src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy
author huffman
Wed, 28 Apr 2010 22:02:55 -0700
changeset 36586 4fa71a69d5b2
parent 36583 68ce5760c585
child 36590 2cdaae32b682
permissions -rw-r--r--
remove redundant lemma norm_0
himmelma@33175
     1
(*  Title:      HOL/Library/Convex_Euclidean_Space.thy
himmelma@33175
     2
    Author:     Robert Himmelmann, TU Muenchen
himmelma@33175
     3
*)
himmelma@33175
     4
himmelma@33175
     5
header {* Convex sets, functions and related things. *}
himmelma@33175
     6
himmelma@33175
     7
theory Convex_Euclidean_Space
himmelma@33175
     8
imports Topology_Euclidean_Space
himmelma@33175
     9
begin
himmelma@33175
    10
himmelma@33175
    11
himmelma@33175
    12
(* ------------------------------------------------------------------------- *)
himmelma@33175
    13
(* To be moved elsewhere                                                     *)
himmelma@33175
    14
(* ------------------------------------------------------------------------- *)
himmelma@33175
    15
himmelma@33175
    16
declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp]
himmelma@33175
    17
declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp]
himmelma@33175
    18
hoelzl@34951
    19
(*lemma dim1in[intro]:"Suc 0 \<in> {1::nat .. CARD(1)}" by auto*)
hoelzl@34951
    20
hoelzl@34951
    21
lemmas vector_component_simps = vector_minus_component vector_smult_component vector_add_component vector_le_def Cart_lambda_beta basis_component vector_uminus_component
himmelma@33175
    22
hoelzl@34291
    23
lemma norm_not_0:"(x::real^'n)\<noteq>0 \<Longrightarrow> norm x \<noteq> 0" by auto
himmelma@33175
    24
himmelma@33175
    25
lemma setsum_delta_notmem: assumes "x\<notin>s"
himmelma@33175
    26
  shows "setsum (\<lambda>y. if (y = x) then P x else Q y) s = setsum Q s"
himmelma@33175
    27
        "setsum (\<lambda>y. if (x = y) then P x else Q y) s = setsum Q s"
himmelma@33175
    28
        "setsum (\<lambda>y. if (y = x) then P y else Q y) s = setsum Q s"
himmelma@33175
    29
        "setsum (\<lambda>y. if (x = y) then P y else Q y) s = setsum Q s"
himmelma@33175
    30
  apply(rule_tac [!] setsum_cong2) using assms by auto
himmelma@33175
    31
himmelma@33175
    32
lemma setsum_delta'':
himmelma@33175
    33
  fixes s::"'a::real_vector set" assumes "finite s"
himmelma@33175
    34
  shows "(\<Sum>x\<in>s. (if y = x then f x else 0) *\<^sub>R x) = (if y\<in>s then (f y) *\<^sub>R y else 0)"
himmelma@33175
    35
proof-
himmelma@33175
    36
  have *:"\<And>x y. (if y = x then f x else (0::real)) *\<^sub>R x = (if x=y then (f x) *\<^sub>R x else 0)" by auto
himmelma@33175
    37
  show ?thesis unfolding * using setsum_delta[OF assms, of y "\<lambda>x. f x *\<^sub>R x"] by auto
himmelma@33175
    38
qed
himmelma@33175
    39
himmelma@33175
    40
lemma not_disjointI:"x\<in>A \<Longrightarrow> x\<in>B \<Longrightarrow> A \<inter> B \<noteq> {}" by blast
himmelma@33175
    41
himmelma@33175
    42
lemma if_smult:"(if P then x else (y::real)) *\<^sub>R v = (if P then x *\<^sub>R v else y *\<^sub>R v)" by auto
himmelma@33175
    43
hoelzl@34291
    44
lemma image_smult_interval:"(\<lambda>x. m *\<^sub>R (x::real^'n)) ` {a..b} =
himmelma@33175
    45
  (if {a..b} = {} then {} else if 0 \<le> m then {m *\<^sub>R a..m *\<^sub>R b} else {m *\<^sub>R b..m *\<^sub>R a})"
himmelma@33175
    46
  using image_affinity_interval[of m 0 a b] by auto
himmelma@33175
    47
himmelma@33175
    48
lemma dist_triangle_eq:
himmelma@33175
    49
  fixes x y z :: "real ^ _"
himmelma@33175
    50
  shows "dist x z = dist x y + dist y z \<longleftrightarrow> norm (x - y) *\<^sub>R (y - z) = norm (y - z) *\<^sub>R (x - y)"
himmelma@33175
    51
proof- have *:"x - y + (y - z) = x - z" by auto
himmelma@33175
    52
  show ?thesis unfolding dist_norm norm_triangle_eq[of "x - y" "y - z", unfolded smult_conv_scaleR *]
himmelma@33175
    53
    by(auto simp add:norm_minus_commute) qed
himmelma@33175
    54
himmelma@33175
    55
lemma norm_eqI:"x = y \<Longrightarrow> norm x = norm y" by auto 
hoelzl@34291
    56
lemma norm_minus_eqI:"(x::real^'n) = - y \<Longrightarrow> norm x = norm y" by auto
himmelma@33175
    57
himmelma@33175
    58
lemma Min_grI: assumes "finite A" "A \<noteq> {}" "\<forall>a\<in>A. x < a" shows "x < Min A"
himmelma@33175
    59
  unfolding Min_gr_iff[OF assms(1,2)] using assms(3) by auto
himmelma@33175
    60
himmelma@33175
    61
lemma dimindex_ge_1:"CARD(_::finite) \<ge> 1"
himmelma@33175
    62
  using one_le_card_finite by auto
himmelma@33175
    63
himmelma@33175
    64
lemma real_dimindex_ge_1:"real (CARD('n::finite)) \<ge> 1" 
huffman@36358
    65
  by(metis dimindex_ge_1 real_eq_of_nat real_of_nat_1 real_of_nat_le_iff) 
himmelma@33175
    66
himmelma@33175
    67
lemma real_dimindex_gt_0:"real (CARD('n::finite)) > 0" apply(rule less_le_trans[OF _ real_dimindex_ge_1]) by auto
himmelma@33175
    68
himmelma@33175
    69
subsection {* Affine set and affine hull.*}
himmelma@33175
    70
himmelma@33175
    71
definition
himmelma@33175
    72
  affine :: "'a::real_vector set \<Rightarrow> bool" where
himmelma@33175
    73
  "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)"
himmelma@33175
    74
himmelma@33175
    75
lemma affine_alt: "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \<in> s)"
nipkow@36071
    76
unfolding affine_def by(metis eq_diff_eq')
himmelma@33175
    77
himmelma@33175
    78
lemma affine_empty[intro]: "affine {}"
himmelma@33175
    79
  unfolding affine_def by auto
himmelma@33175
    80
himmelma@33175
    81
lemma affine_sing[intro]: "affine {x}"
himmelma@33175
    82
  unfolding affine_alt by (auto simp add: scaleR_left_distrib [symmetric])
himmelma@33175
    83
himmelma@33175
    84
lemma affine_UNIV[intro]: "affine UNIV"
himmelma@33175
    85
  unfolding affine_def by auto
himmelma@33175
    86
himmelma@33175
    87
lemma affine_Inter: "(\<forall>s\<in>f. affine s) \<Longrightarrow> affine (\<Inter> f)"
himmelma@33175
    88
  unfolding affine_def by auto 
himmelma@33175
    89
himmelma@33175
    90
lemma affine_Int: "affine s \<Longrightarrow> affine t \<Longrightarrow> affine (s \<inter> t)"
himmelma@33175
    91
  unfolding affine_def by auto
himmelma@33175
    92
himmelma@33175
    93
lemma affine_affine_hull: "affine(affine hull s)"
himmelma@33175
    94
  unfolding hull_def using affine_Inter[of "{t \<in> affine. s \<subseteq> t}"]
himmelma@33175
    95
  unfolding mem_def by auto
himmelma@33175
    96
himmelma@33175
    97
lemma affine_hull_eq[simp]: "(affine hull s = s) \<longleftrightarrow> affine s"
nipkow@36071
    98
by (metis affine_affine_hull hull_same mem_def)
himmelma@33175
    99
himmelma@33175
   100
lemma setsum_restrict_set'': assumes "finite A"
himmelma@33175
   101
  shows "setsum f {x \<in> A. P x} = (\<Sum>x\<in>A. if P x  then f x else 0)"
himmelma@33175
   102
  unfolding mem_def[of _ P, symmetric] unfolding setsum_restrict_set'[OF assms] ..
himmelma@33175
   103
himmelma@33175
   104
subsection {* Some explicit formulations (from Lars Schewe). *}
himmelma@33175
   105
himmelma@33175
   106
lemma affine: fixes V::"'a::real_vector set"
himmelma@33175
   107
  shows "affine V \<longleftrightarrow> (\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (setsum (\<lambda>x. (u x) *\<^sub>R x)) s \<in> V)"
himmelma@33175
   108
unfolding affine_def apply rule apply(rule, rule, rule) apply(erule conjE)+ 
himmelma@33175
   109
defer apply(rule, rule, rule, rule, rule) proof-
himmelma@33175
   110
  fix x y u v assume as:"x \<in> V" "y \<in> V" "u + v = (1::real)"
himmelma@33175
   111
    "\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V"
himmelma@33175
   112
  thus "u *\<^sub>R x + v *\<^sub>R y \<in> V" apply(cases "x=y")
himmelma@33175
   113
    using as(4)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>w. if w = x then u else v"]] and as(1-3) 
himmelma@33175
   114
    by(auto simp add: scaleR_left_distrib[THEN sym])
himmelma@33175
   115
next
himmelma@33175
   116
  fix s u assume as:"\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V"
himmelma@33175
   117
    "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = (1::real)"
himmelma@33175
   118
  def n \<equiv> "card s"
himmelma@33175
   119
  have "card s = 0 \<or> card s = 1 \<or> card s = 2 \<or> card s > 2" by auto
himmelma@33175
   120
  thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" proof(auto simp only: disjE)
himmelma@33175
   121
    assume "card s = 2" hence "card s = Suc (Suc 0)" by auto
himmelma@33175
   122
    then obtain a b where "s = {a, b}" unfolding card_Suc_eq by auto
himmelma@33175
   123
    thus ?thesis using as(1)[THEN bspec[where x=a], THEN bspec[where x=b]] using as(4,5)
himmelma@33175
   124
      by(auto simp add: setsum_clauses(2))
himmelma@33175
   125
  next assume "card s > 2" thus ?thesis using as and n_def proof(induct n arbitrary: u s)
himmelma@33175
   126
      case (Suc n) fix s::"'a set" and u::"'a \<Rightarrow> real"
himmelma@33175
   127
      assume IA:"\<And>u s.  \<lbrakk>2 < card s; \<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V; finite s;
berghofe@34915
   128
               s \<noteq> {}; s \<subseteq> V; setsum u s = 1; n = card s \<rbrakk> \<Longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" and
berghofe@34915
   129
        as:"Suc n = card s" "2 < card s" "\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V"
himmelma@33175
   130
           "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = 1"
himmelma@33175
   131
      have "\<exists>x\<in>s. u x \<noteq> 1" proof(rule_tac ccontr)
himmelma@33175
   132
        assume " \<not> (\<exists>x\<in>s. u x \<noteq> 1)" hence "setsum u s = real_of_nat (card s)" unfolding card_eq_setsum by auto
himmelma@33175
   133
        thus False using as(7) and `card s > 2` by (metis Numeral1_eq1_nat less_0_number_of less_int_code(15)
himmelma@33175
   134
          less_nat_number_of not_less_iff_gr_or_eq of_nat_1 of_nat_eq_iff pos2 rel_simps(4)) qed
himmelma@33175
   135
      then obtain x where x:"x\<in>s" "u x \<noteq> 1" by auto
himmelma@33175
   136
himmelma@33175
   137
      have c:"card (s - {x}) = card s - 1" apply(rule card_Diff_singleton) using `x\<in>s` as(4) by auto
himmelma@33175
   138
      have *:"s = insert x (s - {x})" "finite (s - {x})" using `x\<in>s` and as(4) by auto
himmelma@33175
   139
      have **:"setsum u (s - {x}) = 1 - u x"
himmelma@33175
   140
        using setsum_clauses(2)[OF *(2), of u x, unfolded *(1)[THEN sym] as(7)] by auto
himmelma@33175
   141
      have ***:"inverse (1 - u x) * setsum u (s - {x}) = 1" unfolding ** using `u x \<noteq> 1` by auto
himmelma@33175
   142
      have "(\<Sum>xa\<in>s - {x}. (inverse (1 - u x) * u xa) *\<^sub>R xa) \<in> V" proof(cases "card (s - {x}) > 2")
himmelma@33175
   143
        case True hence "s - {x} \<noteq> {}" "card (s - {x}) = n" unfolding c and as(1)[symmetric] proof(rule_tac ccontr) 
himmelma@33175
   144
          assume "\<not> s - {x} \<noteq> {}" hence "card (s - {x}) = 0" unfolding card_0_eq[OF *(2)] by simp 
himmelma@33175
   145
          thus False using True by auto qed auto
himmelma@33175
   146
        thus ?thesis apply(rule_tac IA[of "s - {x}" "\<lambda>y. (inverse (1 - u x) * u y)"])
himmelma@33175
   147
        unfolding setsum_right_distrib[THEN sym] using as and *** and True by auto
himmelma@33175
   148
      next case False hence "card (s - {x}) = Suc (Suc 0)" using as(2) and c by auto
himmelma@33175
   149
        then obtain a b where "(s - {x}) = {a, b}" "a\<noteq>b" unfolding card_Suc_eq by auto
himmelma@33175
   150
        thus ?thesis using as(3)[THEN bspec[where x=a], THEN bspec[where x=b]]
himmelma@33175
   151
          using *** *(2) and `s \<subseteq> V` unfolding setsum_right_distrib by(auto simp add: setsum_clauses(2)) qed
himmelma@33175
   152
      thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric]
himmelma@33175
   153
         apply(subst *) unfolding setsum_clauses(2)[OF *(2)]
himmelma@33175
   154
         using as(3)[THEN bspec[where x=x], THEN bspec[where x="(inverse (1 - u x)) *\<^sub>R (\<Sum>xa\<in>s - {x}. u xa *\<^sub>R xa)"], 
himmelma@33175
   155
         THEN spec[where x="u x"], THEN spec[where x="1 - u x"]] and rev_subsetD[OF `x\<in>s` `s\<subseteq>V`] and `u x \<noteq> 1` by auto
himmelma@33175
   156
    qed auto
himmelma@33175
   157
  next assume "card s = 1" then obtain a where "s={a}" by(auto simp add: card_Suc_eq)
himmelma@33175
   158
    thus ?thesis using as(4,5) by simp
himmelma@33175
   159
  qed(insert `s\<noteq>{}` `finite s`, auto)
himmelma@33175
   160
qed
himmelma@33175
   161
himmelma@33175
   162
lemma affine_hull_explicit:
himmelma@33175
   163
  "affine hull p = {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> setsum (\<lambda>v. (u v) *\<^sub>R v) s = y}"
himmelma@33175
   164
  apply(rule hull_unique) apply(subst subset_eq) prefer 3 apply rule unfolding mem_Collect_eq and mem_def[of _ affine]
himmelma@33175
   165
  apply (erule exE)+ apply(erule conjE)+ prefer 2 apply rule proof-
himmelma@33175
   166
  fix x assume "x\<in>p" thus "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
himmelma@33175
   167
    apply(rule_tac x="{x}" in exI, rule_tac x="\<lambda>x. 1" in exI) by auto
himmelma@33175
   168
next
himmelma@33175
   169
  fix t x s u assume as:"p \<subseteq> t" "affine t" "finite s" "s \<noteq> {}" "s \<subseteq> p" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x" 
himmelma@33175
   170
  thus "x \<in> t" using as(2)[unfolded affine, THEN spec[where x=s], THEN spec[where x=u]] by auto
himmelma@33175
   171
next
himmelma@33175
   172
  show "affine {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y}" unfolding affine_def
himmelma@33175
   173
    apply(rule,rule,rule,rule,rule) unfolding mem_Collect_eq proof-
himmelma@33175
   174
    fix u v ::real assume uv:"u + v = 1"
himmelma@33175
   175
    fix x assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
himmelma@33175
   176
    then obtain sx ux where x:"finite sx" "sx \<noteq> {}" "sx \<subseteq> p" "setsum ux sx = 1" "(\<Sum>v\<in>sx. ux v *\<^sub>R v) = x" by auto
himmelma@33175
   177
    fix y assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
himmelma@33175
   178
    then obtain sy uy where y:"finite sy" "sy \<noteq> {}" "sy \<subseteq> p" "setsum uy sy = 1" "(\<Sum>v\<in>sy. uy v *\<^sub>R v) = y" by auto
himmelma@33175
   179
    have xy:"finite (sx \<union> sy)" using x(1) y(1) by auto
himmelma@33175
   180
    have **:"(sx \<union> sy) \<inter> sx = sx" "(sx \<union> sy) \<inter> sy = sy" by auto
himmelma@33175
   181
    show "\<exists>s ua. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum ua s = 1 \<and> (\<Sum>v\<in>s. ua v *\<^sub>R v) = u *\<^sub>R x + v *\<^sub>R y"
himmelma@33175
   182
      apply(rule_tac x="sx \<union> sy" in exI)
himmelma@33175
   183
      apply(rule_tac x="\<lambda>a. (if a\<in>sx then u * ux a else 0) + (if a\<in>sy then v * uy a else 0)" in exI)
himmelma@33175
   184
      unfolding scaleR_left_distrib setsum_addf if_smult scaleR_zero_left  ** setsum_restrict_set[OF xy, THEN sym]
himmelma@33175
   185
      unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and setsum_right_distrib[THEN sym]
himmelma@33175
   186
      unfolding x y using x(1-3) y(1-3) uv by simp qed qed
himmelma@33175
   187
himmelma@33175
   188
lemma affine_hull_finite:
himmelma@33175
   189
  assumes "finite s"
himmelma@33175
   190
  shows "affine hull s = {y. \<exists>u. setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}"
himmelma@33175
   191
  unfolding affine_hull_explicit and expand_set_eq and mem_Collect_eq apply (rule,rule)
himmelma@33175
   192
  apply(erule exE)+ apply(erule conjE)+ defer apply(erule exE) apply(erule conjE) proof-
himmelma@33175
   193
  fix x u assume "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"
himmelma@33175
   194
  thus "\<exists>sa u. finite sa \<and> \<not> (\<forall>x. (x \<in> sa) = (x \<in> {})) \<and> sa \<subseteq> s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = x"
himmelma@33175
   195
    apply(rule_tac x=s in exI, rule_tac x=u in exI) using assms by auto
himmelma@33175
   196
next
himmelma@33175
   197
  fix x t u assume "t \<subseteq> s" hence *:"s \<inter> t = t" by auto
himmelma@33175
   198
  assume "finite t" "\<not> (\<forall>x. (x \<in> t) = (x \<in> {}))" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x"
himmelma@33175
   199
  thus "\<exists>u. setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI)
himmelma@33175
   200
    unfolding if_smult scaleR_zero_left and setsum_restrict_set[OF assms, THEN sym] and * by auto qed
himmelma@33175
   201
himmelma@33175
   202
subsection {* Stepping theorems and hence small special cases. *}
himmelma@33175
   203
himmelma@33175
   204
lemma affine_hull_empty[simp]: "affine hull {} = {}"
himmelma@33175
   205
  apply(rule hull_unique) unfolding mem_def by auto
himmelma@33175
   206
himmelma@33175
   207
lemma affine_hull_finite_step:
himmelma@33175
   208
  fixes y :: "'a::real_vector"
himmelma@33175
   209
  shows "(\<exists>u. setsum u {} = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) {} = y) \<longleftrightarrow> w = 0 \<and> y = 0" (is ?th1)
himmelma@33175
   210
  "finite s \<Longrightarrow> (\<exists>u. setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y) \<longleftrightarrow>
himmelma@33175
   211
                (\<exists>v u. setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?as \<Longrightarrow> (?lhs = ?rhs)")
himmelma@33175
   212
proof-
himmelma@33175
   213
  show ?th1 by simp
himmelma@33175
   214
  assume ?as 
himmelma@33175
   215
  { assume ?lhs
himmelma@33175
   216
    then obtain u where u:"setsum u (insert a s) = w \<and> (\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto
himmelma@33175
   217
    have ?rhs proof(cases "a\<in>s")
himmelma@33175
   218
      case True hence *:"insert a s = s" by auto
himmelma@33175
   219
      show ?thesis using u[unfolded *] apply(rule_tac x=0 in exI) by auto
himmelma@33175
   220
    next
himmelma@33175
   221
      case False thus ?thesis apply(rule_tac x="u a" in exI) using u and `?as` by auto 
himmelma@33175
   222
    qed  } moreover
himmelma@33175
   223
  { assume ?rhs
himmelma@33175
   224
    then obtain v u where vu:"setsum u s = w - v"  "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto
himmelma@33175
   225
    have *:"\<And>x M. (if x = a then v else M) *\<^sub>R x = (if x = a then v *\<^sub>R x else M *\<^sub>R x)" by auto
himmelma@33175
   226
    have ?lhs proof(cases "a\<in>s")
himmelma@33175
   227
      case True thus ?thesis
himmelma@33175
   228
        apply(rule_tac x="\<lambda>x. (if x=a then v else 0) + u x" in exI)
himmelma@33175
   229
        unfolding setsum_clauses(2)[OF `?as`]  apply simp
himmelma@33175
   230
        unfolding scaleR_left_distrib and setsum_addf 
himmelma@33175
   231
        unfolding vu and * and scaleR_zero_left
himmelma@33175
   232
        by (auto simp add: setsum_delta[OF `?as`])
himmelma@33175
   233
    next
himmelma@33175
   234
      case False 
himmelma@33175
   235
      hence **:"\<And>x. x \<in> s \<Longrightarrow> u x = (if x = a then v else u x)"
himmelma@33175
   236
               "\<And>x. x \<in> s \<Longrightarrow> u x *\<^sub>R x = (if x = a then v *\<^sub>R x else u x *\<^sub>R x)" by auto
himmelma@33175
   237
      from False show ?thesis
himmelma@33175
   238
        apply(rule_tac x="\<lambda>x. if x=a then v else u x" in exI)
himmelma@33175
   239
        unfolding setsum_clauses(2)[OF `?as`] and * using vu
himmelma@33175
   240
        using setsum_cong2[of s "\<lambda>x. u x *\<^sub>R x" "\<lambda>x. if x = a then v *\<^sub>R x else u x *\<^sub>R x", OF **(2)]
himmelma@33175
   241
        using setsum_cong2[of s u "\<lambda>x. if x = a then v else u x", OF **(1)] by auto  
himmelma@33175
   242
    qed }
himmelma@33175
   243
  ultimately show "?lhs = ?rhs" by blast
himmelma@33175
   244
qed
himmelma@33175
   245
himmelma@33175
   246
lemma affine_hull_2:
himmelma@33175
   247
  fixes a b :: "'a::real_vector"
himmelma@33175
   248
  shows "affine hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b| u v. (u + v = 1)}" (is "?lhs = ?rhs")
himmelma@33175
   249
proof-
himmelma@33175
   250
  have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" 
himmelma@33175
   251
         "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto
himmelma@33175
   252
  have "?lhs = {y. \<exists>u. setsum u {a, b} = 1 \<and> (\<Sum>v\<in>{a, b}. u v *\<^sub>R v) = y}"
himmelma@33175
   253
    using affine_hull_finite[of "{a,b}"] by auto
himmelma@33175
   254
  also have "\<dots> = {y. \<exists>v u. u b = 1 - v \<and> u b *\<^sub>R b = y - v *\<^sub>R a}"
himmelma@33175
   255
    by(simp add: affine_hull_finite_step(2)[of "{b}" a]) 
himmelma@33175
   256
  also have "\<dots> = ?rhs" unfolding * by auto
himmelma@33175
   257
  finally show ?thesis by auto
himmelma@33175
   258
qed
himmelma@33175
   259
himmelma@33175
   260
lemma affine_hull_3:
himmelma@33175
   261
  fixes a b c :: "'a::real_vector"
himmelma@33175
   262
  shows "affine hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c| u v w. u + v + w = 1}" (is "?lhs = ?rhs")
himmelma@33175
   263
proof-
himmelma@33175
   264
  have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" 
himmelma@33175
   265
         "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto
himmelma@33175
   266
  show ?thesis apply(simp add: affine_hull_finite affine_hull_finite_step)
himmelma@33175
   267
    unfolding * apply auto
himmelma@33175
   268
    apply(rule_tac x=v in exI) apply(rule_tac x=va in exI) apply auto
himmelma@33175
   269
    apply(rule_tac x=u in exI) by(auto intro!: exI)
himmelma@33175
   270
qed
himmelma@33175
   271
himmelma@33175
   272
subsection {* Some relations between affine hull and subspaces. *}
himmelma@33175
   273
himmelma@33175
   274
lemma affine_hull_insert_subset_span:
himmelma@33175
   275
  fixes a :: "real ^ _"
himmelma@33175
   276
  shows "affine hull (insert a s) \<subseteq> {a + v| v . v \<in> span {x - a | x . x \<in> s}}"
himmelma@33175
   277
  unfolding subset_eq Ball_def unfolding affine_hull_explicit span_explicit mem_Collect_eq smult_conv_scaleR
himmelma@33175
   278
  apply(rule,rule) apply(erule exE)+ apply(erule conjE)+ proof-
himmelma@33175
   279
  fix x t u assume as:"finite t" "t \<noteq> {}" "t \<subseteq> insert a s" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x"
himmelma@33175
   280
  have "(\<lambda>x. x - a) ` (t - {a}) \<subseteq> {x - a |x. x \<in> s}" using as(3) by auto
himmelma@33175
   281
  thus "\<exists>v. x = a + v \<and> (\<exists>S u. finite S \<and> S \<subseteq> {x - a |x. x \<in> s} \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = v)"
himmelma@33175
   282
    apply(rule_tac x="x - a" in exI)
himmelma@33175
   283
    apply (rule conjI, simp)
himmelma@33175
   284
    apply(rule_tac x="(\<lambda>x. x - a) ` (t - {a})" in exI)
himmelma@33175
   285
    apply(rule_tac x="\<lambda>x. u (x + a)" in exI)
himmelma@33175
   286
    apply (rule conjI) using as(1) apply simp
himmelma@33175
   287
    apply (erule conjI)
himmelma@33175
   288
    using as(1)
himmelma@33175
   289
    apply (simp add: setsum_reindex[unfolded inj_on_def] scaleR_right_diff_distrib setsum_subtractf scaleR_left.setsum[THEN sym] setsum_diff1 scaleR_left_diff_distrib)
himmelma@33175
   290
    unfolding as by simp qed
himmelma@33175
   291
himmelma@33175
   292
lemma affine_hull_insert_span:
himmelma@33175
   293
  fixes a :: "real ^ _"
himmelma@33175
   294
  assumes "a \<notin> s"
himmelma@33175
   295
  shows "affine hull (insert a s) =
himmelma@33175
   296
            {a + v | v . v \<in> span {x - a | x.  x \<in> s}}"
himmelma@33175
   297
  apply(rule, rule affine_hull_insert_subset_span) unfolding subset_eq Ball_def
himmelma@33175
   298
  unfolding affine_hull_explicit and mem_Collect_eq proof(rule,rule,erule exE,erule conjE)
himmelma@33175
   299
  fix y v assume "y = a + v" "v \<in> span {x - a |x. x \<in> s}"
himmelma@33175
   300
  then obtain t u where obt:"finite t" "t \<subseteq> {x - a |x. x \<in> s}" "a + (\<Sum>v\<in>t. u v *\<^sub>R v) = y" unfolding span_explicit smult_conv_scaleR by auto
himmelma@33175
   301
  def f \<equiv> "(\<lambda>x. x + a) ` t"
himmelma@33175
   302
  have f:"finite f" "f \<subseteq> s" "(\<Sum>v\<in>f. u (v - a) *\<^sub>R (v - a)) = y - a" unfolding f_def using obt 
himmelma@33175
   303
    by(auto simp add: setsum_reindex[unfolded inj_on_def])
himmelma@33175
   304
  have *:"f \<inter> {a} = {}" "f \<inter> - {a} = f" using f(2) assms by auto
himmelma@33175
   305
  show "\<exists>sa u. finite sa \<and> sa \<noteq> {} \<and> sa \<subseteq> insert a s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y"
himmelma@33175
   306
    apply(rule_tac x="insert a f" in exI)
himmelma@33175
   307
    apply(rule_tac x="\<lambda>x. if x=a then 1 - setsum (\<lambda>x. u (x - a)) f else u (x - a)" in exI)
himmelma@33175
   308
    using assms and f unfolding setsum_clauses(2)[OF f(1)] and if_smult
hoelzl@35577
   309
    unfolding setsum_cases[OF f(1), of "\<lambda>x. x = a"]
hoelzl@35577
   310
    by (auto simp add: setsum_subtractf scaleR_left.setsum algebra_simps *) qed
himmelma@33175
   311
himmelma@33175
   312
lemma affine_hull_span:
himmelma@33175
   313
  fixes a :: "real ^ _"
himmelma@33175
   314
  assumes "a \<in> s"
himmelma@33175
   315
  shows "affine hull s = {a + v | v. v \<in> span {x - a | x. x \<in> s - {a}}}"
himmelma@33175
   316
  using affine_hull_insert_span[of a "s - {a}", unfolded insert_Diff[OF assms]] by auto
himmelma@33175
   317
himmelma@33175
   318
subsection {* Convexity. *}
himmelma@33175
   319
himmelma@33175
   320
definition
himmelma@33175
   321
  convex :: "'a::real_vector set \<Rightarrow> bool" where
himmelma@33175
   322
  "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)"
himmelma@33175
   323
himmelma@33175
   324
lemma convex_alt: "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)"
himmelma@33175
   325
proof- have *:"\<And>u v::real. u + v = 1 \<longleftrightarrow> u = 1 - v" by auto
himmelma@33175
   326
  show ?thesis unfolding convex_def apply auto
himmelma@33175
   327
    apply(erule_tac x=x in ballE) apply(erule_tac x=y in ballE) apply(erule_tac x="1 - u" in allE)
himmelma@33175
   328
    by (auto simp add: *) qed
himmelma@33175
   329
himmelma@33175
   330
lemma mem_convex:
himmelma@33175
   331
  assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1"
himmelma@33175
   332
  shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s"
himmelma@33175
   333
  using assms unfolding convex_alt by auto
himmelma@33175
   334
himmelma@33175
   335
lemma convex_empty[intro]: "convex {}"
himmelma@33175
   336
  unfolding convex_def by simp
himmelma@33175
   337
himmelma@33175
   338
lemma convex_singleton[intro]: "convex {a}"
himmelma@33175
   339
  unfolding convex_def by (auto simp add:scaleR_left_distrib[THEN sym])
himmelma@33175
   340
himmelma@33175
   341
lemma convex_UNIV[intro]: "convex UNIV"
himmelma@33175
   342
  unfolding convex_def by auto
himmelma@33175
   343
himmelma@33175
   344
lemma convex_Inter: "(\<forall>s\<in>f. convex s) ==> convex(\<Inter> f)"
himmelma@33175
   345
  unfolding convex_def by auto
himmelma@33175
   346
himmelma@33175
   347
lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)"
himmelma@33175
   348
  unfolding convex_def by auto
himmelma@33175
   349
himmelma@33175
   350
lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
himmelma@33175
   351
  unfolding convex_def apply auto
himmelma@33175
   352
  unfolding inner_add inner_scaleR
himmelma@33175
   353
  by (metis real_convex_bound_le)
himmelma@33175
   354
himmelma@33175
   355
lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
himmelma@33175
   356
proof- have *:"{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto
himmelma@33175
   357
  show ?thesis apply(unfold *) using convex_halfspace_le[of "-a" "-b"] by auto qed
himmelma@33175
   358
himmelma@33175
   359
lemma convex_hyperplane: "convex {x. inner a x = b}"
himmelma@33175
   360
proof-
himmelma@33175
   361
  have *:"{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto
himmelma@33175
   362
  show ?thesis unfolding * apply(rule convex_Int)
himmelma@33175
   363
    using convex_halfspace_le convex_halfspace_ge by auto
himmelma@33175
   364
qed
himmelma@33175
   365
himmelma@33175
   366
lemma convex_halfspace_lt: "convex {x. inner a x < b}"
himmelma@33175
   367
  unfolding convex_def
himmelma@33175
   368
  by(auto simp add: real_convex_bound_lt inner_add)
himmelma@33175
   369
himmelma@33175
   370
lemma convex_halfspace_gt: "convex {x. inner a x > b}"
himmelma@33175
   371
   using convex_halfspace_lt[of "-a" "-b"] by auto
himmelma@33175
   372
huffman@36330
   373
lemma convex_real_interval:
huffman@36330
   374
  fixes a b :: "real"
huffman@36330
   375
  shows "convex {a..}" and "convex {..b}"
huffman@36330
   376
  and "convex {a<..}" and "convex {..<b}"
huffman@36330
   377
  and "convex {a..b}" and "convex {a<..b}"
huffman@36330
   378
  and "convex {a..<b}" and "convex {a<..<b}"
huffman@36330
   379
proof -
huffman@36330
   380
  have "{a..} = {x. a \<le> inner 1 x}" by auto
huffman@36330
   381
  thus 1: "convex {a..}" by (simp only: convex_halfspace_ge)
huffman@36330
   382
  have "{..b} = {x. inner 1 x \<le> b}" by auto
huffman@36330
   383
  thus 2: "convex {..b}" by (simp only: convex_halfspace_le)
huffman@36330
   384
  have "{a<..} = {x. a < inner 1 x}" by auto
huffman@36330
   385
  thus 3: "convex {a<..}" by (simp only: convex_halfspace_gt)
huffman@36330
   386
  have "{..<b} = {x. inner 1 x < b}" by auto
huffman@36330
   387
  thus 4: "convex {..<b}" by (simp only: convex_halfspace_lt)
huffman@36330
   388
  have "{a..b} = {a..} \<inter> {..b}" by auto
huffman@36330
   389
  thus "convex {a..b}" by (simp only: convex_Int 1 2)
huffman@36330
   390
  have "{a<..b} = {a<..} \<inter> {..b}" by auto
huffman@36330
   391
  thus "convex {a<..b}" by (simp only: convex_Int 3 2)
huffman@36330
   392
  have "{a..<b} = {a..} \<inter> {..<b}" by auto
