src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy
author hoelzl
Mon, 25 Jan 2010 16:56:24 +0100
changeset 34951 4e8be3c04d37
parent 34915 7894c7dab132
child 35528 8f97d8caabfd
permissions -rw-r--r--
Replaced vec1 and dest_vec1 by abbreviation.
himmelma@33175
     1
(*  Title:      HOL/Library/Convex_Euclidean_Space.thy
himmelma@33175
     2
    Author:     Robert Himmelmann, TU Muenchen
himmelma@33175
     3
*)
himmelma@33175
     4
himmelma@33175
     5
header {* Convex sets, functions and related things. *}
himmelma@33175
     6
himmelma@33175
     7
theory Convex_Euclidean_Space
himmelma@33175
     8
imports Topology_Euclidean_Space
himmelma@33175
     9
begin
himmelma@33175
    10
himmelma@33175
    11
himmelma@33175
    12
(* ------------------------------------------------------------------------- *)
himmelma@33175
    13
(* To be moved elsewhere                                                     *)
himmelma@33175
    14
(* ------------------------------------------------------------------------- *)
himmelma@33175
    15
himmelma@33175
    16
declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp]
himmelma@33175
    17
declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp]
himmelma@33175
    18
declare dot_ladd[simp] dot_radd[simp] dot_lsub[simp] dot_rsub[simp]
himmelma@33175
    19
declare dot_lmult[simp] dot_rmult[simp] dot_lneg[simp] dot_rneg[simp]
himmelma@33175
    20
declare UNIV_1[simp]
himmelma@33175
    21
hoelzl@34951
    22
(*lemma dim1in[intro]:"Suc 0 \<in> {1::nat .. CARD(1)}" by auto*)
hoelzl@34951
    23
hoelzl@34951
    24
lemmas vector_component_simps = vector_minus_component vector_smult_component vector_add_component vector_le_def Cart_lambda_beta basis_component vector_uminus_component
himmelma@33175
    25
himmelma@33175
    26
lemma dest_vec1_simps[simp]: fixes a::"real^1"
himmelma@33175
    27
  shows "a$1 = 0 \<longleftrightarrow> a = 0" (*"a \<le> 1 \<longleftrightarrow> dest_vec1 a \<le> 1" "0 \<le> a \<longleftrightarrow> 0 \<le> dest_vec1 a"*)
himmelma@33175
    28
  "a \<le> b \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 b" "dest_vec1 (1::real^1) = 1"
hoelzl@34951
    29
  by(auto simp add:vector_component_simps forall_1 Cart_eq)
himmelma@33175
    30
hoelzl@34291
    31
lemma norm_not_0:"(x::real^'n)\<noteq>0 \<Longrightarrow> norm x \<noteq> 0" by auto
himmelma@33175
    32
himmelma@33175
    33
lemma setsum_delta_notmem: assumes "x\<notin>s"
himmelma@33175
    34
  shows "setsum (\<lambda>y. if (y = x) then P x else Q y) s = setsum Q s"
himmelma@33175
    35
        "setsum (\<lambda>y. if (x = y) then P x else Q y) s = setsum Q s"
himmelma@33175
    36
        "setsum (\<lambda>y. if (y = x) then P y else Q y) s = setsum Q s"
himmelma@33175
    37
        "setsum (\<lambda>y. if (x = y) then P y else Q y) s = setsum Q s"
himmelma@33175
    38
  apply(rule_tac [!] setsum_cong2) using assms by auto
himmelma@33175
    39
himmelma@33175
    40
lemma setsum_delta'':
himmelma@33175
    41
  fixes s::"'a::real_vector set" assumes "finite s"
himmelma@33175
    42
  shows "(\<Sum>x\<in>s. (if y = x then f x else 0) *\<^sub>R x) = (if y\<in>s then (f y) *\<^sub>R y else 0)"
himmelma@33175
    43
proof-
himmelma@33175
    44
  have *:"\<And>x y. (if y = x then f x else (0::real)) *\<^sub>R x = (if x=y then (f x) *\<^sub>R x else 0)" by auto
himmelma@33175
    45
  show ?thesis unfolding * using setsum_delta[OF assms, of y "\<lambda>x. f x *\<^sub>R x"] by auto
himmelma@33175
    46
qed
himmelma@33175
    47
himmelma@33175
    48
lemma not_disjointI:"x\<in>A \<Longrightarrow> x\<in>B \<Longrightarrow> A \<inter> B \<noteq> {}" by blast
himmelma@33175
    49
himmelma@33175
    50
lemma if_smult:"(if P then x else (y::real)) *\<^sub>R v = (if P then x *\<^sub>R v else y *\<^sub>R v)" by auto
himmelma@33175
    51
himmelma@33175
    52
lemma mem_interval_1: fixes x :: "real^1" shows
himmelma@33175
    53
 "(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b)"
himmelma@33175
    54
 "(x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)"
hoelzl@34951
    55
by(simp_all add: Cart_eq vector_less_def vector_le_def forall_1)
himmelma@33175
    56
hoelzl@34291
    57
lemma image_smult_interval:"(\<lambda>x. m *\<^sub>R (x::real^'n)) ` {a..b} =
himmelma@33175
    58
  (if {a..b} = {} then {} else if 0 \<le> m then {m *\<^sub>R a..m *\<^sub>R b} else {m *\<^sub>R b..m *\<^sub>R a})"
himmelma@33175
    59
  using image_affinity_interval[of m 0 a b] by auto
himmelma@33175
    60
himmelma@33175
    61
lemma dest_vec1_inverval:
himmelma@33175
    62
  "dest_vec1 ` {a .. b} = {dest_vec1 a .. dest_vec1 b}"
himmelma@33175
    63
  "dest_vec1 ` {a<.. b} = {dest_vec1 a<.. dest_vec1 b}"
himmelma@33175
    64
  "dest_vec1 ` {a ..<b} = {dest_vec1 a ..<dest_vec1 b}"
himmelma@33175
    65
  "dest_vec1 ` {a<..<b} = {dest_vec1 a<..<dest_vec1 b}"
himmelma@33175
    66
  apply(rule_tac [!] equalityI)
himmelma@33175
    67
  unfolding subset_eq Ball_def Bex_def mem_interval_1 image_iff
himmelma@33175
    68
  apply(rule_tac [!] allI)apply(rule_tac [!] impI)
himmelma@33175
    69
  apply(rule_tac[2] x="vec1 x" in exI)apply(rule_tac[4] x="vec1 x" in exI)
himmelma@33175
    70
  apply(rule_tac[6] x="vec1 x" in exI)apply(rule_tac[8] x="vec1 x" in exI)
hoelzl@34951
    71
  by (auto simp add: vector_less_def vector_le_def forall_1
hoelzl@34951
    72
    vec1_dest_vec1[unfolded One_nat_def])
himmelma@33175
    73
himmelma@33175
    74
lemma dest_vec1_setsum: assumes "finite S"
himmelma@33175
    75
  shows " dest_vec1 (setsum f S) = setsum (\<lambda>x. dest_vec1 (f x)) S"
himmelma@33175
    76
  using dest_vec1_sum[OF assms] by auto
himmelma@33175
    77
himmelma@33175
    78
lemma dist_triangle_eq:
himmelma@33175
    79
  fixes x y z :: "real ^ _"
himmelma@33175
    80
  shows "dist x z = dist x y + dist y z \<longleftrightarrow> norm (x - y) *\<^sub>R (y - z) = norm (y - z) *\<^sub>R (x - y)"
himmelma@33175
    81
proof- have *:"x - y + (y - z) = x - z" by auto
himmelma@33175
    82
  show ?thesis unfolding dist_norm norm_triangle_eq[of "x - y" "y - z", unfolded smult_conv_scaleR *]
himmelma@33175
    83
    by(auto simp add:norm_minus_commute) qed
himmelma@33175
    84
himmelma@33175
    85
lemma norm_eqI:"x = y \<Longrightarrow> norm x = norm y" by auto 
hoelzl@34291
    86
lemma norm_minus_eqI:"(x::real^'n) = - y \<Longrightarrow> norm x = norm y" by auto
himmelma@33175
    87
himmelma@33175
    88
lemma Min_grI: assumes "finite A" "A \<noteq> {}" "\<forall>a\<in>A. x < a" shows "x < Min A"
himmelma@33175
    89
  unfolding Min_gr_iff[OF assms(1,2)] using assms(3) by auto
himmelma@33175
    90
himmelma@33175
    91
lemma dimindex_ge_1:"CARD(_::finite) \<ge> 1"
himmelma@33175
    92
  using one_le_card_finite by auto
himmelma@33175
    93
himmelma@33175
    94
lemma real_dimindex_ge_1:"real (CARD('n::finite)) \<ge> 1" 
himmelma@33175
    95
  by(metis dimindex_ge_1 linorder_not_less real_eq_of_nat real_le_trans real_of_nat_1 real_of_nat_le_iff) 
himmelma@33175
    96
himmelma@33175
    97
lemma real_dimindex_gt_0:"real (CARD('n::finite)) > 0" apply(rule less_le_trans[OF _ real_dimindex_ge_1]) by auto
himmelma@33175
    98
himmelma@33175
    99
subsection {* Affine set and affine hull.*}
himmelma@33175
   100
himmelma@33175
   101
definition
himmelma@33175
   102
  affine :: "'a::real_vector set \<Rightarrow> bool" where
himmelma@33175
   103
  "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)"
himmelma@33175
   104
himmelma@33175
   105
lemma affine_alt: "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \<in> s)"
himmelma@33175
   106
proof- have *:"\<And>u v ::real. u + v = 1 \<longleftrightarrow> v = 1 - u" by auto
himmelma@33175
   107
  { fix x y assume "x\<in>s" "y\<in>s"
himmelma@33175
   108
    hence "(\<forall>u v::real. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s) \<longleftrightarrow> (\<forall>u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \<in> s)" apply auto 
himmelma@33175
   109
      apply(erule_tac[!] x="1 - u" in allE) unfolding * by auto  }
himmelma@33175
   110
  thus ?thesis unfolding affine_def by auto qed
himmelma@33175
   111
himmelma@33175
   112
lemma affine_empty[intro]: "affine {}"
himmelma@33175
   113
  unfolding affine_def by auto
himmelma@33175
   114
himmelma@33175
   115
lemma affine_sing[intro]: "affine {x}"
himmelma@33175
   116
  unfolding affine_alt by (auto simp add: scaleR_left_distrib [symmetric])
himmelma@33175
   117
himmelma@33175
   118
lemma affine_UNIV[intro]: "affine UNIV"
himmelma@33175
   119
  unfolding affine_def by auto
himmelma@33175
   120
himmelma@33175
   121
lemma affine_Inter: "(\<forall>s\<in>f. affine s) \<Longrightarrow> affine (\<Inter> f)"
himmelma@33175
   122
  unfolding affine_def by auto 
himmelma@33175
   123
himmelma@33175
   124
lemma affine_Int: "affine s \<Longrightarrow> affine t \<Longrightarrow> affine (s \<inter> t)"
himmelma@33175
   125
  unfolding affine_def by auto
himmelma@33175
   126
himmelma@33175
   127
lemma affine_affine_hull: "affine(affine hull s)"
himmelma@33175
   128
  unfolding hull_def using affine_Inter[of "{t \<in> affine. s \<subseteq> t}"]
himmelma@33175
   129
  unfolding mem_def by auto
himmelma@33175
   130
himmelma@33175
   131
lemma affine_hull_eq[simp]: "(affine hull s = s) \<longleftrightarrow> affine s"
himmelma@33175
   132
proof-
himmelma@33175
   133
  { fix f assume "f \<subseteq> affine"
himmelma@33175
   134
    hence "affine (\<Inter>f)" using affine_Inter[of f] unfolding subset_eq mem_def by auto  }
himmelma@33175
   135
  thus ?thesis using hull_eq[unfolded mem_def, of affine s] by auto
himmelma@33175
   136
qed
himmelma@33175
   137
himmelma@33175
   138
lemma setsum_restrict_set'': assumes "finite A"
himmelma@33175
   139
  shows "setsum f {x \<in> A. P x} = (\<Sum>x\<in>A. if P x  then f x else 0)"
himmelma@33175
   140
  unfolding mem_def[of _ P, symmetric] unfolding setsum_restrict_set'[OF assms] ..
