thm "bijI";
paulson@13585
   446
val bij_is_inj = thm "bij_is_inj";
paulson@13585
   447
val bij_is_surj = thm "bij_is_surj";
paulson@13585
   448
val image_ident = thm "image_ident";
paulson@13585
   449
val image_id = thm "image_id";
paulson@13585
   450
val vimage_ident = thm "vimage_ident";
paulson@13585
   451
val vimage_id = thm "vimage_id";
paulson@13585
   452
val vimage_image_eq = thm "vimage_image_eq";
paulson@13585
   453
val image_vimage_subset = thm "image_vimage_subset";
paulson@13585
   454
val image_vimage_eq = thm "image_vimage_eq";
paulson@13585
   455
val surj_image_vimage_eq = thm "surj_image_vimage_eq";
paulson@13585
   456
val inj_vimage_image_eq = thm "inj_vimage_image_eq";
paulson@13585
   457
val vimage_subsetD = thm "vimage_subsetD";
paulson@13585
   458
val vimage_subsetI = thm "vimage_subsetI";
paulson@13585
   459
val vimage_subset_eq = thm "vimage_subset_eq";
paulson@13585
   460
val image_Int_subset = thm "image_Int_subset";
paulson@13585
   461
val image_diff_subset = thm "image_diff_subset";
paulson@13585
   462
val inj_on_image_Int = thm "inj_on_image_Int";
paulson@13585
   463
val inj_on_image_set_diff = thm "inj_on_image_set_diff";
paulson@13585
   464
val image_Int = thm "image_Int";
paulson@13585
   465
val image_set_diff = thm "image_set_diff";
paulson@13585
   466
val inj_image_mem_iff = thm "inj_image_mem_iff";
paulson@13585
   467
val inj_image_subset_iff = thm "inj_image_subset_iff";
paulson@13585
   468
val inj_image_eq_iff = thm "inj_image_eq_iff";
paulson@13585
   469
val image_UN = thm "image_UN";
paulson@13585
   470
val image_INT = thm "image_INT";
paulson@13585
   471
val bij_image_INT = thm "bij_image_INT";
paulson@13585
   472
val surj_Compl_image_subset = thm "surj_Compl_image_subset";
paulson@13585
   473
val inj_image_Compl_subset = thm "inj_image_Compl_subset";
paulson@13585
   474
val bij_image_Compl_eq = thm "bij_image_Compl_eq";
paulson@13585
   475
val fun_upd_idem_iff = thm "fun_upd_idem_iff";
paulson@13585
   476
val fun_upd_idem = thm "fun_upd_idem";
paulson@13585
   477
val fun_upd_apply = thm "fun_upd_apply";
paulson@13585
   478
val fun_upd_same = thm "fun_upd_same";
paulson@13585
   479
val fun_upd_other = thm "fun_upd_other";
paulson@13585
   480
val fun_upd_upd = thm "fun_upd_upd";
paulson@13585
   481
val fun_upd_twist = thm "fun_upd_twist";
berghofe@13637
   482
val range_ex1_eq = thm "range_ex1_eq";
paulson@13585
   483
*}
paulson@5852
   484
nipkow@2912
   485
end