huffman@36330
   393
  thus "convex {a..<b}" by (simp only: convex_Int 1 4)
huffman@36330
   394
  have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
huffman@36330
   395
  thus "convex {a<..<b}" by (simp only: convex_Int 3 4)
huffman@36330
   396
qed
huffman@36330
   397
huffman@36330
   398
lemma convex_box:
huffman@36330
   399
  assumes "\<And>i. convex {x. P i x}"
huffman@36330
   400
  shows "convex {x. \<forall>i. P i (x$i)}"
huffman@36330
   401
using assms unfolding convex_def by auto
huffman@36330
   402
hoelzl@34291
   403
lemma convex_positive_orthant: "convex {x::real^'n. (\<forall>i. 0 \<le> x$i)}"
huffman@36330
   404
by (rule convex_box, simp add: atLeast_def [symmetric] convex_real_interval)
himmelma@33175
   405
himmelma@33175
   406
subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
himmelma@33175
   407
himmelma@33175
   408
lemma convex: "convex s \<longleftrightarrow>
himmelma@33175
   409
  (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
himmelma@33175
   410
           \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
himmelma@33175
   411
  unfolding convex_def apply rule apply(rule allI)+ defer apply(rule ballI)+ apply(rule allI)+ proof(rule,rule,rule,rule)
himmelma@33175
   412
  fix x y u v assume as:"\<forall>(k::nat) u x. (\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R x i) \<in> s"
himmelma@33175
   413
    "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"
himmelma@33175
   414
  show "u *\<^sub>R x + v *\<^sub>R y \<in> s" using as(1)[THEN spec[where x=2], THEN spec[where x="\<lambda>n. if n=1 then u else v"], THEN spec[where x="\<lambda>n. if n=1 then x else y"]] and as(2-)
himmelma@33175
   415
    by (auto simp add: setsum_head_Suc) 
himmelma@33175
   416
next
himmelma@33175
   417
  fix k u x assume as:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" 
himmelma@33175
   418
  show "(\<forall>i::nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R x i) \<in> s" apply(rule,erule conjE) proof(induct k arbitrary: u)
himmelma@33175
   419
  case (Suc k) show ?case proof(cases "u (Suc k) = 1")
himmelma@33175
   420
    case True hence "(\<Sum>i = Suc 0..k. u i *\<^sub>R x i) = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof-
himmelma@33175
   421
      fix i assume i:"i \<in> {Suc 0..k}" "u i *\<^sub>R x i \<noteq> 0"
himmelma@33175
   422
      hence ui:"u i \<noteq> 0" by auto
himmelma@33175
   423
      hence "setsum (\<lambda>k. if k=i then u i else 0) {1 .. k} \<le> setsum u {1 .. k}" apply(rule_tac setsum_mono) using Suc(2) by auto
himmelma@33175
   424
      hence "setsum u {1 .. k} \<ge> u i" using i(1) by(auto simp add: setsum_delta) 
himmelma@33175
   425
      hence "setsum u {1 .. k} > 0"  using ui apply(rule_tac less_le_trans[of _ "u i"]) using Suc(2)[THEN spec[where x=i]] and i(1) by auto
himmelma@33175
   426
      thus False using Suc(3) unfolding setsum_cl_ivl_Suc and True by simp qed
himmelma@33175
   427
    thus ?thesis unfolding setsum_cl_ivl_Suc using True and Suc(2) by auto
himmelma@33175
   428
  next
himmelma@33175
   429
    have *:"setsum u {1..k} = 1 - u (Suc k)" using Suc(3)[unfolded setsum_cl_ivl_Suc] by auto
nipkow@36071
   430
    have **:"u (Suc k) \<le> 1" unfolding not_le using Suc(3) using setsum_nonneg[of "{1..k}" u] using Suc(2) by auto
himmelma@33175
   431
    have ***:"\<And>i k. (u i / (1 - u (Suc k))) *\<^sub>R x i = (inverse (1 - u (Suc k))) *\<^sub>R (u i *\<^sub>R x i)" unfolding real_divide_def by (auto simp add: algebra_simps)
himmelma@33175
   432
    case False hence nn:"1 - u (Suc k) \<noteq> 0" by auto
himmelma@33175
   433
    have "(\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *\<^sub>R x i) \<in> s" apply(rule Suc(1)) unfolding setsum_divide_distrib[THEN sym] and *
himmelma@33175
   434
      apply(rule_tac allI) apply(rule,rule) apply(rule divide_nonneg_pos) using nn Suc(2) ** by auto
himmelma@33175
   435
    hence "(1 - u (Suc k)) *\<^sub>R (\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *\<^sub>R x i) + u (Suc k) *\<^sub>R x (Suc k) \<in> s"
himmelma@33175
   436
      apply(rule as[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using Suc(2)[THEN spec[where x="Suc k"]] and ** by auto
himmelma@33175
   437
    thus ?thesis unfolding setsum_cl_ivl_Suc and *** and scaleR_right.setsum [symmetric] using nn by auto qed qed auto qed
himmelma@33175
   438
himmelma@33175
   439
himmelma@33175
   440
lemma convex_explicit:
himmelma@33175
   441
  fixes s :: "'a::real_vector set"
himmelma@33175
   442
  shows "convex s \<longleftrightarrow>
himmelma@33175
   443
  (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)"
himmelma@33175
   444
  unfolding convex_def apply(rule,rule,rule) apply(subst imp_conjL,rule) defer apply(rule,rule,rule,rule,rule,rule,rule) proof-
himmelma@33175
   445
  fix x y u v assume as:"\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"
himmelma@33175
   446
  show "u *\<^sub>R x + v *\<^sub>R y \<in> s" proof(cases "x=y")
himmelma@33175
   447
    case True show ?thesis unfolding True and scaleR_left_distrib[THEN sym] using as(3,6) by auto next
himmelma@33175
   448
    case False thus ?thesis using as(1)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>z. if z=x then u else v"]] and as(2-) by auto qed
himmelma@33175
   449
next 
himmelma@33175
   450
  fix t u assume asm:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" "finite (t::'a set)"
himmelma@33175
   451
  (*"finite t" "t \<subseteq> s" "\<forall>x\<in>t. (0::real) \<le> u x" "setsum u t = 1"*)
huffman@36358
   452
  from this(2) have "\<forall>u. t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" apply(induct t rule:finite_induct)
huffman@36358
   453
    prefer 2 apply (rule,rule) apply(erule conjE)+ proof-
himmelma@33175
   454
    fix x f u assume ind:"\<forall>u. f \<subseteq> s \<and> (\<forall>x\<in>f. 0 \<le> u x) \<and> setsum u f = 1 \<longrightarrow> (\<Sum>x\<in>f. u x *\<^sub>R x) \<in> s"
himmelma@33175
   455
    assume as:"finite f" "x \<notin> f" "insert x f \<subseteq> s" "\<forall>x\<in>insert x f. 0 \<le> u x" "setsum u (insert x f) = (1::real)"
himmelma@33175
   456
    show "(\<Sum>x\<in>insert x f. u x *\<^sub>R x) \<in> s" proof(cases "u x = 1")
himmelma@33175
   457
      case True hence "setsum (\<lambda>x. u x *\<^sub>R x) f = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof-
himmelma@33175
   458
        fix y assume y:"y \<in> f" "u y *\<^sub>R y \<noteq> 0"
himmelma@33175
   459
        hence uy:"u y \<noteq> 0" by auto
himmelma@33175
   460
        hence "setsum (\<lambda>k. if k=y then u y else 0) f \<le> setsum u f" apply(rule_tac setsum_mono) using as(4) by auto
himmelma@33175
   461
        hence "setsum u f \<ge> u y" using y(1) and as(1) by(auto simp add: setsum_delta) 
himmelma@33175
   462
        hence "setsum u f > 0" using uy apply(rule_tac less_le_trans[of _ "u y"]) using as(4) and y(1) by auto
himmelma@33175
   463
        thus False using as(2,5) unfolding setsum_clauses(2)[OF as(1)] and True by auto qed
himmelma@33175
   464
      thus ?thesis unfolding setsum_clauses(2)[OF as(1)] using as(2,3) unfolding True by auto
himmelma@33175
   465
    next
himmelma@33175
   466
      have *:"setsum u f = setsum u (insert x f) - u x" using as(2) unfolding setsum_clauses(2)[OF as(1)] by auto
nipkow@36071
   467
      have **:"u x \<le> 1" unfolding not_le using as(5)[unfolded setsum_clauses(2)[OF as(1)]] and as(2)
himmelma@33175
   468
        using setsum_nonneg[of f u] and as(4) by auto
himmelma@33175
   469
      case False hence "inverse (1 - u x) *\<^sub>R (\<Sum>x\<in>f. u x *\<^sub>R x) \<in> s" unfolding scaleR_right.setsum and scaleR_scaleR
himmelma@33175
   470
        apply(rule_tac ind[THEN spec, THEN mp]) apply rule defer apply rule apply rule apply(rule mult_nonneg_nonneg)
himmelma@33175
   471
        unfolding setsum_right_distrib[THEN sym] and * using as and ** by auto
himmelma@33175
   472
      hence "u x *\<^sub>R x + (1 - u x) *\<^sub>R ((inverse (1 - u x)) *\<^sub>R setsum (\<lambda>x. u x *\<^sub>R x) f) \<in>s" 
himmelma@33175
   473
        apply(rule_tac asm(1)[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using as and ** False by auto 
himmelma@33175
   474
      thus ?thesis unfolding setsum_clauses(2)[OF as(1)] using as(2) and False by auto qed
himmelma@33175
   475
  qed auto thus "t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" by auto
himmelma@33175
   476
qed
himmelma@33175
   477
himmelma@33175
   478
lemma convex_finite: assumes "finite s"
himmelma@33175
   479
  shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1
himmelma@33175
   480
                      \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)"
himmelma@33175
   481
  unfolding convex_explicit apply(rule, rule, rule) defer apply(rule,rule,rule)apply(erule conjE)+ proof-
himmelma@33175
   482
  fix t u assume as:"\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s" " finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)"
himmelma@33175
   483
  have *:"s \<inter> t = t" using as(3) by auto
himmelma@33175
   484
  show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" using as(1)[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]]
hoelzl@35577
   485
    unfolding if_smult and setsum_cases[OF assms] using as(2-) * by auto
himmelma@33175
   486
qed (erule_tac x=s in allE, erule_tac x=u in allE, auto)
himmelma@33175
   487
himmelma@33175
   488
subsection {* Cones. *}
himmelma@33175
   489
himmelma@33175
   490
definition
himmelma@33175
   491
  cone :: "'a::real_vector set \<Rightarrow> bool" where
himmelma@33175
   492
  "cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)"
himmelma@33175
   493
himmelma@33175
   494
lemma cone_empty[intro, simp]: "cone {}"
himmelma@33175
   495
  unfolding cone_def by auto
himmelma@33175
   496
himmelma@33175
   497
lemma cone_univ[intro, simp]: "cone UNIV"
himmelma@33175
   498
  unfolding cone_def by auto
himmelma@33175
   499
himmelma@33175
   500
lemma cone_Inter[intro]: "(\<forall>s\<in>f. cone s) \<Longrightarrow> cone(\<Inter> f)"
himmelma@33175
   501
  unfolding cone_def by auto
himmelma@33175
   502
himmelma@33175
   503
subsection {* Conic hull. *}
himmelma@33175
   504
himmelma@33175
   505
lemma cone_cone_hull: "cone (cone hull s)"
himmelma@33175
   506
  unfolding hull_def using cone_Inter[of "{t \<in> conic. s \<subseteq> t}"] 
himmelma@33175
   507
  by (auto simp add: mem_def)
himmelma@33175
   508
himmelma@33175
   509
lemma cone_hull_eq: "(cone hull s = s) \<longleftrightarrow> cone s"
himmelma@33175
   510
  apply(rule hull_eq[unfolded mem_def])
himmelma@33175
   511
  using cone_Inter unfolding subset_eq by (auto simp add: mem_def)
himmelma@33175
   512
himmelma@33175
   513
subsection {* Affine dependence and consequential theorems (from Lars Schewe). *}
himmelma@33175
   514
himmelma@33175
   515
definition
himmelma@33175
   516
  affine_dependent :: "'a::real_vector set \<Rightarrow> bool" where
himmelma@33175
   517
  "affine_dependent s \<longleftrightarrow> (\<exists>x\<in>s. x \<in> (affine hull (s - {x})))"
himmelma@33175
   518
himmelma@33175
   519
lemma affine_dependent_explicit:
himmelma@33175
   520
  "affine_dependent p \<longleftrightarrow>
himmelma@33175
   521
    (\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and>
himmelma@33175
   522
    (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)"
himmelma@33175
   523
  unfolding affine_dependent_def affine_hull_explicit mem_Collect_eq apply(rule)
himmelma@33175
   524
  apply(erule bexE,erule exE,erule exE) apply(erule conjE)+ defer apply(erule exE,erule exE) apply(erule conjE)+ apply(erule bexE)
himmelma@33175
   525
proof-
himmelma@33175
   526
  fix x s u assume as:"x \<in> p" "finite s" "s \<noteq> {}" "s \<subseteq> p - {x}" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"
himmelma@33175
   527
  have "x\<notin>s" using as(1,4) by auto
himmelma@33175
   528
  show "\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = 0"
himmelma@33175
   529
    apply(rule_tac x="insert x s" in exI, rule_tac x="\<lambda>v. if v = x then - 1 else u v" in exI)
himmelma@33175
   530
    unfolding if_smult and setsum_clauses(2)[OF as(2)] and setsum_delta_notmem[OF `x\<notin>s`] and as using as by auto 
himmelma@33175
   531
next
himmelma@33175
   532
  fix s u v assume as:"finite s" "s \<subseteq> p" "setsum u s = 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" "v \<in> s" "u v \<noteq> 0"
himmelma@33175
   533
  have "s \<noteq> {v}" using as(3,6) by auto
himmelma@33175
   534
  thus "\<exists>x\<in>p. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p - {x} \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" 
himmelma@33175
   535
    apply(rule_tac x=v in bexI, rule_tac x="s - {v}" in exI, rule_tac x="\<lambda>x. - (1 / u v) * u x" in exI)
himmelma@33175
   536
    unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] unfolding setsum_right_distrib[THEN sym] and setsum_diff1[OF as(1)] using as by auto
himmelma@33175
   537
qed
himmelma@33175
   538
himmelma@33175
   539
lemma affine_dependent_explicit_finite:
himmelma@33175
   540
  fixes s :: "'a::real_vector set" assumes "finite s"
himmelma@33175
   541
  shows "affine_dependent s \<longleftrightarrow> (\<exists>u. setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)"
himmelma@33175
   542
  (is "?lhs = ?rhs")
himmelma@33175
   543
proof
himmelma@33175
   544
  have *:"\<And>vt u v. (if vt then u v else 0) *\<^sub>R v = (if vt then (u v) *\<^sub>R v else (0::'a))" by auto
himmelma@33175
   545
  assume ?lhs
himmelma@33175
   546
  then obtain t u v where "finite t" "t \<subseteq> s" "setsum u t = 0" "v\<in>t" "u v \<noteq> 0"  "(\<Sum>v\<in>t. u v *\<^sub>R v) = 0"
himmelma@33175
   547
    unfolding affine_dependent_explicit by auto
himmelma@33175
   548
  thus ?rhs apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI)
himmelma@33175
   549
    apply auto unfolding * and setsum_restrict_set[OF assms, THEN sym]
himmelma@33175
   550
    unfolding Int_absorb1[OF `t\<subseteq>s`] by auto
himmelma@33175
   551
next
himmelma@33175
   552
  assume ?rhs
himmelma@33175
   553
  then obtain u v where "setsum u s = 0"  "v\<in>s" "u v \<noteq> 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" by auto
himmelma@33175
   554
  thus ?lhs unfolding affine_dependent_explicit using assms by auto
himmelma@33175
   555
qed
himmelma@33175
   556
himmelma@33175
   557
subsection {* A general lemma. *}
himmelma@33175
   558
himmelma@33175
   559
lemma convex_connected:
himmelma@33175
   560
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
   561
  assumes "convex s" shows "connected s"
himmelma@33175
   562
proof-
himmelma@33175
   563
  { fix e1 e2 assume as:"open e1" "open e2" "e1 \<inter> e2 \<inter> s = {}" "s \<subseteq> e1 \<union> e2" 
himmelma@33175
   564
    assume "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
himmelma@33175
   565
    then obtain x1 x2 where x1:"x1\<in>e1" "x1\<in>s" and x2:"x2\<in>e2" "x2\<in>s" by auto
himmelma@33175
   566
    hence n:"norm (x1 - x2) > 0" unfolding zero_less_norm_iff using as(3) by auto
himmelma@33175
   567
himmelma@33175
   568
    { fix x e::real assume as:"0 \<le> x" "x \<le> 1" "0 < e"
himmelma@33175
   569
      { fix y have *:"(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2) = (y - x) *\<^sub>R x1 - (y - x) *\<^sub>R x2"
himmelma@33175
   570
          by (simp add: algebra_simps)
himmelma@33175
   571
        assume "\<bar>y - x\<bar> < e / norm (x1 - x2)"
himmelma@33175
   572
        hence "norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e"
himmelma@33175
   573
          unfolding * and scaleR_right_diff_distrib[THEN sym]
himmelma@33175
   574
          unfolding less_divide_eq using n by auto  }
himmelma@33175
   575
      hence "\<exists>d>0. \<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e"
himmelma@33175
   576
        apply(rule_tac x="e / norm (x1 - x2)" in exI) using as
himmelma@33175
   577
        apply auto unfolding zero_less_divide_iff using n by simp  }  note * = this
himmelma@33175
   578
himmelma@33175
   579
    have "\<exists>x\<ge>0. x \<le> 1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2"
himmelma@33175
   580
      apply(rule connected_real_lemma) apply (simp add: `x1\<in>e1` `x2\<in>e2` dist_commute)+
himmelma@33175
   581
      using * apply(simp add: dist_norm)
himmelma@33175
   582
      using as(1,2)[unfolded open_dist] apply simp
himmelma@33175
   583
      using as(1,2)[unfolded open_dist] apply simp
himmelma@33175
   584
      using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]] using x1 x2
himmelma@33175
   585
      using as(3) by auto
himmelma@33175
   586
    then obtain x where "x\<ge>0" "x\<le>1" "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1"  "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2" by auto
himmelma@33175
   587
    hence False using as(4) 
himmelma@33175
   588
      using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]]
himmelma@33175
   589
      using x1(2) x2(2) by auto  }
himmelma@33175
   590
  thus ?thesis unfolding connected_def by auto
himmelma@33175
   591
qed
himmelma@33175
   592
himmelma@33175
   593
subsection {* One rather trivial consequence. *}
himmelma@33175
   594
hoelzl@34951
   595
lemma connected_UNIV[intro]: "connected (UNIV :: 'a::real_normed_vector set)"
himmelma@33175
   596
  by(simp add: convex_connected convex_UNIV)
himmelma@33175
   597
himmelma@33175
   598
subsection {* Convex functions into the reals. *}
himmelma@33175
   599
himmelma@33175
   600
definition
himmelma@33175
   601
  convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool" where
himmelma@33175
   602
  "convex_on s f \<longleftrightarrow>
himmelma@33175
   603
  (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)"
himmelma@33175
   604
himmelma@33175
   605
lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f"
himmelma@33175
   606
  unfolding convex_on_def by auto
himmelma@33175
   607
hoelzl@34951
   608
lemma convex_add[intro]:
himmelma@33175
   609
  assumes "convex_on s f" "convex_on s g"
himmelma@33175
   610
  shows "convex_on s (\<lambda>x. f x + g x)"
himmelma@33175
   611
proof-
himmelma@33175
   612
  { fix x y assume "x\<in>s" "y\<in>s" moreover
himmelma@33175
   613
    fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   614
    ultimately have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)"
himmelma@33175
   615
      using assms(1)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]
himmelma@33175
   616
      using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]
himmelma@33175
   617
      apply - apply(rule add_mono) by auto
haftmann@36349
   618
    hence "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" by (simp add: field_simps)  }
himmelma@33175
   619
  thus ?thesis unfolding convex_on_def by auto 
himmelma@33175
   620
qed
himmelma@33175
   621
hoelzl@34951
   622
lemma convex_cmul[intro]:
himmelma@33175
   623
  assumes "0 \<le> (c::real)" "convex_on s f"
himmelma@33175
   624
  shows "convex_on s (\<lambda>x. c * f x)"
himmelma@33175
   625
proof-
haftmann@36349
   626
  have *:"\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" by (simp add: field_simps)
himmelma@33175
   627
  show ?thesis using assms(2) and mult_mono1[OF _ assms(1)] unfolding convex_on_def and * by auto
himmelma@33175
   628
qed
himmelma@33175
   629
himmelma@33175
   630
lemma convex_lower:
himmelma@33175
   631
  assumes "convex_on s f"  "x\<in>s"  "y \<in> s"  "0 \<le> u"  "0 \<le> v"  "u + v = 1"
himmelma@33175
   632
  shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)"
himmelma@33175
   633
proof-
himmelma@33175
   634
  let ?m = "max (f x) (f y)"
himmelma@33175
   635
  have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" apply(rule add_mono) 
himmelma@33175
   636
    using assms(4,5) by(auto simp add: mult_mono1)
himmelma@33175
   637
  also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[THEN sym] by auto
himmelma@33175
   638
  finally show ?thesis using assms(1)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]
himmelma@33175
   639
    using assms(2-6) by auto 
himmelma@33175
   640
qed
himmelma@33175
   641
himmelma@33175
   642
lemma convex_local_global_minimum:
himmelma@33175
   643
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
   644
  assumes "0<e" "convex_on s f" "ball x e \<subseteq> s" "\<forall>y\<in>ball x e. f x \<le> f y"
himmelma@33175
   645
  shows "\<forall>y\<in>s. f x \<le> f y"
himmelma@33175
   646
proof(rule ccontr)
himmelma@33175
   647
  have "x\<in>s" using assms(1,3) by auto
himmelma@33175
   648
  assume "\<not> (\<forall>y\<in>s. f x \<le> f y)"
himmelma@33175
   649
  then obtain y where "y\<in>s" and y:"f x > f y" by auto
himmelma@33175
   650
  hence xy:"0 < dist x y" by (auto simp add: dist_nz[THEN sym])
himmelma@33175
   651
himmelma@33175
   652
  then obtain u where "0 < u" "u \<le> 1" and u:"u < e / dist x y"
himmelma@33175
   653
    using real_lbound_gt_zero[of 1 "e / dist x y"] using xy `e>0` and divide_pos_pos[of e "dist x y"] by auto
himmelma@33175
   654
  hence "f ((1-u) *\<^sub>R x + u *\<^sub>R y) \<le> (1-u) * f x + u * f y" using `x\<in>s` `y\<in>s`
himmelma@33175
   655
    using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x="1-u"]] by auto
himmelma@33175
   656
  moreover
himmelma@33175
   657
  have *:"x - ((1 - u) *\<^sub>R x + u *\<^sub>R y) = u *\<^sub>R (x - y)" by (simp add: algebra_simps)
himmelma@33175
   658
  have "(1 - u) *\<^sub>R x + u *\<^sub>R y \<in> ball x e" unfolding mem_ball dist_norm unfolding * and norm_scaleR and abs_of_pos[OF `0<u`] unfolding dist_norm[THEN sym]
himmelma@33175
   659
    using u unfolding pos_less_divide_eq[OF xy] by auto
himmelma@33175
   660
  hence "f x \<le> f ((1 - u) *\<^sub>R x + u *\<^sub>R y)" using assms(4) by auto
himmelma@33175
   661
  ultimately show False using mult_strict_left_mono[OF y `u>0`] unfolding left_diff_distrib by auto
himmelma@33175
   662
qed
himmelma@33175
   663
hoelzl@34951
   664
lemma convex_distance[intro]:
himmelma@33175
   665
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
   666
  shows "convex_on s (\<lambda>x. dist a x)"
himmelma@33175
   667
proof(auto simp add: convex_on_def dist_norm)
himmelma@33175
   668
  fix x y assume "x\<in>s" "y\<in>s"
himmelma@33175
   669
  fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   670
  have "a = u *\<^sub>R a + v *\<^sub>R a" unfolding scaleR_left_distrib[THEN sym] and `u+v=1` by simp
himmelma@33175
   671
  hence *:"a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))"
himmelma@33175
   672
    by (auto simp add: algebra_simps)
himmelma@33175
   673
  show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)"
himmelma@33175
   674
    unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"]
himmelma@33175
   675
    using `0 \<le> u` `0 \<le> v` by auto
himmelma@33175
   676
qed
himmelma@33175
   677
himmelma@33175
   678
subsection {* Arithmetic operations on sets preserve convexity. *}
himmelma@33175
   679
himmelma@33175
   680
lemma convex_scaling: "convex s \<Longrightarrow> convex ((\<lambda>x. c *\<^sub>R x) ` s)"
himmelma@33175
   681
  unfolding convex_def and image_iff apply auto
himmelma@33175
   682
  apply (rule_tac x="u *\<^sub>R x+v *\<^sub>R y" in bexI) by (auto simp add: algebra_simps)
himmelma@33175
   683
himmelma@33175
   684
lemma convex_negations: "convex s \<Longrightarrow> convex ((\<lambda>x. -x)` s)"
himmelma@33175
   685
  unfolding convex_def and image_iff apply auto
himmelma@33175
   686
  apply (rule_tac x="u *\<^sub>R x+v *\<^sub>R y" in bexI) by auto
himmelma@33175
   687
himmelma@33175
   688
lemma convex_sums:
himmelma@33175
   689
  assumes "convex s" "convex t"
himmelma@33175
   690
  shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
himmelma@33175
   691
proof(auto simp add: convex_def image_iff scaleR_right_distrib)
himmelma@33175
   692
  fix xa xb ya yb assume xy:"xa\<in>s" "xb\<in>s" "ya\<in>t" "yb\<in>t"
himmelma@33175
   693
  fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   694
  show "\<exists>x y. u *\<^sub>R xa + u *\<^sub>R ya + (v *\<^sub>R xb + v *\<^sub>R yb) = x + y \<and> x \<in> s \<and> y \<in> t"
himmelma@33175
   695
    apply(rule_tac x="u *\<^sub>R xa + v *\<^sub>R xb" in exI) apply(rule_tac x="u *\<^sub>R ya + v *\<^sub>R yb" in exI)
himmelma@33175
   696
    using assms(1)[unfolded convex_def, THEN bspec[where x=xa], THEN bspec[where x=xb]]
himmelma@33175
   697
    using assms(2)[unfolded convex_def, THEN bspec[where x=ya], THEN bspec[where x=yb]]
himmelma@33175
   698
    using uv xy by auto
himmelma@33175
   699
qed
himmelma@33175
   700
himmelma@33175
   701
lemma convex_differences: 
himmelma@33175
   702
  assumes "convex s" "convex t"
himmelma@33175
   703
  shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
himmelma@33175
   704
proof-
himmelma@33175
   705
  have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}" unfolding image_iff apply auto
himmelma@33175
   706
    apply(rule_tac x=xa in exI) apply(rule_tac x="-y" in exI) apply simp
himmelma@33175
   707
    apply(rule_tac x=xa in exI) apply(rule_tac x=xb in exI) by simp
himmelma@33175
   708
  thus ?thesis using convex_sums[OF assms(1)  convex_negations[OF assms(2)]] by auto
himmelma@33175
   709
qed
himmelma@33175
   710
himmelma@33175
   711
lemma convex_translation: assumes "convex s" shows "convex ((\<lambda>x. a + x) ` s)"
himmelma@33175
   712
proof- have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
himmelma@33175
   713
  thus ?thesis using convex_sums[OF convex_singleton[of a] assms] by auto qed
himmelma@33175
   714
himmelma@33175
   715
lemma convex_affinity: assumes "convex s" shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)"
himmelma@33175
   716
proof- have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto
himmelma@33175
   717
  thus ?thesis using convex_translation[OF convex_scaling[OF assms], of a c] by auto qed
himmelma@33175
   718
himmelma@33175
   719
lemma convex_linear_image:
himmelma@33175
   720
  assumes c:"convex s" and l:"bounded_linear f"
himmelma@33175
   721
  shows "convex(f ` s)"
himmelma@33175
   722
proof(auto simp add: convex_def)
himmelma@33175
   723
  interpret f: bounded_linear f by fact
himmelma@33175
   724
  fix x y assume xy:"x \<in> s" "y \<in> s"
himmelma@33175
   725
  fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   726
  show "u *\<^sub>R f x + v *\<^sub>R f y \<in> f ` s" unfolding image_iff
himmelma@33175
   727
    apply(rule_tac x="u *\<^sub>R x + v *\<^sub>R y" in bexI)
himmelma@33175
   728
    unfolding f.add f.scaleR
himmelma@33175
   729
    using c[unfolded convex_def] xy uv by auto
himmelma@33175
   730
qed
himmelma@33175
   731
himmelma@33175
   732
subsection {* Balls, being convex, are connected. *}
himmelma@33175
   733
himmelma@33175
   734
lemma convex_ball:
himmelma@33175
   735
  fixes x :: "'a::real_normed_vector"
himmelma@33175
   736
  shows "convex (ball x e)" 
himmelma@33175
   737
proof(auto simp add: convex_def)
himmelma@33175
   738
  fix y z assume yz:"dist x y < e" "dist x z < e"
himmelma@33175
   739
  fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   740
  have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz
himmelma@33175
   741
    using convex_distance[of "ball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto
himmelma@33175
   742
  thus "dist x (u *\<^sub>R y + v *\<^sub>R z) < e" using real_convex_bound_lt[OF yz uv] by auto 
himmelma@33175
   743
qed
himmelma@33175
   744
himmelma@33175
   745
lemma convex_cball:
himmelma@33175
   746
  fixes x :: "'a::real_normed_vector"
himmelma@33175
   747
  shows "convex(cball x e)"
huffman@36358
   748
proof(auto simp add: convex_def Ball_def)
himmelma@33175
   749
  fix y z assume yz:"dist x y \<le> e" "dist x z \<le> e"
himmelma@33175
   750
  fix u v ::real assume uv:" 0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   751
  have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz
himmelma@33175
   752
    using convex_distance[of "cball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto
himmelma@33175
   753
  thus "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> e" using real_convex_bound_le[OF yz uv] by auto 
himmelma@33175
   754
qed
himmelma@33175
   755
himmelma@33175
   756
lemma connected_ball:
himmelma@33175
   757
  fixes x :: "'a::real_normed_vector"
himmelma@33175
   758
  shows "connected (ball x e)"
himmelma@33175
   759
  using convex_connected convex_ball by auto
himmelma@33175
   760
himmelma@33175
   761
lemma connected_cball:
himmelma@33175
   762
  fixes x :: "'a::real_normed_vector"
himmelma@33175
   763
  shows "connected(cball x e)"
himmelma@33175
   764
  using convex_connected convex_cball by auto
himmelma@33175
   765
himmelma@33175
   766
subsection {* Convex hull. *}
himmelma@33175
   767
himmelma@33175
   768
lemma convex_convex_hull: "convex(convex hull s)"
himmelma@33175
   769
  unfolding hull_def using convex_Inter[of "{t\<in>convex. s\<subseteq>t}"]
himmelma@33175
   770
  unfolding mem_def by auto
himmelma@33175
   771
haftmann@34064
   772
lemma convex_hull_eq: "convex hull s = s \<longleftrightarrow> convex s"
nipkow@36071
   773
by (metis convex_convex_hull hull_same mem_def)
himmelma@33175
   774
himmelma@33175
   775
lemma bounded_convex_hull:
himmelma@33175
   776
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
   777
  assumes "bounded s" shows "bounded(convex hull s)"
himmelma@33175
   778
proof- from assms obtain B where B:"\<forall>x\<in>s. norm x \<le> B" unfolding bounded_iff by auto
himmelma@33175
   779
  show ?thesis apply(rule bounded_subset[OF bounded_cball, of _ 0 B])
himmelma@33175
   780
    unfolding subset_hull[unfolded mem_def, of convex, OF convex_cball]
himmelma@33175
   781
    unfolding subset_eq mem_cball dist_norm using B by auto qed
himmelma@33175
   782
himmelma@33175
   783
lemma finite_imp_bounded_convex_hull:
himmelma@33175
   784
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
   785
  shows "finite s \<Longrightarrow> bounded(convex hull s)"
himmelma@33175
   786
  using bounded_convex_hull finite_imp_bounded by auto