himmelma@33175
   141
himmelma@33175
   142
subsection {* Some explicit formulations (from Lars Schewe). *}
himmelma@33175
   143
himmelma@33175
   144
lemma affine: fixes V::"'a::real_vector set"
himmelma@33175
   145
  shows "affine V \<longleftrightarrow> (\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (setsum (\<lambda>x. (u x) *\<^sub>R x)) s \<in> V)"
himmelma@33175
   146
unfolding affine_def apply rule apply(rule, rule, rule) apply(erule conjE)+ 
himmelma@33175
   147
defer apply(rule, rule, rule, rule, rule) proof-
himmelma@33175
   148
  fix x y u v assume as:"x \<in> V" "y \<in> V" "u + v = (1::real)"
himmelma@33175
   149
    "\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V"
himmelma@33175
   150
  thus "u *\<^sub>R x + v *\<^sub>R y \<in> V" apply(cases "x=y")
himmelma@33175
   151
    using as(4)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>w. if w = x then u else v"]] and as(1-3) 
himmelma@33175
   152
    by(auto simp add: scaleR_left_distrib[THEN sym])
himmelma@33175
   153
next
himmelma@33175
   154
  fix s u assume as:"\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V"
himmelma@33175
   155
    "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = (1::real)"
himmelma@33175
   156
  def n \<equiv> "card s"
himmelma@33175
   157
  have "card s = 0 \<or> card s = 1 \<or> card s = 2 \<or> card s > 2" by auto
himmelma@33175
   158
  thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" proof(auto simp only: disjE)
himmelma@33175
   159
    assume "card s = 2" hence "card s = Suc (Suc 0)" by auto
himmelma@33175
   160
    then obtain a b where "s = {a, b}" unfolding card_Suc_eq by auto
himmelma@33175
   161
    thus ?thesis using as(1)[THEN bspec[where x=a], THEN bspec[where x=b]] using as(4,5)
himmelma@33175
   162
      by(auto simp add: setsum_clauses(2))
himmelma@33175
   163
  next assume "card s > 2" thus ?thesis using as and n_def proof(induct n arbitrary: u s)
himmelma@33175
   164
      case (Suc n) fix s::"'a set" and u::"'a \<Rightarrow> real"
himmelma@33175
   165
      assume IA:"\<And>u s.  \<lbrakk>2 < card s; \<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V; finite s;
berghofe@34915
   166
               s \<noteq> {}; s \<subseteq> V; setsum u s = 1; n = card s \<rbrakk> \<Longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" and
berghofe@34915
   167
        as:"Suc n = card s" "2 < card s" "\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V"
himmelma@33175
   168
           "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = 1"
himmelma@33175
   169
      have "\<exists>x\<in>s. u x \<noteq> 1" proof(rule_tac ccontr)
himmelma@33175
   170
        assume " \<not> (\<exists>x\<in>s. u x \<noteq> 1)" hence "setsum u s = real_of_nat (card s)" unfolding card_eq_setsum by auto
himmelma@33175
   171
        thus False using as(7) and `card s > 2` by (metis Numeral1_eq1_nat less_0_number_of less_int_code(15)
himmelma@33175
   172
          less_nat_number_of not_less_iff_gr_or_eq of_nat_1 of_nat_eq_iff pos2 rel_simps(4)) qed
himmelma@33175
   173
      then obtain x where x:"x\<in>s" "u x \<noteq> 1" by auto
himmelma@33175
   174
himmelma@33175
   175
      have c:"card (s - {x}) = card s - 1" apply(rule card_Diff_singleton) using `x\<in>s` as(4) by auto
himmelma@33175
   176
      have *:"s = insert x (s - {x})" "finite (s - {x})" using `x\<in>s` and as(4) by auto
himmelma@33175
   177
      have **:"setsum u (s - {x}) = 1 - u x"
himmelma@33175
   178
        using setsum_clauses(2)[OF *(2), of u x, unfolded *(1)[THEN sym] as(7)] by auto
himmelma@33175
   179
      have ***:"inverse (1 - u x) * setsum u (s - {x}) = 1" unfolding ** using `u x \<noteq> 1` by auto
himmelma@33175
   180
      have "(\<Sum>xa\<in>s - {x}. (inverse (1 - u x) * u xa) *\<^sub>R xa) \<in> V" proof(cases "card (s - {x}) > 2")
himmelma@33175
   181
        case True hence "s - {x} \<noteq> {}" "card (s - {x}) = n" unfolding c and as(1)[symmetric] proof(rule_tac ccontr) 
himmelma@33175
   182
          assume "\<not> s - {x} \<noteq> {}" hence "card (s - {x}) = 0" unfolding card_0_eq[OF *(2)] by simp 
himmelma@33175
   183
          thus False using True by auto qed auto
himmelma@33175
   184
        thus ?thesis apply(rule_tac IA[of "s - {x}" "\<lambda>y. (inverse (1 - u x) * u y)"])
himmelma@33175
   185
        unfolding setsum_right_distrib[THEN sym] using as and *** and True by auto
himmelma@33175
   186
      next case False hence "card (s - {x}) = Suc (Suc 0)" using as(2) and c by auto
himmelma@33175
   187
        then obtain a b where "(s - {x}) = {a, b}" "a\<noteq>b" unfolding card_Suc_eq by auto
himmelma@33175
   188
        thus ?thesis using as(3)[THEN bspec[where x=a], THEN bspec[where x=b]]
himmelma@33175
   189
          using *** *(2) and `s \<subseteq> V` unfolding setsum_right_distrib by(auto simp add: setsum_clauses(2)) qed
himmelma@33175
   190
      thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric]
himmelma@33175
   191
         apply(subst *) unfolding setsum_clauses(2)[OF *(2)]
himmelma@33175
   192
         using as(3)[THEN bspec[where x=x], THEN bspec[where x="(inverse (1 - u x)) *\<^sub>R (\<Sum>xa\<in>s - {x}. u xa *\<^sub>R xa)"], 
himmelma@33175
   193
         THEN spec[where x="u x"], THEN spec[where x="1 - u x"]] and rev_subsetD[OF `x\<in>s` `s\<subseteq>V`] and `u x \<noteq> 1` by auto
himmelma@33175
   194
    qed auto
himmelma@33175
   195
  next assume "card s = 1" then obtain a where "s={a}" by(auto simp add: card_Suc_eq)
himmelma@33175
   196
    thus ?thesis using as(4,5) by simp
himmelma@33175
   197
  qed(insert `s\<noteq>{}` `finite s`, auto)
himmelma@33175
   198
qed
himmelma@33175
   199
himmelma@33175
   200
lemma affine_hull_explicit:
himmelma@33175
   201
  "affine hull p = {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> setsum (\<lambda>v. (u v) *\<^sub>R v) s = y}"
himmelma@33175
   202
  apply(rule hull_unique) apply(subst subset_eq) prefer 3 apply rule unfolding mem_Collect_eq and mem_def[of _ affine]
himmelma@33175
   203
  apply (erule exE)+ apply(erule conjE)+ prefer 2 apply rule proof-
himmelma@33175
   204
  fix x assume "x\<in>p" thus "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
himmelma@33175
   205
    apply(rule_tac x="{x}" in exI, rule_tac x="\<lambda>x. 1" in exI) by auto
himmelma@33175
   206
next
himmelma@33175
   207
  fix t x s u assume as:"p \<subseteq> t" "affine t" "finite s" "s \<noteq> {}" "s \<subseteq> p" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x" 
himmelma@33175
   208
  thus "x \<in> t" using as(2)[unfolded affine, THEN spec[where x=s], THEN spec[where x=u]] by auto
himmelma@33175
   209
next
himmelma@33175
   210
  show "affine {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y}" unfolding affine_def
himmelma@33175
   211
    apply(rule,rule,rule,rule,rule) unfolding mem_Collect_eq proof-
himmelma@33175
   212
    fix u v ::real assume uv:"u + v = 1"
himmelma@33175
   213
    fix x assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
himmelma@33175
   214
    then obtain sx ux where x:"finite sx" "sx \<noteq> {}" "sx \<subseteq> p" "setsum ux sx = 1" "(\<Sum>v\<in>sx. ux v *\<^sub>R v) = x" by auto
himmelma@33175
   215
    fix y assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
himmelma@33175
   216
    then obtain sy uy where y:"finite sy" "sy \<noteq> {}" "sy \<subseteq> p" "setsum uy sy = 1" "(\<Sum>v\<in>sy. uy v *\<^sub>R v) = y" by auto
himmelma@33175
   217
    have xy:"finite (sx \<union> sy)" using x(1) y(1) by auto
himmelma@33175
   218
    have **:"(sx \<union> sy) \<inter> sx = sx" "(sx \<union> sy) \<inter> sy = sy" by auto
himmelma@33175
   219
    show "\<exists>s ua. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum ua s = 1 \<and> (\<Sum>v\<in>s. ua v *\<^sub>R v) = u *\<^sub>R x + v *\<^sub>R y"
himmelma@33175
   220
      apply(rule_tac x="sx \<union> sy" in exI)
himmelma@33175
   221
      apply(rule_tac x="\<lambda>a. (if a\<in>sx then u * ux a else 0) + (if a\<in>sy then v * uy a else 0)" in exI)
himmelma@33175
   222
      unfolding scaleR_left_distrib setsum_addf if_smult scaleR_zero_left  ** setsum_restrict_set[OF xy, THEN sym]
himmelma@33175
   223
      unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and setsum_right_distrib[THEN sym]
himmelma@33175
   224
      unfolding x y using x(1-3) y(1-3) uv by simp qed qed
himmelma@33175
   225
himmelma@33175
   226
lemma affine_hull_finite:
himmelma@33175
   227
  assumes "finite s"
himmelma@33175
   228
  shows "affine hull s = {y. \<exists>u. setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}"
himmelma@33175
   229
  unfolding affine_hull_explicit and expand_set_eq and mem_Collect_eq apply (rule,rule)
himmelma@33175
   230
  apply(erule exE)+ apply(erule conjE)+ defer apply(erule exE) apply(erule conjE) proof-
himmelma@33175
   231
  fix x u assume "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"
himmelma@33175
   232
  thus "\<exists>sa u. finite sa \<and> \<not> (\<forall>x. (x \<in> sa) = (x \<in> {})) \<and> sa \<subseteq> s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = x"
himmelma@33175
   233
    apply(rule_tac x=s in exI, rule_tac x=u in exI) using assms by auto
himmelma@33175
   234
next
himmelma@33175
   235
  fix x t u assume "t \<subseteq> s" hence *:"s \<inter> t = t" by auto
himmelma@33175
   236
  assume "finite t" "\<not> (\<forall>x. (x \<in> t) = (x \<in> {}))" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x"
himmelma@33175
   237
  thus "\<exists>u. setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI)
himmelma@33175
   238
    unfolding if_smult scaleR_zero_left and setsum_restrict_set[OF assms, THEN sym] and * by auto qed
himmelma@33175
   239
himmelma@33175
   240
subsection {* Stepping theorems and hence small special cases. *}
himmelma@33175
   241
himmelma@33175
   242
lemma affine_hull_empty[simp]: "affine hull {} = {}"
himmelma@33175
   243
  apply(rule hull_unique) unfolding mem_def by auto
himmelma@33175
   244
himmelma@33175
   245
lemma affine_hull_finite_step:
himmelma@33175
   246
  fixes y :: "'a::real_vector"
himmelma@33175
   247
  shows "(\<exists>u. setsum u {} = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) {} = y) \<longleftrightarrow> w = 0 \<and> y = 0" (is ?th1)
himmelma@33175
   248
  "finite s \<Longrightarrow> (\<exists>u. setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y) \<longleftrightarrow>