himmelma@33175
   787
himmelma@33175
   788
subsection {* Stepping theorems for convex hulls of finite sets. *}
himmelma@33175
   789
himmelma@33175
   790
lemma convex_hull_empty[simp]: "convex hull {} = {}"
himmelma@33175
   791
  apply(rule hull_unique) unfolding mem_def by auto
himmelma@33175
   792
himmelma@33175
   793
lemma convex_hull_singleton[simp]: "convex hull {a} = {a}"
himmelma@33175
   794
  apply(rule hull_unique) unfolding mem_def by auto
himmelma@33175
   795
himmelma@33175
   796
lemma convex_hull_insert:
himmelma@33175
   797
  fixes s :: "'a::real_vector set"
himmelma@33175
   798
  assumes "s \<noteq> {}"
himmelma@33175
   799
  shows "convex hull (insert a s) = {x. \<exists>u\<ge>0. \<exists>v\<ge>0. \<exists>b. (u + v = 1) \<and>
himmelma@33175
   800
                                    b \<in> (convex hull s) \<and> (x = u *\<^sub>R a + v *\<^sub>R b)}" (is "?xyz = ?hull")
himmelma@33175
   801
 apply(rule,rule hull_minimal,rule) unfolding mem_def[of _ convex] and insert_iff prefer 3 apply rule proof-
himmelma@33175
   802
 fix x assume x:"x = a \<or> x \<in> s"
himmelma@33175
   803
 thus "x\<in>?hull" apply rule unfolding mem_Collect_eq apply(rule_tac x=1 in exI) defer 
himmelma@33175
   804
   apply(rule_tac x=0 in exI) using assms hull_subset[of s convex] by auto
himmelma@33175
   805
next
himmelma@33175
   806
  fix x assume "x\<in>?hull"
himmelma@33175
   807
  then obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "x = u *\<^sub>R a + v *\<^sub>R b" by auto
himmelma@33175
   808
  have "a\<in>convex hull insert a s" "b\<in>convex hull insert a s"
himmelma@33175
   809
    using hull_mono[of s "insert a s" convex] hull_mono[of "{a}" "insert a s" convex] and obt(4) by auto
himmelma@33175
   810
  thus "x\<in> convex hull insert a s" unfolding obt(5) using convex_convex_hull[of "insert a s", unfolded convex_def]
himmelma@33175
   811
    apply(erule_tac x=a in ballE) apply(erule_tac x=b in ballE) apply(erule_tac x=u in allE) using obt by auto
himmelma@33175
   812
next
himmelma@33175
   813
  show "convex ?hull" unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof-
himmelma@33175
   814
    fix x y u v assume as:"(0::real) \<le> u" "0 \<le> v" "u + v = 1" "x\<in>?hull" "y\<in>?hull"
himmelma@33175
   815
    from as(4) obtain u1 v1 b1 where obt1:"u1\<ge>0" "v1\<ge>0" "u1 + v1 = 1" "b1 \<in> convex hull s" "x = u1 *\<^sub>R a + v1 *\<^sub>R b1" by auto
himmelma@33175
   816
    from as(5) obtain u2 v2 b2 where obt2:"u2\<ge>0" "v2\<ge>0" "u2 + v2 = 1" "b2 \<in> convex hull s" "y = u2 *\<^sub>R a + v2 *\<^sub>R b2" by auto
himmelma@33175
   817
    have *:"\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps)
himmelma@33175
   818
    have "\<exists>b \<in> convex hull s. u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (b - (u * u1) *\<^sub>R b - (v * u2) *\<^sub>R b)"
himmelma@33175
   819
    proof(cases "u * v1 + v * v2 = 0")
himmelma@33175
   820
      have *:"\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps)
nipkow@36071
   821
      case True hence **:"u * v1 = 0" "v * v2 = 0"
nipkow@36071
   822
        using mult_nonneg_nonneg[OF `u\<ge>0` `v1\<ge>0`] mult_nonneg_nonneg[OF `v\<ge>0` `v2\<ge>0`] by arith+
himmelma@33175
   823
      hence "u * u1 + v * u2 = 1" using as(3) obt1(3) obt2(3) by auto
himmelma@33175
   824
      thus ?thesis unfolding obt1(5) obt2(5) * using assms hull_subset[of s convex] by(auto simp add: ** scaleR_right_distrib)
himmelma@33175
   825
    next
himmelma@33175
   826
      have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps)
himmelma@33175
   827
      also have "\<dots> = u * (v1 + u1 - u1) + v * (v2 + u2 - u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps) 
himmelma@33175
   828
      also have "\<dots> = u * v1 + v * v2" by simp finally have **:"1 - (u * u1 + v * u2) = u * v1 + v * v2" by auto
himmelma@33175
   829
      case False have "0 \<le> u * v1 + v * v2" "0 \<le> u * v1" "0 \<le> u * v1 + v * v2" "0 \<le> v * v2" apply -
himmelma@33175
   830
        apply(rule add_nonneg_nonneg) prefer 4 apply(rule add_nonneg_nonneg) apply(rule_tac [!] mult_nonneg_nonneg)
himmelma@33175
   831
        using as(1,2) obt1(1,2) obt2(1,2) by auto 
himmelma@33175
   832
      thus ?thesis unfolding obt1(5) obt2(5) unfolding * and ** using False
himmelma@33175
   833
        apply(rule_tac x="((u * v1) / (u * v1 + v * v2)) *\<^sub>R b1 + ((v * v2) / (u * v1 + v * v2)) *\<^sub>R b2" in bexI) defer
himmelma@33175
   834
        apply(rule convex_convex_hull[of s, unfolded convex_def, rule_format]) using obt1(4) obt2(4)
himmelma@33175
   835
        unfolding add_divide_distrib[THEN sym] and real_0_le_divide_iff
himmelma@33175
   836
        by (auto simp add: scaleR_left_distrib scaleR_right_distrib)
himmelma@33175
   837
    qed note * = this
nipkow@36071
   838
    have u1:"u1 \<le> 1" unfolding obt1(3)[THEN sym] and not_le using obt1(2) by auto
nipkow@36071
   839
    have u2:"u2 \<le> 1" unfolding obt2(3)[THEN sym] and not_le using obt2(2) by auto
himmelma@33175
   840
    have "u1 * u + u2 * v \<le> (max u1 u2) * u + (max u1 u2) * v" apply(rule add_mono)
himmelma@33175
   841
      apply(rule_tac [!] mult_right_mono) using as(1,2) obt1(1,2) obt2(1,2) by auto
himmelma@33175
   842
    also have "\<dots> \<le> 1" unfolding mult.add_right[THEN sym] and as(3) using u1 u2 by auto
himmelma@33175
   843
    finally 
himmelma@33175
   844
    show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x="u * u1 + v * u2" in exI)
himmelma@33175
   845
      apply(rule conjI) defer apply(rule_tac x="1 - u * u1 - v * u2" in exI) unfolding Bex_def
himmelma@33175
   846
      using as(1,2) obt1(1,2) obt2(1,2) * by(auto intro!: mult_nonneg_nonneg add_nonneg_nonneg simp add: algebra_simps)
himmelma@33175
   847
  qed
himmelma@33175
   848
qed
himmelma@33175
   849
himmelma@33175
   850
himmelma@33175
   851
subsection {* Explicit expression for convex hull. *}
himmelma@33175
   852
himmelma@33175
   853
lemma convex_hull_indexed:
himmelma@33175
   854
  fixes s :: "'a::real_vector set"
himmelma@33175
   855
  shows "convex hull s = {y. \<exists>k u x. (\<forall>i\<in>{1::nat .. k}. 0 \<le> u i \<and> x i \<in> s) \<and>
himmelma@33175
   856
                            (setsum u {1..k} = 1) \<and>
himmelma@33175
   857
                            (setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} = y)}" (is "?xyz = ?hull")
himmelma@33175
   858
  apply(rule hull_unique) unfolding mem_def[of _ convex] apply(rule) defer
himmelma@33175
   859
  apply(subst convex_def) apply(rule,rule,rule,rule,rule,rule,rule)
himmelma@33175
   860
proof-
himmelma@33175
   861
  fix x assume "x\<in>s"
himmelma@33175
   862
  thus "x \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x=1 in exI, rule_tac x="\<lambda>x. 1" in exI) by auto
himmelma@33175
   863
next
himmelma@33175
   864
  fix t assume as:"s \<subseteq> t" "convex t"
himmelma@33175
   865
  show "?hull \<subseteq> t" apply(rule) unfolding mem_Collect_eq apply(erule exE | erule conjE)+ proof-
himmelma@33175
   866
    fix x k u y assume assm:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x"
himmelma@33175
   867
    show "x\<in>t" unfolding assm(3)[THEN sym] apply(rule as(2)[unfolded convex, rule_format])
himmelma@33175
   868
      using assm(1,2) as(1) by auto qed
himmelma@33175
   869
next
himmelma@33175
   870
  fix x y u v assume uv:"0\<le>u" "0\<le>v" "u+v=(1::real)" and xy:"x\<in>?hull" "y\<in>?hull"
himmelma@33175
   871
  from xy obtain k1 u1 x1 where x:"\<forall>i\<in>{1::nat..k1}. 0\<le>u1 i \<and> x1 i \<in> s" "setsum u1 {Suc 0..k1} = 1" "(\<Sum>i = Suc 0..k1. u1 i *\<^sub>R x1 i) = x" by auto
himmelma@33175
   872
  from xy obtain k2 u2 x2 where y:"\<forall>i\<in>{1::nat..k2}. 0\<le>u2 i \<and> x2 i \<in> s" "setsum u2 {Suc 0..k2} = 1" "(\<Sum>i = Suc 0..k2. u2 i *\<^sub>R x2 i) = y" by auto
himmelma@33175
   873
  have *:"\<And>P (x1::'a) x2 s1 s2 i.(if P i then s1 else s2) *\<^sub>R (if P i then x1 else x2) = (if P i then s1 *\<^sub>R x1 else s2 *\<^sub>R x2)"
himmelma@33175
   874
    "{1..k1 + k2} \<inter> {1..k1} = {1..k1}" "{1..k1 + k2} \<inter> - {1..k1} = (\<lambda>i. i + k1) ` {1..k2}"
himmelma@33175
   875
    prefer 3 apply(rule,rule) unfolding image_iff apply(rule_tac x="x - k1" in bexI) by(auto simp add: not_le)
himmelma@33175
   876
  have inj:"inj_on (\<lambda>i. i + k1) {1..k2}" unfolding inj_on_def by auto  
himmelma@33175
   877
  show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" apply(rule)
himmelma@33175
   878
    apply(rule_tac x="k1 + k2" in exI, rule_tac x="\<lambda>i. if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)" in exI)
himmelma@33175
   879
    apply(rule_tac x="\<lambda>i. if i \<in> {1..k1} then x1 i else x2 (i - k1)" in exI) apply(rule,rule) defer apply(rule)
hoelzl@35577
   880
    unfolding * and setsum_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]] and setsum_reindex[OF inj] and o_def Collect_mem_eq
himmelma@33175
   881
    unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] setsum_right_distrib[THEN sym] proof-
himmelma@33175
   882
    fix i assume i:"i \<in> {1..k1+k2}"
himmelma@33175
   883
    show "0 \<le> (if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)) \<and> (if i \<in> {1..k1} then x1 i else x2 (i - k1)) \<in> s"
himmelma@33175
   884
    proof(cases "i\<in>{1..k1}")
himmelma@33175
   885
      case True thus ?thesis using mult_nonneg_nonneg[of u "u1 i"] and uv(1) x(1)[THEN bspec[where x=i]] by auto
himmelma@33175
   886
    next def j \<equiv> "i - k1"
himmelma@33175
   887
      case False with i have "j \<in> {1..k2}" unfolding j_def by auto
himmelma@33175
   888
      thus ?thesis unfolding j_def[symmetric] using False
himmelma@33175
   889
        using mult_nonneg_nonneg[of v "u2 j"] and uv(2) y(1)[THEN bspec[where x=j]] by auto qed
himmelma@33175
   890
  qed(auto simp add: not_le x(2,3) y(2,3) uv(3))
himmelma@33175
   891
qed
himmelma@33175
   892
himmelma@33175
   893
lemma convex_hull_finite:
himmelma@33175
   894
  fixes s :: "'a::real_vector set"
himmelma@33175
   895
  assumes "finite s"
himmelma@33175
   896
  shows "convex hull s = {y. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and>
himmelma@33175
   897
         setsum u s = 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y}" (is "?HULL = ?set")
himmelma@33175
   898
proof(rule hull_unique, auto simp add: mem_def[of _ convex] convex_def[of ?set])
himmelma@33175
   899
  fix x assume "x\<in>s" thus " \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>x\<in>s. u x *\<^sub>R x) = x" 
himmelma@33175
   900
    apply(rule_tac x="\<lambda>y. if x=y then 1 else 0" in exI) apply auto
himmelma@33175
   901
    unfolding setsum_delta'[OF assms] and setsum_delta''[OF assms] by auto 
himmelma@33175
   902
next
himmelma@33175
   903
  fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   904
  fix ux assume ux:"\<forall>x\<in>s. 0 \<le> ux x" "setsum ux s = (1::real)"
himmelma@33175
   905
  fix uy assume uy:"\<forall>x\<in>s. 0 \<le> uy x" "setsum uy s = (1::real)"
himmelma@33175
   906
  { fix x assume "x\<in>s"
himmelma@33175
   907
    hence "0 \<le> u * ux x + v * uy x" using ux(1)[THEN bspec[where x=x]] uy(1)[THEN bspec[where x=x]] and uv(1,2)
himmelma@33175
   908
      by (auto, metis add_nonneg_nonneg mult_nonneg_nonneg uv(1) uv(2))  }
himmelma@33175
   909
  moreover have "(\<Sum>x\<in>s. u * ux x + v * uy x) = 1"
himmelma@33175
   910
    unfolding setsum_addf and setsum_right_distrib[THEN sym] and ux(2) uy(2) using uv(3) by auto
himmelma@33175
   911
  moreover have "(\<Sum>x\<in>s. (u * ux x + v * uy x) *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)"
himmelma@33175
   912
    unfolding scaleR_left_distrib and setsum_addf and scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] by auto
himmelma@33175
   913
  ultimately show "\<exists>uc. (\<forall>x\<in>s. 0 \<le> uc x) \<and> setsum uc s = 1 \<and> (\<Sum>x\<in>s. uc x *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)"
himmelma@33175
   914
    apply(rule_tac x="\<lambda>x. u * ux x + v * uy x" in exI) by auto 
himmelma@33175
   915
next
himmelma@33175
   916
  fix t assume t:"s \<subseteq> t" "convex t" 
himmelma@33175
   917
  fix u assume u:"\<forall>x\<in>s. 0 \<le> u x" "setsum u s = (1::real)"
himmelma@33175
   918
  thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> t" using t(2)[unfolded convex_explicit, THEN spec[where x=s], THEN spec[where x=u]]
himmelma@33175
   919
    using assms and t(1) by auto
himmelma@33175
   920
qed
himmelma@33175
   921
himmelma@33175
   922
subsection {* Another formulation from Lars Schewe. *}
himmelma@33175
   923
himmelma@33175
   924
lemma setsum_constant_scaleR:
himmelma@33175
   925
  fixes y :: "'a::real_vector"
himmelma@33175
   926
  shows "(\<Sum>x\<in>A. y) = of_nat (card A) *\<^sub>R y"
himmelma@33175
   927
apply (cases "finite A")
himmelma@33175
   928
apply (induct set: finite)
himmelma@33175
   929
apply (simp_all add: algebra_simps)
himmelma@33175
   930
done
himmelma@33175
   931
himmelma@33175
   932
lemma convex_hull_explicit:
himmelma@33175
   933
  fixes p :: "'a::real_vector set"
himmelma@33175
   934
  shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and>
himmelma@33175
   935
             (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}" (is "?lhs = ?rhs")
himmelma@33175
   936
proof-
himmelma@33175
   937
  { fix x assume "x\<in>?lhs"
himmelma@33175
   938
    then obtain k u y where obt:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> p" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x"
himmelma@33175
   939
      unfolding convex_hull_indexed by auto
himmelma@33175
   940
himmelma@33175
   941
    have fin:"finite {1..k}" by auto
himmelma@33175
   942
    have fin':"\<And>v. finite {i \<in> {1..k}. y i = v}" by auto
himmelma@33175
   943
    { fix j assume "j\<in>{1..k}"
himmelma@33175
   944
      hence "y j \<in> p" "0 \<le> setsum u {i. Suc 0 \<le> i \<and> i \<le> k \<and> y i = y j}"
himmelma@33175
   945
        using obt(1)[THEN bspec[where x=j]] and obt(2) apply simp
himmelma@33175
   946
        apply(rule setsum_nonneg) using obt(1) by auto } 
himmelma@33175
   947
    moreover
himmelma@33175
   948
    have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v}) = 1"  
himmelma@33175
   949
      unfolding setsum_image_gen[OF fin, THEN sym] using obt(2) by auto
himmelma@33175
   950
    moreover have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v} *\<^sub>R v) = x"
himmelma@33175
   951
      using setsum_image_gen[OF fin, of "\<lambda>i. u i *\<^sub>R y i" y, THEN sym]
himmelma@33175
   952
      unfolding scaleR_left.setsum using obt(3) by auto
himmelma@33175
   953
    ultimately have "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
himmelma@33175
   954
      apply(rule_tac x="y ` {1..k}" in exI)
himmelma@33175
   955
      apply(rule_tac x="\<lambda>v. setsum u {i\<in>{1..k}. y i = v}" in exI) by auto
himmelma@33175
   956
    hence "x\<in>?rhs" by auto  }
himmelma@33175
   957
  moreover
himmelma@33175
   958
  { fix y assume "y\<in>?rhs"
himmelma@33175
   959
    then obtain s u where obt:"finite s" "s \<subseteq> p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto
himmelma@33175
   960
himmelma@33175
   961
    obtain f where f:"inj_on f {1..card s}" "f ` {1..card s} = s" using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto
himmelma@33175
   962
    
himmelma@33175
   963
    { fix i::nat assume "i\<in>{1..card s}"
himmelma@33175
   964
      hence "f i \<in> s"  apply(subst f(2)[THEN sym]) by auto
himmelma@33175
   965
      hence "0 \<le> u (f i)" "f i \<in> p" using obt(2,3) by auto  }
himmelma@33175
   966
    moreover have *:"finite {1..card s}" by auto
himmelma@33175
   967
    { fix y assume "y\<in>s"
himmelma@33175
   968
      then obtain i where "i\<in>{1..card s}" "f i = y" using f using image_iff[of y f "{1..card s}"] by auto
himmelma@33175
   969
      hence "{x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = {i}" apply auto using f(1)[unfolded inj_on_def] apply(erule_tac x=x in ballE) by auto
himmelma@33175
   970
      hence "card {x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = 1" by auto
himmelma@33175
   971
      hence "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x)) = u y"
himmelma@33175
   972
            "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x) = u y *\<^sub>R y"
himmelma@33175
   973
        by (auto simp add: setsum_constant_scaleR)   }
himmelma@33175
   974
himmelma@33175
   975
    hence "(\<Sum>x = 1..card s. u (f x)) = 1" "(\<Sum>i = 1..card s. u (f i) *\<^sub>R f i) = y"
himmelma@33175
   976
      unfolding setsum_image_gen[OF *(1), of "\<lambda>x. u (f x) *\<^sub>R f x" f] and setsum_image_gen[OF *(1), of "\<lambda>x. u (f x)" f] 
himmelma@33175
   977
      unfolding f using setsum_cong2[of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x)" "\<lambda>v. u v *\<^sub>R v"]
himmelma@33175
   978
      using setsum_cong2 [of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x))" u] unfolding obt(4,5) by auto
himmelma@33175
   979
    
himmelma@33175
   980
    ultimately have "\<exists>k u x. (\<forall>i\<in>{1..k}. 0 \<le> u i \<and> x i \<in> p) \<and> setsum u {1..k} = 1 \<and> (\<Sum>i::nat = 1..k. u i *\<^sub>R x i) = y"
himmelma@33175
   981
      apply(rule_tac x="card s" in exI) apply(rule_tac x="u \<circ> f" in exI) apply(rule_tac x=f in exI) by fastsimp
himmelma@33175
   982
    hence "y \<in> ?lhs" unfolding convex_hull_indexed by auto  }
himmelma@33175
   983
  ultimately show ?thesis unfolding expand_set_eq by blast
himmelma@33175
   984
qed
himmelma@33175
   985
himmelma@33175
   986
subsection {* A stepping theorem for that expansion. *}
himmelma@33175
   987
himmelma@33175
   988
lemma convex_hull_finite_step:
himmelma@33175
   989
  fixes s :: "'a::real_vector set" assumes "finite s"
himmelma@33175
   990
  shows "(\<exists>u. (\<forall>x\<in>insert a s. 0 \<le> u x) \<and> setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y)
himmelma@33175
   991
     \<longleftrightarrow> (\<exists>v\<ge>0. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?lhs = ?rhs")
himmelma@33175
   992
proof(rule, case_tac[!] "a\<in>s")
himmelma@33175
   993
  assume "a\<in>s" hence *:"insert a s = s" by auto
himmelma@33175
   994
  assume ?lhs thus ?rhs unfolding * apply(rule_tac x=0 in exI) by auto
himmelma@33175
   995
next
himmelma@33175
   996
  assume ?lhs then obtain u where u:"\<forall>x\<in>insert a s. 0 \<le> u x" "setsum u (insert a s) = w" "(\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto
himmelma@33175
   997
  assume "a\<notin>s" thus ?rhs apply(rule_tac x="u a" in exI) using u(1)[THEN bspec[where x=a]] apply simp
himmelma@33175
   998
    apply(rule_tac x=u in exI) using u[unfolded setsum_clauses(2)[OF assms]] and `a\<notin>s` by auto
himmelma@33175
   999
next
himmelma@33175
  1000
  assume "a\<in>s" hence *:"insert a s = s" by auto
himmelma@33175
  1001
  have fin:"finite (insert a s)" using assms by auto
himmelma@33175
  1002
  assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto
himmelma@33175
  1003
  show ?lhs apply(rule_tac x="\<lambda>x. (if a = x then v else 0) + u x" in exI) unfolding scaleR_left_distrib and setsum_addf and setsum_delta''[OF fin] and setsum_delta'[OF fin]
himmelma@33175
  1004
    unfolding setsum_clauses(2)[OF assms] using uv and uv(2)[THEN bspec[where x=a]] and `a\<in>s` by auto
himmelma@33175
  1005
next
himmelma@33175
  1006
  assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto
himmelma@33175
  1007
  moreover assume "a\<notin>s" moreover have "(\<Sum>x\<in>s. if a = x then v else u x) = setsum u s" "(\<Sum>x\<in>s. (if a = x then v else u x) *\<^sub>R x) = (\<Sum>x\<in>s. u x *\<^sub>R x)"
himmelma@33175
  1008
    apply(rule_tac setsum_cong2) defer apply(rule_tac setsum_cong2) using `a\<notin>s` by auto
himmelma@33175
  1009
  ultimately show ?lhs apply(rule_tac x="\<lambda>x. if a = x then v else u x" in exI)  unfolding setsum_clauses(2)[OF assms] by auto
himmelma@33175
  1010
qed
himmelma@33175
  1011
himmelma@33175
  1012
subsection {* Hence some special cases. *}
himmelma@33175
  1013
himmelma@33175
  1014
lemma convex_hull_2:
himmelma@33175
  1015
  "convex hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1}"
himmelma@33175
  1016
proof- have *:"\<And>u. (\<forall>x\<in>{a, b}. 0 \<le> u x) \<longleftrightarrow> 0 \<le> u a \<and> 0 \<le> u b" by auto have **:"finite {b}" by auto
himmelma@33175
  1017
show ?thesis apply(simp add: convex_hull_finite) unfolding convex_hull_finite_step[OF **, of a 1, unfolded * conj_assoc]
himmelma@33175
  1018
  apply auto apply(rule_tac x=v in exI) apply(rule_tac x="1 - v" in exI) apply simp
himmelma@33175
  1019
  apply(rule_tac x=u in exI) apply simp apply(rule_tac x="\<lambda>x. v" in exI) by simp qed
himmelma@33175
  1020
himmelma@33175
  1021
lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *\<^sub>R (b - a) | u.  0 \<le> u \<and> u \<le> 1}"
himmelma@33175
  1022
  unfolding convex_hull_2 unfolding Collect_def 
himmelma@33175
  1023
proof(rule ext) have *:"\<And>x y ::real. x + y = 1 \<longleftrightarrow> x = 1 - y" by auto
himmelma@33175
  1024
  fix x show "(\<exists>v u. x = v *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> v \<and> 0 \<le> u \<and> v + u = 1) = (\<exists>u. x = a + u *\<^sub>R (b - a) \<and> 0 \<le> u \<and> u \<le> 1)"
himmelma@33175
  1025
    unfolding * apply auto apply(rule_tac[!] x=u in exI) by (auto simp add: algebra_simps) qed
himmelma@33175
  1026
himmelma@33175
  1027
lemma convex_hull_3:
himmelma@33175
  1028
  "convex hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c | u v w. 0 \<le> u \<and> 0 \<le> v \<and> 0 \<le> w \<and> u + v + w = 1}"
himmelma@33175
  1029
proof-
himmelma@33175
  1030
  have fin:"finite {a,b,c}" "finite {b,c}" "finite {c}" by auto
himmelma@33175
  1031
  have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z"
haftmann@36349
  1032
         "\<And>x y z ::real^_. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by (auto simp add: field_simps)
himmelma@33175
  1033
  show ?thesis unfolding convex_hull_finite[OF fin(1)] and Collect_def and convex_hull_finite_step[OF fin(2)] and *
himmelma@33175
  1034
    unfolding convex_hull_finite_step[OF fin(3)] apply(rule ext) apply simp apply auto
himmelma@33175
  1035
    apply(rule_tac x=va in exI) apply (rule_tac x="u c" in exI) apply simp
himmelma@33175
  1036
    apply(rule_tac x="1 - v - w" in exI) apply simp apply(rule_tac x=v in exI) apply simp apply(rule_tac x="\<lambda>x. w" in exI) by simp qed
himmelma@33175
  1037
himmelma@33175
  1038
lemma convex_hull_3_alt:
himmelma@33175
  1039
  "convex hull {a,b,c} = {a + u *\<^sub>R (b - a) + v *\<^sub>R (c - a) | u v.  0 \<le> u \<and> 0 \<le> v \<and> u + v \<le> 1}"
himmelma@33175
  1040
proof- have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by auto
himmelma@33175
  1041
  show ?thesis unfolding convex_hull_3 apply (auto simp add: *) apply(rule_tac x=v in exI) apply(rule_tac x=w in exI) apply (simp add: algebra_simps)
himmelma@33175
  1042
    apply(rule_tac x=u in exI) apply(rule_tac x=v in exI) by (simp add: algebra_simps) qed
himmelma@33175
  1043
himmelma@33175
  1044
subsection {* Relations among closure notions and corresponding hulls. *}
himmelma@33175
  1045
himmelma@33175
  1046
text {* TODO: Generalize linear algebra concepts defined in @{text
himmelma@33175
  1047
Euclidean_Space.thy} so that we can generalize these lemmas. *}
himmelma@33175
  1048
himmelma@33175
  1049
lemma subspace_imp_affine:
himmelma@33175
  1050
  fixes s :: "(real ^ _) set" shows "subspace s \<Longrightarrow> affine s"
himmelma@33175
  1051
  unfolding subspace_def affine_def smult_conv_scaleR by auto
himmelma@33175
  1052
himmelma@33175
  1053
lemma affine_imp_convex: "affine s \<Longrightarrow> convex s"
himmelma@33175
  1054
  unfolding affine_def convex_def by auto
himmelma@33175
  1055
himmelma@33175
  1056
lemma subspace_imp_convex:
himmelma@33175
  1057
  fixes s :: "(real ^ _) set" shows "subspace s \<Longrightarrow> convex s"
himmelma@33175
  1058
  using subspace_imp_affine affine_imp_convex by auto
himmelma@33175
  1059
himmelma@33175
  1060
lemma affine_hull_subset_span:
himmelma@33175
  1061
  fixes s :: "(real ^ _) set" shows "(affine hull s) \<subseteq> (span s)"
nipkow@36071
  1062
by (metis hull_minimal mem_def span_inc subspace_imp_affine subspace_span)
himmelma@33175
  1063
himmelma@33175
  1064
lemma convex_hull_subset_span:
himmelma@33175
  1065
  fixes s :: "(real ^ _) set" shows "(convex hull s) \<subseteq> (span s)"
nipkow@36071
  1066
by (metis hull_minimal mem_def span_inc subspace_imp_convex subspace_span)
himmelma@33175
  1067
himmelma@33175
  1068
lemma convex_hull_subset_affine_hull: "(convex hull s) \<subseteq> (affine hull s)"
nipkow@36071
  1069
by (metis affine_affine_hull affine_imp_convex hull_minimal hull_subset mem_def)
nipkow@36071
  1070
himmelma@33175
  1071
himmelma@33175
  1072
lemma affine_dependent_imp_dependent:
himmelma@33175
  1073
  fixes s :: "(real ^ _) set" shows "affine_dependent s \<Longrightarrow> dependent s"
himmelma@33175
  1074
  unfolding affine_dependent_def dependent_def 
himmelma@33175
  1075
  using affine_hull_subset_span by auto
himmelma@33175
  1076
himmelma@33175
  1077
lemma dependent_imp_affine_dependent:
himmelma@33175
  1078
  fixes s :: "(real ^ _) set"
himmelma@33175
  1079
  assumes "dependent {x - a| x . x \<in> s}" "a \<notin> s"
himmelma@33175
  1080
  shows "affine_dependent (insert a s)"
himmelma@33175
  1081
proof-
himmelma@33175
  1082
  from assms(1)[unfolded dependent_explicit smult_conv_scaleR] obtain S u v 
himmelma@33175
  1083
    where obt:"finite S" "S \<subseteq> {x - a |x. x \<in> s}" "v\<in>S" "u v  \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" by auto
himmelma@33175
  1084
  def t \<equiv> "(\<lambda>x. x + a) ` S"
himmelma@33175
  1085
himmelma@33175
  1086
  have inj:"inj_on (\<lambda>x. x + a) S" unfolding inj_on_def by auto
himmelma@33175
  1087
  have "0\<notin>S" using obt(2) assms(2) unfolding subset_eq by auto
himmelma@33175
  1088
  have fin:"finite t" and  "t\<subseteq>s" unfolding t_def using obt(1,2) by auto 
himmelma@33175
  1089
himmelma@33175
  1090
  hence "finite (insert a t)" and "insert a t \<subseteq> insert a s" by auto 
himmelma@33175
  1091
  moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x)) = (\<Sum>x\<in>t. Q x)"
himmelma@33175
  1092
    apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto
himmelma@33175
  1093
  have "(\<Sum>x\<in>insert a t. if x = a then - (\<Sum>x\<in>t. u (x - a)) else u (x - a)) = 0"
himmelma@33175
  1094
    unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` apply auto unfolding * by auto
himmelma@33175
  1095
  moreover have "\<exists>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) \<noteq> 0"
himmelma@33175
  1096
    apply(rule_tac x="v + a" in bexI) using obt(3,4) and `0\<notin>S` unfolding t_def by auto
himmelma@33175
  1097
  moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x) *\<^sub>R x) = (\<Sum>x\<in>t. Q x *\<^sub>R x)"
himmelma@33175
  1098
    apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto
himmelma@33175
  1099
  have "(\<Sum>x\<in>t. u (x - a)) *\<^sub>R a = (\<Sum>v\<in>t. u (v - a) *\<^sub>R v)" 
himmelma@33175
  1100
    unfolding scaleR_left.setsum unfolding t_def and setsum_reindex[OF inj] and o_def
himmelma@33175
  1101
    using obt(5) by (auto simp add: setsum_addf scaleR_right_distrib)
himmelma@33175
  1102
  hence "(\<Sum>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) *\<^sub>R v) = 0"
himmelma@33175
  1103
    unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` by (auto simp add: *  vector_smult_lneg) 
himmelma@33175
  1104
  ultimately show ?thesis unfolding affine_dependent_explicit
himmelma@33175
  1105
    apply(rule_tac x="insert a t" in exI) by auto 
himmelma@33175
  1106
qed
himmelma@33175
  1107
himmelma@33175
  1108
lemma convex_cone:
himmelma@33175
  1109
  "convex s \<and> cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. (x + y) \<in> s) \<and> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)" (is "?lhs = ?rhs")
himmelma@33175
  1110
proof-
himmelma@33175
  1111
  { fix x y assume "x\<in>s" "y\<in>s" and ?lhs
himmelma@33175
  1112
    hence "2 *\<^sub>R x \<in>s" "2 *\<^sub>R y \<in> s" unfolding cone_def by auto
himmelma@33175
  1113
    hence "x + y \<in> s" using `?lhs`[unfolded convex_def, THEN conjunct1]
himmelma@33175
  1114
      apply(erule_tac x="2*\<^sub>R x" in ballE) apply(erule_tac x="2*\<^sub>R y" in ballE)
himmelma@33175
  1115
      apply(erule_tac x="1/2" in allE) apply simp apply(erule_tac x="1/2" in allE) by auto  }
huffman@36358
  1116
  thus ?thesis unfolding convex_def cone_def by blast
himmelma@33175
  1117
qed
himmelma@33175
  1118
hoelzl@34291
  1119
lemma affine_dependent_biggerset: fixes s::"(real^'n) set"
himmelma@33175
  1120
  assumes "finite s" "card s \<ge> CARD('n) + 2"
himmelma@33175
  1121
  shows "affine_dependent s"
himmelma@33175
  1122
proof-
himmelma@33175
  1123
  have "s\<noteq>{}" using assms by auto then obtain a where "a\<in>s" by auto
himmelma@33175
  1124
  have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
himmelma@33175
  1125
  have "card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
himmelma@33175
  1126
    apply(rule card_image) unfolding inj_on_def by auto
himmelma@33175
  1127
  also have "\<dots> > CARD('n)" using assms(2)
himmelma@33175
  1128
    unfolding card_Diff_singleton[OF assms(1) `a\<in>s`] by auto
himmelma@33175
  1129
  finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym])
himmelma@33175
  1130
    apply(rule dependent_imp_affine_dependent)
himmelma@33175
  1131
    apply(rule dependent_biggerset) by auto qed
himmelma@33175
  1132
himmelma@33175
  1133
lemma affine_dependent_biggerset_general:
hoelzl@34291
  1134
  assumes "finite (s::(real^'n) set)" "card s \<ge> dim s + 2"
himmelma@33175
  1135
  shows "affine_dependent s"
himmelma@33175
  1136
proof-
himmelma@33175
  1137
  from assms(2) have "s \<noteq> {}" by auto
himmelma@33175
  1138
  then obtain a where "a\<in>s" by auto
himmelma@33175
  1139
  have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
himmelma@33175
  1140
  have **:"card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
himmelma@33175
  1141
    apply(rule card_image) unfolding inj_on_def by auto
himmelma@33175
  1142
  have "dim {x - a |x. x \<in> s - {a}} \<le> dim s"
himmelma@33175
  1143
    apply(rule subset_le_dim) unfolding subset_eq
himmelma@33175
  1144
    using `a\<in>s` by (auto simp add:span_superset span_sub)
himmelma@33175
  1145
  also have "\<dots> < dim s + 1" by auto
himmelma@33175
  1146
  also have "\<dots> \<le> card (s - {a})" using assms
himmelma@33175
  1147
    using card_Diff_singleton[OF assms(1) `a\<in>s`] by auto
himmelma@33175
  1148
  finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym])
himmelma@33175
  1149
    apply(rule dependent_imp_affine_dependent) apply(rule dependent_biggerset_general) unfolding ** by auto qed
himmelma@33175
  1150
himmelma@33175
  1151
subsection {* Caratheodory's theorem. *}
himmelma@33175
  1152
hoelzl@34291
  1153
lemma convex_hull_caratheodory: fixes p::"(real^'n) set"
himmelma@33175
  1154
  shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and>
himmelma@33175
  1155
  (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}"
himmelma@33175
  1156
  unfolding convex_hull_explicit expand_set_eq mem_Collect_eq
himmelma@33175
  1157
proof(rule,rule)
himmelma@33175
  1158
  fix y let ?P = "\<lambda>n. \<exists>s u. finite s \<and> card s = n \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
himmelma@33175
  1159
  assume "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
himmelma@33175
  1160
  then obtain N where "?P N" by auto
himmelma@33175
  1161
  hence "\<exists>n\<le>N. (\<forall>k<n. \<not> ?P k) \<and> ?P n" apply(rule_tac ex_least_nat_le) by auto
himmelma@33175
  1162
  then obtain n where "?P n" and smallest:"\<forall>k<n. \<not> ?P k" by blast
himmelma@33175
  1163
  then obtain s u where obt:"finite s" "card s = n" "s\<subseteq>p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1"  "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto
himmelma@33175
  1164
himmelma@33175
  1165
  have "card s \<le> CARD('n) + 1" proof(rule ccontr, simp only: not_le)
himmelma@33175
  1166
    assume "CARD('n) + 1 < card s"
himmelma@33175
  1167
    hence "affine_dependent s" using affine_dependent_biggerset[OF obt(1)] by auto
himmelma@33175
  1168
    then obtain w v where wv:"setsum w s = 0" "v\<in>s" "w v \<noteq> 0" "(\<Sum>v\<in>s. w v *\<^sub>R v) = 0"
himmelma@33175
  1169
      using affine_dependent_explicit_finite[OF obt(1)] by auto
himmelma@33175
  1170
    def i \<equiv> "(\<lambda>v. (u v) / (- w v)) ` {v\<in>s. w v < 0}"  def t \<equiv> "Min i"
himmelma@33175
  1171
    have "\<exists>x\<in>s. w x < 0" proof(rule ccontr, simp add: not_less)
himmelma@33175
  1172
      assume as:"\<forall>x\<in>s. 0 \<le> w x"
himmelma@33175
  1173
      hence "setsum w (s - {v}) \<ge> 0" apply(rule_tac setsum_nonneg) by auto
himmelma@33175
  1174
      hence "setsum w s > 0" unfolding setsum_diff1'[OF obt(1) `v\<in>s`]
himmelma@33175
  1175
        using as[THEN bspec[where x=v]] and `v\<in>s` using `w v \<noteq> 0` by auto
himmelma@33175
  1176
      thus False using wv(1) by auto
himmelma@33175
  1177
    qed hence "i\<noteq>{}" unfolding i_def by auto
himmelma@33175
  1178
himmelma@33175
  1179
    hence "t \<ge> 0" using Min_ge_iff[of i 0 ] and obt(1) unfolding t_def i_def
himmelma@33175
  1180
      using obt(4)[unfolded le_less] apply auto unfolding divide_le_0_iff by auto 
himmelma@33175
  1181
    have t:"\<forall>v\<in>s. u v + t * w v \<ge> 0" proof
himmelma@33175
  1182
      fix v assume "v\<in>s" hence v:"0\<le>u v" using obt(4)[THEN bspec[where x=v]] by auto
himmelma@33175
  1183
      show"0 \<le> u v + t * w v" proof(cases "w v < 0")
himmelma@33175
  1184
        case False thus ?thesis apply(rule_tac add_nonneg_nonneg) 
himmelma@33175
  1185
          using v apply simp apply(rule mult_nonneg_nonneg) using `t\<ge>0` by auto next
himmelma@33175
  1186
        case True hence "t \<le> u v / (- w v)" using `v\<in>s`
himmelma@33175
  1187
          unfolding t_def i_def apply(rule_tac Min_le) using obt(1) by auto 
himmelma@33175
  1188
        thus ?thesis unfolding real_0_le_add_iff
himmelma@33175
  1189
          using pos_le_divide_eq[OF True[unfolded neg_0_less_iff_less[THEN sym]]] by auto
himmelma@33175
  1190
      qed qed
himmelma@33175
  1191
himmelma@33175
  1192
    obtain a where "a\<in>s" and "t = (\<lambda>v. (u v) / (- w v)) a" and "w a < 0"
himmelma@33175
  1193
      using Min_in[OF _ `i\<noteq>{}`] and obt(1) unfolding i_def t_def by auto
himmelma@33175
  1194
    hence a:"a\<in>s" "u a + t * w a = 0" by auto
himmelma@33175
  1195
    have *:"\<And>f. setsum f (s - {a}) = setsum f s - ((f a)::'a::ring)" unfolding setsum_diff1'[OF obt(1) `a\<in>s`] by auto 
himmelma@33175
  1196
    have "(\<Sum>v\<in>s. u v + t * w v) = 1"
himmelma@33175
  1197
      unfolding setsum_addf wv(1) setsum_right_distrib[THEN sym] obt(5) by auto
himmelma@33175
  1198
    moreover have "(\<Sum>v\<in>s. u v *\<^sub>R v + (t * w v) *\<^sub>R v) - (u a *\<^sub>R a + (t * w a) *\<^sub>R a) = y" 
himmelma@33175
  1199
      unfolding setsum_addf obt(6) scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] wv(4)
himmelma@33175
  1200
      using a(2) [THEN eq_neg_iff_add_eq_0 [THEN iffD2]]
himmelma@33175
  1201
      by (simp add: vector_smult_lneg)
himmelma@33175
  1202
    ultimately have "?P (n - 1)" apply(rule_tac x="(s - {a})" in exI)
himmelma@33175
  1203
      apply(rule_tac x="\<lambda>v. u v + t * w v" in exI) using obt(1-3) and t and a by (auto simp add: * scaleR_left_distrib)
himmelma@33175
  1204
    thus False using smallest[THEN spec[where x="n - 1"]] by auto qed
himmelma@33175
  1205
  thus "\<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1
himmelma@33175
  1206
    \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" using obt by auto
himmelma@33175
  1207
qed auto
himmelma@33175
  1208
himmelma@33175
  1209
lemma caratheodory:
hoelzl@34291
  1210
 "convex hull p = {x::real^'n. \<exists>s. finite s \<and> s \<subseteq> p \<and>
himmelma@33175
  1211
      card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s}"
himmelma@33175
  1212
  unfolding expand_set_eq apply(rule, rule) unfolding mem_Collect_eq proof-
himmelma@33175
  1213
  fix x assume "x \<in> convex hull p"
himmelma@33175
  1214
  then obtain s u where "finite s" "s \<subseteq> p" "card s \<le> CARD('n) + 1"
himmelma@33175
  1215
     "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"unfolding convex_hull_caratheodory by auto
himmelma@33175
  1216
  thus "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s"
himmelma@33175
  1217
    apply(rule_tac x=s in exI) using hull_subset[of s convex]
himmelma@33175
  1218
  using convex_convex_hull[unfolded convex_explicit, of s, THEN spec[where x=s], THEN spec[where x=u]] by auto
himmelma@33175
  1219
next
himmelma@33175
  1220
  fix x assume "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s"
himmelma@33175
  1221
  then obtain s where "finite s" "s \<subseteq> p" "card s \<le> CARD('n) + 1" "x \<in> convex hull s" by auto
himmelma@33175
  1222
  thus "x \<in> convex hull p" using hull_mono[OF `s\<subseteq>p`] by auto
himmelma@33175
  1223
qed
himmelma@33175
  1224
himmelma@33175
  1225
subsection {* Openness and compactness are preserved by convex hull operation. *}
himmelma@33175
  1226
hoelzl@34951
  1227
lemma open_convex_hull[intro]:
himmelma@33175
  1228
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
  1229
  assumes "open s"
himmelma@33175
  1230
  shows "open(convex hull s)"
huffman@36358
  1231
  unfolding open_contains_cball convex_hull_explicit unfolding mem_Collect_eq ball_simps(10)
himmelma@33175
  1232
proof(rule, rule) fix a
himmelma@33175
  1233
  assume "\<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = a"
himmelma@33175
  1234
  then obtain t u where obt:"finite t" "t\<subseteq>s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = a" by auto
himmelma@33175
  1235
himmelma@33175
  1236
  from assms[unfolded open_contains_cball] obtain b where b:"\<forall>x\<in>s. 0 < b x \<and> cball x (b x) \<subseteq> s"
himmelma@33175
  1237
    using bchoice[of s "\<lambda>x e. e>0 \<and> cball x e \<subseteq> s"] by auto
himmelma@33175
  1238
  have "b ` t\<noteq>{}" unfolding i_def using obt by auto  def i \<equiv> "b ` t"
himmelma@33175
  1239
himmelma@33175
  1240
  show "\<exists>e>0. cball a e \<subseteq> {y. \<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y}"
himmelma@33175
  1241
    apply(rule_tac x="Min i" in exI) unfolding subset_eq apply rule defer apply rule unfolding mem_Collect_eq
himmelma@33175
  1242
  proof-
himmelma@33175
  1243
    show "0 < Min i" unfolding i_def and Min_gr_iff[OF finite_imageI[OF obt(1)] `b \` t\<noteq>{}`]
himmelma@33175
  1244
      using b apply simp apply rule apply(erule_tac x=x in ballE) using `t\<subseteq>s` by auto
himmelma@33175
  1245
  next  fix y assume "y \<in> cball a (Min i)"
himmelma@33175
  1246
    hence y:"norm (a - y) \<le> Min i" unfolding dist_norm[THEN sym] by auto
himmelma@33175
  1247
    { fix x assume "x\<in>t"
himmelma@33175
  1248
      hence "Min i \<le> b x" unfolding i_def apply(rule_tac Min_le) using obt(1) by auto
himmelma@33175
  1249
      hence "x + (y - a) \<in> cball x (b x)" using y unfolding mem_cball dist_norm by auto
himmelma@33175
  1250
      moreover from `x\<in>t` have "x\<in>s" using obt(2) by auto
huffman@36358
  1251
      ultimately have "x + (y - a) \<in> s" using y and b[THEN bspec[where x=x]] unfolding subset_eq by fast }
himmelma@33175
  1252
    moreover
himmelma@33175
  1253
    have *:"inj_on (\<lambda>v. v + (y - a)) t" unfolding inj_on_def by auto
himmelma@33175
  1254
    have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a))) = 1"
himmelma@33175
  1255
      unfolding setsum_reindex[OF *] o_def using obt(4) by auto
himmelma@33175
  1256
    moreover have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a)) *\<^sub>R v) = y"
himmelma@33175
  1257
      unfolding setsum_reindex[OF *] o_def using obt(4,5)
himmelma@33175
  1258
      by (simp add: setsum_addf setsum_subtractf scaleR_left.setsum[THEN sym] scaleR_right_distrib)
himmelma@33175
  1259
    ultimately show "\<exists>sa u. finite sa \<and> (\<forall>x\<in>sa. x \<in> s) \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y"
himmelma@33175
  1260
      apply(rule_tac x="(\<lambda>v. v + (y - a)) ` t" in exI) apply(rule_tac x="\<lambda>v. u (v - (y - a))" in exI)
himmelma@33175
  1261
      using obt(1, 3) by auto
himmelma@33175
  1262
  qed
himmelma@33175
  1263
qed
himmelma@33175
  1264
himmelma@33175
  1265
(* TODO: move *)
himmelma@33175
  1266
lemma compact_real_interval:
himmelma@33175
  1267
  fixes a b :: real shows "compact {a..b}"
huffman@36427
  1268
proof (rule bounded_closed_imp_compact)
huffman@36427
  1269
  have "\<forall>y\<in>{a..b}. dist a y \<le> dist a b"
huffman@36427
  1270
    unfolding dist_real_def by auto
huffman@36427
  1271
  thus "bounded {a..b}" unfolding bounded_def by fast
huffman@36427
  1272
  show "closed {a..b}" by (rule closed_real_atLeastAtMost)
himmelma@33175
  1273
qed
himmelma@33175
  1274
himmelma@33175
  1275
lemma compact_convex_combinations:
himmelma@33175
  1276
  fixes s t :: "'a::real_normed_vector set"
himmelma@33175
  1277
  assumes "compact s" "compact t"
himmelma@33175
  1278
  shows "compact { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t}"
himmelma@33175
  1279
proof-
himmelma@33175
  1280
  let ?X = "{0..1} \<times> s \<times> t"
himmelma@33175
  1281
  let ?h = "(\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))"
himmelma@33175
  1282
  have *:"{ (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t} = ?h ` ?X"
himmelma@33175
  1283
    apply(rule set_ext) unfolding image_iff mem_Collect_eq
himmelma@33175
  1284
    apply rule apply auto
himmelma@33175
  1285
    apply (rule_tac x=u in rev_bexI, simp)
himmelma@33175
  1286
    apply (erule rev_bexI, erule rev_bexI, simp)
himmelma@33175
  1287
    by auto
himmelma@33175
  1288
  have "continuous_on ({0..1} \<times> s \<times> t)
himmelma@33175
  1289
     (\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))"
himmelma@33175
  1290
    unfolding continuous_on by (rule ballI) (intro tendsto_intros)
himmelma@33175
  1291
  thus ?thesis unfolding *
himmelma@33175
  1292
    apply (rule compact_continuous_image)
himmelma@33175
  1293
    apply (intro compact_Times compact_real_interval assms)
himmelma@33175
  1294
    done
himmelma@33175
  1295
qed
himmelma@33175
  1296
hoelzl@34291
  1297
lemma compact_convex_hull: fixes s::"(real^'n) set"
himmelma@33175
  1298
  assumes "compact s"  shows "compact(convex hull s)"
himmelma@33175
  1299
proof(cases "s={}")
himmelma@33175
  1300
  case True thus ?thesis using compact_empty by simp
himmelma@33175
  1301
next
himmelma@33175
  1302
  case False then obtain w where "w\<in>s" by auto
himmelma@33175
  1303
  show ?thesis unfolding caratheodory[of s]
berghofe@34915
  1304
  proof(induct ("CARD('n) + 1"))
himmelma@33175
  1305
    have *:"{x.\<exists>sa. finite sa \<and> sa \<subseteq> s \<and> card sa \<le> 0 \<and> x \<in> convex hull sa} = {}" 
huffman@36358
  1306
      using compact_empty by auto
himmelma@33175
  1307
    case 0 thus ?case unfolding * by simp
himmelma@33175
  1308
  next
himmelma@33175
  1309
    case (Suc n)
himmelma@33175
  1310
    show ?case proof(cases "n=0")
himmelma@33175
  1311
      case True have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} = s"
himmelma@33175
  1312
        unfolding expand_set_eq and mem_Collect_eq proof(rule, rule)
himmelma@33175
  1313
        fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
himmelma@33175
  1314
        then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto
himmelma@33175
  1315
        show "x\<in>s" proof(cases "card t = 0")
huffman@36358
  1316
          case True thus ?thesis using t(4) unfolding card_0_eq[OF t(1)] by simp
himmelma@33175
  1317
        next
himmelma@33175
  1318
          case False hence "card t = Suc 0" using t(3) `n=0` by auto
himmelma@33175
  1319
          then obtain a where "t = {a}" unfolding card_Suc_eq by auto
huffman@36358
  1320
          thus ?thesis using t(2,4) by simp
himmelma@33175
  1321
        qed
himmelma@33175
  1322
      next
himmelma@33175
  1323
        fix x assume "x\<in>s"
himmelma@33175
  1324
        thus "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
himmelma@33175
  1325
          apply(rule_tac x="{x}" in exI) unfolding convex_hull_singleton by auto 
himmelma@33175
  1326
      qed thus ?thesis using assms by simp
himmelma@33175
  1327
    next
himmelma@33175
  1328
      case False have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} =
himmelma@33175
  1329
        { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 
himmelma@33175
  1330
        0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> {x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> x \<in> convex hull t}}"
himmelma@33175
  1331
        unfolding expand_set_eq and mem_Collect_eq proof(rule,rule)
himmelma@33175
  1332
        fix x assume "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and>
himmelma@33175
  1333
          0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)"
himmelma@33175
  1334
        then obtain u v c t where obt:"x = (1 - c) *\<^sub>R u + c *\<^sub>R v"
himmelma@33175
  1335
          "0 \<le> c \<and> c \<le> 1" "u \<in> s" "finite t" "t \<subseteq> s" "card t \<le> n"  "v \<in> convex hull t" by auto
himmelma@33175
  1336
        moreover have "(1 - c) *\<^sub>R u + c *\<^sub>R v \<in> convex hull insert u t"
himmelma@33175
  1337
          apply(rule mem_convex) using obt(2) and convex_convex_hull and hull_subset[of "insert u t" convex]
himmelma@33175
  1338
          using obt(7) and hull_mono[of t "insert u t"] by auto
himmelma@33175
  1339
        ultimately show "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
himmelma@33175
  1340
          apply(rule_tac x="insert u t" in exI) by (auto simp add: card_insert_if)
himmelma@33175
  1341
      next
himmelma@33175
  1342
        fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
himmelma@33175
  1343
        then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto
himmelma@33175
  1344
        let ?P = "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and>
himmelma@33175
  1345
          0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)"
himmelma@33175
  1346
        show ?P proof(cases "card t = Suc n")
himmelma@33175
  1347
          case False hence "card t \<le> n" using t(3) by auto
himmelma@33175
  1348
          thus ?P apply(rule_tac x=w in exI, rule_tac x=x in exI, rule_tac x=1 in exI) using `w\<in>s` and t
himmelma@33175
  1349
            by(auto intro!: exI[where x=t])
himmelma@33175
  1350
        next
himmelma@33175
  1351
          case True then obtain a u where au:"t = insert a u" "a\<notin>u" apply(drule_tac card_eq_SucD) by auto
himmelma@33175
  1352
          show ?P proof(cases "u={}")
himmelma@33175
  1353
            case True hence "x=a" using t(4)[unfolded au] by auto
himmelma@33175
  1354
            show ?P unfolding `x=a` apply(rule_tac x=a in exI, rule_tac x=a in exI, rule_tac x=1 in exI)
huffman@36358
  1355
              using t and `n\<noteq>0` unfolding au by(auto intro!: exI[where x="{a}"])
himmelma@33175
  1356
          next
himmelma@33175
  1357
            case False obtain ux vx b where obt:"ux\<ge>0" "vx\<ge>0" "ux + vx = 1" "b \<in> convex hull u" "x = ux *\<^sub>R a + vx *\<^sub>R b"
himmelma@33175
  1358
              using t(4)[unfolded au convex_hull_insert[OF False]] by auto
himmelma@33175
  1359
            have *:"1 - vx = ux" using obt(3) by auto
himmelma@33175
  1360
            show ?P apply(rule_tac x=a in exI, rule_tac x=b in exI, rule_tac x=vx in exI)
himmelma@33175
  1361
              using obt and t(1-3) unfolding au and * using card_insert_disjoint[OF _ au(2)]
himmelma@33175
  1362
              by(auto intro!: exI[where x=u])
himmelma@33175
  1363
          qed
himmelma@33175
  1364
        qed
himmelma@33175
  1365
      qed
himmelma@33175
  1366
      thus ?thesis using compact_convex_combinations[OF assms Suc] by simp 
himmelma@33175
  1367
    qed
huffman@36358
  1368
  qed
himmelma@33175
  1369
qed
himmelma@33175
  1370
himmelma@33175
  1371
lemma finite_imp_compact_convex_hull:
himmelma@33175
  1372
  fixes s :: "(real ^ _) set"
himmelma@33175
  1373
  shows "finite s \<Longrightarrow> compact(convex hull s)"
nipkow@36071
  1374
by (metis compact_convex_hull finite_imp_compact)
himmelma@33175
  1375
himmelma@33175
  1376
subsection {* Extremal points of a simplex are some vertices. *}
himmelma@33175
  1377
himmelma@33175
  1378
lemma dist_increases_online:
himmelma@33175
  1379
  fixes a b d :: "'a::real_inner"
himmelma@33175
  1380
  assumes "d \<noteq> 0"
himmelma@33175
  1381
  shows "dist a (b + d) > dist a b \<or> dist a (b - d) > dist a b"
himmelma@33175
  1382
proof(cases "inner a d - inner b d > 0")
himmelma@33175
  1383
  case True hence "0 < inner d d + (inner a d * 2 - inner b d * 2)" 
himmelma@33175
  1384
    apply(rule_tac add_pos_pos) using assms by auto
himmelma@33175
  1385
  thus ?thesis apply(rule_tac disjI2) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff
himmelma@33175
  1386
    by (simp add: algebra_simps inner_commute)
himmelma@33175
  1387
next
himmelma@33175
  1388
  case False hence "0 < inner d d + (inner b d * 2 - inner a d * 2)" 
himmelma@33175
  1389
    apply(rule_tac add_pos_nonneg) using assms by auto
himmelma@33175
  1390
  thus ?thesis apply(rule_tac disjI1) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff
himmelma@33175
  1391
    by (simp add: algebra_simps inner_commute)
himmelma@33175
  1392
qed
himmelma@33175
  1393
himmelma@33175
  1394
lemma norm_increases_online:
himmelma@33175
  1395
  fixes d :: "'a::real_inner"
himmelma@33175
  1396
  shows "d \<noteq> 0 \<Longrightarrow> norm(a + d) > norm a \<or> norm(a - d) > norm a"
himmelma@33175
  1397
  using dist_increases_online[of d a 0] unfolding dist_norm by auto
himmelma@33175
  1398
himmelma@33175
  1399
lemma simplex_furthest_lt:
himmelma@33175
  1400
  fixes s::"'a::real_inner set" assumes "finite s"
himmelma@33175
  1401
  shows "\<forall>x \<in> (convex hull s).  x \<notin> s \<longrightarrow> (\<exists>y\<in>(convex hull s). norm(x - a) < norm(y - a))"
himmelma@33175
  1402
proof(induct_tac rule: finite_induct[of s])
himmelma@33175
  1403
  fix x s assume as:"finite s" "x\<notin>s" "\<forall>x\<in>convex hull s. x \<notin> s \<longrightarrow> (\<exists>y\<in>convex hull s. norm (x - a) < norm (y - a))"
himmelma@33175
  1404
  show "\<forall>xa\<in>convex hull insert x s. xa \<notin> insert x s \<longrightarrow> (\<exists>y\<in>convex hull insert x s. norm (xa - a) < norm (y - a))"
himmelma@33175
  1405
  proof(rule,rule,cases "s = {}")
himmelma@33175
  1406
    case False fix y assume y:"y \<in> convex hull insert x s" "y \<notin> insert x s"
himmelma@33175
  1407
    obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "y = u *\<^sub>R x + v *\<^sub>R b"
himmelma@33175
  1408
      using y(1)[unfolded convex_hull_insert[OF False]] by auto
himmelma@33175
  1409
    show "\<exists>z\<in>convex hull insert x s. norm (y - a) < norm (z - a)"
himmelma@33175
  1410
    proof(cases "y\<in>convex hull s")
himmelma@33175
  1411
      case True then obtain z where "z\<in>convex hull s" "norm (y - a) < norm (z - a)"
himmelma@33175
  1412
        using as(3)[THEN bspec[where x=y]] and y(2) by auto
himmelma@33175
  1413
      thus ?thesis apply(rule_tac x=z in bexI) unfolding convex_hull_insert[OF False] by auto
himmelma@33175
  1414
    next
himmelma@33175
  1415
      case False show ?thesis  using obt(3) proof(cases "u=0", case_tac[!] "v=0")
himmelma@33175
  1416
        assume "u=0" "v\<noteq>0" hence "y = b" using obt by auto
himmelma@33175
  1417
        thus ?thesis using False and obt(4) by auto
himmelma@33175
  1418
      next
himmelma@33175
  1419
        assume "u\<noteq>0" "v=0" hence "y = x" using obt by auto
himmelma@33175
  1420
        thus ?thesis using y(2) by auto
himmelma@33175
  1421
      next
himmelma@33175
  1422
        assume "u\<noteq>0" "v\<noteq>0"
himmelma@33175
  1423
        then obtain w where w:"w>0" "w<u" "w<v" using real_lbound_gt_zero[of u v] and obt(1,2) by auto
himmelma@33175
  1424
        have "x\<noteq>b" proof(rule ccontr) 
himmelma@33175
  1425
          assume "\<not> x\<noteq>b" hence "y=b" unfolding obt(5)
himmelma@33175
  1426
            using obt(3) by(auto simp add: scaleR_left_distrib[THEN sym])
himmelma@33175
  1427
          thus False using obt(4) and False by simp qed
himmelma@33175
  1428
        hence *:"w *\<^sub>R (x - b) \<noteq> 0" using w(1) by auto
himmelma@33175
  1429
        show ?thesis using dist_increases_online[OF *, of a y]
himmelma@33175
  1430
        proof(erule_tac disjE)
himmelma@33175
  1431
          assume "dist a y < dist a (y + w *\<^sub>R (x - b))"
himmelma@33175
  1432
          hence "norm (y - a) < norm ((u + w) *\<^sub>R x + (v - w) *\<^sub>R b - a)"
himmelma@33175
  1433
            unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps)
himmelma@33175
  1434
          moreover have "(u + w) *\<^sub>R x + (v - w) *\<^sub>R b \<in> convex hull insert x s"
himmelma@33175
  1435
            unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
himmelma@33175
  1436
            apply(rule_tac x="u + w" in exI) apply rule defer 
himmelma@33175
  1437
            apply(rule_tac x="v - w" in exI) using `u\<ge>0` and w and obt(3,4) by auto
himmelma@33175
  1438
          ultimately show ?thesis by auto
himmelma@33175
  1439
        next
himmelma@33175
  1440
          assume "dist a y < dist a (y - w *\<^sub>R (x - b))"
himmelma@33175
  1441
          hence "norm (y - a) < norm ((u - w) *\<^sub>R x + (v + w) *\<^sub>R b - a)"
himmelma@33175
  1442
            unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps)
himmelma@33175
  1443
          moreover have "(u - w) *\<^sub>R x + (v + w) *\<^sub>R b \<in> convex hull insert x s"
himmelma@33175
  1444
            unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
himmelma@33175
  1445
            apply(rule_tac x="u - w" in exI) apply rule defer 
himmelma@33175
  1446
            apply(rule_tac x="v + w" in exI) using `u\<ge>0` and w and obt(3,4) by auto
himmelma@33175
  1447
          ultimately show ?thesis by auto
himmelma@33175
  1448
        qed
himmelma@33175
  1449
      qed auto
himmelma@33175
  1450
    qed
himmelma@33175
  1451
  qed auto
himmelma@33175
  1452
qed (auto simp add: assms)
himmelma@33175
  1453
himmelma@33175
  1454
lemma simplex_furthest_le:
himmelma@33175
  1455
  fixes s :: "(real ^ _) set"
himmelma@33175
  1456
  assumes "finite s" "s \<noteq> {}"
himmelma@33175
  1457
  shows "\<exists>y\<in>s. \<forall>x\<in>(convex hull s). norm(x - a) \<le> norm(y - a)"
himmelma@33175
  1458
proof-
himmelma@33175
  1459
  have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
himmelma@33175
  1460
  then obtain x where x:"x\<in>convex hull s" "\<forall>y\<in>convex hull s. norm (y - a) \<le> norm (x - a)"
himmelma@33175
  1461
    using distance_attains_sup[OF finite_imp_compact_convex_hull[OF assms(1)], of a]
himmelma@33175
  1462
    unfolding dist_commute[of a] unfolding dist_norm by auto
himmelma@33175
  1463
  thus ?thesis proof(cases "x\<in>s")
himmelma@33175
  1464
    case False then obtain y where "y\<in>convex hull s" "norm (x - a) < norm (y - a)"
himmelma@33175
  1465
      using simplex_furthest_lt[OF assms(1), THEN bspec[where x=x]] and x(1) by auto
himmelma@33175
  1466
    thus ?thesis using x(2)[THEN bspec[where x=y]] by auto
himmelma@33175
  1467
  qed auto
himmelma@33175
  1468
qed
himmelma@33175
  1469
himmelma@33175
  1470
lemma simplex_furthest_le_exists:
himmelma@33175
  1471
  fixes s :: "(real ^ _) set"
himmelma@33175
  1472
  shows "finite s \<Longrightarrow> (\<forall>x\<in>(convex hull s). \<exists>y\<in>s. norm(x - a) \<le> norm(y - a))"
himmelma@33175
  1473
  using simplex_furthest_le[of s] by (cases "s={}")auto
himmelma@33175
  1474
himmelma@33175
  1475
lemma simplex_extremal_le:
himmelma@33175
  1476
  fixes s :: "(real ^ _) set"
himmelma@33175
  1477
  assumes "finite s" "s \<noteq> {}"
himmelma@33175
  1478
  shows "\<exists>u\<in>s. \<exists>v\<in>s. \<forall>x\<in>convex hull s. \<forall>y \<in> convex hull s. norm(x - y) \<le> norm(u - v)"
himmelma@33175
  1479
proof-
himmelma@33175
  1480
  have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
himmelma@33175
  1481
  then obtain u v where obt:"u\<in>convex hull s" "v\<in>convex hull s"
himmelma@33175
  1482
    "\<forall>x\<in>convex hull s. \<forall>y\<in>convex hull s. norm (x - y) \<le> norm (u - v)"
himmelma@33175
  1483
    using compact_sup_maxdistance[OF finite_imp_compact_convex_hull[OF assms(1)]] by auto
himmelma@33175
  1484
  thus ?thesis proof(cases "u\<notin>s \<or> v\<notin>s", erule_tac disjE)
himmelma@33175
  1485
    assume "u\<notin>s" then obtain y where "y\<in>convex hull s" "norm (u - v) < norm (y - v)"
himmelma@33175
  1486
      using simplex_furthest_lt[OF assms(1), THEN bspec[where x=u]] and obt(1) by auto
himmelma@33175
  1487
    thus ?thesis using obt(3)[THEN bspec[where x=y], THEN bspec[where x=v]] and obt(2) by auto
himmelma@33175
  1488
  next
himmelma@33175
  1489
    assume "v\<notin>s" then obtain y where "y\<in>convex hull s" "norm (v - u) < norm (y - u)"
himmelma@33175
  1490
      using simplex_furthest_lt[OF assms(1), THEN bspec[where x=v]] and obt(2) by auto
himmelma@33175
  1491
    thus ?thesis using obt(3)[THEN bspec[where x=u], THEN bspec[where x=y]] and obt(1)
himmelma@33175
  1492
      by (auto simp add: norm_minus_commute)
himmelma@33175
  1493
  qed auto
himmelma@33175
  1494
qed 
himmelma@33175
  1495
himmelma@33175
  1496
lemma simplex_extremal_le_exists:
himmelma@33175
  1497
  fixes s :: "(real ^ _) set"
himmelma@33175
  1498
  shows "finite s \<Longrightarrow> x \<in> convex hull s \<Longrightarrow> y \<in> convex hull s
himmelma@33175
  1499
  \<Longrightarrow> (\<exists>u\<in>s. \<exists>v\<in>s. norm(x - y) \<le> norm(u - v))"
himmelma@33175
  1500
  using convex_hull_empty simplex_extremal_le[of s] by(cases "s={}")auto
himmelma@33175
  1501
himmelma@33175
  1502
subsection {* Closest point of a convex set is unique, with a continuous projection. *}
himmelma@33175
  1503
himmelma@33175
  1504
definition
huffman@36328
  1505
  closest_point :: "'a::{real_inner,heine_borel} set \<Rightarrow> 'a \<Rightarrow> 'a" where
himmelma@33175
  1506
 "closest_point s a = (SOME x. x \<in> s \<and> (\<forall>y\<in>s. dist a x \<le> dist a y))"
himmelma@33175
  1507
himmelma@33175
  1508
lemma closest_point_exists:
himmelma@33175
  1509
  assumes "closed s" "s \<noteq> {}"
himmelma@33175
  1510
  shows  "closest_point s a \<in> s" "\<forall>y\<in>s. dist a (closest_point s a) \<le> dist a y"
himmelma@33175
  1511
  unfolding closest_point_def apply(rule_tac[!] someI2_ex) 
himmelma@33175
  1512
  using distance_attains_inf[OF assms(1,2), of a] by auto
himmelma@33175
  1513
himmelma@33175
  1514
lemma closest_point_in_set:
himmelma@33175
  1515
  "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s a) \<in> s"
himmelma@33175
  1516
  by(meson closest_point_exists)
himmelma@33175
  1517
himmelma@33175
  1518
lemma closest_point_le:
himmelma@33175
  1519
  "closed s \<Longrightarrow> x \<in> s \<Longrightarrow> dist a (closest_point s a) \<le> dist a x"
himmelma@33175
  1520
  using closest_point_exists[of s] by auto
himmelma@33175
  1521
himmelma@33175
  1522
lemma closest_point_self:
himmelma@33175
  1523
  assumes "x \<in> s"  shows "closest_point s x = x"
himmelma@33175
  1524
  unfolding closest_point_def apply(rule some1_equality, rule ex1I[of _ x]) 
himmelma@33175
  1525
  using assms by auto
himmelma@33175
  1526
himmelma@33175
  1527
lemma closest_point_refl:
himmelma@33175
  1528