himmelma@33175
   249
                (\<exists>v u. setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?as \<Longrightarrow> (?lhs = ?rhs)")
himmelma@33175
   250
proof-
himmelma@33175
   251
  show ?th1 by simp
himmelma@33175
   252
  assume ?as 
himmelma@33175
   253
  { assume ?lhs
himmelma@33175
   254
    then obtain u where u:"setsum u (insert a s) = w \<and> (\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto
himmelma@33175
   255
    have ?rhs proof(cases "a\<in>s")
himmelma@33175
   256
      case True hence *:"insert a s = s" by auto
himmelma@33175
   257
      show ?thesis using u[unfolded *] apply(rule_tac x=0 in exI) by auto
himmelma@33175
   258
    next
himmelma@33175
   259
      case False thus ?thesis apply(rule_tac x="u a" in exI) using u and `?as` by auto 
himmelma@33175
   260
    qed  } moreover
himmelma@33175
   261
  { assume ?rhs
himmelma@33175
   262
    then obtain v u where vu:"setsum u s = w - v"  "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto
himmelma@33175
   263
    have *:"\<And>x M. (if x = a then v else M) *\<^sub>R x = (if x = a then v *\<^sub>R x else M *\<^sub>R x)" by auto
himmelma@33175
   264
    have ?lhs proof(cases "a\<in>s")
himmelma@33175
   265
      case True thus ?thesis
himmelma@33175
   266
        apply(rule_tac x="\<lambda>x. (if x=a then v else 0) + u x" in exI)
himmelma@33175
   267
        unfolding setsum_clauses(2)[OF `?as`]  apply simp
himmelma@33175
   268
        unfolding scaleR_left_distrib and setsum_addf 
himmelma@33175
   269
        unfolding vu and * and scaleR_zero_left
himmelma@33175
   270
        by (auto simp add: setsum_delta[OF `?as`])
himmelma@33175
   271
    next
himmelma@33175
   272
      case False 
himmelma@33175
   273
      hence **:"\<And>x. x \<in> s \<Longrightarrow> u x = (if x = a then v else u x)"
himmelma@33175
   274
               "\<And>x. x \<in> s \<Longrightarrow> u x *\<^sub>R x = (if x = a then v *\<^sub>R x else u x *\<^sub>R x)" by auto
himmelma@33175
   275
      from False show ?thesis
himmelma@33175
   276
        apply(rule_tac x="\<lambda>x. if x=a then v else u x" in exI)
himmelma@33175
   277
        unfolding setsum_clauses(2)[OF `?as`] and * using vu
himmelma@33175
   278
        using setsum_cong2[of s "\<lambda>x. u x *\<^sub>R x" "\<lambda>x. if x = a then v *\<^sub>R x else u x *\<^sub>R x", OF **(2)]
himmelma@33175
   279
        using setsum_cong2[of s u "\<lambda>x. if x = a then v else u x", OF **(1)] by auto  
himmelma@33175
   280
    qed }
himmelma@33175
   281
  ultimately show "?lhs = ?rhs" by blast
himmelma@33175
   282
qed
himmelma@33175
   283
himmelma@33175
   284
lemma affine_hull_2:
himmelma@33175
   285
  fixes a b :: "'a::real_vector"
himmelma@33175
   286
  shows "affine hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b| u v. (u + v = 1)}" (is "?lhs = ?rhs")
himmelma@33175
   287
proof-
himmelma@33175
   288
  have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" 
himmelma@33175
   289
         "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto
himmelma@33175
   290
  have "?lhs = {y. \<exists>u. setsum u {a, b} = 1 \<and> (\<Sum>v\<in>{a, b}. u v *\<^sub>R v) = y}"
himmelma@33175
   291
    using affine_hull_finite[of "{a,b}"] by auto
himmelma@33175
   292
  also have "\<dots> = {y. \<exists>v u. u b = 1 - v \<and> u b *\<^sub>R b = y - v *\<^sub>R a}"
himmelma@33175
   293
    by(simp add: affine_hull_finite_step(2)[of "{b}" a]) 
himmelma@33175
   294
  also have "\<dots> = ?rhs" unfolding * by auto
himmelma@33175
   295
  finally show ?thesis by auto
himmelma@33175
   296
qed
himmelma@33175
   297
himmelma@33175
   298
lemma affine_hull_3:
himmelma@33175
   299
  fixes a b c :: "'a::real_vector"
himmelma@33175
   300
  shows "affine hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c| u v w. u + v + w = 1}" (is "?lhs = ?rhs")
himmelma@33175
   301
proof-
himmelma@33175
   302
  have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" 
himmelma@33175
   303
         "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto
himmelma@33175
   304
  show ?thesis apply(simp add: affine_hull_finite affine_hull_finite_step)
himmelma@33175
   305
    unfolding * apply auto
himmelma@33175
   306
    apply(rule_tac x=v in exI) apply(rule_tac x=va in exI) apply auto
himmelma@33175
   307
    apply(rule_tac x=u in exI) by(auto intro!: exI)
himmelma@33175
   308
qed
himmelma@33175
   309
himmelma@33175
   310
subsection {* Some relations between affine hull and subspaces. *}
himmelma@33175
   311
himmelma@33175
   312
lemma affine_hull_insert_subset_span:
himmelma@33175
   313
  fixes a :: "real ^ _"
himmelma@33175
   314
  shows "affine hull (insert a s) \<subseteq> {a + v| v . v \<in> span {x - a | x . x \<in> s}}"
himmelma@33175
   315
  unfolding subset_eq Ball_def unfolding affine_hull_explicit span_explicit mem_Collect_eq smult_conv_scaleR
himmelma@33175
   316
  apply(rule,rule) apply(erule exE)+ apply(erule conjE)+ proof-
himmelma@33175
   317
  fix x t u assume as:"finite t" "t \<noteq> {}" "t \<subseteq> insert a s" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x"
himmelma@33175
   318
  have "(\<lambda>x. x - a) ` (t - {a}) \<subseteq> {x - a |x. x \<in> s}" using as(3) by auto
himmelma@33175
   319
  thus "\<exists>v. x = a + v \<and> (\<exists>S u. finite S \<and> S \<subseteq> {x - a |x. x \<in> s} \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = v)"
himmelma@33175
   320
    apply(rule_tac x="x - a" in exI)
himmelma@33175
   321
    apply (rule conjI, simp)
himmelma@33175
   322
    apply(rule_tac x="(\<lambda>x. x - a) ` (t - {a})" in exI)
himmelma@33175
   323
    apply(rule_tac x="\<lambda>x. u (x + a)" in exI)
himmelma@33175
   324
    apply (rule conjI) using as(1) apply simp
himmelma@33175
   325
    apply (erule conjI)
himmelma@33175
   326
    using as(1)
himmelma@33175
   327
    apply (simp add: setsum_reindex[unfolded inj_on_def] scaleR_right_diff_distrib setsum_subtractf scaleR_left.setsum[THEN sym] setsum_diff1 scaleR_left_diff_distrib)
himmelma@33175
   328
    unfolding as by simp qed
himmelma@33175
   329
himmelma@33175
   330
lemma affine_hull_insert_span:
himmelma@33175
   331
  fixes a :: "real ^ _"
himmelma@33175
   332
  assumes "a \<notin> s"
himmelma@33175
   333
  shows "affine hull (insert a s) =
himmelma@33175
   334
            {a + v | v . v \<in> span {x - a | x.  x \<in> s}}"
himmelma@33175
   335
  apply(rule, rule affine_hull_insert_subset_span) unfolding subset_eq Ball_def
himmelma@33175
   336
  unfolding affine_hull_explicit and mem_Collect_eq proof(rule,rule,erule exE,erule conjE)
himmelma@33175
   337
  fix y v assume "y = a + v" "v \<in> span {x - a |x. x \<in> s}"
himmelma@33175
   338
  then obtain t u where obt:"finite t" "t \<subseteq> {x - a |x. x \<in> s}" "a + (\<Sum>v\<in>t. u v *\<^sub>R v) = y" unfolding span_explicit smult_conv_scaleR by auto
himmelma@33175
   339
  def f \<equiv> "(\<lambda>x. x + a) ` t"
himmelma@33175
   340
  have f:"finite f" "f \<subseteq> s" "(\<Sum>v\<in>f. u (v - a) *\<^sub>R (v - a)) = y - a" unfolding f_def using obt 
himmelma@33175
   341
    by(auto simp add: setsum_reindex[unfolded inj_on_def])
himmelma@33175
   342
  have *:"f \<inter> {a} = {}" "f \<inter> - {a} = f" using f(2) assms by auto
himmelma@33175
   343
  show "\<exists>sa u. finite sa \<and> sa \<noteq> {} \<and> sa \<subseteq> insert a s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y"
himmelma@33175
   344
    apply(rule_tac x="insert a f" in exI)
himmelma@33175
   345
    apply(rule_tac x="\<lambda>x. if x=a then 1 - setsum (\<lambda>x. u (x - a)) f else u (x - a)" in exI)
himmelma@33175
   346
    using assms and f unfolding setsum_clauses(2)[OF f(1)] and if_smult
himmelma@33175
   347
    unfolding setsum_cases[OF f(1), of "{a}", unfolded singleton_iff] and *
himmelma@33175
   348
    by (auto simp add: setsum_subtractf scaleR_left.setsum algebra_simps) qed
himmelma@33175
   349
himmelma@33175
   350
lemma affine_hull_span:
himmelma@33175
   351
  fixes a :: "real ^ _"
himmelma@33175
   352
  assumes "a \<in> s"
himmelma@33175
   353
  shows "affine hull s = {a + v | v. v \<in> span {x - a | x. x \<in> s - {a}}}"
himmelma@33175
   354
  using affine_hull_insert_span[of a "s - {a}", unfolded insert_Diff[OF assms]] by auto
himmelma@33175
   355
himmelma@33175
   356
subsection {* Convexity. *}
himmelma@33175
   357
himmelma@33175
   358
definition
himmelma@33175
   359
  convex :: "'a::real_vector set \<Rightarrow> bool" where
himmelma@33175
   360
  "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)"
himmelma@33175
   361
himmelma@33175
   362
lemma convex_alt: "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)"
himmelma@33175
   363
proof- have *:"\<And>u v::real. u + v = 1 \<longleftrightarrow> u = 1 - v" by auto
himmelma@33175
   364
  show ?thesis unfolding convex_def apply auto
himmelma@33175
   365
    apply(erule_tac x=x in ballE) apply(erule_tac x=y in ballE) apply(erule_tac x="1 - u" in allE)
himmelma@33175
   366
    by (auto simp add: *) qed
himmelma@33175
   367
himmelma@33175
   368
lemma mem_convex:
himmelma@33175
   369
  assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1"
himmelma@33175
   370
  shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s"
himmelma@33175
   371
  using assms unfolding convex_alt by auto
himmelma@33175
   372
hoelzl@33711
   373
lemma convex_vec1:"convex (vec1 ` s) = convex (s::real set)"
hoelzl@33711
   374
  unfolding convex_def Ball_def forall_vec1 unfolding vec1_dest_vec1_simps image_iff by auto
hoelzl@33711
   375
himmelma@33175
   376
lemma convex_empty[intro]: "convex {}"
himmelma@33175
   377
  unfolding convex_def by simp
himmelma@33175
   378
himmelma@33175
   379
lemma convex_singleton[intro]: "convex {a}"
himmelma@33175
   380
  unfolding convex_def by (auto simp add:scaleR_left_distrib[THEN sym])
himmelma@33175
   381
himmelma@33175
   382
lemma convex_UNIV[intro]: "convex UNIV"
himmelma@33175
   383
  unfolding convex_def by auto
himmelma@33175
   384
himmelma@33175
   385
lemma convex_Inter: "(\<forall>s\<in>f. convex s) ==> convex(\<Inter> f)"
himmelma@33175
   386
  unfolding convex_def by auto
himmelma@33175
   387
himmelma@33175
   388
lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)"
himmelma@33175
   389
  unfolding convex_def by auto
himmelma@33175
   390
himmelma@33175
   391
lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
himmelma@33175
   392
  unfolding convex_def apply auto
himmelma@33175
   393
  unfolding inner_add inner_scaleR
himmelma@33175
   394
  by (metis real_convex_bound_le)
himmelma@33175
   395
himmelma@33175
   396
lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
himmelma@33175
   397
proof- have *:"{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto
himmelma@33175
   398
  show ?thesis apply(unfold *) using convex_halfspace_le[of "-a" "-b"] by auto qed
himmelma@33175
   399
himmelma@33175
   400
lemma convex_hyperplane: "convex {x. inner a x = b}"
himmelma@33175
   401
proof-
himmelma@33175
   402
  have *:"{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto
himmelma@33175
   403
  show ?thesis unfolding * apply(rule convex_Int)
himmelma@33175
   404
    using convex_halfspace_le convex_halfspace_ge by auto
himmelma@33175
   405
qed
himmelma@33175
   406
himmelma@33175
   407
lemma convex_halfspace_lt: "convex {x. inner a x < b}"
himmelma@33175
   408
  unfolding convex_def
himmelma@33175
   409
  by(auto simp add: real_convex_bound_lt inner_add)
himmelma@33175
   410
himmelma@33175
   411
lemma convex_halfspace_gt: "convex {x. inner a x > b}"
himmelma@33175
   412
   using convex_halfspace_lt[of "-a" "-b"] by auto
himmelma@33175
   413
hoelzl@34291
   414
lemma convex_positive_orthant: "convex {x::real^'n. (\<forall>i. 0 \<le> x$i)}"
himmelma@33175
   415
  unfolding convex_def apply auto apply(erule_tac x=i in allE)+
himmelma@33175
   416
  apply(rule add_nonneg_nonneg) by(auto simp add: mult_nonneg_nonneg)
himmelma@33175
   417
himmelma@33175
   418
subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
himmelma@33175
   419
himmelma@33175
   420
lemma convex: "convex s \<longleftrightarrow>
himmelma@33175
   421
  (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
himmelma@33175
   422
           \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
himmelma@33175
   423
  unfolding convex_def apply rule apply(rule allI)+ defer apply(rule ballI)+ apply(rule allI)+ proof(rule,rule,rule,rule)
himmelma@33175
   424
  fix x y u v assume as:"\<forall>(k::nat) u x. (\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R x i) \<in> s"
himmelma@33175
   425
    "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"
himmelma@33175
   426
  show "u *\<^sub>R x + v *\<^sub>R y \<in> s" using as(1)[THEN spec[where x=2], THEN spec[where x="\<lambda>n. if n=1 then u else v"], THEN spec[where x="\<lambda>n. if n=1 then x else y"]] and as(2-)
himmelma@33175
   427
    by (auto simp add: setsum_head_Suc) 
himmelma@33175
   428
next
himmelma@33175
   429
  fix k u x assume as:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" 
himmelma@33175
   430
  show "(\<forall>i::nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R x i) \<in> s" apply(rule,erule conjE) proof(induct k arbitrary: u)
himmelma@33175
   431
  case (Suc k) show ?case proof(cases "u (Suc k) = 1")
himmelma@33175
   432
    case True hence "(\<Sum>i = Suc 0..k. u i *\<^sub>R x i) = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof-
himmelma@33175
   433
      fix i assume i:"i \<in> {Suc 0..k}" "u i *\<^sub>R x i \<noteq> 0"
himmelma@33175
   434
      hence ui:"u i \<noteq> 0" by auto
himmelma@33175
   435
      hence "setsum (\<lambda>k. if k=i then u i else 0) {1 .. k} \<le> setsum u {1 .. k}" apply(rule_tac setsum_mono) using Suc(2) by auto
himmelma@33175
   436
      hence "setsum u {1 .. k} \<ge> u i" using i(1) by(auto simp add: setsum_delta) 
himmelma@33175
   437
      hence "setsum u {1 .. k} > 0"  using ui apply(rule_tac less_le_trans[of _ "u i"]) using Suc(2)[THEN spec[where x=i]] and i(1) by auto
himmelma@33175
   438
      thus False using Suc(3) unfolding setsum_cl_ivl_Suc and True by simp qed
himmelma@33175
   439
    thus ?thesis unfolding setsum_cl_ivl_Suc using True and Suc(2) by auto
himmelma@33175
   440
  next
himmelma@33175
   441
    have *:"setsum u {1..k} = 1 - u (Suc k)" using Suc(3)[unfolded setsum_cl_ivl_Suc] by auto
himmelma@33175
   442
    have **:"u (Suc k) \<le> 1" apply(rule ccontr) unfolding not_le using Suc(3) using setsum_nonneg[of "{1..k}" u] using Suc(2) by auto
himmelma@33175
   443
    have ***:"\<And>i k. (u i / (1 - u (Suc k))) *\<^sub>R x i = (inverse (1 - u (Suc k))) *\<^sub>R (u i *\<^sub>R x i)" unfolding real_divide_def by (auto simp add: algebra_simps)
himmelma@33175
   444
    case False hence nn:"1 - u (Suc k) \<noteq> 0" by auto
himmelma@33175
   445
    have "(\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *\<^sub>R x i) \<in> s" apply(rule Suc(1)) unfolding setsum_divide_distrib[THEN sym] and *
himmelma@33175
   446
      apply(rule_tac allI) apply(rule,rule) apply(rule divide_nonneg_pos) using nn Suc(2) ** by auto
himmelma@33175
   447
    hence "(1 - u (Suc k)) *\<^sub>R (\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *\<^sub>R x i) + u (Suc k) *\<^sub>R x (Suc k) \<in> s"
himmelma@33175
   448
      apply(rule as[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using Suc(2)[THEN spec[where x="Suc k"]] and ** by auto
himmelma@33175
   449
    thus ?thesis unfolding setsum_cl_ivl_Suc and *** and scaleR_right.setsum [symmetric] using nn by auto qed qed auto qed
himmelma@33175
   450
himmelma@33175
   451
himmelma@33175
   452
lemma convex_explicit:
himmelma@33175
   453
  fixes s :: "'a::real_vector set"
himmelma@33175
   454
  shows "convex s \<longleftrightarrow>
himmelma@33175
   455
  (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)"
himmelma@33175
   456
  unfolding convex_def apply(rule,rule,rule) apply(subst imp_conjL,rule) defer apply(rule,rule,rule,rule,rule,rule,rule) proof-
himmelma@33175
   457
  fix x y u v assume as:"\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"
himmelma@33175
   458
  show "u *\<^sub>R x + v *\<^sub>R y \<in> s" proof(cases "x=y")
himmelma@33175
   459
    case True show ?thesis unfolding True and scaleR_left_distrib[THEN sym] using as(3,6) by auto next
himmelma@33175
   460
    case False thus ?thesis using as(1)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>z. if z=x then u else v"]] and as(2-) by auto qed
himmelma@33175
   461
next 
himmelma@33175
   462
  fix t u assume asm:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" "finite (t::'a set)"
himmelma@33175
   463
  (*"finite t" "t \<subseteq> s" "\<forall>x\<in>t. (0::real) \<le> u x" "setsum u t = 1"*)
himmelma@33175
   464
  from this(2) have "\<forall>u. t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" apply(induct_tac t rule:finite_induct)
himmelma@33175
   465
    prefer 3 apply (rule,rule) apply(erule conjE)+ proof-
himmelma@33175
   466
    fix x f u assume ind:"\<forall>u. f \<subseteq> s \<and> (\<forall>x\<in>f. 0 \<le> u x) \<and> setsum u f = 1 \<longrightarrow> (\<Sum>x\<in>f. u x *\<^sub>R x) \<in> s"
himmelma@33175
   467
    assume as:"finite f" "x \<notin> f" "insert x f \<subseteq> s" "\<forall>x\<in>insert x f. 0 \<le> u x" "setsum u (insert x f) = (1::real)"
himmelma@33175
   468
    show "(\<Sum>x\<in>insert x f. u x *\<^sub>R x) \<in> s" proof(cases "u x = 1")
himmelma@33175
   469
      case True hence "setsum (\<lambda>x. u x *\<^sub>R x) f = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof-
himmelma@33175
   470
        fix y assume y:"y \<in> f" "u y *\<^sub>R y \<noteq> 0"
himmelma@33175
   471
        hence uy:"u y \<noteq> 0" by auto
himmelma@33175
   472
        hence "setsum (\<lambda>k. if k=y then u y else 0) f \<le> setsum u f" apply(rule_tac setsum_mono) using as(4) by auto
himmelma@33175
   473
        hence "setsum u f \<ge> u y" using y(1) and as(1) by(auto simp add: setsum_delta) 
himmelma@33175
   474
        hence "setsum u f > 0" using uy apply(rule_tac less_le_trans[of _ "u y"]) using as(4) and y(1) by auto
himmelma@33175
   475
        thus False using as(2,5) unfolding setsum_clauses(2)[OF as(1)] and True by auto qed
himmelma@33175
   476
      thus ?thesis unfolding setsum_clauses(2)[OF as(1)] using as(2,3) unfolding True by auto
himmelma@33175
   477
    next
himmelma@33175
   478
      have *:"setsum u f = setsum u (insert x f) - u x" using as(2) unfolding setsum_clauses(2)[OF as(1)] by auto
himmelma@33175
   479
      have **:"u x \<le> 1" apply(rule ccontr) unfolding not_le using as(5)[unfolded setsum_clauses(2)[OF as(1)]] and as(2)
himmelma@33175
   480
        using setsum_nonneg[of f u] and as(4) by auto
himmelma@33175
   481
      case False hence "inverse (1 - u x) *\<^sub>R (\<Sum>x\<in>f. u x *\<^sub>R x) \<in> s" unfolding scaleR_right.setsum and scaleR_scaleR
himmelma@33175
   482
        apply(rule_tac ind[THEN spec, THEN mp]) apply rule defer apply rule apply rule apply(rule mult_nonneg_nonneg)
himmelma@33175
   483
        unfolding setsum_right_distrib[THEN sym] and * using as and ** by auto
himmelma@33175
   484
      hence "u x *\<^sub>R x + (1 - u x) *\<^sub>R ((inverse (1 - u x)) *\<^sub>R setsum (\<lambda>x. u x *\<^sub>R x) f) \<in>s" 
himmelma@33175
   485
        apply(rule_tac asm(1)[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using as and ** False by auto 
himmelma@33175
   486
      thus ?thesis unfolding setsum_clauses(2)[OF as(1)] using as(2) and False by auto qed
himmelma@33175
   487
  qed auto thus "t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" by auto
himmelma@33175
   488
qed
himmelma@33175
   489
himmelma@33175
   490
lemma convex_finite: assumes "finite s"
himmelma@33175
   491
  shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1
himmelma@33175
   492
                      \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)"
himmelma@33175
   493
  unfolding convex_explicit apply(rule, rule, rule) defer apply(rule,rule,rule)apply(erule conjE)+ proof-
himmelma@33175
   494
  fix t u assume as:"\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s" " finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)"
himmelma@33175
   495
  have *:"s \<inter> t = t" using as(3) by auto
himmelma@33175
   496
  show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" using as(1)[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]]
himmelma@33175
   497
    unfolding if_smult and setsum_cases[OF assms] and * using as(2-) by auto
himmelma@33175
   498
qed (erule_tac x=s in allE, erule_tac x=u in allE, auto)
himmelma@33175
   499
himmelma@33175
   500
subsection {* Cones. *}
himmelma@33175
   501
himmelma@33175
   502
definition