 "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s x = x \<longleftrightarrow> x \<in> s)"
himmelma@33175
  1529
  using closest_point_in_set[of s x] closest_point_self[of x s] by auto
himmelma@33175
  1530
himmelma@33175
  1531
(* TODO: move *)
himmelma@33175
  1532
lemma norm_lt: "norm x < norm y \<longleftrightarrow> inner x x < inner y y"
himmelma@33175
  1533
  unfolding norm_eq_sqrt_inner by simp
himmelma@33175
  1534
himmelma@33175
  1535
(* TODO: move *)
himmelma@33175
  1536
lemma norm_le: "norm x \<le> norm y \<longleftrightarrow> inner x x \<le> inner y y"
himmelma@33175
  1537
  unfolding norm_eq_sqrt_inner by simp
himmelma@33175
  1538
huffman@36328
  1539
lemma closer_points_lemma:
himmelma@33175
  1540
  assumes "inner y z > 0"
himmelma@33175
  1541
  shows "\<exists>u>0. \<forall>v>0. v \<le> u \<longrightarrow> norm(v *\<^sub>R z - y) < norm y"
himmelma@33175
  1542
proof- have z:"inner z z > 0" unfolding inner_gt_zero_iff using assms by auto
himmelma@33175
  1543
  thus ?thesis using assms apply(rule_tac x="inner y z / inner z z" in exI) apply(rule) defer proof(rule+)
himmelma@33175
  1544
    fix v assume "0<v" "v \<le> inner y z / inner z z"
himmelma@33175
  1545
    thus "norm (v *\<^sub>R z - y) < norm y" unfolding norm_lt using z and assms
himmelma@33175
  1546
      by (simp add: field_simps inner_diff inner_commute mult_strict_left_mono[OF _ `0<v`])
himmelma@33175
  1547
  qed(rule divide_pos_pos, auto) qed
himmelma@33175
  1548
himmelma@33175
  1549
lemma closer_point_lemma:
himmelma@33175
  1550
  assumes "inner (y - x) (z - x) > 0"
himmelma@33175
  1551
  shows "\<exists>u>0. u \<le> 1 \<and> dist (x + u *\<^sub>R (z - x)) y < dist x y"
himmelma@33175
  1552
proof- obtain u where "u>0" and u:"\<forall>v>0. v \<le> u \<longrightarrow> norm (v *\<^sub>R (z - x) - (y - x)) < norm (y - x)"
himmelma@33175
  1553
    using closer_points_lemma[OF assms] by auto
himmelma@33175
  1554
  show ?thesis apply(rule_tac x="min u 1" in exI) using u[THEN spec[where x="min u 1"]] and `u>0`
himmelma@33175
  1555
    unfolding dist_norm by(auto simp add: norm_minus_commute field_simps) qed
himmelma@33175
  1556
himmelma@33175
  1557
lemma any_closest_point_dot:
himmelma@33175
  1558
  assumes "convex s" "closed s" "x \<in> s" "y \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z"
himmelma@33175
  1559
  shows "inner (a - x) (y - x) \<le> 0"
himmelma@33175
  1560
proof(rule ccontr) assume "\<not> inner (a - x) (y - x) \<le> 0"
himmelma@33175
  1561
  then obtain u where u:"u>0" "u\<le>1" "dist (x + u *\<^sub>R (y - x)) a < dist x a" using closer_point_lemma[of a x y] by auto
himmelma@33175
  1562
  let ?z = "(1 - u) *\<^sub>R x + u *\<^sub>R y" have "?z \<in> s" using mem_convex[OF assms(1,3,4), of u] using u by auto
himmelma@33175
  1563
  thus False using assms(5)[THEN bspec[where x="?z"]] and u(3) by (auto simp add: dist_commute algebra_simps) qed
himmelma@33175
  1564
himmelma@33175
  1565
lemma any_closest_point_unique:
huffman@36328
  1566
  fixes x :: "'a::real_inner"
himmelma@33175
  1567
  assumes "convex s" "closed s" "x \<in> s" "y \<in> s"
himmelma@33175
  1568
  "\<forall>z\<in>s. dist a x \<le> dist a z" "\<forall>z\<in>s. dist a y \<le> dist a z"
himmelma@33175
  1569
  shows "x = y" using any_closest_point_dot[OF assms(1-4,5)] and any_closest_point_dot[OF assms(1-2,4,3,6)]
himmelma@33175
  1570
  unfolding norm_pths(1) and norm_le_square
himmelma@33175
  1571
  by (auto simp add: algebra_simps)
himmelma@33175
  1572
himmelma@33175
  1573
lemma closest_point_unique:
himmelma@33175
  1574
  assumes "convex s" "closed s" "x \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z"
himmelma@33175
  1575
  shows "x = closest_point s a"
himmelma@33175
  1576
  using any_closest_point_unique[OF assms(1-3) _ assms(4), of "closest_point s a"] 
himmelma@33175
  1577
  using closest_point_exists[OF assms(2)] and assms(3) by auto
himmelma@33175
  1578
himmelma@33175
  1579
lemma closest_point_dot:
himmelma@33175
  1580
  assumes "convex s" "closed s" "x \<in> s"
himmelma@33175
  1581
  shows "inner (a - closest_point s a) (x - closest_point s a) \<le> 0"
himmelma@33175
  1582
  apply(rule any_closest_point_dot[OF assms(1,2) _ assms(3)])
himmelma@33175
  1583
  using closest_point_exists[OF assms(2)] and assms(3) by auto
himmelma@33175
  1584
himmelma@33175
  1585
lemma closest_point_lt:
himmelma@33175
  1586
  assumes "convex s" "closed s" "x \<in> s" "x \<noteq> closest_point s a"
himmelma@33175
  1587
  shows "dist a (closest_point s a) < dist a x"
himmelma@33175
  1588
  apply(rule ccontr) apply(rule_tac notE[OF assms(4)])
himmelma@33175
  1589
  apply(rule closest_point_unique[OF assms(1-3), of a])
himmelma@33175
  1590
  using closest_point_le[OF assms(2), of _ a] by fastsimp
himmelma@33175
  1591
himmelma@33175
  1592
lemma closest_point_lipschitz:
himmelma@33175
  1593
  assumes "convex s" "closed s" "s \<noteq> {}"
himmelma@33175
  1594
  shows "dist (closest_point s x) (closest_point s y) \<le> dist x y"
himmelma@33175
  1595
proof-
himmelma@33175
  1596
  have "inner (x - closest_point s x) (closest_point s y - closest_point s x) \<le> 0"
himmelma@33175
  1597
       "inner (y - closest_point s y) (closest_point s x - closest_point s y) \<le> 0"
himmelma@33175
  1598
    apply(rule_tac[!] any_closest_point_dot[OF assms(1-2)])
himmelma@33175
  1599
    using closest_point_exists[OF assms(2-3)] by auto
himmelma@33175
  1600
  thus ?thesis unfolding dist_norm and norm_le
himmelma@33175
  1601
    using inner_ge_zero[of "(x - closest_point s x) - (y - closest_point s y)"]
himmelma@33175
  1602
    by (simp add: inner_add inner_diff inner_commute) qed
himmelma@33175
  1603
himmelma@33175
  1604
lemma continuous_at_closest_point:
himmelma@33175
  1605
  assumes "convex s" "closed s" "s \<noteq> {}"
himmelma@33175
  1606
  shows "continuous (at x) (closest_point s)"
himmelma@33175
  1607
  unfolding continuous_at_eps_delta 
himmelma@33175
  1608
  using le_less_trans[OF closest_point_lipschitz[OF assms]] by auto
himmelma@33175
  1609
himmelma@33175
  1610
lemma continuous_on_closest_point:
himmelma@33175
  1611
  assumes "convex s" "closed s" "s \<noteq> {}"
himmelma@33175
  1612
  shows "continuous_on t (closest_point s)"
nipkow@36071
  1613
by(metis continuous_at_imp_continuous_on continuous_at_closest_point[OF assms])
himmelma@33175
  1614
himmelma@33175
  1615
subsection {* Various point-to-set separating/supporting hyperplane theorems. *}
himmelma@33175
  1616
himmelma@33175
  1617
lemma supporting_hyperplane_closed_point:
huffman@36328
  1618
  fixes z :: "'a::{real_inner,heine_borel}"
himmelma@33175
  1619
  assumes "convex s" "closed s" "s \<noteq> {}" "z \<notin> s"
himmelma@33175
  1620
  shows "\<exists>a b. \<exists>y\<in>s. inner a z < b \<and> (inner a y = b) \<and> (\<forall>x\<in>s. inner a x \<ge> b)"
himmelma@33175
  1621
proof-
himmelma@33175
  1622
  from distance_attains_inf[OF assms(2-3)] obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x" by auto
himmelma@33175
  1623
  show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) y" in exI, rule_tac x=y in bexI)
himmelma@33175
  1624
    apply rule defer apply rule defer apply(rule, rule ccontr) using `y\<in>s` proof-
himmelma@33175
  1625
    show "inner (y - z) z < inner (y - z) y" apply(subst diff_less_iff(1)[THEN sym])
himmelma@33175
  1626
      unfolding inner_diff_right[THEN sym] and inner_gt_zero_iff using `y\<in>s` `z\<notin>s` by auto
himmelma@33175
  1627
  next
himmelma@33175
  1628
    fix x assume "x\<in>s" have *:"\<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> dist z y \<le> dist z ((1 - u) *\<^sub>R y + u *\<^sub>R x)"
himmelma@33175
  1629
      using assms(1)[unfolded convex_alt] and y and `x\<in>s` and `y\<in>s` by auto
himmelma@33175
  1630
    assume "\<not> inner (y - z) y \<le> inner (y - z) x" then obtain v where
himmelma@33175
  1631
      "v>0" "v\<le>1" "dist (y + v *\<^sub>R (x - y)) z < dist y z" using closer_point_lemma[of z y x] apply - by (auto simp add: inner_diff)
himmelma@33175
  1632
    thus False using *[THEN spec[where x=v]] by(auto simp add: dist_commute algebra_simps)
himmelma@33175
  1633
  qed auto
himmelma@33175
  1634
qed
himmelma@33175
  1635
himmelma@33175
  1636
lemma separating_hyperplane_closed_point:
huffman@36328
  1637
  fixes z :: "'a::{real_inner,heine_borel}"
himmelma@33175
  1638
  assumes "convex s" "closed s" "z \<notin> s"
himmelma@33175
  1639
  shows "\<exists>a b. inner a z < b \<and> (\<forall>x\<in>s. inner a x > b)"
himmelma@33175
  1640
proof(cases "s={}")
himmelma@33175
  1641
  case True thus ?thesis apply(rule_tac x="-z" in exI, rule_tac x=1 in exI)
himmelma@33175
  1642
    using less_le_trans[OF _ inner_ge_zero[of z]] by auto
himmelma@33175
  1643
next
himmelma@33175
  1644
  case False obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x"
himmelma@33175
  1645
    using distance_attains_inf[OF assms(2) False] by auto
himmelma@33175
  1646
  show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) z + (norm(y - z))\<twosuperior> / 2" in exI)
himmelma@33175
  1647
    apply rule defer apply rule proof-
himmelma@33175
  1648
    fix x assume "x\<in>s"
himmelma@33175
  1649
    have "\<not> 0 < inner (z - y) (x - y)" apply(rule_tac notI) proof(drule closer_point_lemma)
himmelma@33175
  1650
      assume "\<exists>u>0. u \<le> 1 \<and> dist (y + u *\<^sub>R (x - y)) z < dist y z"
himmelma@33175
  1651
      then obtain u where "u>0" "u\<le>1" "dist (y + u *\<^sub>R (x - y)) z < dist y z" by auto
himmelma@33175
  1652
      thus False using y[THEN bspec[where x="y + u *\<^sub>R (x - y)"]]
himmelma@33175
  1653
        using assms(1)[unfolded convex_alt, THEN bspec[where x=y]]
himmelma@33175
  1654
        using `x\<in>s` `y\<in>s` by (auto simp add: dist_commute algebra_simps) qed
himmelma@33175
  1655
    moreover have "0 < norm (y - z) ^ 2" using `y\<in>s` `z\<notin>s` by auto
himmelma@33175
  1656
    hence "0 < inner (y - z) (y - z)" unfolding power2_norm_eq_inner by simp
himmelma@33175
  1657
    ultimately show "inner (y - z) z + (norm (y - z))\<twosuperior> / 2 < inner (y - z) x"
himmelma@33175
  1658
      unfolding power2_norm_eq_inner and not_less by (auto simp add: field_simps inner_commute inner_diff)
himmelma@33175
  1659
  qed(insert `y\<in>s` `z\<notin>s`, auto)
himmelma@33175
  1660
qed
himmelma@33175
  1661
himmelma@33175
  1662
lemma separating_hyperplane_closed_0:
hoelzl@34291
  1663
  assumes "convex (s::(real^'n) set)" "closed s" "0 \<notin> s"
himmelma@33175
  1664
  shows "\<exists>a b. a \<noteq> 0 \<and> 0 < b \<and> (\<forall>x\<in>s. inner a x > b)"
himmelma@33175
  1665
  proof(cases "s={}") guess a using UNIV_witness[where 'a='n] ..
hoelzl@34291
  1666
  case True have "norm ((basis a)::real^'n) = 1" 
himmelma@33175
  1667
    using norm_basis and dimindex_ge_1 by auto
himmelma@33175
  1668
  thus ?thesis apply(rule_tac x="basis a" in exI, rule_tac x=1 in exI) using True by auto
himmelma@33175
  1669
next case False thus ?thesis using False using separating_hyperplane_closed_point[OF assms]
himmelma@35528
  1670
    apply - apply(erule exE)+ unfolding inner.zero_right apply(rule_tac x=a in exI, rule_tac x=b in exI) by auto qed
himmelma@33175
  1671
himmelma@33175
  1672
subsection {* Now set-to-set for closed/compact sets. *}
himmelma@33175
  1673
himmelma@33175
  1674
lemma separating_hyperplane_closed_compact:
hoelzl@34291
  1675
  assumes "convex (s::(real^'n) set)" "closed s" "convex t" "compact t" "t \<noteq> {}" "s \<inter> t = {}"
himmelma@33175
  1676
  shows "\<exists>a b. (\<forall>x\<in>s. inner a x < b) \<and> (\<forall>x\<in>t. inner a x > b)"
himmelma@33175
  1677
proof(cases "s={}")
himmelma@33175
  1678
  case True
himmelma@33175
  1679
  obtain b where b:"b>0" "\<forall>x\<in>t. norm x \<le> b" using compact_imp_bounded[OF assms(4)] unfolding bounded_pos by auto
himmelma@33175
  1680
  obtain z::"real^'n" where z:"norm z = b + 1" using vector_choose_size[of "b + 1"] and b(1) by auto
himmelma@33175
  1681
  hence "z\<notin>t" using b(2)[THEN bspec[where x=z]] by auto
himmelma@33175
  1682
  then obtain a b where ab:"inner a z < b" "\<forall>x\<in>t. b < inner a x"
himmelma@33175
  1683
    using separating_hyperplane_closed_point[OF assms(3) compact_imp_closed[OF assms(4)], of z] by auto
himmelma@33175
  1684
  thus ?thesis using True by auto
himmelma@33175
  1685
next
himmelma@33175
  1686
  case False then obtain y where "y\<in>s" by auto
himmelma@33175
  1687
  obtain a b where "0 < b" "\<forall>x\<in>{x - y |x y. x \<in> s \<and> y \<in> t}. b < inner a x"
himmelma@33175
  1688
    using separating_hyperplane_closed_point[OF convex_differences[OF assms(1,3)], of 0]
himmelma@33175
  1689
    using closed_compact_differences[OF assms(2,4)] using assms(6) by(auto, blast)
himmelma@33175
  1690
  hence ab:"\<forall>x\<in>s. \<forall>y\<in>t. b + inner a y < inner a x" apply- apply(rule,rule) apply(erule_tac x="x - y" in ballE) by (auto simp add: inner_diff)
paulson@33270
  1691
  def k \<equiv> "Sup ((\<lambda>x. inner a x) ` t)"
himmelma@33175
  1692
  show ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-(k + b / 2)" in exI)
himmelma@33175
  1693
    apply(rule,rule) defer apply(rule) unfolding inner_minus_left and neg_less_iff_less proof-
himmelma@33175
  1694
    from ab have "((\<lambda>x. inner a x) ` t) *<= (inner a y - b)"
himmelma@33175
  1695
      apply(erule_tac x=y in ballE) apply(rule setleI) using `y\<in>s` by auto
paulson@33270
  1696
    hence k:"isLub UNIV ((\<lambda>x. inner a x) ` t) k" unfolding k_def apply(rule_tac Sup) using assms(5) by auto
himmelma@33175
  1697
    fix x assume "x\<in>t" thus "inner a x < (k + b / 2)" using `0<b` and isLubD2[OF k, of "inner a x"] by auto
himmelma@33175
  1698
  next
himmelma@33175
  1699
    fix x assume "x\<in>s" 
paulson@33270
  1700
    hence "k \<le> inner a x - b" unfolding k_def apply(rule_tac Sup_least) using assms(5)
himmelma@33175
  1701
      using ab[THEN bspec[where x=x]] by auto
himmelma@33175
  1702
    thus "k + b / 2 < inner a x" using `0 < b` by auto
himmelma@33175
  1703
  qed
himmelma@33175
  1704
qed
himmelma@33175
  1705
himmelma@33175
  1706
lemma separating_hyperplane_compact_closed:
himmelma@33175
  1707
  fixes s :: "(real ^ _) set"
himmelma@33175
  1708
  assumes "convex s" "compact s" "s \<noteq> {}" "convex t" "closed t" "s \<inter> t = {}"
himmelma@33175
  1709
  shows "\<exists>a b. (\<forall>x\<in>s. inner a x < b) \<and> (\<forall>x\<in>t. inner a x > b)"
himmelma@33175
  1710
proof- obtain a b where "(\<forall>x\<in>t. inner a x < b) \<and> (\<forall>x\<in>s. b < inner a x)"
himmelma@33175
  1711
    using separating_hyperplane_closed_compact[OF assms(4-5,1-2,3)] and assms(6) by auto
himmelma@33175
  1712
  thus ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-b" in exI) by auto qed
himmelma@33175
  1713
himmelma@33175
  1714
subsection {* General case without assuming closure and getting non-strict separation. *}
himmelma@33175
  1715
himmelma@33175
  1716
lemma separating_hyperplane_set_0:
hoelzl@34291
  1717
  assumes "convex s" "(0::real^'n) \<notin> s"
himmelma@33175
  1718
  shows "\<exists>a. a \<noteq> 0 \<and> (\<forall>x\<in>s. 0 \<le> inner a x)"
himmelma@33175
  1719
proof- let ?k = "\<lambda>c. {x::real^'n. 0 \<le> inner c x}"
himmelma@33175
  1720
  have "frontier (cball 0 1) \<inter> (\<Inter> (?k ` s)) \<noteq> {}"
himmelma@33175
  1721
    apply(rule compact_imp_fip) apply(rule compact_frontier[OF compact_cball])
himmelma@33175
  1722
    defer apply(rule,rule,erule conjE) proof-
himmelma@33175
  1723
    fix f assume as:"f \<subseteq> ?k ` s" "finite f"
himmelma@33175
  1724
    obtain c where c:"f = ?k ` c" "c\<subseteq>s" "finite c" using finite_subset_image[OF as(2,1)] by auto
himmelma@33175
  1725
    then obtain a b where ab:"a \<noteq> 0" "0 < b"  "\<forall>x\<in>convex hull c. b < inner a x"
himmelma@33175
  1726
      using separating_hyperplane_closed_0[OF convex_convex_hull, of c]
himmelma@33175
  1727
      using finite_imp_compact_convex_hull[OF c(3), THEN compact_imp_closed] and assms(2)
himmelma@33175
  1728
      using subset_hull[unfolded mem_def, of convex, OF assms(1), THEN sym, of c] by auto
himmelma@33175
  1729
    hence "\<exists>x. norm x = 1 \<and> (\<forall>y\<in>c. 0 \<le> inner y x)" apply(rule_tac x="inverse(norm a) *\<^sub>R a" in exI)
himmelma@33175
  1730
       using hull_subset[of c convex] unfolding subset_eq and inner_scaleR
himmelma@33175
  1731
       apply- apply rule defer apply rule apply(rule mult_nonneg_nonneg)
himmelma@33175
  1732
       by(auto simp add: inner_commute elim!: ballE)
himmelma@33175
  1733
    thus "frontier (cball 0 1) \<inter> \<Inter>f \<noteq> {}" unfolding c(1) frontier_cball dist_norm by auto
himmelma@33175
  1734
  qed(insert closed_halfspace_ge, auto)
himmelma@33175
  1735
  then obtain x where "norm x = 1" "\<forall>y\<in>s. x\<in>?k y" unfolding frontier_cball dist_norm by auto
himmelma@33175
  1736
  thus ?thesis apply(rule_tac x=x in exI) by(auto simp add: inner_commute) qed
himmelma@33175
  1737
himmelma@33175
  1738
lemma separating_hyperplane_sets:
hoelzl@34291
  1739
  assumes "convex s" "convex (t::(real^'n) set)" "s \<noteq> {}" "t \<noteq> {}" "s \<inter> t = {}"
himmelma@33175
  1740
  shows "\<exists>a b. a \<noteq> 0 \<and> (\<forall>x\<in>s. inner a x \<le> b) \<and> (\<forall>x\<in>t. inner a x \<ge> b)"
himmelma@33175
  1741
proof- from separating_hyperplane_set_0[OF convex_differences[OF assms(2,1)]]
paulson@33270
  1742
  obtain a where "a\<noteq>0" "\<forall>x\<in>{x - y |x y. x \<in> t \<and> y \<in> s}. 0 \<le> inner a x" 
paulson@33270
  1743
    using assms(3-5) by auto 
paulson@33270
  1744
  hence "\<forall>x\<in>t. \<forall>y\<in>s. inner a y \<le> inner a x"
paulson@33270
  1745
    by (force simp add: inner_diff)
paulson@33270
  1746
  thus ?thesis
paulson@33270
  1747
    apply(rule_tac x=a in exI, rule_tac x="Sup ((\<lambda>x. inner a x) ` s)" in exI) using `a\<noteq>0`
paulson@33270
  1748
    apply auto
paulson@33270
  1749
    apply (rule Sup[THEN isLubD2]) 
paulson@33270
  1750
    prefer 4
paulson@33270
  1751
    apply (rule Sup_least) 
paulson@33270
  1752
     using assms(3-5) apply (auto simp add: setle_def)
nipkow@36071
  1753
    apply metis
paulson@33270
  1754
    done
paulson@33270
  1755
qed
himmelma@33175
  1756
himmelma@33175
  1757
subsection {* More convexity generalities. *}
himmelma@33175
  1758
himmelma@33175
  1759
lemma convex_closure:
himmelma@33175
  1760
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
  1761
  assumes "convex s" shows "convex(closure s)"
himmelma@33175
  1762
  unfolding convex_def Ball_def closure_sequential
himmelma@33175
  1763
  apply(rule,rule,rule,rule,rule,rule,rule,rule,rule) apply(erule_tac exE)+
himmelma@33175
  1764
  apply(rule_tac x="\<lambda>n. u *\<^sub>R xb n + v *\<^sub>R xc n" in exI) apply(rule,rule)
himmelma@33175
  1765
  apply(rule assms[unfolded convex_def, rule_format]) prefer 6
himmelma@33175
  1766
  apply(rule Lim_add) apply(rule_tac [1-2] Lim_cmul) by auto
himmelma@33175
  1767
himmelma@33175
  1768
lemma convex_interior:
himmelma@33175
  1769
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
  1770
  assumes "convex s" shows "convex(interior s)"
himmelma@33175
  1771
  unfolding convex_alt Ball_def mem_interior apply(rule,rule,rule,rule,rule,rule) apply(erule exE | erule conjE)+ proof-
himmelma@33175
  1772
  fix x y u assume u:"0 \<le> u" "u \<le> (1::real)"
himmelma@33175
  1773
  fix e d assume ed:"ball x e \<subseteq> s" "ball y d \<subseteq> s" "0<d" "0<e" 
himmelma@33175
  1774
  show "\<exists>e>0. ball ((1 - u) *\<^sub>R x + u *\<^sub>R y) e \<subseteq> s" apply(rule_tac x="min d e" in exI)
himmelma@33175
  1775
    apply rule unfolding subset_eq defer apply rule proof-
himmelma@33175
  1776
    fix z assume "z \<in> ball ((1 - u) *\<^sub>R x + u *\<^sub>R y) (min d e)"
himmelma@33175
  1777
    hence "(1- u) *\<^sub>R (z - u *\<^sub>R (y - x)) + u *\<^sub>R (z + (1 - u) *\<^sub>R (y - x)) \<in> s"
himmelma@33175
  1778
      apply(rule_tac assms[unfolded convex_alt, rule_format])
himmelma@33175
  1779
      using ed(1,2) and u unfolding subset_eq mem_ball Ball_def dist_norm by(auto simp add: algebra_simps)
himmelma@33175
  1780
    thus "z \<in> s" using u by (auto simp add: algebra_simps) qed(insert u ed(3-4), auto) qed
himmelma@33175
  1781
hoelzl@34951
  1782
lemma convex_hull_eq_empty[simp]: "convex hull s = {} \<longleftrightarrow> s = {}"
himmelma@33175
  1783
  using hull_subset[of s convex] convex_hull_empty by auto
himmelma@33175
  1784
himmelma@33175
  1785
subsection {* Moving and scaling convex hulls. *}
himmelma@33175
  1786
himmelma@33175
  1787
lemma convex_hull_translation_lemma:
himmelma@33175
  1788
  "convex hull ((\<lambda>x. a + x) ` s) \<subseteq> (\<lambda>x. a + x) ` (convex hull s)"
nipkow@36071
  1789
by (metis convex_convex_hull convex_translation hull_minimal hull_subset image_mono mem_def)
himmelma@33175
  1790
himmelma@33175
  1791
lemma convex_hull_bilemma: fixes neg
himmelma@33175
  1792
  assumes "(\<forall>s a. (convex hull (up a s)) \<subseteq> up a (convex hull s))"
himmelma@33175
  1793
  shows "(\<forall>s. up a (up (neg a) s) = s) \<and> (\<forall>s. up (neg a) (up a s) = s) \<and> (\<forall>s t a. s \<subseteq> t \<longrightarrow> up a s \<subseteq> up a t)
himmelma@33175
  1794
  \<Longrightarrow> \<forall>s. (convex hull (up a s)) = up a (convex hull s)"
himmelma@33175
  1795
  using assms by(metis subset_antisym) 
himmelma@33175
  1796
himmelma@33175
  1797
lemma convex_hull_translation:
himmelma@33175
  1798
  "convex hull ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (convex hull s)"
himmelma@33175
  1799
  apply(rule convex_hull_bilemma[rule_format, of _ _ "\<lambda>a. -a"], rule convex_hull_translation_lemma) unfolding image_image by auto
himmelma@33175
  1800
himmelma@33175
  1801
lemma convex_hull_scaling_lemma:
himmelma@33175
  1802
 "(convex hull ((\<lambda>x. c *\<^sub>R x) ` s)) \<subseteq> (\<lambda>x. c *\<^sub>R x) ` (convex hull s)"
nipkow@36071
  1803
by (metis convex_convex_hull convex_scaling hull_subset mem_def subset_hull subset_image_iff)
himmelma@33175
  1804
himmelma@33175
  1805
lemma convex_hull_scaling:
himmelma@33175
  1806
  "convex hull ((\<lambda>x. c *\<^sub>R x) ` s) = (\<lambda>x. c *\<^sub>R x) ` (convex hull s)"
himmelma@33175
  1807
  apply(cases "c=0") defer apply(rule convex_hull_bilemma[rule_format, of _ _ inverse]) apply(rule convex_hull_scaling_lemma)
huffman@36358
  1808
  unfolding image_image scaleR_scaleR by(auto simp add:image_constant_conv)
himmelma@33175
  1809
himmelma@33175
  1810
lemma convex_hull_affinity:
himmelma@33175
  1811
  "convex hull ((\<lambda>x. a + c *\<^sub>R x) ` s) = (\<lambda>x. a + c *\<^sub>R x) ` (convex hull s)"
nipkow@36071
  1812
by(simp only: image_image[THEN sym] convex_hull_scaling convex_hull_translation)
himmelma@33175
  1813
himmelma@33175
  1814
subsection {* Convex set as intersection of halfspaces. *}
himmelma@33175
  1815
himmelma@33175
  1816
lemma convex_halfspace_intersection:
himmelma@33175
  1817
  fixes s :: "(real ^ _) set"
himmelma@33175
  1818
  assumes "closed s" "convex s"
himmelma@33175
  1819
  shows "s = \<Inter> {h. s \<subseteq> h \<and> (\<exists>a b. h = {x. inner a x \<le> b})}"
himmelma@33175
  1820
  apply(rule set_ext, rule) unfolding Inter_iff Ball_def mem_Collect_eq apply(rule,rule,erule conjE) proof- 
himmelma@33175
  1821
  fix x  assume "\<forall>xa. s \<subseteq> xa \<and> (\<exists>a b. xa = {x. inner a x \<le> b}) \<longrightarrow> x \<in> xa"
himmelma@33175
  1822
  hence "\<forall>a b. s \<subseteq> {x. inner a x \<le> b} \<longrightarrow> x \<in> {x. inner a x \<le> b}" by blast
himmelma@33175
  1823
  thus "x\<in>s" apply(rule_tac ccontr) apply(drule separating_hyperplane_closed_point[OF assms(2,1)])
himmelma@33175
  1824
    apply(erule exE)+ apply(erule_tac x="-a" in allE, erule_tac x="-b" in allE) by auto
himmelma@33175
  1825
qed auto
himmelma@33175
  1826
himmelma@33175
  1827
subsection {* Radon's theorem (from Lars Schewe). *}
himmelma@33175
  1828
himmelma@33175
  1829
lemma radon_ex_lemma:
himmelma@33175
  1830
  assumes "finite c" "affine_dependent c"
himmelma@33175
  1831
  shows "\<exists>u. setsum u c = 0 \<and> (\<exists>v\<in>c. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) c = 0"
himmelma@33175
  1832
proof- from assms(2)[unfolded affine_dependent_explicit] guess s .. then guess u ..
himmelma@33175
  1833
  thus ?thesis apply(rule_tac x="\<lambda>v. if v\<in>s then u v else 0" in exI) unfolding if_smult scaleR_zero_left
himmelma@33175
  1834
    and setsum_restrict_set[OF assms(1), THEN sym] by(auto simp add: Int_absorb1) qed
himmelma@33175
  1835
himmelma@33175
  1836
lemma radon_s_lemma:
himmelma@33175
  1837
  assumes "finite s" "setsum f s = (0::real)"
himmelma@33175
  1838
  shows "setsum f {x\<in>s. 0 < f x} = - setsum f {x\<in>s. f x < 0}"
himmelma@33175
  1839
proof- have *:"\<And>x. (if f x < 0 then f x else 0) + (if 0 < f x then f x else 0) = f x" by auto
himmelma@33175
  1840
  show ?thesis unfolding real_add_eq_0_iff[THEN sym] and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and *
himmelma@33175
  1841
    using assms(2) by assumption qed
himmelma@33175
  1842
himmelma@33175
  1843
lemma radon_v_lemma:
himmelma@34289
  1844
  assumes "finite s" "setsum f s = 0" "\<forall>x. g x = (0::real) \<longrightarrow> f x = (0::real^_)"
himmelma@33175
  1845
  shows "(setsum f {x\<in>s. 0 < g x}) = - setsum f {x\<in>s. g x < 0}"
himmelma@33175
  1846
proof-
himmelma@33175
  1847
  have *:"\<And>x. (if 0 < g x then f x else 0) + (if g x < 0 then f x else 0) = f x" using assms(3) by auto 
himmelma@33175
  1848
  show ?thesis unfolding eq_neg_iff_add_eq_0 and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and *
himmelma@33175
  1849
    using assms(2) by assumption qed
himmelma@33175
  1850
himmelma@33175
  1851
lemma radon_partition:
himmelma@33175
  1852
  assumes "finite c" "affine_dependent c"
himmelma@33175
  1853
  shows "\<exists>m p. m \<inter> p = {} \<and> m \<union> p = c \<and> (convex hull m) \<inter> (convex hull p) \<noteq> {}" proof-
himmelma@33175
  1854
  obtain u v where uv:"setsum u c = 0" "v\<in>c" "u v \<noteq> 0"  "(\<Sum>v\<in>c. u v *\<^sub>R v) = 0" using radon_ex_lemma[OF assms] by auto
himmelma@33175
  1855
  have fin:"finite {x \<in> c. 0 < u x}" "finite {x \<in> c. 0 > u x}" using assms(1) by auto
himmelma@33175
  1856
  def z \<equiv> "(inverse (setsum u {x\<in>c. u x > 0})) *\<^sub>R setsum (\<lambda>x. u x *\<^sub>R x) {x\<in>c. u x > 0}"
himmelma@33175
  1857
  have "setsum u {x \<in> c. 0 < u x} \<noteq> 0" proof(cases "u v \<ge> 0")
himmelma@33175
  1858
    case False hence "u v < 0" by auto
himmelma@33175
  1859
    thus ?thesis proof(cases "\<exists>w\<in>{x \<in> c. 0 < u x}. u w > 0") 
himmelma@33175
  1860
      case True thus ?thesis using setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] by auto
himmelma@33175
  1861
    next
himmelma@33175
  1862
      case False hence "setsum u c \<le> setsum (\<lambda>x. if x=v then u v else 0) c" apply(rule_tac setsum_mono) by auto
himmelma@33175
  1863
      thus ?thesis unfolding setsum_delta[OF assms(1)] using uv(2) and `u v < 0` and uv(1) by auto qed
himmelma@33175
  1864
  qed (insert setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] uv(2-3), auto)
himmelma@33175
  1865
himmelma@33175
  1866
  hence *:"setsum u {x\<in>c. u x > 0} > 0" unfolding real_less_def apply(rule_tac conjI, rule_tac setsum_nonneg) by auto
himmelma@33175
  1867
  moreover have "setsum u ({x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}) = setsum u c"
himmelma@33175
  1868
    "(\<Sum>x\<in>{x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}. u x *\<^sub>R x) = (\<Sum>x\<in>c. u x *\<^sub>R x)"
himmelma@33175
  1869
    using assms(1) apply(rule_tac[!] setsum_mono_zero_left) by auto
himmelma@33175
  1870
  hence "setsum u {x \<in> c. 0 < u x} = - setsum u {x \<in> c. 0 > u x}"
himmelma@33175
  1871
   "(\<Sum>x\<in>{x \<in> c. 0 < u x}. u x *\<^sub>R x) = - (\<Sum>x\<in>{x \<in> c. 0 > u x}. u x *\<^sub>R x)" 
himmelma@33175
  1872
    unfolding eq_neg_iff_add_eq_0 using uv(1,4) by (auto simp add:  setsum_Un_zero[OF fin, THEN sym]) 
himmelma@33175
  1873
  moreover have "\<forall>x\<in>{v \<in> c. u v < 0}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * - u x" 
himmelma@33175
  1874
    apply (rule) apply (rule mult_nonneg_nonneg) using * by auto
himmelma@33175
  1875
himmelma@33175
  1876
  ultimately have "z \<in> convex hull {v \<in> c. u v \<le> 0}" unfolding convex_hull_explicit mem_Collect_eq
himmelma@33175
  1877
    apply(rule_tac x="{v \<in> c. u v < 0}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * - u y" in exI)
himmelma@33175
  1878
    using assms(1) unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and z_def
himmelma@33175
  1879
    by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym])
himmelma@33175
  1880
  moreover have "\<forall>x\<in>{v \<in> c. 0 < u v}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * u x" 
himmelma@33175
  1881
    apply (rule) apply (rule mult_nonneg_nonneg) using * by auto 
himmelma@33175
  1882
  hence "z \<in> convex hull {v \<in> c. u v > 0}" unfolding convex_hull_explicit mem_Collect_eq
himmelma@33175
  1883
    apply(rule_tac x="{v \<in> c. 0 < u v}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * u y" in exI)
himmelma@33175
  1884
    using assms(1) unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and z_def using *
himmelma@33175
  1885
    by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym])
himmelma@33175
  1886
  ultimately show ?thesis apply(rule_tac x="{v\<in>c. u v \<le> 0}" in exI, rule_tac x="{v\<in>c. u v > 0}" in exI) by auto
himmelma@33175
  1887
qed
himmelma@33175
  1888
himmelma@33175
  1889
lemma radon: assumes "affine_dependent c"
himmelma@33175
  1890
  obtains m p where "m\<subseteq>c" "p\<subseteq>c" "m \<inter> p = {}" "(convex hull m) \<inter> (convex hull p) \<noteq> {}"
himmelma@33175
  1891
proof- from assms[unfolded affine_dependent_explicit] guess s .. then guess u ..
himmelma@33175
  1892
  hence *:"finite s" "affine_dependent s" and s:"s \<subseteq> c" unfolding affine_dependent_explicit by auto
himmelma@33175
  1893
  from radon_partition[OF *] guess m .. then guess p ..
himmelma@33175
  1894
  thus ?thesis apply(rule_tac that[of p m]) using s by auto qed
himmelma@33175
  1895
himmelma@33175
  1896
subsection {* Helly's theorem. *}
himmelma@33175
  1897
hoelzl@34291
  1898
lemma helly_induct: fixes f::"(real^'n) set set"
hoelzl@33712
  1899
  assumes "card f = n" "n \<ge> CARD('n) + 1"
himmelma@33175
  1900
  "\<forall>s\<in>f. convex s" "\<forall>t\<subseteq>f. card t = CARD('n) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
himmelma@33175
  1901
  shows "\<Inter> f \<noteq> {}"
hoelzl@33712
  1902
using assms proof(induct n arbitrary: f)
himmelma@33175
  1903
case (Suc n)
hoelzl@33712
  1904
have "finite f" using `card f = Suc n` by (auto intro: card_ge_0_finite)
hoelzl@33712
  1905
show "\<Inter> f \<noteq> {}" apply(cases "n = CARD('n)") apply(rule Suc(5)[rule_format])
hoelzl@33712
  1906
  unfolding `card f = Suc n` proof-
himmelma@33175
  1907
  assume ng:"n \<noteq> CARD('n)" hence "\<exists>X. \<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" apply(rule_tac bchoice) unfolding ex_in_conv
hoelzl@33712
  1908
    apply(rule, rule Suc(1)[rule_format]) unfolding card_Diff_singleton_if[OF `finite f`] `card f = Suc n`
hoelzl@33712
  1909
    defer defer apply(rule Suc(4)[rule_format]) defer apply(rule Suc(5)[rule_format]) using Suc(3) `finite f` by auto
himmelma@33175
  1910
  then obtain X where X:"\<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" by auto
himmelma@33175
  1911
  show ?thesis proof(cases "inj_on X f")
himmelma@33175
  1912
    case False then obtain s t where st:"s\<noteq>t" "s\<in>f" "t\<in>f" "X s = X t" unfolding inj_on_def by auto
himmelma@33175
  1913
    hence *:"\<Inter> f = \<Inter> (f - {s}) \<inter> \<Inter> (f - {t})" by auto
himmelma@33175
  1914
    show ?thesis unfolding * unfolding ex_in_conv[THEN sym] apply(rule_tac x="X s" in exI)
himmelma@33175
  1915
      apply(rule, rule X[rule_format]) using X st by auto
himmelma@33175
  1916
  next case True then obtain m p where mp:"m \<inter> p = {}" "m \<union> p = X ` f" "convex hull m \<inter> convex hull p \<noteq> {}"
himmelma@33175
  1917
      using radon_partition[of "X ` f"] and affine_dependent_biggerset[of "X ` f"]
hoelzl@33712
  1918
      unfolding card_image[OF True] and `card f = Suc n` using Suc(3) `finite f` and ng by auto
himmelma@33175
  1919
    have "m \<subseteq> X ` f" "p \<subseteq> X ` f" using mp(2) by auto
himmelma@33175
  1920
    then obtain g h where gh:"m = X ` g" "p = X ` h" "g \<subseteq> f" "h \<subseteq> f" unfolding subset_image_iff by auto 
himmelma@33175
  1921
    hence "f \<union> (g \<union> h) = f" by auto
himmelma@33175
  1922
    hence f:"f = g \<union> h" using inj_on_Un_image_eq_iff[of X f "g \<union> h"] and True
himmelma@33175
  1923
      unfolding mp(2)[unfolded image_Un[THEN sym] gh] by auto
himmelma@33175
  1924
    have *:"g \<inter> h = {}" using mp(1) unfolding gh using inj_on_image_Int[OF True gh(3,4)] by auto
himmelma@33175
  1925
    have "convex hull (X ` h) \<subseteq> \<Inter> g" "convex hull (X ` g) \<subseteq> \<Inter> h"
hoelzl@33712
  1926
      apply(rule_tac [!] hull_minimal) using Suc gh(3-4)  unfolding mem_def unfolding subset_eq
himmelma@33175
  1927
      apply(rule_tac [2] convex_Inter, rule_tac [4] convex_Inter) apply rule prefer 3 apply rule proof-
himmelma@33175
  1928
      fix x assume "x\<in>X ` g" then guess y unfolding image_iff ..
himmelma@33175
  1929
      thus "x\<in>\<Inter>h" using X[THEN bspec[where x=y]] using * f by auto next
himmelma@33175
  1930
      fix x assume "x\<in>X ` h" then guess y unfolding image_iff ..
himmelma@33175
  1931
      thus "x\<in>\<Inter>g" using X[THEN bspec[where x=y]] using * f by auto
himmelma@33175
  1932
    qed(auto)
himmelma@33175
  1933
    thus ?thesis unfolding f using mp(3)[unfolded gh] by blast qed
himmelma@33175
  1934
qed(insert dimindex_ge_1, auto) qed(auto)
himmelma@33175
  1935
hoelzl@34291
  1936
lemma helly: fixes f::"(real^'n) set set"
hoelzl@33712
  1937
  assumes "card f \<ge> CARD('n) + 1" "\<forall>s\<in>f. convex s"
himmelma@33175
  1938
          "\<forall>t\<subseteq>f. card t = CARD('n) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
himmelma@33175
  1939
  shows "\<Inter> f \<noteq>{}"
hoelzl@33712
  1940
  apply(rule helly_induct) using assms by auto
himmelma@33175
  1941
himmelma@33175
  1942
subsection {* Convex hull is "preserved" by a linear function. *}
himmelma@33175
  1943
himmelma@33175
  1944
lemma convex_hull_linear_image:
himmelma@33175
  1945
  assumes "bounded_linear f"
himmelma@33175
  1946
  shows "f ` (convex hull s) = convex hull (f ` s)"
himmelma@33175
  1947
  apply rule unfolding subset_eq ball_simps apply(rule_tac[!] hull_induct, rule hull_inc) prefer 3  
himmelma@33175
  1948
  apply(erule imageE)apply(rule_tac x=xa in image_eqI) apply assumption
himmelma@33175
  1949
  apply(rule hull_subset[unfolded subset_eq, rule_format]) apply assumption
himmelma@33175
  1950
proof-
himmelma@33175
  1951
  interpret f: bounded_linear f by fact
himmelma@33175
  1952
  show "convex {x. f x \<in> convex hull f ` s}" 
himmelma@33175
  1953
  unfolding convex_def by(auto simp add: f.scaleR f.add convex_convex_hull[unfolded convex_def, rule_format]) next
himmelma@33175
  1954
  interpret f: bounded_linear f by fact
himmelma@33175
  1955
  show "convex {x. x \<in> f ` (convex hull s)}" using  convex_convex_hull[unfolded convex_def, of s] 
himmelma@33175
  1956
    unfolding convex_def by (auto simp add: f.scaleR [symmetric] f.add [symmetric])
himmelma@33175
  1957
qed auto
himmelma@33175
  1958
himmelma@33175
  1959
lemma in_convex_hull_linear_image:
himmelma@33175
  1960
  assumes "bounded_linear f" "x \<in> convex hull s"
himmelma@33175
  1961
  shows "(f x) \<in> convex hull (f ` s)"
himmelma@33175
  1962
using convex_hull_linear_image[OF assms(1)] assms(2) by auto
himmelma@33175
  1963
himmelma@33175
  1964
subsection {* Homeomorphism of all convex compact sets with nonempty interior. *}
himmelma@33175
  1965
himmelma@33175
  1966
lemma compact_frontier_line_lemma:
himmelma@33175
  1967
  fixes s :: "(real ^ _) set"
himmelma@33175
  1968
  assumes "compact s" "0 \<in> s" "x \<noteq> 0" 
himmelma@33175
  1969
  obtains u where "0 \<le> u" "(u *\<^sub>R x) \<in> frontier s" "\<forall>v>u. (v *\<^sub>R x) \<notin> s"
himmelma@33175
  1970
proof-
himmelma@33175
  1971
  obtain b where b:"b>0" "\<forall>x\<in>s. norm x \<le> b" using compact_imp_bounded[OF assms(1), unfolded bounded_pos] by auto
himmelma@33175
  1972
  let ?A = "{y. \<exists>u. 0 \<le> u \<and> u \<le> b / norm(x) \<and> (y = u *\<^sub>R x)}"
huffman@36427
  1973
  have A:"?A = (\<lambda>u. u *\<^sub>R x) ` {0 .. b / norm x}"
huffman@36427
  1974
    by auto
himmelma@33175
  1975
  have "compact ?A" unfolding A apply(rule compact_continuous_image, rule continuous_at_imp_continuous_on)
himmelma@33175
  1976
    apply(rule, rule continuous_vmul)
huffman@36427
  1977
    apply(rule continuous_at_id) by(rule compact_real_interval)
himmelma@33175
  1978
  moreover have "{y. \<exists>u\<ge>0. u \<le> b / norm x \<and> y = u *\<^sub>R x} \<inter> s \<noteq> {}" apply(rule not_disjointI[OF _ assms(2)])
himmelma@33175
  1979
    unfolding mem_Collect_eq using `b>0` assms(3) by(auto intro!: divide_nonneg_pos)
himmelma@33175
  1980
  ultimately obtain u y where obt: "u\<ge>0" "u \<le> b / norm x" "y = u *\<^sub>R x"
himmelma@33175
  1981
    "y\<in>?A" "y\<in>s" "\<forall>z\<in>?A \<inter> s. dist 0 z \<le> dist 0 y" using distance_attains_sup[OF compact_inter[OF _ assms(1), of ?A], of 0] by auto
himmelma@33175
  1982
himmelma@33175
  1983
  have "norm x > 0" using assms(3)[unfolded zero_less_norm_iff[THEN sym]] by auto
himmelma@33175
  1984
  { fix v assume as:"v > u" "v *\<^sub>R x \<in> s"
himmelma@33175
  1985
    hence "v \<le> b / norm x" using b(2)[rule_format, OF as(2)] 
himmelma@33175
  1986
      using `u\<ge>0` unfolding pos_le_divide_eq[OF `norm x > 0`] by auto
himmelma@33175
  1987
    hence "norm (v *\<^sub>R x) \<le> norm y" apply(rule_tac obt(6)[rule_format, unfolded dist_0_norm]) apply(rule IntI) defer 
himmelma@33175
  1988
      apply(rule as(2)) unfolding mem_Collect_eq apply(rule_tac x=v in exI) 
himmelma@33175
  1989
      using as(1) `u\<ge>0` by(auto simp add:field_simps) 
himmelma@33175
  1990
    hence False unfolding obt(3) using `u\<ge>0` `norm x > 0` `v>u` by(auto simp add:field_simps)
himmelma@33175
  1991
  } note u_max = this
himmelma@33175
  1992
himmelma@33175
  1993
  have "u *\<^sub>R x \<in> frontier s" unfolding frontier_straddle apply(rule,rule,rule) apply(rule_tac x="u *\<^sub>R x" in bexI) unfolding obt(3)[THEN sym]
himmelma@33175
  1994
    prefer 3 apply(rule_tac x="(u + (e / 2) / norm x) *\<^sub>R x" in exI) apply(rule, rule) proof-
himmelma@33175
  1995
    fix e  assume "0 < e" and as:"(u + e / 2 / norm x) *\<^sub>R x \<in> s"
himmelma@33175
  1996
    hence "u + e / 2 / norm x > u" using`norm x > 0` by(auto simp del:zero_less_norm_iff intro!: divide_pos_pos)
himmelma@33175
  1997
    thus False using u_max[OF _ as] by auto
himmelma@33175
  1998
  qed(insert `y\<in>s`, auto simp add: dist_norm scaleR_left_distrib obt(3))
nipkow@36071
  1999
  thus ?thesis by(metis that[of u] u_max obt(1))
nipkow@36071
  2000
qed
himmelma@33175
  2001
himmelma@33175
  2002
lemma starlike_compact_projective:
hoelzl@34291
  2003
  assumes "compact s" "cball (0::real^'n) 1 \<subseteq> s "
himmelma@33175
  2004
  "\<forall>x\<in>s. \<forall>u. 0 \<le> u \<and> u < 1 \<longrightarrow> (u *\<^sub>R x) \<in> (s - frontier s )"
hoelzl@34291
  2005
  shows "s homeomorphic (cball (0::real^'n) 1)"
himmelma@33175
  2006
proof-
himmelma@33175
  2007
  have fs:"frontier s \<subseteq> s" apply(rule frontier_subset_closed) using compact_imp_closed[OF assms(1)] by simp
himmelma@33175
  2008
  def pi \<equiv> "\<lambda>x::real^'n. inverse (norm x) *\<^sub>R x"
himmelma@33175
  2009
  have "0 \<notin> frontier s" unfolding frontier_straddle apply(rule ccontr) unfolding not_not apply(erule_tac x=1 in allE)
himmelma@33175
  2010
    using assms(2)[unfolded subset_eq Ball_def mem_cball] by auto
himmelma@33175
  2011
  have injpi:"\<And>x y. pi x = pi y \<and> norm x = norm y \<longleftrightarrow> x = y" unfolding pi_def by auto
himmelma@33175
  2012
himmelma@33175
  2013
  have contpi:"continuous_on (UNIV - {0}) pi" apply(rule continuous_at_imp_continuous_on)
himmelma@33175
  2014
    apply rule unfolding pi_def
himmelma@33175
  2015
    apply (rule continuous_mul)
himmelma@33175
  2016
    apply (rule continuous_at_inv[unfolded o_def])
himmelma@33175
  2017
    apply (rule continuous_at_norm)
himmelma@33175
  2018
    apply simp
himmelma@33175
  2019
    apply (rule continuous_at_id)
himmelma@33175
  2020
    done
himmelma@33175
  2021
  def sphere \<equiv> "{x::real^'n. norm x = 1}"
himmelma@33175
  2022
  have pi:"\<And>x. x \<noteq> 0 \<Longrightarrow> pi x \<in> sphere" "\<And>x u. u>0 \<Longrightarrow> pi (u *\<^sub>R x) = pi x" unfolding pi_def sphere_def by auto
himmelma@33175
  2023
himmelma@33175
  2024
  have "0\<in>s" using assms(2) and centre_in_cball[of 0 1] by auto
himmelma@33175
  2025
  have front_smul:"\<forall>x\<in>frontier s. \<forall>u\<ge>0. u *\<^sub>R x \<in> s \<longleftrightarrow> u \<le> 1" proof(rule,rule,rule)
himmelma@33175
  2026
    fix x u assume x:"x\<in>frontier s" and "(0::real)\<le>u"
himmelma@33175
  2027
    hence "x\<noteq>0" using `0\<notin>frontier s` by auto
himmelma@33175
  2028
    obtain v where v:"0 \<le> v" "v *\<^sub>R x \<in> frontier s" "\<forall>w>v. w *\<^sub>R x \<notin> s"
himmelma@33175
  2029
      using compact_frontier_line_lemma[OF assms(1) `0\<in>s` `x\<noteq>0`] by auto
himmelma@33175
  2030
    have "v=1" apply(rule ccontr) unfolding neq_iff apply(erule disjE) proof-
himmelma@33175
  2031
      assume "v<1" thus False using v(3)[THEN spec[where x=1]] using x and fs by auto next
himmelma@33175
  2032
      assume "v>1" thus False using assms(3)[THEN bspec[where x="v *\<^sub>R x"], THEN spec[where x="inverse v"]]
himmelma@33175
  2033
        using v and x and fs unfolding inverse_less_1_iff by auto qed
himmelma@33175
  2034
    show "u *\<^sub>R x \<in> s \<longleftrightarrow> u \<le> 1" apply rule  using v(3)[unfolded `v=1`, THEN spec[where x=u]] proof-
himmelma@33175
  2035
      assume "u\<le>1" thus "u *\<^sub>R x \<in> s" apply(cases "u=1")
himmelma@33175
  2036
        using assms(3)[THEN bspec[where x=x], THEN spec[where x=u]] using `0\<le>u` and x and fs by auto qed auto qed
himmelma@33175
  2037
himmelma@33175
  2038
  have "\<exists>surf. homeomorphism (frontier s) sphere pi surf"
himmelma@33175
  2039
    apply(rule homeomorphism_compact) apply(rule compact_frontier[OF assms(1)])
himmelma@33175
  2040
    apply(rule continuous_on_subset[OF contpi]) defer apply(rule set_ext,rule) 
himmelma@33175
  2041
    unfolding inj_on_def prefer 3 apply(rule,rule,rule)
himmelma@33175
  2042
  proof- fix x assume "x\<in>pi ` frontier s" then obtain y where "y\<in>frontier s" "x = pi y" by auto
himmelma@33175
  2043
    thus "x \<in> sphere" using pi(1)[of y] and `0 \<notin> frontier s` by auto
himmelma@33175
  2044
  next fix x assume "x\<in>sphere" hence "norm x = 1" "x\<noteq>0" unfolding sphere_def by auto
himmelma@33175
  2045
    then obtain u where "0 \<le> u" "u *\<^sub>R x \<in> frontier s" "\<forall>v>u. v *\<^sub>R x \<notin> s"
himmelma@33175
  2046
      using compact_frontier_line_lemma[OF assms(1) `0\<in>s`, of x] by auto
himmelma@33175
  2047
    thus "x \<in> pi ` frontier s" unfolding image_iff le_less pi_def apply(rule_tac x="u *\<^sub>R x" in bexI) using `norm x = 1` `0\<notin>frontier s` by auto
himmelma@33175
  2048
  next fix x y assume as:"x \<in> frontier s" "y \<in> frontier s" "pi x = pi y"
himmelma@33175
  2049
    hence xys:"x\<in>s" "y\<in>s" using fs by auto
himmelma@33175
  2050
    from as(1,2) have nor:"norm x \<noteq> 0" "norm y \<noteq> 0" using `0\<notin>frontier s` by auto 
himmelma@33175
  2051
    from nor have x:"x = norm x *\<^sub>R ((inverse (norm y)) *\<^sub>R y)" unfolding as(3)[unfolded pi_def, THEN sym] by auto 
himmelma@33175
  2052
    from nor have y:"y = norm y *\<^sub>R ((inverse (norm x)) *\<^sub>R x)" unfolding as(3)[unfolded pi_def] by auto 
himmelma@33175
  2053
    have "0 \<le> norm y * inverse (norm x)" "0 \<le> norm x * inverse (norm y)"
himmelma@33175
  2054
      unfolding divide_inverse[THEN sym] apply(rule_tac[!] divide_nonneg_pos) using nor by auto
himmelma@33175
  2055
    hence "norm x = norm y" apply(rule_tac ccontr) unfolding neq_iff
himmelma@33175
  2056
      using x y and front_smul[THEN bspec, OF as(1), THEN spec[where x="norm y * (inverse (norm x))"]]
himmelma@33175
  2057
      using front_smul[THEN bspec, OF as(2), THEN spec[where x="norm x * (inverse (norm y))"]]
himmelma@33175
  2058
      using xys nor by(auto simp add:field_simps divide_le_eq_1 divide_inverse[THEN sym])
himmelma@33175
  2059
    thus "x = y" apply(subst injpi[THEN sym]) using as(3) by auto
himmelma@33175
  2060
  qed(insert `0 \<notin> frontier s`, auto)
himmelma@33175
  2061
  then obtain surf where surf:"\<forall>x\<in>frontier s. surf (pi x) = x"  "pi ` frontier s = sphere" "continuous_on (frontier s) pi"
himmelma@33175
  2062
    "\<forall>y\<in>sphere. pi (surf y) = y" "surf ` sphere = frontier s" "continuous_on sphere surf" unfolding homeomorphism_def by auto
himmelma@33175
  2063
  
himmelma@33175
  2064
  have cont_surfpi:"continuous_on (UNIV -  {0}) (surf \<circ> pi)" apply(rule continuous_on_compose, rule contpi)
himmelma@33175
  2065
    apply(rule continuous_on_subset[of sphere], rule surf(6)) using pi(1) by auto
himmelma@33175
  2066
himmelma@33175
  2067
  { fix x assume as:"x \<in> cball (0::real^'n) 1"
himmelma@33175
  2068
    have "norm x *\<^sub>R surf (pi x) \<in> s" proof(cases "x=0 \<or> norm x = 1") 
himmelma@33175
  2069
      case False hence "pi x \<in> sphere" "norm x < 1" using pi(1)[of x] as by(auto simp add: dist_norm)
himmelma@33175
  2070
      thus ?thesis apply(rule_tac assms(3)[rule_format, THEN DiffD1])
himmelma@33175
  2071
        apply(rule_tac fs[unfolded subset_eq, rule_format])
himmelma@33175
  2072
        unfolding surf(5)[THEN sym] by auto
himmelma@33175
  2073
    next case True thus ?thesis apply rule defer unfolding pi_def apply(rule fs[unfolded subset_eq, rule_format])
himmelma@33175
  2074
        unfolding  surf(5)[unfolded sphere_def, THEN sym] using `0\<in>s` by auto qed } note hom = this
himmelma@33175
  2075
himmelma@33175
  2076
  { fix x assume "x\<in>s"
himmelma@33175
  2077
    hence "x \<in> (\<lambda>x. norm x *\<^sub>R surf (pi x)) ` cball 0 1" proof(cases "x=0")
himmelma@33175
  2078
      case True show ?thesis unfolding image_iff True apply(rule_tac x=0 in bexI) by auto
himmelma@33175
  2079
    next let ?a = "inverse (norm (surf (pi x)))"
himmelma@33175
  2080
      case False hence invn:"inverse (norm x) \<noteq> 0" by auto
himmelma@33175
  2081
      from False have pix:"pi x\<in>sphere" using pi(1) by auto
himmelma@33175
  2082
      hence "pi (surf (pi x)) = pi x" apply(rule_tac surf(4)[rule_format]) by assumption
himmelma@33175
  2083
      hence **:"norm x *\<^sub>R (?a *\<^sub>R surf (pi x)) = x" apply(rule_tac scaleR_left_imp_eq[OF invn]) unfolding pi_def using invn by auto
himmelma@33175
  2084
      hence *:"?a * norm x > 0" and"?a > 0" "?a \<noteq> 0" using surf(5) `0\<notin>frontier s` apply -
himmelma@33175
  2085
        apply(rule_tac mult_pos_pos) using False[unfolded zero_less_norm_iff[THEN sym]] by auto
himmelma@33175
  2086
      have "norm (surf (pi x)) \<noteq> 0" using ** False by auto
himmelma@33175
  2087
      hence "norm x = norm ((?a * norm x) *\<^sub>R surf (pi x))"
himmelma@33175
  2088
        unfolding norm_scaleR abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`] by auto
himmelma@33175
  2089
      moreover have "pi x = pi ((inverse (norm (surf (pi x))) * norm x) *\<^sub>R surf (pi x))" 
himmelma@33175
  2090
        unfolding pi(2)[OF *] surf(4)[rule_format, OF pix] ..
himmelma@33175
  2091
      moreover have "surf (pi x) \<in> frontier s" using surf(5) pix by auto
himmelma@33175
  2092
      hence "dist 0 (inverse (norm (surf (pi x))) *\<^sub>R x) \<le> 1" unfolding dist_norm
himmelma@33175
  2093
        using ** and * using front_smul[THEN bspec[where x="surf (pi x)"], THEN spec[where x="norm x * ?a"]]
himmelma@33175
  2094
        using False `x\<in>s` by(auto simp add:field_simps)
himmelma@33175
  2095
      ultimately show ?thesis unfolding image_iff apply(rule_tac x="inverse (norm (surf(pi x))) *\<^sub>R x" in bexI)
himmelma@33175
  2096
        apply(subst injpi[THEN sym]) unfolding abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`]
himmelma@33175
  2097
        unfolding pi(2)[OF `?a > 0`] by auto
himmelma@33175
  2098
    qed } note hom2 = this
himmelma@33175
  2099
himmelma@33175
  2100
  show ?thesis apply(subst homeomorphic_sym) apply(rule homeomorphic_compact[where f="\<lambda>x. norm x *\<^sub>R surf (pi x)"])
himmelma@33175
  2101
    apply(rule compact_cball) defer apply(rule set_ext, rule, erule imageE, drule hom)
himmelma@33175
  2102
    prefer 4 apply(rule continuous_at_imp_continuous_on, rule) apply(rule_tac [3] hom2) proof-
himmelma@33175
  2103
    fix x::"real^'n" assume as:"x \<in> cball 0 1"
himmelma@33175
  2104
    thus "continuous (at x) (\<lambda>x. norm x *\<^sub>R surf (pi x))" proof(cases "x=0")
himmelma@33175
  2105
      case False thus ?thesis apply(rule_tac continuous_mul, rule_tac continuous_at_norm)
himmelma@33175
  2106
        using cont_surfpi unfolding continuous_on_eq_continuous_at[OF open_delete[OF open_UNIV]] o_def by auto
himmelma@33175
  2107
    next guess a using UNIV_witness[where 'a = 'n] ..