himmelma@33175
   503
  cone :: "'a::real_vector set \<Rightarrow> bool" where
himmelma@33175
   504
  "cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)"
himmelma@33175
   505
himmelma@33175
   506
lemma cone_empty[intro, simp]: "cone {}"
himmelma@33175
   507
  unfolding cone_def by auto
himmelma@33175
   508
himmelma@33175
   509
lemma cone_univ[intro, simp]: "cone UNIV"
himmelma@33175
   510
  unfolding cone_def by auto
himmelma@33175
   511
himmelma@33175
   512
lemma cone_Inter[intro]: "(\<forall>s\<in>f. cone s) \<Longrightarrow> cone(\<Inter> f)"
himmelma@33175
   513
  unfolding cone_def by auto
himmelma@33175
   514
himmelma@33175
   515
subsection {* Conic hull. *}
himmelma@33175
   516
himmelma@33175
   517
lemma cone_cone_hull: "cone (cone hull s)"
himmelma@33175
   518
  unfolding hull_def using cone_Inter[of "{t \<in> conic. s \<subseteq> t}"] 
himmelma@33175
   519
  by (auto simp add: mem_def)
himmelma@33175
   520
himmelma@33175
   521
lemma cone_hull_eq: "(cone hull s = s) \<longleftrightarrow> cone s"
himmelma@33175
   522
  apply(rule hull_eq[unfolded mem_def])
himmelma@33175
   523
  using cone_Inter unfolding subset_eq by (auto simp add: mem_def)
himmelma@33175
   524
himmelma@33175
   525
subsection {* Affine dependence and consequential theorems (from Lars Schewe). *}
himmelma@33175
   526
himmelma@33175
   527
definition
himmelma@33175
   528
  affine_dependent :: "'a::real_vector set \<Rightarrow> bool" where
himmelma@33175
   529
  "affine_dependent s \<longleftrightarrow> (\<exists>x\<in>s. x \<in> (affine hull (s - {x})))"
himmelma@33175
   530
himmelma@33175
   531
lemma affine_dependent_explicit:
himmelma@33175
   532
  "affine_dependent p \<longleftrightarrow>
himmelma@33175
   533
    (\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and>
himmelma@33175
   534
    (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)"
himmelma@33175
   535
  unfolding affine_dependent_def affine_hull_explicit mem_Collect_eq apply(rule)
himmelma@33175
   536
  apply(erule bexE,erule exE,erule exE) apply(erule conjE)+ defer apply(erule exE,erule exE) apply(erule conjE)+ apply(erule bexE)
himmelma@33175
   537
proof-
himmelma@33175
   538
  fix x s u assume as:"x \<in> p" "finite s" "s \<noteq> {}" "s \<subseteq> p - {x}" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"
himmelma@33175
   539
  have "x\<notin>s" using as(1,4) by auto
himmelma@33175
   540
  show "\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = 0"
himmelma@33175
   541
    apply(rule_tac x="insert x s" in exI, rule_tac x="\<lambda>v. if v = x then - 1 else u v" in exI)
himmelma@33175
   542
    unfolding if_smult and setsum_clauses(2)[OF as(2)] and setsum_delta_notmem[OF `x\<notin>s`] and as using as by auto 
himmelma@33175
   543
next
himmelma@33175
   544
  fix s u v assume as:"finite s" "s \<subseteq> p" "setsum u s = 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" "v \<in> s" "u v \<noteq> 0"
himmelma@33175
   545
  have "s \<noteq> {v}" using as(3,6) by auto
himmelma@33175
   546
  thus "\<exists>x\<in>p. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p - {x} \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" 
himmelma@33175
   547
    apply(rule_tac x=v in bexI, rule_tac x="s - {v}" in exI, rule_tac x="\<lambda>x. - (1 / u v) * u x" in exI)
himmelma@33175
   548
    unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] unfolding setsum_right_distrib[THEN sym] and setsum_diff1[OF as(1)] using as by auto
himmelma@33175
   549
qed
himmelma@33175
   550
himmelma@33175
   551
lemma affine_dependent_explicit_finite:
himmelma@33175
   552
  fixes s :: "'a::real_vector set" assumes "finite s"
himmelma@33175
   553
  shows "affine_dependent s \<longleftrightarrow> (\<exists>u. setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)"
himmelma@33175
   554
  (is "?lhs = ?rhs")
himmelma@33175
   555
proof
himmelma@33175
   556
  have *:"\<And>vt u v. (if vt then u v else 0) *\<^sub>R v = (if vt then (u v) *\<^sub>R v else (0::'a))" by auto
himmelma@33175
   557
  assume ?lhs
himmelma@33175
   558
  then obtain t u v where "finite t" "t \<subseteq> s" "setsum u t = 0" "v\<in>t" "u v \<noteq> 0"  "(\<Sum>v\<in>t. u v *\<^sub>R v) = 0"
himmelma@33175
   559
    unfolding affine_dependent_explicit by auto
himmelma@33175
   560
  thus ?rhs apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI)
himmelma@33175
   561
    apply auto unfolding * and setsum_restrict_set[OF assms, THEN sym]
himmelma@33175
   562
    unfolding Int_absorb1[OF `t\<subseteq>s`] by auto
himmelma@33175
   563
next
himmelma@33175
   564
  assume ?rhs
himmelma@33175
   565
  then obtain u v where "setsum u s = 0"  "v\<in>s" "u v \<noteq> 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" by auto
himmelma@33175
   566
  thus ?lhs unfolding affine_dependent_explicit using assms by auto
himmelma@33175
   567
qed
himmelma@33175
   568
himmelma@33175
   569
subsection {* A general lemma. *}
himmelma@33175
   570
himmelma@33175
   571
lemma convex_connected:
himmelma@33175
   572
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
   573
  assumes "convex s" shows "connected s"
himmelma@33175
   574
proof-
himmelma@33175
   575
  { fix e1 e2 assume as:"open e1" "open e2" "e1 \<inter> e2 \<inter> s = {}" "s \<subseteq> e1 \<union> e2" 
himmelma@33175
   576
    assume "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
himmelma@33175
   577
    then obtain x1 x2 where x1:"x1\<in>e1" "x1\<in>s" and x2:"x2\<in>e2" "x2\<in>s" by auto
himmelma@33175
   578
    hence n:"norm (x1 - x2) > 0" unfolding zero_less_norm_iff using as(3) by auto
himmelma@33175
   579
himmelma@33175
   580
    { fix x e::real assume as:"0 \<le> x" "x \<le> 1" "0 < e"
himmelma@33175
   581
      { fix y have *:"(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2) = (y - x) *\<^sub>R x1 - (y - x) *\<^sub>R x2"
himmelma@33175
   582
          by (simp add: algebra_simps)
himmelma@33175
   583
        assume "\<bar>y - x\<bar> < e / norm (x1 - x2)"
himmelma@33175
   584
        hence "norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e"
himmelma@33175
   585
          unfolding * and scaleR_right_diff_distrib[THEN sym]
himmelma@33175
   586
          unfolding less_divide_eq using n by auto  }
himmelma@33175
   587
      hence "\<exists>d>0. \<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e"
himmelma@33175
   588
        apply(rule_tac x="e / norm (x1 - x2)" in exI) using as
himmelma@33175
   589
        apply auto unfolding zero_less_divide_iff using n by simp  }  note * = this
himmelma@33175
   590
himmelma@33175
   591
    have "\<exists>x\<ge>0. x \<le> 1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2"
himmelma@33175
   592
      apply(rule connected_real_lemma) apply (simp add: `x1\<in>e1` `x2\<in>e2` dist_commute)+
himmelma@33175
   593
      using * apply(simp add: dist_norm)
himmelma@33175
   594
      using as(1,2)[unfolded open_dist] apply simp
himmelma@33175
   595
      using as(1,2)[unfolded open_dist] apply simp
himmelma@33175
   596
      using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]] using x1 x2
himmelma@33175
   597
      using as(3) by auto
himmelma@33175
   598
    then obtain x where "x\<ge>0" "x\<le>1" "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1"  "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2" by auto
himmelma@33175
   599
    hence False using as(4) 
himmelma@33175
   600
      using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]]
himmelma@33175
   601
      using x1(2) x2(2) by auto  }
himmelma@33175
   602
  thus ?thesis unfolding connected_def by auto
himmelma@33175
   603
qed
himmelma@33175
   604
himmelma@33175
   605
subsection {* One rather trivial consequence. *}
himmelma@33175
   606
hoelzl@34951
   607
lemma connected_UNIV[intro]: "connected (UNIV :: 'a::real_normed_vector set)"
himmelma@33175
   608
  by(simp add: convex_connected convex_UNIV)
himmelma@33175
   609
himmelma@33175
   610
subsection {* Convex functions into the reals. *}
himmelma@33175
   611
himmelma@33175
   612
definition
himmelma@33175
   613
  convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool" where
himmelma@33175
   614
  "convex_on s f \<longleftrightarrow>
himmelma@33175
   615
  (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)"
himmelma@33175
   616
himmelma@33175
   617
lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f"
himmelma@33175
   618
  unfolding convex_on_def by auto
himmelma@33175
   619
hoelzl@34951
   620
lemma convex_add[intro]:
himmelma@33175
   621
  assumes "convex_on s f" "convex_on s g"
himmelma@33175
   622
  shows "convex_on s (\<lambda>x. f x + g x)"
himmelma@33175
   623
proof-
himmelma@33175
   624
  { fix x y assume "x\<in>s" "y\<in>s" moreover
himmelma@33175
   625
    fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   626
    ultimately have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)"
himmelma@33175
   627
      using assms(1)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]
himmelma@33175
   628
      using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]
himmelma@33175
   629
      apply - apply(rule add_mono) by auto
himmelma@33175
   630
    hence "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" by (simp add: ring_simps)  }
himmelma@33175
   631
  thus ?thesis unfolding convex_on_def by auto 
himmelma@33175
   632
qed
himmelma@33175
   633
hoelzl@34951
   634
lemma convex_cmul[intro]:
himmelma@33175
   635
  assumes "0 \<le> (c::real)" "convex_on s f"
himmelma@33175
   636
  shows "convex_on s (\<lambda>x. c * f x)"
himmelma@33175
   637
proof-
himmelma@33175
   638
  have *:"\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" by (simp add: ring_simps)
himmelma@33175
   639
  show ?thesis using assms(2) and mult_mono1[OF _ assms(1)] unfolding convex_on_def and * by auto
himmelma@33175
   640
qed
himmelma@33175
   641
himmelma@33175
   642
lemma convex_lower:
himmelma@33175
   643
  assumes "convex_on s f"  "x\<in>s"  "y \<in> s"  "0 \<le> u"  "0 \<le> v"  "u + v = 1"
himmelma@33175
   644
  shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)"
himmelma@33175
   645
proof-
himmelma@33175
   646
  let ?m = "max (f x) (f y)"
himmelma@33175
   647
  have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" apply(rule add_mono) 
himmelma@33175
   648
    using assms(4,5) by(auto simp add: mult_mono1)
himmelma@33175
   649