himmelma@33175
  2108
      obtain B where B:"\<forall>x\<in>s. norm x \<le> B" using compact_imp_bounded[OF assms(1)] unfolding bounded_iff by auto
himmelma@33175
  2109
      hence "B > 0" using assms(2) unfolding subset_eq apply(erule_tac x="basis a" in ballE) defer apply(erule_tac x="basis a" in ballE)
himmelma@33175
  2110
        unfolding Ball_def mem_cball dist_norm by (auto simp add: norm_basis[unfolded One_nat_def])
himmelma@33175
  2111
      case True show ?thesis unfolding True continuous_at Lim_at apply(rule,rule) apply(rule_tac x="e / B" in exI)
himmelma@33175
  2112
        apply(rule) apply(rule divide_pos_pos) prefer 3 apply(rule,rule,erule conjE)
huffman@36586
  2113
        unfolding norm_zero scaleR_zero_left dist_norm diff_0_right norm_scaleR abs_norm_cancel proof-
himmelma@33175
  2114
        fix e and x::"real^'n" assume as:"norm x < e / B" "0 < norm x" "0<e"
himmelma@33175
  2115
        hence "surf (pi x) \<in> frontier s" using pi(1)[of x] unfolding surf(5)[THEN sym] by auto
himmelma@33175
  2116
        hence "norm (surf (pi x)) \<le> B" using B fs by auto
himmelma@33175
  2117
        hence "norm x * norm (surf (pi x)) \<le> norm x * B" using as(2) by auto
himmelma@33175
  2118
        also have "\<dots> < e / B * B" apply(rule mult_strict_right_mono) using as(1) `B>0` by auto
himmelma@33175
  2119
        also have "\<dots> = e" using `B>0` by auto
himmelma@33175
  2120
        finally show "norm x * norm (surf (pi x)) < e" by assumption
himmelma@33175
  2121
      qed(insert `B>0`, auto) qed
himmelma@33175
  2122
  next { fix x assume as:"surf (pi x) = 0"
himmelma@33175
  2123
      have "x = 0" proof(rule ccontr)
himmelma@33175
  2124
        assume "x\<noteq>0" hence "pi x \<in> sphere" using pi(1) by auto
himmelma@33175
  2125
        hence "surf (pi x) \<in> frontier s" using surf(5) by auto
himmelma@33175
  2126
        thus False using `0\<notin>frontier s` unfolding as by simp qed
himmelma@33175
  2127
    } note surf_0 = this
himmelma@33175
  2128
    show "inj_on (\<lambda>x. norm x *\<^sub>R surf (pi x)) (cball 0 1)" unfolding inj_on_def proof(rule,rule,rule)
himmelma@33175
  2129
      fix x y assume as:"x \<in> cball 0 1" "y \<in> cball 0 1" "norm x *\<^sub>R surf (pi x) = norm y *\<^sub>R surf (pi y)"
himmelma@33175
  2130
      thus "x=y" proof(cases "x=0 \<or> y=0") 
himmelma@33175
  2131
        case True thus ?thesis using as by(auto elim: surf_0) next
himmelma@33175
  2132
        case False
himmelma@33175
  2133
        hence "pi (surf (pi x)) = pi (surf (pi y))" using as(3)
himmelma@33175
  2134
          using pi(2)[of "norm x" "surf (pi x)"] pi(2)[of "norm y" "surf (pi y)"] by auto
himmelma@33175
  2135
        moreover have "pi x \<in> sphere" "pi y \<in> sphere" using pi(1) False by auto
himmelma@33175
  2136
        ultimately have *:"pi x = pi y" using surf(4)[THEN bspec[where x="pi x"]] surf(4)[THEN bspec[where x="pi y"]] by auto 
himmelma@33175
  2137
        moreover have "norm x = norm y" using as(3)[unfolded *] using False by(auto dest:surf_0)
himmelma@33175
  2138
        ultimately show ?thesis using injpi by auto qed qed
himmelma@33175
  2139
  qed auto qed
himmelma@33175
  2140
hoelzl@34291
  2141
lemma homeomorphic_convex_compact_lemma: fixes s::"(real^'n) set"
himmelma@33175
  2142
  assumes "convex s" "compact s" "cball 0 1 \<subseteq> s"
himmelma@33175
  2143
  shows "s homeomorphic (cball (0::real^'n) 1)"
himmelma@33175
  2144
  apply(rule starlike_compact_projective[OF assms(2-3)]) proof(rule,rule,rule,erule conjE)
himmelma@33175
  2145
  fix x u assume as:"x \<in> s" "0 \<le> u" "u < (1::real)"
himmelma@33175
  2146
  hence "u *\<^sub>R x \<in> interior s" unfolding interior_def mem_Collect_eq
himmelma@33175
  2147
    apply(rule_tac x="ball (u *\<^sub>R x) (1 - u)" in exI) apply(rule, rule open_ball)
himmelma@33175
  2148
    unfolding centre_in_ball apply rule defer apply(rule) unfolding mem_ball proof-
himmelma@33175
  2149
    fix y assume "dist (u *\<^sub>R x) y < 1 - u"
himmelma@33175
  2150
    hence "inverse (1 - u) *\<^sub>R (y - u *\<^sub>R x) \<in> s"
himmelma@33175
  2151
      using assms(3) apply(erule_tac subsetD) unfolding mem_cball dist_commute dist_norm
himmelma@33175
  2152
      unfolding group_add_class.diff_0 group_add_class.diff_0_right norm_minus_cancel norm_scaleR
himmelma@33175
  2153
      apply (rule mult_left_le_imp_le[of "1 - u"])
himmelma@33175
  2154
      unfolding class_semiring.mul_a using `u<1` by auto
himmelma@33175
  2155
    thus "y \<in> s" using assms(1)[unfolded convex_def, rule_format, of "inverse(1 - u) *\<^sub>R (y - u *\<^sub>R x)" x "1 - u" u]
himmelma@33175
  2156
      using as unfolding scaleR_scaleR by auto qed auto
himmelma@33175
  2157
  thus "u *\<^sub>R x \<in> s - frontier s" using frontier_def and interior_subset by auto qed
himmelma@33175
  2158
hoelzl@34291
  2159
lemma homeomorphic_convex_compact_cball: fixes e::real and s::"(real^'n) set"
himmelma@33175
  2160
  assumes "convex s" "compact s" "interior s \<noteq> {}" "0 < e"
hoelzl@34291
  2161
  shows "s homeomorphic (cball (b::real^'n) e)"
himmelma@33175
  2162
proof- obtain a where "a\<in>interior s" using assms(3) by auto
himmelma@33175
  2163
  then obtain d where "d>0" and d:"cball a d \<subseteq> s" unfolding mem_interior_cball by auto
himmelma@33175
  2164
  let ?d = "inverse d" and ?n = "0::real^'n"
himmelma@33175
  2165
  have "cball ?n 1 \<subseteq> (\<lambda>x. inverse d *\<^sub>R (x - a)) ` s"
himmelma@33175
  2166
    apply(rule, rule_tac x="d *\<^sub>R x + a" in image_eqI) defer
himmelma@33175
  2167
    apply(rule d[unfolded subset_eq, rule_format]) using `d>0` unfolding mem_cball dist_norm
himmelma@33175
  2168
    by(auto simp add: mult_right_le_one_le)
himmelma@33175
  2169
  hence "(\<lambda>x. inverse d *\<^sub>R (x - a)) ` s homeomorphic cball ?n 1"
himmelma@33175
  2170
    using homeomorphic_convex_compact_lemma[of "(\<lambda>x. ?d *\<^sub>R -a + ?d *\<^sub>R x) ` s", OF convex_affinity compact_affinity]
himmelma@33175
  2171
    using assms(1,2) by(auto simp add: uminus_add_conv_diff scaleR_right_diff_distrib)
himmelma@33175
  2172
  thus ?thesis apply(rule_tac homeomorphic_trans[OF _ homeomorphic_balls(2)[of 1 _ ?n]])
himmelma@33175
  2173
    apply(rule homeomorphic_trans[OF homeomorphic_affinity[of "?d" s "?d *\<^sub>R -a"]])
himmelma@33175
  2174
    using `d>0` `e>0` by(auto simp add: uminus_add_conv_diff scaleR_right_diff_distrib) qed
himmelma@33175
  2175
hoelzl@34291
  2176
lemma homeomorphic_convex_compact: fixes s::"(real^'n) set" and t::"(real^'n) set"
himmelma@33175
  2177
  assumes "convex s" "compact s" "interior s \<noteq> {}"
himmelma@33175
  2178
          "convex t" "compact t" "interior t \<noteq> {}"
himmelma@33175
  2179
  shows "s homeomorphic t"
himmelma@33175
  2180
  using assms by(meson zero_less_one homeomorphic_trans homeomorphic_convex_compact_cball homeomorphic_sym)
himmelma@33175
  2181
himmelma@33175
  2182
subsection {* Epigraphs of convex functions. *}
himmelma@33175
  2183
huffman@36329
  2184
definition "epigraph s (f::_ \<Rightarrow> real) = {xy. fst xy \<in> s \<and> f (fst xy) \<le> snd xy}"
huffman@36329
  2185
huffman@36329
  2186
lemma mem_epigraph: "(x, y) \<in> epigraph s f \<longleftrightarrow> x \<in> s \<and> f x \<le> y" unfolding epigraph_def by auto
himmelma@33175
  2187
hoelzl@34951
  2188
(** This might break sooner or later. In fact it did already once. **)
himmelma@33175
  2189
lemma convex_epigraph: 
himmelma@33175
  2190
  "convex(epigraph s f) \<longleftrightarrow> convex_on s f \<and> convex s"
huffman@36329
  2191
  unfolding convex_def convex_on_def
huffman@36329
  2192
  unfolding Ball_def split_paired_All epigraph_def
huffman@36329
  2193
  unfolding mem_Collect_eq fst_conv snd_conv fst_add snd_add fst_scaleR snd_scaleR Ball_def[symmetric]
hoelzl@34951
  2194
  apply safe defer apply(erule_tac x=x in allE,erule_tac x="f x" in allE) apply safe
hoelzl@34951
  2195
  apply(erule_tac x=xa in allE,erule_tac x="f xa" in allE) prefer 3
huffman@36329
  2196
  apply(rule_tac y="u * f a + v * f aa" in order_trans) defer by(auto intro!:mult_left_mono add_mono)
himmelma@33175
  2197
nipkow@36071
  2198
lemma convex_epigraphI:
nipkow@36071
  2199
  "convex_on s f \<Longrightarrow> convex s \<Longrightarrow> convex(epigraph s f)"
nipkow@36071
  2200
unfolding convex_epigraph by auto
nipkow@36071
  2201
nipkow@36071
  2202
lemma convex_epigraph_convex:
nipkow@36071
  2203
  "convex s \<Longrightarrow> convex_on s f \<longleftrightarrow> convex(epigraph s f)"
nipkow@36071
  2204
by(simp add: convex_epigraph)
himmelma@33175
  2205
himmelma@33175
  2206
subsection {* Use this to derive general bound property of convex function. *}
himmelma@33175
  2207
himmelma@33175
  2208
lemma forall_of_pastecart:
himmelma@33175
  2209
  "(\<forall>p. P (\<lambda>x. fstcart (p x)) (\<lambda>x. sndcart (p x))) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson
himmelma@33175
  2210
  apply(erule_tac x="\<lambda>a. pastecart (x a) (y a)" in allE) unfolding o_def by auto
himmelma@33175
  2211
himmelma@33175
  2212
lemma forall_of_pastecart':
himmelma@33175
  2213
  "(\<forall>p. P (fstcart p) (sndcart p)) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson
himmelma@33175
  2214
  apply(erule_tac x="pastecart x y" in allE) unfolding o_def by auto
himmelma@33175
  2215
huffman@36427
  2216
(* TODO: move *)
huffman@36329
  2217
lemma fst_setsum: "fst (\<Sum>x\<in>A. f x) = (\<Sum>x\<in>A. fst (f x))"
huffman@36329
  2218
by (cases "finite A", induct set: finite, simp_all)
huffman@36329
  2219
huffman@36427
  2220
(* TODO: move *)
huffman@36329
  2221
lemma snd_setsum: "snd (\<Sum>x\<in>A. f x) = (\<Sum>x\<in>A. snd (f x))"
huffman@36329
  2222
by (cases "finite A", induct set: finite, simp_all)
huffman@36329
  2223
himmelma@33175
  2224
lemma convex_on:
himmelma@33175
  2225
  assumes "convex s"
himmelma@33175
  2226
  shows "convex_on s f \<longleftrightarrow> (\<forall>k u x. (\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow>
himmelma@33175
  2227
   f (setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} ) \<le> setsum (\<lambda>i. u i * f(x i)) {1..k} ) "
himmelma@33175
  2228
  unfolding convex_epigraph_convex[OF assms] convex epigraph_def Ball_def mem_Collect_eq
huffman@36329
  2229
  unfolding fst_setsum snd_setsum fst_scaleR snd_scaleR
huffman@36329
  2230
  apply safe
huffman@36329
  2231
  apply (drule_tac x=k in spec)
huffman@36329
  2232
  apply (drule_tac x=u in spec)
huffman@36329
  2233
  apply (drule_tac x="\<lambda>i. (x i, f (x i))" in spec)
huffman@36329
  2234
  apply simp
huffman@36329
  2235
  using assms[unfolded convex] apply simp
huffman@36329
  2236
  apply(rule_tac j="\<Sum>i = 1..k. u i * f (fst (x i))" in real_le_trans)
huffman@36329
  2237
  defer apply(rule setsum_mono) apply(erule_tac x=i in allE) unfolding real_scaleR_def
hoelzl@34951
  2238
  apply(rule mult_left_mono)using assms[unfolded convex] by auto
himmelma@33175
  2239
huffman@36329
  2240
himmelma@33175
  2241
subsection {* Convexity of general and special intervals. *}
himmelma@33175
  2242
himmelma@33175
  2243
lemma is_interval_convex:
himmelma@33175
  2244
  fixes s :: "(real ^ _) set"
himmelma@33175
  2245
  assumes "is_interval s" shows "convex s"
himmelma@33175
  2246
  unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof-
himmelma@33175
  2247
  fix x y u v assume as:"x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"
himmelma@33175
  2248
  hence *:"u = 1 - v" "1 - v \<ge> 0" and **:"v = 1 - u" "1 - u \<ge> 0" by auto
himmelma@33175
  2249
  { fix a b assume "\<not> b \<le> u * a + v * b"
himmelma@33175
  2250
    hence "u * a < (1 - v) * b" unfolding not_le using as(4) by(auto simp add: field_simps)
himmelma@33175
  2251
    hence "a < b" unfolding * using as(4) *(2) apply(rule_tac mult_left_less_imp_less[of "1 - v"]) by(auto simp add: field_simps)
himmelma@33175
  2252
    hence "a \<le> u * a + v * b" unfolding * using as(4) by (auto simp add: field_simps intro!:mult_right_mono)
himmelma@33175
  2253
  } moreover
himmelma@33175
  2254
  { fix a b assume "\<not> u * a + v * b \<le> a"
himmelma@33175
  2255
    hence "v * b > (1 - u) * a" unfolding not_le using as(4) by(auto simp add: field_simps)
haftmann@36349
  2256
    hence "a < b" unfolding * using as(4) apply(rule_tac mult_left_less_imp_less) by(auto simp add: field_simps)
himmelma@33175
  2257
    hence "u * a + v * b \<le> b" unfolding ** using **(2) as(3) by(auto simp add: field_simps intro!:mult_right_mono) }
himmelma@33175
  2258
  ultimately show "u *\<^sub>R x + v *\<^sub>R y \<in> s" apply- apply(rule assms[unfolded is_interval_def, rule_format, OF as(1,2)])
huffman@36358
  2259
    using as(3-) dimindex_ge_1 by auto qed
himmelma@33175
  2260
himmelma@33175
  2261
lemma is_interval_connected:
himmelma@33175
  2262
  fixes s :: "(real ^ _) set"
himmelma@33175
  2263
  shows "is_interval s \<Longrightarrow> connected s"
himmelma@33175
  2264
  using is_interval_convex convex_connected by auto
himmelma@33175
  2265
hoelzl@34291
  2266
lemma convex_interval: "convex {a .. b}" "convex {a<..<b::real^'n}"
himmelma@33175
  2267
  apply(rule_tac[!] is_interval_convex) using is_interval_interval by auto
himmelma@33175
  2268
huffman@36427
  2269
(* FIXME: rewrite these lemmas without using vec1
himmelma@33175
  2270
subsection {* On @{text "real^1"}, @{text "is_interval"}, @{text "convex"} and @{text "connected"} are all equivalent. *}
himmelma@33175
  2271
himmelma@33175
  2272
lemma is_interval_1:
himmelma@33175
  2273
  "is_interval s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. \<forall> x. dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b \<longrightarrow> x \<in> s)"
hoelzl@34951
  2274
  unfolding is_interval_def forall_1 by auto
himmelma@33175
  2275
himmelma@33175
  2276
lemma is_interval_connected_1: "is_interval s \<longleftrightarrow> connected (s::(real^1) set)"
himmelma@33175
  2277
  apply(rule, rule is_interval_connected, assumption) unfolding is_interval_1
himmelma@33175
  2278
  apply(rule,rule,rule,rule,erule conjE,rule ccontr) proof-
himmelma@33175
  2279
  fix a b x assume as:"connected s" "a \<in> s" "b \<in> s" "dest_vec1 a \<le> dest_vec1 x" "dest_vec1 x \<le> dest_vec1 b" "x\<notin>s"
himmelma@33175
  2280
  hence *:"dest_vec1 a < dest_vec1 x" "dest_vec1 x < dest_vec1 b" apply(rule_tac [!] ccontr) unfolding not_less by auto
himmelma@33175
  2281
  let ?halfl = "{z. inner (basis 1) z < dest_vec1 x} " and ?halfr = "{z. inner (basis 1) z > dest_vec1 x} "
himmelma@33175
  2282
  { fix y assume "y \<in> s" have "y \<in> ?halfr \<union> ?halfl" apply(rule ccontr)
huffman@36358
  2283
    using as(6) `y\<in>s` by (auto simp add: inner_vector_def) }
hoelzl@34951
  2284
  moreover have "a\<in>?halfl" "b\<in>?halfr" using * by (auto simp add: inner_vector_def)
himmelma@33175
  2285
  hence "?halfl \<inter> s \<noteq> {}" "?halfr \<inter> s \<noteq> {}"  using as(2-3) by auto
himmelma@33175
  2286
  ultimately show False apply(rule_tac notE[OF as(1)[unfolded connected_def]])
himmelma@33175
  2287
    apply(rule_tac x="?halfl" in exI, rule_tac x="?halfr" in exI) 
nipkow@36071
  2288
    apply(rule, rule open_halfspace_lt, rule, rule open_halfspace_gt)
nipkow@36071
  2289
    by(auto simp add: field_simps) qed
himmelma@33175
  2290
himmelma@33175
  2291
lemma is_interval_convex_1:
himmelma@33175
  2292
  "is_interval s \<longleftrightarrow> convex (s::(real^1) set)" 
nipkow@36071
  2293
by(metis is_interval_convex convex_connected is_interval_connected_1)
himmelma@33175
  2294
himmelma@33175
  2295
lemma convex_connected_1:
himmelma@33175
  2296
  "connected s \<longleftrightarrow> convex (s::(real^1) set)" 
nipkow@36071
  2297
by(metis is_interval_convex convex_connected is_interval_connected_1)
huffman@36427
  2298
*)
himmelma@33175
  2299
subsection {* Another intermediate value theorem formulation. *}
himmelma@33175
  2300
huffman@36427
  2301
lemma ivt_increasing_component_on_1: fixes f::"real \<Rightarrow> real^'n"
huffman@36427
  2302
  assumes "a \<le> b" "continuous_on {a .. b} f" "(f a)$k \<le> y" "y \<le> (f b)$k"
himmelma@33175
  2303
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
himmelma@33175
  2304
proof- have "f a \<in> f ` {a..b}" "f b \<in> f ` {a..b}" apply(rule_tac[!] imageI) 
hoelzl@34951
  2305
    using assms(1) by(auto simp add: vector_le_def)
himmelma@33175
  2306
  thus ?thesis using connected_ivt_component[of "f ` {a..b}" "f a" "f b" k y]
huffman@36427
  2307
    using connected_continuous_image[OF assms(2) convex_connected[OF convex_real_interval(5)]]
himmelma@33175
  2308
    using assms by(auto intro!: imageI) qed
himmelma@33175
  2309
huffman@36427
  2310
lemma ivt_increasing_component_1: fixes f::"real \<Rightarrow> real^'n"
huffman@36427
  2311
  shows "a \<le> b \<Longrightarrow> \<forall>x\<in>{a .. b}. continuous (at x) f
nipkow@36071
  2312
   \<Longrightarrow> f a$k \<le> y \<Longrightarrow> y \<le> f b$k \<Longrightarrow> \<exists>x\<in>{a..b}. (f x)$k = y"
nipkow@36071
  2313
by(rule ivt_increasing_component_on_1)
nipkow@36071
  2314
  (auto simp add: continuous_at_imp_continuous_on)
himmelma@33175
  2315
huffman@36427
  2316
lemma ivt_decreasing_component_on_1: fixes f::"real \<Rightarrow> real^'n"
huffman@36427
  2317
  assumes "a \<le> b" "continuous_on {a .. b} f" "(f b)$k \<le> y" "y \<le> (f a)$k"
himmelma@33175
  2318
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
himmelma@33175
  2319
  apply(subst neg_equal_iff_equal[THEN sym]) unfolding vector_uminus_component[THEN sym]
himmelma@33175
  2320
  apply(rule ivt_increasing_component_on_1) using assms using continuous_on_neg
huffman@36358
  2321
  by auto
himmelma@33175
  2322
huffman@36427
  2323
lemma ivt_decreasing_component_1: fixes f::"real \<Rightarrow> real^'n"
huffman@36427
  2324
  shows "a \<le> b \<Longrightarrow> \<forall>x\<in>{a .. b}. continuous (at x) f
nipkow@36071
  2325
    \<Longrightarrow> f b$k \<le> y \<Longrightarrow> y \<le> f a$k \<Longrightarrow> \<exists>x\<in>{a..b}. (f x)$k = y"
nipkow@36071
  2326
by(rule ivt_decreasing_component_on_1)
nipkow@36071
  2327
  (auto simp: continuous_at_imp_continuous_on)
himmelma@33175
  2328
himmelma@33175
  2329
subsection {* A bound within a convex hull, and so an interval. *}
himmelma@33175
  2330
himmelma@33175
  2331
lemma convex_on_convex_hull_bound:
himmelma@33175
  2332
  assumes "convex_on (convex hull s) f" "\<forall>x\<in>s. f x \<le> b"
himmelma@33175
  2333
  shows "\<forall>x\<in> convex hull s. f x \<le> b" proof
himmelma@33175
  2334
  fix x assume "x\<in>convex hull s"
himmelma@33175
  2335
  then obtain k u v where obt:"\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> v i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R v i) = x"
himmelma@33175
  2336
    unfolding convex_hull_indexed mem_Collect_eq by auto
himmelma@33175
  2337
  have "(\<Sum>i = 1..k. u i * f (v i)) \<le> b" using setsum_mono[of "{1..k}" "\<lambda>i. u i * f (v i)" "\<lambda>i. u i * b"]
himmelma@33175
  2338
    unfolding setsum_left_distrib[THEN sym] obt(2) mult_1 apply(drule_tac meta_mp) apply(rule mult_left_mono)
himmelma@33175
  2339
    using assms(2) obt(1) by auto
himmelma@33175
  2340
  thus "f x \<le> b" using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v]
himmelma@33175
  2341
    unfolding obt(2-3) using obt(1) and hull_subset[unfolded subset_eq, rule_format, of _ s] by auto qed
himmelma@33175
  2342
himmelma@33175
  2343
lemma unit_interval_convex_hull:
hoelzl@34291
  2344
  "{0::real^'n .. 1} = convex hull {x. \<forall>i. (x$i = 0) \<or> (x$i = 1)}" (is "?int = convex hull ?points")
himmelma@33175
  2345
proof- have 01:"{0,1} \<subseteq> convex hull ?points" apply rule apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) by auto
himmelma@33175
  2346
  { fix n x assume "x\<in>{0::real^'n .. 1}" "n \<le> CARD('n)" "card {i. x$i \<noteq> 0} \<le> n" 
himmelma@33175
  2347
  hence "x\<in>convex hull ?points" proof(induct n arbitrary: x)
himmelma@33175
  2348
    case 0 hence "x = 0" apply(subst Cart_eq) apply rule by auto
himmelma@33175
  2349
    thus "x\<in>convex hull ?points" using 01 by auto
himmelma@33175
  2350
  next
himmelma@33175
  2351
    case (Suc n) show "x\<in>convex hull ?points" proof(cases "{i. x$i \<noteq> 0} = {}")
himmelma@33175
  2352
      case True hence "x = 0" unfolding Cart_eq by auto
himmelma@33175
  2353
      thus "x\<in>convex hull ?points" using 01 by auto
himmelma@33175
  2354
    next
himmelma@33175
  2355
      case False def xi \<equiv> "Min ((\<lambda>i. x$i) ` {i. x$i \<noteq> 0})"
himmelma@33175
  2356
      have "xi \<in> (\<lambda>i. x$i) ` {i. x$i \<noteq> 0}" unfolding xi_def apply(rule Min_in) using False by auto
himmelma@33175
  2357
      then obtain i where i':"x$i = xi" "x$i \<noteq> 0" by auto
himmelma@33175
  2358
      have i:"\<And>j. x$j > 0 \<Longrightarrow> x$i \<le> x$j"
himmelma@33175
  2359
        unfolding i'(1) xi_def apply(rule_tac Min_le) unfolding image_iff
himmelma@33175
  2360
        defer apply(rule_tac x=j in bexI) using i' by auto
himmelma@33175
  2361
      have i01:"x$i \<le> 1" "x$i > 0" using Suc(2)[unfolded mem_interval,rule_format,of i] using i'(2) `x$i \<noteq> 0`
huffman@36358
  2362
        by auto
himmelma@33175
  2363
      show ?thesis proof(cases "x$i=1")
himmelma@33175
  2364
        case True have "\<forall>j\<in>{i. x$i \<noteq> 0}. x$j = 1" apply(rule, rule ccontr) unfolding mem_Collect_eq proof-
himmelma@33175
  2365
          fix j assume "x $ j \<noteq> 0" "x $ j \<noteq> 1"
hoelzl@33758
  2366
          hence j:"x$j \<in> {0<..<1}" using Suc(2) by(auto simp add: vector_le_def elim!:allE[where x=j])
himmelma@33175
  2367
          hence "x$j \<in> op $ x ` {i. x $ i \<noteq> 0}" by auto 
himmelma@33175
  2368
          hence "x$j \<ge> x$i" unfolding i'(1) xi_def apply(rule_tac Min_le) by auto
hoelzl@33758
  2369
          thus False using True Suc(2) j by(auto simp add: vector_le_def elim!:ballE[where x=j]) qed
himmelma@33175
  2370
        thus "x\<in>convex hull ?points" apply(rule_tac hull_subset[unfolded subset_eq, rule_format])
huffman@36358
  2371
          by auto
himmelma@33175
  2372
      next let ?y = "\<lambda>j. if x$j = 0 then 0 else (x$j - x$i) / (1 - x$i)"
himmelma@33175
  2373
        case False hence *:"x = x$i *\<^sub>R (\<chi> j. if x$j = 0 then 0 else 1) + (1 - x$i) *\<^sub>R (\<chi> j. ?y j)" unfolding Cart_eq
huffman@36358
  2374
          by(auto simp add: field_simps)
himmelma@33175
  2375
        { fix j have "x$j \<noteq> 0 \<Longrightarrow> 0 \<le> (x $ j - x $ i) / (1 - x $ i)" "(x $ j - x $ i) / (1 - x $ i) \<le> 1"
himmelma@33175
  2376
            apply(rule_tac divide_nonneg_pos) using i(1)[of j] using False i01
huffman@36358
  2377
            using Suc(2)[unfolded mem_interval, rule_format, of j] by(auto simp add:field_simps)
himmelma@33175
  2378
          hence "0 \<le> ?y j \<and> ?y j \<le> 1" by auto }
huffman@36358
  2379
        moreover have "i\<in>{j. x$j \<noteq> 0} - {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0}" using i01 by auto
hoelzl@34291
  2380
        hence "{j. x$j \<noteq> 0} \<noteq> {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0}" by auto
huffman@36358
  2381
        hence **:"{j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0} \<subset> {j. x$j \<noteq> 0}" apply - apply rule by auto
himmelma@33175
  2382
        have "card {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0} \<le> n" using less_le_trans[OF psubset_card_mono[OF _ **] Suc(4)] by auto
himmelma@33175
  2383
        ultimately show ?thesis apply(subst *) apply(rule convex_convex_hull[unfolded convex_def, rule_format])
himmelma@33175
  2384
          apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) defer apply(rule Suc(1))
huffman@36358
  2385
          unfolding mem_interval using i01 Suc(3) by auto
himmelma@33175
  2386
      qed qed qed } note * = this
himmelma@33175
  2387
  show ?thesis apply rule defer apply(rule hull_minimal) unfolding subset_eq prefer 3 apply rule 
himmelma@33175
  2388
    apply(rule_tac n2="CARD('n)" in *) prefer 3 apply(rule card_mono) using 01 and convex_interval(1) prefer 5 apply - apply rule
himmelma@33175
  2389
    unfolding mem_interval apply rule unfolding mem_Collect_eq apply(erule_tac x=i in allE)
hoelzl@33758
  2390
    by(auto simp add: vector_le_def mem_def[of _ convex]) qed
himmelma@33175
  2391
himmelma@33175
  2392
subsection {* And this is a finite set of vertices. *}
himmelma@33175
  2393
hoelzl@34291
  2394
lemma unit_cube_convex_hull: obtains s where "finite s" "{0 .. 1::real^'n} = convex hull s"
hoelzl@34291
  2395
  apply(rule that[of "{x::real^'n. \<forall>i. x$i=0 \<or> x$i=1}"])
hoelzl@34291
  2396
  apply(rule finite_subset[of _ "(\<lambda>s. (\<chi> i. if i\<in>s then 1::real else 0)::real^'n) ` UNIV"])
himmelma@33175
  2397
  prefer 3 apply(rule unit_interval_convex_hull) apply rule unfolding mem_Collect_eq proof-
himmelma@33175
  2398
  fix x::"real^'n" assume as:"\<forall>i. x $ i = 0 \<or> x $ i = 1"
himmelma@33175
  2399
  show "x \<in> (\<lambda>s. \<chi> i. if i \<in> s then 1 else 0) ` UNIV" apply(rule image_eqI[where x="{i. x$i = 1}"])
huffman@36358
  2400
    unfolding Cart_eq using as by auto qed auto
himmelma@33175
  2401
himmelma@33175
  2402
subsection {* Hence any cube (could do any nonempty interval). *}
himmelma@33175
  2403
himmelma@33175
  2404
lemma cube_convex_hull:
hoelzl@34291
  2405
  assumes "0 < d" obtains s::"(real^'n) set" where "finite s" "{x - (\<chi> i. d) .. x + (\<chi> i. d)} = convex hull s" proof-
himmelma@33175
  2406
  let ?d = "(\<chi> i. d)::real^'n"
himmelma@33175
  2407
  have *:"{x - ?d .. x + ?d} = (\<lambda>y. x - ?d + (2 * d) *\<^sub>R y) ` {0 .. 1}" apply(rule set_ext, rule)
himmelma@33175
  2408
    unfolding image_iff defer apply(erule bexE) proof-
himmelma@33175
  2409
    fix y assume as:"y\<in>{x - ?d .. x + ?d}"
himmelma@33175
  2410
    { fix i::'n have "x $ i \<le> d + y $ i" "y $ i \<le> d + x $ i" using as[unfolded mem_interval, THEN spec[where x=i]]
huffman@36358
  2411
        by auto
himmelma@33175
  2412
      hence "1 \<ge> inverse d * (x $ i - y $ i)" "1 \<ge> inverse d * (y $ i - x $ i)"
himmelma@33175
  2413
        apply(rule_tac[!] mult_left_le_imp_le[OF _ assms]) unfolding mult_assoc[THEN sym]
huffman@36358
  2414
        using assms by(auto simp add: field_simps)
himmelma@33175
  2415
      hence "inverse d * (x $ i * 2) \<le> 2 + inverse d * (y $ i * 2)"
himmelma@33175
  2416
            "inverse d * (y $ i * 2) \<le> 2 + inverse d * (x $ i * 2)" by(auto simp add:field_simps) }
himmelma@33175
  2417
    hence "inverse (2 * d) *\<^sub>R (y - (x - ?d)) \<in> {0..1}" unfolding mem_interval using assms
huffman@36358
  2418
      by(auto simp add: Cart_eq field_simps)
himmelma@33175
  2419
    thus "\<exists>z\<in>{0..1}. y = x - ?d + (2 * d) *\<^sub>R z" apply- apply(rule_tac x="inverse (2 * d) *\<^sub>R (y - (x - ?d))" in bexI) 
huffman@36358
  2420
      using assms by(auto simp add: Cart_eq vector_le_def)
himmelma@33175
  2421
  next
himmelma@33175
  2422
    fix y z assume as:"z\<in>{0..1}" "y = x - ?d + (2*d) *\<^sub>R z" 
himmelma@33175
  2423
    have "\<And>i. 0 \<le> d * z $ i \<and> d * z $ i \<le> d" using assms as(1)[unfolded mem_interval] apply(erule_tac x=i in allE)
himmelma@33175
  2424
      apply rule apply(rule mult_nonneg_nonneg) prefer 3 apply(rule mult_right_le_one_le)
huffman@36358
  2425
      using assms by(auto simp add: Cart_eq)
himmelma@33175
  2426
    thus "y \<in> {x - ?d..x + ?d}" unfolding as(2) mem_interval apply- apply rule using as(1)[unfolded mem_interval]
huffman@36358
  2427
      apply(erule_tac x=i in allE) using assms by(auto simp add: Cart_eq) qed
himmelma@33175
  2428
  obtain s where "finite s" "{0..1::real^'n} = convex hull s" using unit_cube_convex_hull by auto
himmelma@33175
  2429
  thus ?thesis apply(rule_tac that[of "(\<lambda>y. x - ?d + (2 * d) *\<^sub>R y)` s"]) unfolding * and convex_hull_affinity by auto qed
himmelma@33175
  2430
himmelma@33175
  2431
subsection {* Bounded convex function on open set is continuous. *}
himmelma@33175
  2432
himmelma@33175
  2433
lemma convex_on_bounded_continuous:
huffman@36329
  2434
  fixes s :: "('a::real_normed_vector) set"
himmelma@33175
  2435
  assumes "open s" "convex_on s f" "\<forall>x\<in>s. abs(f x) \<le> b"
himmelma@33175
  2436
  shows "continuous_on s f"
himmelma@33175
  2437
  apply(rule continuous_at_imp_continuous_on) unfolding continuous_at_real_range proof(rule,rule,rule)
himmelma@33175
  2438
  fix x e assume "x\<in>s" "(0::real) < e"
himmelma@33175
  2439
  def B \<equiv> "abs b + 1"
himmelma@33175
  2440
  have B:"0 < B" "\<And>x. x\<in>s \<Longrightarrow> abs (f x) \<le> B"
himmelma@33175
  2441
    unfolding B_def defer apply(drule assms(3)[rule_format]) by auto
himmelma@33175
  2442
  obtain k where "k>0"and k:"cball x k \<subseteq> s" using assms(1)[unfolded open_contains_cball, THEN bspec[where x=x]] using `x\<in>s` by auto
himmelma@33175
  2443
  show "\<exists>d>0. \<forall>x'. norm (x' - x) < d \<longrightarrow> \<bar>f x' - f x\<bar> < e"
himmelma@33175
  2444
    apply(rule_tac x="min (k / 2) (e / (2 * B) * k)" in exI) apply rule defer proof(rule,rule)
himmelma@33175
  2445
    fix y assume as:"norm (y - x) < min (k / 2) (e / (2 * B) * k)" 
himmelma@33175
  2446
    show "\<bar>f y - f x\<bar> < e" proof(cases "y=x")
himmelma@33175
  2447
      case False def t \<equiv> "k / norm (y - x)"
himmelma@33175
  2448
      have "2 < t" "0<t" unfolding t_def using as False and `k>0` by(auto simp add:field_simps)
himmelma@33175
  2449
      have "y\<in>s" apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm
himmelma@33175
  2450
        apply(rule order_trans[of _ "2 * norm (x - y)"]) using as by(auto simp add: field_simps norm_minus_commute) 
himmelma@33175
  2451
      { def w \<equiv> "x + t *\<^sub>R (y - x)"
himmelma@33175
  2452
        have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm 
himmelma@33175
  2453
          unfolding t_def using `k>0` by auto
himmelma@33175
  2454
        have "(1 / t) *\<^sub>R x + - x + ((t - 1) / t) *\<^sub>R x = (1 / t - 1 + (t - 1) / t) *\<^sub>R x" by (auto simp add: algebra_simps)
himmelma@33175
  2455
        also have "\<dots> = 0"  using `t>0` by(auto simp add:field_simps)
himmelma@33175
  2456
        finally have w:"(1 / t) *\<^sub>R w + ((t - 1) / t) *\<^sub>R x = y" unfolding w_def using False and `t>0` by (auto simp add: algebra_simps)
himmelma@33175
  2457
        have  "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) 
himmelma@33175
  2458
        hence "(f w - f x) / t < e"
himmelma@33175
  2459
          using B(2)[OF `w\<in>s`] and B(2)[OF `x\<in>s`] using `t>0` by(auto simp add:field_simps) 
himmelma@33175
  2460
        hence th1:"f y - f x < e" apply- apply(rule le_less_trans) defer apply assumption
himmelma@33175
  2461
          using assms(2)[unfolded convex_on_def,rule_format,of w x "1/t" "(t - 1)/t", unfolded w]
himmelma@33175
  2462
          using `0<t` `2<t` and `x\<in>s` `w\<in>s` by(auto simp add:field_simps) }