  also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[THEN sym] by auto
himmelma@33175
   650
  finally show ?thesis using assms(1)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]
himmelma@33175
   651
    using assms(2-6) by auto 
himmelma@33175
   652
qed
himmelma@33175
   653
himmelma@33175
   654
lemma convex_local_global_minimum:
himmelma@33175
   655
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
   656
  assumes "0<e" "convex_on s f" "ball x e \<subseteq> s" "\<forall>y\<in>ball x e. f x \<le> f y"
himmelma@33175
   657
  shows "\<forall>y\<in>s. f x \<le> f y"
himmelma@33175
   658
proof(rule ccontr)
himmelma@33175
   659
  have "x\<in>s" using assms(1,3) by auto
himmelma@33175
   660
  assume "\<not> (\<forall>y\<in>s. f x \<le> f y)"
himmelma@33175
   661
  then obtain y where "y\<in>s" and y:"f x > f y" by auto
himmelma@33175
   662
  hence xy:"0 < dist x y" by (auto simp add: dist_nz[THEN sym])
himmelma@33175
   663
himmelma@33175
   664
  then obtain u where "0 < u" "u \<le> 1" and u:"u < e / dist x y"
himmelma@33175
   665
    using real_lbound_gt_zero[of 1 "e / dist x y"] using xy `e>0` and divide_pos_pos[of e "dist x y"] by auto
himmelma@33175
   666
  hence "f ((1-u) *\<^sub>R x + u *\<^sub>R y) \<le> (1-u) * f x + u * f y" using `x\<in>s` `y\<in>s`
himmelma@33175
   667
    using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x="1-u"]] by auto
himmelma@33175
   668
  moreover
himmelma@33175
   669
  have *:"x - ((1 - u) *\<^sub>R x + u *\<^sub>R y) = u *\<^sub>R (x - y)" by (simp add: algebra_simps)
himmelma@33175
   670
  have "(1 - u) *\<^sub>R x + u *\<^sub>R y \<in> ball x e" unfolding mem_ball dist_norm unfolding * and norm_scaleR and abs_of_pos[OF `0<u`] unfolding dist_norm[THEN sym]
himmelma@33175
   671
    using u unfolding pos_less_divide_eq[OF xy] by auto
himmelma@33175
   672
  hence "f x \<le> f ((1 - u) *\<^sub>R x + u *\<^sub>R y)" using assms(4) by auto
himmelma@33175
   673
  ultimately show False using mult_strict_left_mono[OF y `u>0`] unfolding left_diff_distrib by auto
himmelma@33175
   674
qed
himmelma@33175
   675
hoelzl@34951
   676
lemma convex_distance[intro]:
himmelma@33175
   677
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
   678
  shows "convex_on s (\<lambda>x. dist a x)"
himmelma@33175
   679
proof(auto simp add: convex_on_def dist_norm)
himmelma@33175
   680
  fix x y assume "x\<in>s" "y\<in>s"
himmelma@33175
   681
  fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   682
  have "a = u *\<^sub>R a + v *\<^sub>R a" unfolding scaleR_left_distrib[THEN sym] and `u+v=1` by simp
himmelma@33175
   683
  hence *:"a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))"
himmelma@33175
   684
    by (auto simp add: algebra_simps)
himmelma@33175
   685
  show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)"
himmelma@33175
   686
    unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"]
himmelma@33175
   687
    using `0 \<le> u` `0 \<le> v` by auto
himmelma@33175
   688
qed
himmelma@33175
   689
himmelma@33175
   690
subsection {* Arithmetic operations on sets preserve convexity. *}
himmelma@33175
   691
himmelma@33175
   692
lemma convex_scaling: "convex s \<Longrightarrow> convex ((\<lambda>x. c *\<^sub>R x) ` s)"
himmelma@33175
   693
  unfolding convex_def and image_iff apply auto
himmelma@33175
   694
  apply (rule_tac x="u *\<^sub>R x+v *\<^sub>R y" in bexI) by (auto simp add: algebra_simps)
himmelma@33175
   695
himmelma@33175
   696
lemma convex_negations: "convex s \<Longrightarrow> convex ((\<lambda>x. -x)` s)"
himmelma@33175
   697
  unfolding convex_def and image_iff apply auto
himmelma@33175
   698
  apply (rule_tac x="u *\<^sub>R x+v *\<^sub>R y" in bexI) by auto
himmelma@33175
   699
himmelma@33175
   700
lemma convex_sums:
himmelma@33175
   701
  assumes "convex s" "convex t"
himmelma@33175
   702
  shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
himmelma@33175
   703
proof(auto simp add: convex_def image_iff scaleR_right_distrib)
himmelma@33175
   704
  fix xa xb ya yb assume xy:"xa\<in>s" "xb\<in>s" "ya\<in>t" "yb\<in>t"
himmelma@33175
   705
  fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   706
  show "\<exists>x y. u *\<^sub>R xa + u *\<^sub>R ya + (v *\<^sub>R xb + v *\<^sub>R yb) = x + y \<and> x \<in> s \<and> y \<in> t"
himmelma@33175
   707
    apply(rule_tac x="u *\<^sub>R xa + v *\<^sub>R xb" in exI) apply(rule_tac x="u *\<^sub>R ya + v *\<^sub>R yb" in exI)
himmelma@33175
   708
    using assms(1)[unfolded convex_def, THEN bspec[where x=xa], THEN bspec[where x=xb]]
himmelma@33175
   709
    using assms(2)[unfolded convex_def, THEN bspec[where x=ya], THEN bspec[where x=yb]]
himmelma@33175
   710
    using uv xy by auto
himmelma@33175
   711
qed
himmelma@33175
   712
himmelma@33175
   713
lemma convex_differences: 
himmelma@33175
   714
  assumes "convex s" "convex t"
himmelma@33175
   715
  shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
himmelma@33175
   716
proof-
himmelma@33175
   717
  have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}" unfolding image_iff apply auto
himmelma@33175
   718
    apply(rule_tac x=xa in exI) apply(rule_tac x="-y" in exI) apply simp
himmelma@33175
   719
    apply(rule_tac x=xa in exI) apply(rule_tac x=xb in exI) by simp
himmelma@33175
   720
  thus ?thesis using convex_sums[OF assms(1)  convex_negations[OF assms(2)]] by auto
himmelma@33175
   721
qed
himmelma@33175
   722
himmelma@33175
   723
lemma convex_translation: assumes "convex s" shows "convex ((\<lambda>x. a + x) ` s)"
himmelma@33175
   724
proof- have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
himmelma@33175
   725
  thus ?thesis using convex_sums[OF convex_singleton[of a] assms] by auto qed
himmelma@33175
   726
himmelma@33175
   727
lemma convex_affinity: assumes "convex s" shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)"
himmelma@33175
   728
proof- have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto
himmelma@33175
   729
  thus ?thesis using convex_translation[OF convex_scaling[OF assms], of a c] by auto qed
himmelma@33175
   730
himmelma@33175
   731
lemma convex_linear_image:
himmelma@33175
   732
  assumes c:"convex s" and l:"bounded_linear f"
himmelma@33175
   733
  shows "convex(f ` s)"
himmelma@33175
   734
proof(auto simp add: convex_def)
himmelma@33175
   735
  interpret f: bounded_linear f by fact
himmelma@33175
   736
  fix x y assume xy:"x \<in> s" "y \<in> s"
himmelma@33175
   737
  fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   738
  show "u *\<^sub>R f x + v *\<^sub>R f y \<in> f ` s" unfolding image_iff
himmelma@33175
   739
    apply(rule_tac x="u *\<^sub>R x + v *\<^sub>R y" in bexI)
himmelma@33175
   740
    unfolding f.add f.scaleR
himmelma@33175
   741
    using c[unfolded convex_def] xy uv by auto
himmelma@33175
   742
qed
himmelma@33175
   743
himmelma@33175
   744
subsection {* Balls, being convex, are connected. *}
himmelma@33175
   745
himmelma@33175
   746
lemma convex_ball:
himmelma@33175
   747
  fixes x :: "'a::real_normed_vector"
himmelma@33175
   748
  shows "convex (ball x e)" 
himmelma@33175
   749
proof(auto simp add: convex_def)
himmelma@33175
   750
  fix y z assume yz:"dist x y < e" "dist x z < e"
himmelma@33175
   751
  fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   752
  have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz
himmelma@33175
   753
    using convex_distance[of "ball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto
himmelma@33175
   754
  thus "dist x (u *\<^sub>R y + v *\<^sub>R z) < e" using real_convex_bound_lt[OF yz uv] by auto 
himmelma@33175
   755
qed
himmelma@33175
   756
himmelma@33175
   757
lemma convex_cball:
himmelma@33175
   758
  fixes x :: "'a::real_normed_vector"
himmelma@33175
   759
  shows "convex(cball x e)"
himmelma@33175
   760
proof(auto simp add: convex_def Ball_def mem_cball)
himmelma@33175
   761
  fix y z assume yz:"dist x y \<le> e" "dist x z \<le> e"
himmelma@33175
   762
  fix u v ::real assume uv:" 0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   763
  have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz
himmelma@33175
   764
    using convex_distance[of "cball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto
himmelma@33175
   765
  thus "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> e" using real_convex_bound_le[OF yz uv] by auto 
himmelma@33175
   766
qed
himmelma@33175
   767
himmelma@33175
   768
lemma connected_ball:
himmelma@33175
   769
  fixes x :: "'a::real_normed_vector"
himmelma@33175
   770
  shows "connected (ball x e)"
himmelma@33175
   771
  using convex_connected convex_ball by auto
himmelma@33175
   772
himmelma@33175
   773
lemma connected_cball:
himmelma@33175
   774
  fixes x :: "'a::real_normed_vector"
himmelma@33175
   775
  shows "connected(cball x e)"
himmelma@33175
   776
  using convex_connected convex_cball by auto
himmelma@33175
   777
himmelma@33175
   778
subsection {* Convex hull. *}
himmelma@33175
   779
himmelma@33175
   780
lemma convex_convex_hull: "convex(convex hull s)"
himmelma@33175
   781
  unfolding hull_def using convex_Inter[of "{t\<in>convex. s\<subseteq>t}"]
himmelma@33175
   782
  unfolding mem_def by auto
himmelma@33175
   783
haftmann@34064
   784
lemma convex_hull_eq: "convex hull s = s \<longleftrightarrow> convex s"
haftmann@34064
   785
  apply (rule hull_eq [unfolded mem_def])
haftmann@34064
   786
  apply (rule convex_Inter [unfolded Ball_def mem_def])
haftmann@34064
   787
  apply (simp add: le_fun_def le_bool_def)
haftmann@34064
   788
  done
himmelma@33175
   789
himmelma@33175
   790
lemma bounded_convex_hull:
himmelma@33175
   791
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
   792
  assumes "bounded s" shows "bounded(convex hull s)"
himmelma@33175
   793
proof- from assms obtain B where B:"\<forall>x\<in>s. norm x \<le> B" unfolding bounded_iff by auto
himmelma@33175
   794
  show ?thesis apply(rule bounded_subset[OF bounded_cball, of _ 0 B])
himmelma@33175
   795
    unfolding subset_hull[unfolded mem_def, of convex, OF convex_cball]
himmelma@33175
   796
    unfolding subset_eq mem_cball dist_norm using B by auto qed
himmelma@33175
   797
himmelma@33175
   798
lemma finite_imp_bounded_convex_hull:
himmelma@33175
   799
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
   800
  shows "finite s \<Longrightarrow> bounded(convex hull s)"
himmelma@33175
   801
  using bounded_convex_hull finite_imp_bounded by auto
himmelma@33175
   802
himmelma@33175
   803
subsection {* Stepping theorems for convex hulls of finite sets. *}
himmelma@33175
   804
himmelma@33175
   805
lemma convex_hull_empty[simp]: "convex hull {} = {}"
himmelma@33175
   806
  apply(rule hull_unique) unfolding mem_def by auto
himmelma@33175
   807
himmelma@33175
   808
lemma convex_hull_singleton[simp]: "convex hull {a} = {a}"
himmelma@33175
   809
  apply(rule hull_unique) unfolding mem_def by auto
himmelma@33175
   810
himmelma@33175
   811
lemma convex_hull_insert:
himmelma@33175
   812
  fixes s :: "'a::real_vector set"
himmelma@33175
   813
  assumes "s \<noteq> {}"
himmelma@33175
   814
  shows "convex hull (insert a s) = {x. \<exists>u\<ge>0. \<exists>v\<ge>0. \<exists>b. (u + v = 1) \<and>
himmelma@33175
   815
                                    b \<in> (convex hull s) \<and> (x = u *\<^sub>R a + v *\<^sub>R b)}" (is "?xyz = ?hull")
himmelma@33175
   816
 apply(rule,rule hull_minimal,rule) unfolding mem_def[of _ convex] and insert_iff prefer 3 apply rule proof-
himmelma@33175
   817
 fix x assume x:"x = a \<or> x \<in> s"
himmelma@33175
   818
 thus "x\<in>?hull" apply rule unfolding mem_Collect_eq apply(rule_tac x=1 in exI) defer 
himmelma@33175
   819
   apply(rule_tac x=0 in exI) using assms hull_subset[of s convex] by auto
himmelma@33175
   820
next
himmelma@33175
   821
  fix x assume "x\<in>?hull"
himmelma@33175
   822
  then obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "x = u *\<^sub>R a + v *\<^sub>R b" by auto
himmelma@33175
   823
  have "a\<in>convex hull insert a s" "b\<in>convex hull insert a s"
himmelma@33175
   824
    using hull_mono[of s "insert a s" convex] hull_mono[of "{a}" "insert a s" convex] and obt(4) by auto
himmelma@33175
   825
  thus "x\<in> convex hull insert a s" unfolding obt(5) using convex_convex_hull[of "insert a s", unfolded convex_def]
himmelma@33175
   826
    apply(erule_tac x=a in ballE) apply(erule_tac x=b in ballE) apply(erule_tac x=u in allE) using obt by auto
himmelma@33175
   827
next
himmelma@33175
   828
  show "convex ?hull" unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof-
himmelma@33175
   829
    fix x y u v assume as:"(0::real) \<le> u" "0 \<le> v" "u + v = 1" "x\<in>?hull" "y\<in>?hull"
himmelma@33175
   830
    from as(4) obtain u1 v1 b1 where obt1:"u1\<ge>0" "v1\<ge>0" "u1 + v1 = 1" "b1 \<in> convex hull s" "x = u1 *\<^sub>R a + v1 *\<^sub>R b1" by auto
himmelma@33175
   831
    from as(5) obtain u2 v2 b2 where obt2:"u2\<ge>0" "v2\<ge>0" "u2 + v2 = 1" "b2 \<in> convex hull s" "y = u2 *\<^sub>R a + v2 *\<^sub>R b2" by auto
himmelma@33175
   832
    have *:"\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps)
himmelma@33175
   833
    have "\<exists>b \<in> convex hull s. u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (b - (u * u1) *\<^sub>R b - (v * u2) *\<^sub>R b)"
himmelma@33175
   834
    proof(cases "u * v1 + v * v2 = 0")
himmelma@33175
   835
      have *:"\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps)
himmelma@33175
   836
      case True hence **:"u * v1 = 0" "v * v2 = 0" apply- apply(rule_tac [!] ccontr)
himmelma@33175
   837
        using mult_nonneg_nonneg[OF `u\<ge>0` `v1\<ge>0`] mult_nonneg_nonneg[OF `v\<ge>0` `v2\<ge>0`] by auto
himmelma@33175
   838
      hence "u * u1 + v * u2 = 1" using as(3) obt1(3) obt2(3) by auto
himmelma@33175
   839
      thus ?thesis unfolding obt1(5) obt2(5) * using assms hull_subset[of s convex] by(auto simp add: ** scaleR_right_distrib)
himmelma@33175
   840
    next
himmelma@33175
   841
      have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps)
himmelma@33175
   842
      also have "\<dots> = u * (v1 + u1 - u1) + v * (v2 + u2 - u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps) 
himmelma@33175
   843
      also have "\<dots> = u * v1 + v * v2" by simp finally have **:"1 - (u * u1 + v * u2) = u * v1 + v * v2" by auto
himmelma@33175
   844
      case False have "0 \<le> u * v1 + v * v2" "0 \<le> u * v1" "0 \<le> u * v1 + v * v2" "0 \<le> v * v2" apply -
himmelma@33175
   845
        apply(rule add_nonneg_nonneg) prefer 4 apply(rule add_nonneg_nonneg) apply(rule_tac [!] mult_nonneg_nonneg)
himmelma@33175
   846
        using as(1,2) obt1(1,2) obt2(1,2) by auto 
himmelma@33175
   847
      thus ?thesis unfolding obt1(5) obt2(5) unfolding * and ** using False
himmelma@33175
   848
        apply(rule_tac x="((u * v1) / (u * v1 + v * v2)) *\<^sub>R b1 + ((v * v2) / (u * v1 + v * v2)) *\<^sub>R b2" in bexI) defer
himmelma@33175
   849
        apply(rule convex_convex_hull[of s, unfolded convex_def, rule_format]) using obt1(4) obt2(4)
himmelma@33175
   850
        unfolding add_divide_distrib[THEN sym] and real_0_le_divide_iff
himmelma@33175
   851
        by (auto simp add: scaleR_left_distrib scaleR_right_distrib)
himmelma@33175
   852
    qed note * = this
himmelma@33175
   853
    have u1:"u1 \<le> 1" apply(rule ccontr) unfolding obt1(3)[THEN sym] and not_le using obt1(2) by auto
himmelma@33175
   854
    have u2:"u2 \<le> 1" apply(rule ccontr) unfolding obt2(3)[THEN sym] and not_le using obt2(2) by auto
himmelma@33175
   855
    have "u1 * u + u2 * v \<le> (max u1 u2) * u + (max u1 u2) * v" apply(rule add_mono)
himmelma@33175
   856
      apply(rule_tac [!] mult_right_mono) using as(1,2) obt1(1,2) obt2(1,2) by auto
himmelma@33175
   857
    also have "\<dots> \<le> 1" unfolding mult.add_right[THEN sym] and as(3) using u1 u2 by auto
himmelma@33175
   858
    finally 
himmelma@33175
   859
    show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x="u * u1 + v * u2" in exI)
himmelma@33175
   860
      apply(rule conjI) defer apply(rule_tac x="1 - u * u1 - v * u2" in exI) unfolding Bex_def
himmelma@33175
   861
      using as(1,2) obt1(1,2) obt2(1,2) * by(auto intro!: mult_nonneg_nonneg add_nonneg_nonneg simp add: algebra_simps)
himmelma@33175
   862
  qed
himmelma@33175
   863
qed
himmelma@33175
   864
himmelma@33175
   865
himmelma@33175
   866
subsection {* Explicit expression for convex hull. *}
himmelma@33175
   867
himmelma@33175
   868
lemma convex_hull_indexed:
himmelma@33175
   869
  fixes s :: "'a::real_vector set"
himmelma@33175
   870
  shows "convex hull s = {y. \<exists>k u x. (\<forall>i\<in>{1::nat .. k}. 0 \<le> u i \<and> x i \<in> s) \<and>
himmelma@33175
   871
                            (setsum u {1..k} = 1) \<and>
himmelma@33175
   872
                            (setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} = y)}" (is "?xyz = ?hull")
himmelma@33175
   873
  apply(rule hull_unique) unfolding mem_def[of _ convex] apply(rule) defer
himmelma@33175
   874
  apply(subst convex_def) apply(rule,rule,rule,rule,rule,rule,rule)
himmelma@33175
   875
proof-
himmelma@33175
   876
  fix x assume "x\<in>s"
himmelma@33175
   877
  thus "x \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x=1 in exI, rule_tac x="\<lambda>x. 1" in exI) by auto
himmelma@33175
   878
next
himmelma@33175
   879
  fix t assume as:"s \<subseteq> t" "convex t"
himmelma@33175
   880
  show "?hull \<subseteq> t" apply(rule) unfolding mem_Collect_eq apply(erule exE | erule conjE)+ proof-
himmelma@33175
   881
    fix x k u y assume assm:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x"
himmelma@33175
   882
    show "x\<in>t" unfolding assm(3)[THEN sym] apply(rule as(2)[unfolded convex, rule_format])
himmelma@33175
   883
      using assm(1,2) as(1) by auto qed
himmelma@33175
   884
next
himmelma@33175
   885
  fix x y u v assume uv:"0\<le>u" "0\<le>v" "u+v=(1::real)" and xy:"x\<in>?hull" "y\<in>?hull"
himmelma@33175
   886
  from xy obtain k1 u1 x1 where x:"\<forall>i\<in>{1::nat..k1}. 0\<le>u1 i \<and> x1 i \<in> s" "setsum u1 {Suc 0..k1} = 1" "(\<Sum>i = Suc 0..k1. u1 i *\<^sub>R x1 i) = x" by auto
himmelma@33175
   887
  from xy obtain k2 u2 x2 where y:"\<forall>i\<in>{1::nat..k2}. 0\<le>u2 i \<and> x2 i \<in> s" "setsum u2 {Suc 0..k2} = 1" "(\<Sum>i = Suc 0..k2. u2 i *\<^sub>R x2 i) = y" by auto
himmelma@33175
   888
  have *:"\<And>P (x1::'a) x2 s1 s2 i.(if P i then s1 else s2) *\<^sub>R (if P i then x1 else x2) = (if P i then s1 *\<^sub>R x1 else s2 *\<^sub>R x2)"
himmelma@33175
   889
    "{1..k1 + k2} \<inter> {1..k1} = {1..k1}" "{1..k1 + k2} \<inter> - {1..k1} = (\<lambda>i. i + k1) ` {1..k2}"
himmelma@33175
   890
    prefer 3 apply(rule,rule) unfolding image_iff apply(rule_tac x="x - k1" in bexI) by(auto simp add: not_le)
himmelma@33175
   891
  have inj:"inj_on (\<lambda>i. i + k1) {1..k2}" unfolding inj_on_def by auto  
himmelma@33175
   892
  show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" apply(rule)
himmelma@33175
   893
    apply(rule_tac x="k1 + k2" in exI, rule_tac x="\<lambda>i. if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)" in exI)
himmelma@33175
   894
    apply(rule_tac x="\<lambda>i. if i \<in> {1..k1} then x1 i else x2 (i - k1)" in exI) apply(rule,rule) defer apply(rule)
himmelma@33175
   895
    unfolding * and setsum_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]] and setsum_reindex[OF inj] and o_def
himmelma@33175
   896
    unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] setsum_right_distrib[THEN sym] proof-
himmelma@33175
   897
    fix i assume i:"i \<in> {1..k1+k2}"
himmelma@33175
   898
    show "0 \<le> (if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)) \<and> (if i \<in> {1..k1} then x1 i else x2 (i - k1)) \<in> s"
himmelma@33175
   899
    proof(cases "i\<in>{1..k1}")
himmelma@33175
   900
      case True thus ?thesis using mult_nonneg_nonneg[of u "u1 i"] and uv(1) x(1)[THEN bspec[where x=i]] by auto
himmelma@33175
   901
    next def j \<equiv> "i - k1"
himmelma@33175
   902
      case False with i have "j \<in> {1..k2}" unfolding j_def by auto
himmelma@33175
   903
      thus ?thesis unfolding j_def[symmetric] using False
himmelma@33175
   904
        using mult_nonneg_nonneg[of v "u2 j"] and uv(2) y(1)[THEN bspec[where x=j]] by auto qed
himmelma@33175
   905
  qed(auto simp add: not_le x(2,3) y(2,3) uv(3))
himmelma@33175
   906
qed
himmelma@33175
   907
himmelma@33175
   908
lemma convex_hull_finite:
himmelma@33175
   909
  fixes s :: "'a::real_vector set"
himmelma@33175
   910
  assumes "finite s"
himmelma@33175
   911
  shows "convex hull s = {y. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and>
himmelma@33175
   912
         setsum u s = 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y}" (is "?HULL = ?set")