himmelma@33175
  2463
      moreover 
himmelma@33175
  2464
      { def w \<equiv> "x - t *\<^sub>R (y - x)"
himmelma@33175
  2465
        have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm 
himmelma@33175
  2466
          unfolding t_def using `k>0` by auto
himmelma@33175
  2467
        have "(1 / (1 + t)) *\<^sub>R x + (t / (1 + t)) *\<^sub>R x = (1 / (1 + t) + t / (1 + t)) *\<^sub>R x" by (auto simp add: algebra_simps)
himmelma@33175
  2468
        also have "\<dots>=x" using `t>0` by (auto simp add:field_simps)
himmelma@33175
  2469
        finally have w:"(1 / (1+t)) *\<^sub>R w + (t / (1 + t)) *\<^sub>R y = x" unfolding w_def using False and `t>0` by (auto simp add: algebra_simps)
himmelma@33175
  2470
        have  "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) 
himmelma@33175
  2471
        hence *:"(f w - f y) / t < e" using B(2)[OF `w\<in>s`] and B(2)[OF `y\<in>s`] using `t>0` by(auto simp add:field_simps) 
himmelma@33175
  2472
        have "f x \<le> 1 / (1 + t) * f w + (t / (1 + t)) * f y" 
himmelma@33175
  2473
          using assms(2)[unfolded convex_on_def,rule_format,of w y "1/(1+t)" "t / (1+t)",unfolded w]
himmelma@33175
  2474
          using `0<t` `2<t` and `y\<in>s` `w\<in>s` by (auto simp add:field_simps)
himmelma@33175
  2475
        also have "\<dots> = (f w + t * f y) / (1 + t)" using `t>0` unfolding real_divide_def by (auto simp add:field_simps)
himmelma@33175
  2476
        also have "\<dots> < e + f y" using `t>0` * `e>0` by(auto simp add:field_simps)
himmelma@33175
  2477
        finally have "f x - f y < e" by auto }
himmelma@33175
  2478
      ultimately show ?thesis by auto 
himmelma@33175
  2479
    qed(insert `0<e`, auto) 
himmelma@33175
  2480
  qed(insert `0<e` `0<k` `0<B`, auto simp add:field_simps intro!:mult_pos_pos) qed
himmelma@33175
  2481
himmelma@33175
  2482
subsection {* Upper bound on a ball implies upper and lower bounds. *}
himmelma@33175
  2483
huffman@36329
  2484
lemma scaleR_2:
huffman@36329
  2485
  fixes x :: "'a::real_vector"
huffman@36329
  2486
  shows "scaleR 2 x = x + x"
huffman@36329
  2487
unfolding one_add_one_is_two [symmetric] scaleR_left_distrib by simp
huffman@36329
  2488
himmelma@33175
  2489
lemma convex_bounds_lemma:
huffman@36329
  2490
  fixes x :: "'a::real_normed_vector"
himmelma@33175
  2491
  assumes "convex_on (cball x e) f"  "\<forall>y \<in> cball x e. f y \<le> b"
himmelma@33175
  2492
  shows "\<forall>y \<in> cball x e. abs(f y) \<le> b + 2 * abs(f x)"
himmelma@33175
  2493
  apply(rule) proof(cases "0 \<le> e") case True
himmelma@33175
  2494
  fix y assume y:"y\<in>cball x e" def z \<equiv> "2 *\<^sub>R x - y"
huffman@36329
  2495
  have *:"x - (2 *\<^sub>R x - y) = y - x" by (simp add: scaleR_2)
himmelma@33175
  2496
  have z:"z\<in>cball x e" using y unfolding z_def mem_cball dist_norm * by(auto simp add: norm_minus_commute)
himmelma@33175
  2497
  have "(1 / 2) *\<^sub>R y + (1 / 2) *\<^sub>R z = x" unfolding z_def by (auto simp add: algebra_simps)
himmelma@33175
  2498
  thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using assms(1)[unfolded convex_on_def,rule_format, OF y z, of "1/2" "1/2"]
himmelma@33175
  2499
    using assms(2)[rule_format,OF y] assms(2)[rule_format,OF z] by(auto simp add:field_simps)
himmelma@33175
  2500
next case False fix y assume "y\<in>cball x e" 
himmelma@33175
  2501
  hence "dist x y < 0" using False unfolding mem_cball not_le by (auto simp del: dist_not_less_zero)
himmelma@33175
  2502
  thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using zero_le_dist[of x y] by auto qed
himmelma@33175
  2503
himmelma@33175
  2504
subsection {* Hence a convex function on an open set is continuous. *}
himmelma@33175
  2505
himmelma@33175
  2506
lemma convex_on_continuous:
hoelzl@34291
  2507
  assumes "open (s::(real^'n) set)" "convex_on s f" 
himmelma@33175
  2508
  shows "continuous_on s f"
himmelma@33175
  2509
  unfolding continuous_on_eq_continuous_at[OF assms(1)] proof
himmelma@33175
  2510
  note dimge1 = dimindex_ge_1[where 'a='n]
himmelma@33175
  2511
  fix x assume "x\<in>s"
himmelma@33175
  2512
  then obtain e where e:"cball x e \<subseteq> s" "e>0" using assms(1) unfolding open_contains_cball by auto
himmelma@33175
  2513
  def d \<equiv> "e / real CARD('n)"
himmelma@33175
  2514
  have "0 < d" unfolding d_def using `e>0` dimge1 by(rule_tac divide_pos_pos, auto) 
himmelma@33175
  2515
  let ?d = "(\<chi> i. d)::real^'n"
himmelma@33175
  2516
  obtain c where c:"finite c" "{x - ?d..x + ?d} = convex hull c" using cube_convex_hull[OF `d>0`, of x] by auto
huffman@36358
  2517
  have "x\<in>{x - ?d..x + ?d}" using `d>0` unfolding mem_interval by auto
huffman@36358
  2518
  hence "c\<noteq>{}" using c by auto
himmelma@33175
  2519
  def k \<equiv> "Max (f ` c)"
himmelma@33175
  2520
  have "convex_on {x - ?d..x + ?d} f" apply(rule convex_on_subset[OF assms(2)])
himmelma@33175
  2521
    apply(rule subset_trans[OF _ e(1)]) unfolding subset_eq mem_cball proof 
himmelma@33175
  2522
    fix z assume z:"z\<in>{x - ?d..x + ?d}"
himmelma@33175
  2523
    have e:"e = setsum (\<lambda>i. d) (UNIV::'n set)" unfolding setsum_constant d_def using dimge1
nipkow@36071
  2524
      by (metis eq_divide_imp mult_frac_num real_dimindex_gt_0 real_eq_of_nat real_less_def real_mult_commute)
himmelma@33175
  2525
    show "dist x z \<le> e" unfolding dist_norm e apply(rule_tac order_trans[OF norm_le_l1], rule setsum_mono)
huffman@36358
  2526
      using z[unfolded mem_interval] apply(erule_tac x=i in allE) by auto qed
himmelma@33175
  2527
  hence k:"\<forall>y\<in>{x - ?d..x + ?d}. f y \<le> k" unfolding c(2) apply(rule_tac convex_on_convex_hull_bound) apply assumption
himmelma@33175
  2528
    unfolding k_def apply(rule, rule Max_ge) using c(1) by auto
himmelma@33175
  2529
  have "d \<le> e" unfolding d_def apply(rule mult_imp_div_pos_le) using `e>0` dimge1 unfolding mult_le_cancel_left1 using real_dimindex_ge_1 by auto
himmelma@33175
  2530
  hence dsube:"cball x d \<subseteq> cball x e" unfolding subset_eq Ball_def mem_cball by auto
himmelma@33175
  2531
  have conv:"convex_on (cball x d) f" apply(rule convex_on_subset, rule convex_on_subset[OF assms(2)]) apply(rule e(1)) using dsube by auto
himmelma@33175
  2532
  hence "\<forall>y\<in>cball x d. abs (f y) \<le> k + 2 * abs (f x)" apply(rule_tac convex_bounds_lemma) apply assumption proof
himmelma@33175
  2533
    fix y assume y:"y\<in>cball x d"
himmelma@33175
  2534
    { fix i::'n have "x $ i - d \<le> y $ i"  "y $ i \<le> x $ i + d" 
huffman@36358
  2535
        using order_trans[OF component_le_norm y[unfolded mem_cball dist_norm], of i] by auto  }
himmelma@33175
  2536
    thus "f y \<le> k" apply(rule_tac k[rule_format]) unfolding mem_cball mem_interval dist_norm 
huffman@36358
  2537
      by auto qed
himmelma@33175
  2538
  hence "continuous_on (ball x d) f" apply(rule_tac convex_on_bounded_continuous)
paulson@33270
  2539
    apply(rule open_ball, rule convex_on_subset[OF conv], rule ball_subset_cball)
paulson@33270
  2540
    apply force
paulson@33270
  2541
    done
paulson@33270
  2542
  thus "continuous (at x) f" unfolding continuous_on_eq_continuous_at[OF open_ball]
paulson@33270
  2543
    using `d>0` by auto 
paulson@33270
  2544
qed
paulson@33270
  2545
paulson@33270
  2546
subsection {* Line segments, Starlike Sets, etc.*}
paulson@33270
  2547
paulson@33270
  2548
(* Use the same overloading tricks as for intervals, so that 
paulson@33270
  2549
   segment[a,b] is closed and segment(a,b) is open relative to affine hull. *)
himmelma@33175
  2550
himmelma@33175
  2551
definition
huffman@36329
  2552
  midpoint :: "'a::real_vector \<Rightarrow> 'a \<Rightarrow> 'a" where
himmelma@33175
  2553
  "midpoint a b = (inverse (2::real)) *\<^sub>R (a + b)"
himmelma@33175
  2554
himmelma@33175
  2555
definition
huffman@36332
  2556
  open_segment :: "'a::real_vector \<Rightarrow> 'a \<Rightarrow> 'a set" where
himmelma@33175
  2557
  "open_segment a b = {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real.  0 < u \<and> u < 1}"
himmelma@33175
  2558
himmelma@33175
  2559
definition
huffman@36332
  2560
  closed_segment :: "'a::real_vector \<Rightarrow> 'a \<Rightarrow> 'a set" where
himmelma@33175
  2561
  "closed_segment a b = {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real. 0 \<le> u \<and> u \<le> 1}"
himmelma@33175
  2562
himmelma@33175
  2563
definition "between = (\<lambda> (a,b). closed_segment a b)"
himmelma@33175
  2564
himmelma@33175
  2565
lemmas segment = open_segment_def closed_segment_def
himmelma@33175
  2566
himmelma@33175
  2567
definition "starlike s \<longleftrightarrow> (\<exists>a\<in>s. \<forall>x\<in>s. closed_segment a x \<subseteq> s)"
himmelma@33175
  2568
himmelma@33175
  2569
lemma midpoint_refl: "midpoint x x = x"
himmelma@33175
  2570
  unfolding midpoint_def unfolding scaleR_right_distrib unfolding scaleR_left_distrib[THEN sym] by auto
himmelma@33175
  2571
himmelma@33175
  2572
lemma midpoint_sym: "midpoint a b = midpoint b a" unfolding midpoint_def by (auto simp add: scaleR_right_distrib)
himmelma@33175
  2573
huffman@36329
  2574
lemma midpoint_eq_iff: "midpoint a b = c \<longleftrightarrow> a + b = c + c"
huffman@36329
  2575
proof -
huffman@36329
  2576
  have "midpoint a b = c \<longleftrightarrow> scaleR 2 (midpoint a b) = scaleR 2 c"
huffman@36329
  2577
    by simp
huffman@36329
  2578
  thus ?thesis
huffman@36329
  2579
    unfolding midpoint_def scaleR_2 [symmetric] by simp
huffman@36329
  2580
qed
huffman@36329
  2581
himmelma@33175
  2582
lemma dist_midpoint:
huffman@36329
  2583
  fixes a b :: "'a::real_normed_vector" shows
himmelma@33175
  2584
  "dist a (midpoint a b) = (dist a b) / 2" (is ?t1)
himmelma@33175
  2585
  "dist b (midpoint a b) = (dist a b) / 2" (is ?t2)
himmelma@33175
  2586
  "dist (midpoint a b) a = (dist a b) / 2" (is ?t3)
himmelma@33175
  2587
  "dist (midpoint a b) b = (dist a b) / 2" (is ?t4)
himmelma@33175
  2588
proof-
huffman@36329
  2589
  have *: "\<And>x y::'a. 2 *\<^sub>R x = - y \<Longrightarrow> norm x = (norm y) / 2" unfolding equation_minus_iff by auto
huffman@36329
  2590
  have **:"\<And>x y::'a. 2 *\<^sub>R x =   y \<Longrightarrow> norm x = (norm y) / 2" by auto
himmelma@33175
  2591
  note scaleR_right_distrib [simp]
huffman@36329
  2592
  show ?t1 unfolding midpoint_def dist_norm apply (rule **)
huffman@36329
  2593
    by (simp add: scaleR_right_diff_distrib, simp add: scaleR_2)
huffman@36329
  2594
  show ?t2 unfolding midpoint_def dist_norm apply (rule *)
huffman@36329
  2595
    by (simp add: scaleR_right_diff_distrib, simp add: scaleR_2)
huffman@36329
  2596
  show ?t3 unfolding midpoint_def dist_norm apply (rule *)
huffman@36329
  2597
    by (simp add: scaleR_right_diff_distrib, simp add: scaleR_2)
huffman@36329
  2598
  show ?t4 unfolding midpoint_def dist_norm apply (rule **)
huffman@36329
  2599
    by (simp add: scaleR_right_diff_distrib, simp add: scaleR_2)
huffman@36329
  2600
qed
himmelma@33175
  2601
himmelma@33175
  2602
lemma midpoint_eq_endpoint:
huffman@36329
  2603
  "midpoint a b = a \<longleftrightarrow> a = b"
himmelma@33175
  2604
  "midpoint a b = b \<longleftrightarrow> a = b"
huffman@36329
  2605
  unfolding midpoint_eq_iff by auto
himmelma@33175
  2606
himmelma@33175
  2607
lemma convex_contains_segment:
himmelma@33175
  2608
  "convex s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. closed_segment a b \<subseteq> s)"
himmelma@33175
  2609
  unfolding convex_alt closed_segment_def by auto
himmelma@33175
  2610
himmelma@33175
  2611
lemma convex_imp_starlike:
himmelma@33175
  2612
  "convex s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> starlike s"
himmelma@33175
  2613
  unfolding convex_contains_segment starlike_def by auto
himmelma@33175
  2614
himmelma@33175
  2615
lemma segment_convex_hull:
himmelma@33175
  2616
 "closed_segment a b = convex hull {a,b}" proof-
himmelma@33175
  2617
  have *:"\<And>x. {x} \<noteq> {}" by auto
himmelma@33175
  2618
  have **:"\<And>u v. u + v = 1 \<longleftrightarrow> u = 1 - (v::real)" by auto
himmelma@33175
  2619
  show ?thesis unfolding segment convex_hull_insert[OF *] convex_hull_singleton apply(rule set_ext)
himmelma@33175
  2620
    unfolding mem_Collect_eq apply(rule,erule exE) 
himmelma@33175
  2621
    apply(rule_tac x="1 - u" in exI) apply rule defer apply(rule_tac x=u in exI) defer
himmelma@33175
  2622
    apply(erule exE, (erule conjE)?)+ apply(rule_tac x="1 - u" in exI) unfolding ** by auto qed
himmelma@33175
  2623
himmelma@33175
  2624
lemma convex_segment: "convex (closed_segment a b)"
himmelma@33175
  2625
  unfolding segment_convex_hull by(rule convex_convex_hull)
himmelma@33175
  2626
himmelma@33175
  2627
lemma ends_in_segment: "a \<in> closed_segment a b" "b \<in> closed_segment a b"
himmelma@33175
  2628
  unfolding segment_convex_hull apply(rule_tac[!] hull_subset[unfolded subset_eq, rule_format]) by auto
himmelma@33175
  2629
himmelma@33175
  2630
lemma segment_furthest_le:
huffman@36332
  2631
  fixes a b x y :: "real ^ 'n"
himmelma@33175
  2632
  assumes "x \<in> closed_segment a b" shows "norm(y - x) \<le> norm(y - a) \<or>  norm(y - x) \<le> norm(y - b)" proof-
himmelma@33175
  2633
  obtain z where "z\<in>{a, b}" "norm (x - y) \<le> norm (z - y)" using simplex_furthest_le[of "{a, b}" y]
himmelma@33175
  2634
    using assms[unfolded segment_convex_hull] by auto
himmelma@33175
  2635
  thus ?thesis by(auto simp add:norm_minus_commute) qed
himmelma@33175
  2636
himmelma@33175
  2637
lemma segment_bound:
huffman@36332
  2638
  fixes x a b :: "real ^ 'n"
himmelma@33175
  2639
  assumes "x \<in> closed_segment a b"
himmelma@33175
  2640
  shows "norm(x - a) \<le> norm(b - a)" "norm(x - b) \<le> norm(b - a)"
himmelma@33175
  2641
  using segment_furthest_le[OF assms, of a]
himmelma@33175
  2642
  using segment_furthest_le[OF assms, of b]
himmelma@33175
  2643
  by (auto simp add:norm_minus_commute) 
himmelma@33175
  2644
himmelma@33175
  2645
lemma segment_refl:"closed_segment a a = {a}" unfolding segment by (auto simp add: algebra_simps)
himmelma@33175
  2646
himmelma@33175
  2647
lemma between_mem_segment: "between (a,b) x \<longleftrightarrow> x \<in> closed_segment a b"
himmelma@33175
  2648
  unfolding between_def mem_def by auto
himmelma@33175
  2649
hoelzl@34291
  2650
lemma between:"between (a,b) (x::real^'n) \<longleftrightarrow> dist a b = (dist a x) + (dist x b)"
himmelma@33175
  2651
proof(cases "a = b")
himmelma@33175
  2652
  case True thus ?thesis unfolding between_def split_conv mem_def[of x, symmetric]
himmelma@33175
  2653
    by(auto simp add:segment_refl dist_commute) next
himmelma@33175
  2654
  case False hence Fal:"norm (a - b) \<noteq> 0" and Fal2: "norm (a - b) > 0" by auto 
himmelma@33175
  2655
  have *:"\<And>u. a - ((1 - u) *\<^sub>R a + u *\<^sub>R b) = u *\<^sub>R (a - b)" by (auto simp add: algebra_simps)
himmelma@33175
  2656
  show ?thesis unfolding between_def split_conv mem_def[of x, symmetric] closed_segment_def mem_Collect_eq
himmelma@33175
  2657
    apply rule apply(erule exE, (erule conjE)+) apply(subst dist_triangle_eq) proof-
himmelma@33175
  2658
      fix u assume as:"x = (1 - u) *\<^sub>R a + u *\<^sub>R b" "0 \<le> u" "u \<le> 1" 
himmelma@33175
  2659
      hence *:"a - x = u *\<^sub>R (a - b)" "x - b = (1 - u) *\<^sub>R (a - b)"
himmelma@33175
  2660
        unfolding as(1) by(auto simp add:algebra_simps)
himmelma@33175
  2661
      show "norm (a - x) *\<^sub>R (x - b) = norm (x - b) *\<^sub>R (a - x)"
himmelma@33175
  2662
        unfolding norm_minus_commute[of x a] * Cart_eq using as(2,3)
huffman@36358
  2663
        by(auto simp add: field_simps)
himmelma@33175
  2664
    next assume as:"dist a b = dist a x + dist x b"
himmelma@33175
  2665
      have "norm (a - x) / norm (a - b) \<le> 1" unfolding divide_le_eq_1_pos[OF Fal2] unfolding as[unfolded dist_norm] norm_ge_zero by auto 
himmelma@33175
  2666
      thus "\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> u \<and> u \<le> 1" apply(rule_tac x="dist a x / dist a b" in exI)
himmelma@33175
  2667
        unfolding dist_norm Cart_eq apply- apply rule defer apply(rule, rule divide_nonneg_pos) prefer 4 proof rule
himmelma@33175
  2668
          fix i::'n have "((1 - norm (a - x) / norm (a - b)) *\<^sub>R a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $ i =
himmelma@33175
  2669
            ((norm (a - b) - norm (a - x)) * (a $ i) + norm (a - x) * (b $ i)) / norm (a - b)"
huffman@36358
  2670
            using Fal by(auto simp add: field_simps)
himmelma@33175
  2671
          also have "\<dots> = x$i" apply(rule divide_eq_imp[OF Fal])
himmelma@33175
  2672
            unfolding as[unfolded dist_norm] using as[unfolded dist_triangle_eq Cart_eq,rule_format, of i]
huffman@36358
  2673
            by(auto simp add:field_simps)
himmelma@33175
  2674
          finally show "x $ i = ((1 - norm (a - x) / norm (a - b)) *\<^sub>R a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $ i" by auto
himmelma@33175
  2675
        qed(insert Fal2, auto) qed qed
himmelma@33175
  2676
hoelzl@34291
  2677
lemma between_midpoint: fixes a::"real^'n" shows
himmelma@33175
  2678
  "between (a,b) (midpoint a b)" (is ?t1) 
himmelma@33175
  2679
  "between (b,a) (midpoint a b)" (is ?t2)
himmelma@33175
  2680
proof- have *:"\<And>x y z. x = (1/2::real) *\<^sub>R z \<Longrightarrow> y = (1/2) *\<^sub>R z \<Longrightarrow> norm z = norm x + norm y" by auto
himmelma@33175
  2681
  show ?t1 ?t2 unfolding between midpoint_def dist_norm apply(rule_tac[!] *)
huffman@36358
  2682
    by(auto simp add:field_simps Cart_eq) qed
himmelma@33175
  2683
himmelma@33175
  2684
lemma between_mem_convex_hull:
himmelma@33175
  2685
  "between (a,b) x \<longleftrightarrow> x \<in> convex hull {a,b}"
himmelma@33175
  2686
  unfolding between_mem_segment segment_convex_hull ..
himmelma@33175
  2687
himmelma@33175
  2688
subsection {* Shrinking towards the interior of a convex set. *}
himmelma@33175
  2689
himmelma@33175
  2690
lemma mem_interior_convex_shrink:
himmelma@33175
  2691
  fixes s :: "(real ^ _) set"
himmelma@33175
  2692
  assumes "convex s" "c \<in> interior s" "x \<in> s" "0 < e" "e \<le> 1"
himmelma@33175
  2693
  shows "x - e *\<^sub>R (x - c) \<in> interior s"
himmelma@33175
  2694
proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto
himmelma@33175
  2695
  show ?thesis unfolding mem_interior apply(rule_tac x="e*d" in exI)
himmelma@33175
  2696
    apply(rule) defer unfolding subset_eq Ball_def mem_ball proof(rule,rule)
himmelma@33175
  2697
    fix y assume as:"dist (x - e *\<^sub>R (x - c)) y < e * d"
himmelma@33175
  2698
    have *:"y = (1 - (1 - e)) *\<^sub>R ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) + (1 - e) *\<^sub>R x" using `e>0` by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib)
himmelma@33175
  2699
    have "dist c ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) = abs(1/e) * norm (e *\<^sub>R c - y + (1 - e) *\<^sub>R x)"
himmelma@33175
  2700
      unfolding dist_norm unfolding norm_scaleR[THEN sym] apply(rule norm_eqI) using `e>0`
huffman@36358
  2701
      by(auto simp add: Cart_eq field_simps) 
himmelma@33175
  2702
    also have "\<dots> = abs(1/e) * norm (x - e *\<^sub>R (x - c) - y)" by(auto intro!:norm_eqI simp add: algebra_simps)
himmelma@33175
  2703
    also have "\<dots> < d" using as[unfolded dist_norm] and `e>0`
himmelma@33175
  2704
      by(auto simp add:pos_divide_less_eq[OF `e>0`] real_mult_commute)
himmelma@33175
  2705
    finally show "y \<in> s" apply(subst *) apply(rule assms(1)[unfolded convex_alt,rule_format])
himmelma@33175
  2706
      apply(rule d[unfolded subset_eq,rule_format]) unfolding mem_ball using assms(3-5) by auto
himmelma@33175
  2707
  qed(rule mult_pos_pos, insert `e>0` `d>0`, auto) qed
himmelma@33175
  2708
himmelma@33175
  2709
lemma mem_interior_closure_convex_shrink:
himmelma@33175
  2710
  fixes s :: "(real ^ _) set"
himmelma@33175
  2711
  assumes "convex s" "c \<in> interior s" "x \<in> closure s" "0 < e" "e \<le> 1"
himmelma@33175
  2712
  shows "x - e *\<^sub>R (x - c) \<in> interior s"
himmelma@33175
  2713
proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto
himmelma@33175
  2714
  have "\<exists>y\<in>s. norm (y - x) * (1 - e) < e * d" proof(cases "x\<in>s")
himmelma@33175
  2715
    case True thus ?thesis using `e>0` `d>0` by(rule_tac bexI[where x=x], auto intro!: mult_pos_pos) next
himmelma@33175
  2716
    case False hence x:"x islimpt s" using assms(3)[unfolded closure_def] by auto
himmelma@33175
  2717
    show ?thesis proof(cases "e=1")
himmelma@33175
  2718
      case True obtain y where "y\<in>s" "y \<noteq> x" "dist y x < 1"
himmelma@33175
  2719
        using x[unfolded islimpt_approachable,THEN spec[where x=1]] by auto
himmelma@33175
  2720
      thus ?thesis apply(rule_tac x=y in bexI) unfolding True using `d>0` by auto next
himmelma@33175
  2721
      case False hence "0 < e * d / (1 - e)" and *:"1 - e > 0"
himmelma@33175
  2722
        using `e\<le>1` `e>0` `d>0` by(auto intro!:mult_pos_pos divide_pos_pos)
himmelma@33175
  2723
      then obtain y where "y\<in>s" "y \<noteq> x" "dist y x < e * d / (1 - e)"
himmelma@33175
  2724
        using x[unfolded islimpt_approachable,THEN spec[where x="e*d / (1 - e)"]] by auto
himmelma@33175
  2725
      thus ?thesis apply(rule_tac x=y in bexI) unfolding dist_norm using pos_less_divide_eq[OF *] by auto qed qed
himmelma@33175
  2726
  then obtain y where "y\<in>s" and y:"norm (y - x) * (1 - e) < e * d" by auto
himmelma@33175
  2727
  def z \<equiv> "c + ((1 - e) / e) *\<^sub>R (x - y)"
himmelma@33175
  2728
  have *:"x - e *\<^sub>R (x - c) = y - e *\<^sub>R (y - z)" unfolding z_def using `e>0` by (auto simp add: scaleR_right_diff_distrib scaleR_right_distrib scaleR_left_diff_distrib)
himmelma@33175
  2729
  have "z\<in>interior s" apply(rule subset_interior[OF d,unfolded subset_eq,rule_format])
himmelma@33175
  2730
    unfolding interior_open[OF open_ball] mem_ball z_def dist_norm using y and assms(4,5)
himmelma@33175
  2731
    by(auto simp add:field_simps norm_minus_commute)
himmelma@33175
  2732
  thus ?thesis unfolding * apply - apply(rule mem_interior_convex_shrink) 
himmelma@33175
  2733
    using assms(1,4-5) `y\<in>s` by auto qed
himmelma@33175
  2734
himmelma@33175
  2735
subsection {* Some obvious but surprisingly hard simplex lemmas. *}
himmelma@33175
  2736
himmelma@33175
  2737
lemma simplex:
himmelma@33175
  2738
  assumes "finite s" "0 \<notin> s"
himmelma@33175
  2739
  shows "convex hull (insert 0 s) =  { y. (\<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s \<le> 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y)}"
himmelma@33175
  2740
  unfolding convex_hull_finite[OF finite.insertI[OF assms(1)]] apply(rule set_ext, rule) unfolding mem_Collect_eq
himmelma@33175
  2741
  apply(erule_tac[!] exE) apply(erule_tac[!] conjE)+ unfolding setsum_clauses(2)[OF assms(1)]
himmelma@33175
  2742
  apply(rule_tac x=u in exI) defer apply(rule_tac x="\<lambda>x. if x = 0 then 1 - setsum u s else u x" in exI) using assms(2)
himmelma@33175
  2743
  unfolding if_smult and setsum_delta_notmem[OF assms(2)] by auto
himmelma@33175
  2744
himmelma@33175
  2745
lemma std_simplex:
himmelma@33175
  2746
  "convex hull (insert 0 { basis i | i. i\<in>UNIV}) =
hoelzl@34291
  2747
        {x::real^'n . (\<forall>i. 0 \<le> x$i) \<and> setsum (\<lambda>i. x$i) UNIV \<le> 1 }" (is "convex hull (insert 0 ?p) = ?s")
himmelma@33175
  2748
proof- let ?D = "UNIV::'n set"
himmelma@33175
  2749
  have "0\<notin>?p" by(auto simp add: basis_nonzero)
himmelma@33175
  2750
  have "{(basis i)::real^'n |i. i \<in> ?D} = basis ` ?D" by auto
himmelma@33175
  2751
  note sumbas = this  setsum_reindex[OF basis_inj, unfolded o_def]
himmelma@33175
  2752
  show ?thesis unfolding simplex[OF finite_stdbasis `0\<notin>?p`] apply(rule set_ext) unfolding mem_Collect_eq apply rule
himmelma@33175
  2753
    apply(erule exE, (erule conjE)+) apply(erule_tac[2] conjE)+ proof-
himmelma@33175
  2754
    fix x::"real^'n" and u assume as: "\<forall>x\<in>{basis i |i. i \<in>?D}. 0 \<le> u x" "setsum u {basis i |i. i \<in> ?D} \<le> 1" "(\<Sum>x\<in>{basis i |i. i \<in>?D}. u x *\<^sub>R x) = x"
himmelma@33175
  2755
    have *:"\<forall>i. u (basis i) = x$i" using as(3) unfolding sumbas and basis_expansion_unique [where 'a=real, unfolded smult_conv_scaleR] by auto
himmelma@33175
  2756
    hence **:"setsum u {basis i |i. i \<in> ?D} = setsum (op $ x) ?D" unfolding sumbas by(rule_tac setsum_cong, auto)
himmelma@33175
  2757
    show " (\<forall>i. 0 \<le> x $ i) \<and> setsum (op $ x) ?D \<le> 1" apply - proof(rule,rule)
himmelma@33175
  2758
      fix i::'n show "0 \<le> x$i" unfolding *[rule_format,of i,THEN sym] apply(rule_tac as(1)[rule_format]) by auto
himmelma@33175
  2759
    qed(insert as(2)[unfolded **], auto)
himmelma@33175
  2760
  next fix x::"real^'n" assume as:"\<forall>i. 0 \<le> x $ i" "setsum (op $ x) ?D \<le> 1"
himmelma@33175
  2761
    show "\<exists>u. (\<forall>x\<in>{basis i |i. i \<in> ?D}. 0 \<le> u x) \<and> setsum u {basis i |i. i \<in> ?D} \<le> 1 \<and> (\<Sum>x\<in>{basis i |i. i \<in> ?D}. u x *\<^sub>R x) = x"
himmelma@33175
  2762
      apply(rule_tac x="\<lambda>y. inner y x" in exI) apply(rule,rule) unfolding mem_Collect_eq apply(erule exE) using as(1) apply(erule_tac x=i in allE) 
himmelma@33175
  2763
      unfolding sumbas using as(2) and basis_expansion_unique [where 'a=real, unfolded smult_conv_scaleR] by(auto simp add:inner_basis) qed qed 
himmelma@33175
  2764
himmelma@33175
  2765
lemma interior_std_simplex:
himmelma@33175
  2766
  "interior (convex hull (insert 0 { basis i| i. i\<in>UNIV})) =
hoelzl@34291
  2767
  {x::real^'n. (\<forall>i. 0 < x$i) \<and> setsum (\<lambda>i. x$i) UNIV < 1 }"
himmelma@33175
  2768
  apply(rule set_ext) unfolding mem_interior std_simplex unfolding subset_eq mem_Collect_eq Ball_def mem_ball
himmelma@33175
  2769
  unfolding Ball_def[symmetric] apply rule apply(erule exE, (erule conjE)+) defer apply(erule conjE) proof-
himmelma@33175
  2770
  fix x::"real^'n" and e assume "0<e" and as:"\<forall>xa. dist x xa < e \<longrightarrow> (\<forall>x. 0 \<le> xa $ x) \<and> setsum (op $ xa) UNIV \<le> 1"
himmelma@33175
  2771
  show "(\<forall>xa. 0 < x $ xa) \<and> setsum (op $ x) UNIV < 1" apply(rule,rule) proof-
himmelma@33175
  2772
    fix i::'n show "0 < x $ i" using as[THEN spec[where x="x - (e / 2) *\<^sub>R basis i"]] and `e>0`
huffman@36358
  2773
      unfolding dist_norm by(auto simp add: norm_basis elim:allE[where x=i])
himmelma@33175
  2774
  next guess a using UNIV_witness[where 'a='n] ..
himmelma@33175
  2775
    have **:"dist x (x + (e / 2) *\<^sub>R basis a) < e" using  `e>0` and norm_basis[of a]
huffman@36358
  2776
      unfolding dist_norm by(auto intro!: mult_strict_left_mono_comm)
huffman@36358
  2777
    have "\<And>i. (x + (e / 2) *\<^sub>R basis a) $ i = x$i + (if i = a then e/2 else 0)" by auto
himmelma@33175
  2778
    hence *:"setsum (op $ (x + (e / 2) *\<^sub>R basis a)) UNIV = setsum (\<lambda>i. x$i + (if a = i then e/2 else 0)) UNIV" by(rule_tac setsum_cong, auto) 
himmelma@33175
  2779
    have "setsum (op $ x) UNIV < setsum (op $ (x + (e / 2) *\<^sub>R basis a)) UNIV" unfolding * setsum_addf
himmelma@33175
  2780
      using `0<e` dimindex_ge_1 by(auto simp add: setsum_delta')
himmelma@33175
  2781
    also have "\<dots> \<le> 1" using ** apply(drule_tac as[rule_format]) by auto
himmelma@33175
  2782
    finally show "setsum (op $ x) UNIV < 1" by auto qed
himmelma@33175
  2783
next
hoelzl@34291
  2784
  fix x::"real^'n" assume as:"\<forall>i. 0 < x $ i" "setsum (op $ x) UNIV < 1"
himmelma@33175
  2785
  guess a using UNIV_witness[where 'a='b] ..
himmelma@33175
  2786
  let ?d = "(1 - setsum (op $ x) UNIV) / real (CARD('n))"
himmelma@33175
  2787
  have "Min ((op $ x) ` UNIV) > 0" apply(rule Min_grI) using as(1) dimindex_ge_1 by auto
himmelma@33175
  2788
  moreover have"?d > 0" apply(rule divide_pos_pos) using as(2) using dimindex_ge_1 by(auto simp add: Suc_le_eq)
himmelma@33175
  2789
  ultimately show "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> (\<forall>i. 0 \<le> y $ i) \<and> setsum (op $ y) UNIV \<le> 1"
himmelma@33175
  2790
    apply(rule_tac x="min (Min ((op $ x) ` UNIV)) ?D" in exI) apply rule defer apply(rule,rule) proof-
himmelma@33175
  2791
    fix y assume y:"dist x y < min (Min (op $ x ` UNIV)) ?d"
himmelma@33175
  2792
    have "setsum (op $ y) UNIV \<le> setsum (\<lambda>i. x$i + ?d) UNIV" proof(rule setsum_mono)
himmelma@33175
  2793
      fix i::'n have "abs (y$i - x$i) < ?d" apply(rule le_less_trans) using component_le_norm[of "y - x" i]
huffman@36358
  2794
        using y[unfolded min_less_iff_conj dist_norm, THEN conjunct2] by(auto simp add: norm_minus_commute)
himmelma@33175
  2795
      thus "y $ i \<le> x $ i + ?d" by auto qed
himmelma@33175
  2796
    also have "\<dots> \<le> 1" unfolding setsum_addf setsum_constant card_enum real_eq_of_nat using dimindex_ge_1 by(auto simp add: Suc_le_eq)
himmelma@33175
  2797
    finally show "(\<forall>i. 0 \<le> y $ i) \<and> setsum (op $ y) UNIV \<le> 1" apply- proof(rule,rule)
himmelma@33175
  2798
      fix i::'n have "norm (x - y) < x$i" using y[unfolded min_less_iff_conj dist_norm, THEN conjunct1]
huffman@36358
  2799
        by auto
huffman@36358
  2800
      thus "0 \<le> y$i" using component_le_norm[of "x - y" i] and as(1)[rule_format, of i] by auto
himmelma@33175
  2801
    qed auto qed auto qed
himmelma@33175
  2802
hoelzl@34291
  2803
lemma interior_std_simplex_nonempty: obtains a::"real^'n" where
himmelma@33175
  2804
  "a \<in> interior(convex hull (insert 0 {basis i | i . i \<in> UNIV}))" proof-
himmelma@33175
  2805
  let ?D = "UNIV::'n set" let ?a = "setsum (\<lambda>b::real^'n. inverse (2 * real CARD('n)) *\<^sub>R b) {(basis i) | i. i \<in> ?D}"
himmelma@33175
  2806
  have *:"{basis i :: real ^ 'n | i. i \<in> ?D} = basis ` ?D" by auto
himmelma@33175
  2807
  { fix i have "?a $ i = inverse (2 * real CARD('n))"
himmelma@33175
  2808
    unfolding setsum_component vector_smult_component and * and setsum_reindex[OF basis_inj] and o_def
himmelma@33175
  2809
    apply(rule trans[of _ "setsum (\<lambda>j. if i = j then inverse (2 * real CARD('n)) else 0) ?D"]) apply(rule setsum_cong2)
himmelma@33175
  2810
      unfolding setsum_delta'[OF finite_UNIV[where 'a='n]] and real_dimindex_ge_1[where 'n='n] by(auto simp add: basis_component[of i]) }
himmelma@33175
  2811
  note ** = this
himmelma@33175
  2812
  show ?thesis apply(rule that[of ?a]) unfolding interior_std_simplex mem_Collect_eq proof(rule,rule)
himmelma@33175
  2813
    fix i::'n show "0 < ?a $ i" unfolding ** using dimindex_ge_1 by(auto simp add: Suc_le_eq) next
himmelma@33175
  2814
    have "setsum (op $ ?a) ?D = setsum (\<lambda>i. inverse (2 * real CARD('n))) ?D" by(rule setsum_cong2, rule **) 
himmelma@33175
  2815
    also have "\<dots> < 1" unfolding setsum_constant card_enum real_eq_of_nat real_divide_def[THEN sym] by (auto simp add:field_simps)
himmelma@33175
  2816
    finally show "setsum (op $ ?a) ?D < 1" by auto qed qed
himmelma@33175
  2817
himmelma@33175
  2818
end