himmelma@33175
   913
proof(rule hull_unique, auto simp add: mem_def[of _ convex] convex_def[of ?set])
himmelma@33175
   914
  fix x assume "x\<in>s" thus " \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>x\<in>s. u x *\<^sub>R x) = x" 
himmelma@33175
   915
    apply(rule_tac x="\<lambda>y. if x=y then 1 else 0" in exI) apply auto
himmelma@33175
   916
    unfolding setsum_delta'[OF assms] and setsum_delta''[OF assms] by auto 
himmelma@33175
   917
next
himmelma@33175
   918
  fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
himmelma@33175
   919
  fix ux assume ux:"\<forall>x\<in>s. 0 \<le> ux x" "setsum ux s = (1::real)"
himmelma@33175
   920
  fix uy assume uy:"\<forall>x\<in>s. 0 \<le> uy x" "setsum uy s = (1::real)"
himmelma@33175
   921
  { fix x assume "x\<in>s"
himmelma@33175
   922
    hence "0 \<le> u * ux x + v * uy x" using ux(1)[THEN bspec[where x=x]] uy(1)[THEN bspec[where x=x]] and uv(1,2)
himmelma@33175
   923
      by (auto, metis add_nonneg_nonneg mult_nonneg_nonneg uv(1) uv(2))  }
himmelma@33175
   924
  moreover have "(\<Sum>x\<in>s. u * ux x + v * uy x) = 1"
himmelma@33175
   925
    unfolding setsum_addf and setsum_right_distrib[THEN sym] and ux(2) uy(2) using uv(3) by auto
himmelma@33175
   926
  moreover have "(\<Sum>x\<in>s. (u * ux x + v * uy x) *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)"
himmelma@33175
   927
    unfolding scaleR_left_distrib and setsum_addf and scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] by auto
himmelma@33175
   928
  ultimately show "\<exists>uc. (\<forall>x\<in>s. 0 \<le> uc x) \<and> setsum uc s = 1 \<and> (\<Sum>x\<in>s. uc x *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)"
himmelma@33175
   929
    apply(rule_tac x="\<lambda>x. u * ux x + v * uy x" in exI) by auto 
himmelma@33175
   930
next
himmelma@33175
   931
  fix t assume t:"s \<subseteq> t" "convex t" 
himmelma@33175
   932
  fix u assume u:"\<forall>x\<in>s. 0 \<le> u x" "setsum u s = (1::real)"
himmelma@33175
   933
  thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> t" using t(2)[unfolded convex_explicit, THEN spec[where x=s], THEN spec[where x=u]]
himmelma@33175
   934
    using assms and t(1) by auto
himmelma@33175
   935
qed
himmelma@33175
   936
himmelma@33175
   937
subsection {* Another formulation from Lars Schewe. *}
himmelma@33175
   938
himmelma@33175
   939
lemma setsum_constant_scaleR:
himmelma@33175
   940
  fixes y :: "'a::real_vector"
himmelma@33175
   941
  shows "(\<Sum>x\<in>A. y) = of_nat (card A) *\<^sub>R y"
himmelma@33175
   942
apply (cases "finite A")
himmelma@33175
   943
apply (induct set: finite)
himmelma@33175
   944
apply (simp_all add: algebra_simps)
himmelma@33175
   945
done
himmelma@33175
   946
himmelma@33175
   947
lemma convex_hull_explicit:
himmelma@33175
   948
  fixes p :: "'a::real_vector set"
himmelma@33175
   949
  shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and>
himmelma@33175
   950
             (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}" (is "?lhs = ?rhs")
himmelma@33175
   951
proof-
himmelma@33175
   952
  { fix x assume "x\<in>?lhs"
himmelma@33175
   953
    then obtain k u y where obt:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> p" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x"
himmelma@33175
   954
      unfolding convex_hull_indexed by auto
himmelma@33175
   955
himmelma@33175
   956
    have fin:"finite {1..k}" by auto
himmelma@33175
   957
    have fin':"\<And>v. finite {i \<in> {1..k}. y i = v}" by auto
himmelma@33175
   958
    { fix j assume "j\<in>{1..k}"
himmelma@33175
   959
      hence "y j \<in> p" "0 \<le> setsum u {i. Suc 0 \<le> i \<and> i \<le> k \<and> y i = y j}"
himmelma@33175
   960
        using obt(1)[THEN bspec[where x=j]] and obt(2) apply simp
himmelma@33175
   961
        apply(rule setsum_nonneg) using obt(1) by auto } 
himmelma@33175
   962
    moreover
himmelma@33175
   963
    have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v}) = 1"  
himmelma@33175
   964
      unfolding setsum_image_gen[OF fin, THEN sym] using obt(2) by auto
himmelma@33175
   965
    moreover have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v} *\<^sub>R v) = x"
himmelma@33175
   966
      using setsum_image_gen[OF fin, of "\<lambda>i. u i *\<^sub>R y i" y, THEN sym]
himmelma@33175
   967
      unfolding scaleR_left.setsum using obt(3) by auto
himmelma@33175
   968
    ultimately have "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
himmelma@33175
   969
      apply(rule_tac x="y ` {1..k}" in exI)
himmelma@33175
   970
      apply(rule_tac x="\<lambda>v. setsum u {i\<in>{1..k}. y i = v}" in exI) by auto
himmelma@33175
   971
    hence "x\<in>?rhs" by auto  }
himmelma@33175
   972
  moreover
himmelma@33175
   973
  { fix y assume "y\<in>?rhs"
himmelma@33175
   974
    then obtain s u where obt:"finite s" "s \<subseteq> p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto
himmelma@33175
   975
himmelma@33175
   976
    obtain f where f:"inj_on f {1..card s}" "f ` {1..card s} = s" using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto
himmelma@33175
   977
    
himmelma@33175
   978
    { fix i::nat assume "i\<in>{1..card s}"
himmelma@33175
   979
      hence "f i \<in> s"  apply(subst f(2)[THEN sym]) by auto
himmelma@33175
   980
      hence "0 \<le> u (f i)" "f i \<in> p" using obt(2,3) by auto  }
himmelma@33175
   981
    moreover have *:"finite {1..card s}" by auto
himmelma@33175
   982
    { fix y assume "y\<in>s"
himmelma@33175
   983
      then obtain i where "i\<in>{1..card s}" "f i = y" using f using image_iff[of y f "{1..card s}"] by auto
himmelma@33175
   984
      hence "{x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = {i}" apply auto using f(1)[unfolded inj_on_def] apply(erule_tac x=x in ballE) by auto
himmelma@33175
   985
      hence "card {x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = 1" by auto
himmelma@33175
   986
      hence "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x)) = u y"
himmelma@33175
   987
            "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x) = u y *\<^sub>R y"
himmelma@33175
   988
        by (auto simp add: setsum_constant_scaleR)   }
himmelma@33175
   989
himmelma@33175
   990
    hence "(\<Sum>x = 1..card s. u (f x)) = 1" "(\<Sum>i = 1..card s. u (f i) *\<^sub>R f i) = y"
himmelma@33175
   991
      unfolding setsum_image_gen[OF *(1), of "\<lambda>x. u (f x) *\<^sub>R f x" f] and setsum_image_gen[OF *(1), of "\<lambda>x. u (f x)" f] 
himmelma@33175
   992
      unfolding f using setsum_cong2[of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x)" "\<lambda>v. u v *\<^sub>R v"]
himmelma@33175
   993
      using setsum_cong2 [of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x))" u] unfolding obt(4,5) by auto
himmelma@33175
   994
    
himmelma@33175
   995
    ultimately have "\<exists>k u x. (\<forall>i\<in>{1..k}. 0 \<le> u i \<and> x i \<in> p) \<and> setsum u {1..k} = 1 \<and> (\<Sum>i::nat = 1..k. u i *\<^sub>R x i) = y"
himmelma@33175
   996
      apply(rule_tac x="card s" in exI) apply(rule_tac x="u \<circ> f" in exI) apply(rule_tac x=f in exI) by fastsimp
himmelma@33175
   997
    hence "y \<in> ?lhs" unfolding convex_hull_indexed by auto  }
himmelma@33175
   998
  ultimately show ?thesis unfolding expand_set_eq by blast
himmelma@33175
   999
qed
himmelma@33175
  1000
himmelma@33175
  1001
subsection {* A stepping theorem for that expansion. *}
himmelma@33175
  1002
himmelma@33175
  1003
lemma convex_hull_finite_step:
himmelma@33175
  1004
  fixes s :: "'a::real_vector set" assumes "finite s"
himmelma@33175
  1005
  shows "(\<exists>u. (\<forall>x\<in>insert a s. 0 \<le> u x) \<and> setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y)
himmelma@33175
  1006
     \<longleftrightarrow> (\<exists>v\<ge>0. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?lhs = ?rhs")
himmelma@33175
  1007
proof(rule, case_tac[!] "a\<in>s")
himmelma@33175
  1008
  assume "a\<in>s" hence *:"insert a s = s" by auto
himmelma@33175
  1009
  assume ?lhs thus ?rhs unfolding * apply(rule_tac x=0 in exI) by auto
himmelma@33175
  1010
next
himmelma@33175
  1011
  assume ?lhs then obtain u where u:"\<forall>x\<in>insert a s. 0 \<le> u x" "setsum u (insert a s) = w" "(\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto
himmelma@33175
  1012
  assume "a\<notin>s" thus ?rhs apply(rule_tac x="u a" in exI) using u(1)[THEN bspec[where x=a]] apply simp
himmelma@33175
  1013
    apply(rule_tac x=u in exI) using u[unfolded setsum_clauses(2)[OF assms]] and `a\<notin>s` by auto
himmelma@33175
  1014
next
himmelma@33175
  1015
  assume "a\<in>s" hence *:"insert a s = s" by auto
himmelma@33175
  1016
  have fin:"finite (insert a s)" using assms by auto
himmelma@33175
  1017
  assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto
himmelma@33175
  1018
  show ?lhs apply(rule_tac x="\<lambda>x. (if a = x then v else 0) + u x" in exI) unfolding scaleR_left_distrib and setsum_addf and setsum_delta''[OF fin] and setsum_delta'[OF fin]
himmelma@33175
  1019
    unfolding setsum_clauses(2)[OF assms] using uv and uv(2)[THEN bspec[where x=a]] and `a\<in>s` by auto
himmelma@33175
  1020
next
himmelma@33175
  1021
  assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto
himmelma@33175
  1022
  moreover assume "a\<notin>s" moreover have "(\<Sum>x\<in>s. if a = x then v else u x) = setsum u s" "(\<Sum>x\<in>s. (if a = x then v else u x) *\<^sub>R x) = (\<Sum>x\<in>s. u x *\<^sub>R x)"
himmelma@33175
  1023
    apply(rule_tac setsum_cong2) defer apply(rule_tac setsum_cong2) using `a\<notin>s` by auto
himmelma@33175
  1024
  ultimately show ?lhs apply(rule_tac x="\<lambda>x. if a = x then v else u x" in exI)  unfolding setsum_clauses(2)[OF assms] by auto
himmelma@33175
  1025
qed
himmelma@33175
  1026
himmelma@33175
  1027
subsection {* Hence some special cases. *}
himmelma@33175
  1028
himmelma@33175
  1029
lemma convex_hull_2:
himmelma@33175
  1030
  "convex hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1}"
himmelma@33175
  1031
proof- have *:"\<And>u. (\<forall>x\<in>{a, b}. 0 \<le> u x) \<longleftrightarrow> 0 \<le> u a \<and> 0 \<le> u b" by auto have **:"finite {b}" by auto
himmelma@33175
  1032
show ?thesis apply(simp add: convex_hull_finite) unfolding convex_hull_finite_step[OF **, of a 1, unfolded * conj_assoc]
himmelma@33175
  1033
  apply auto apply(rule_tac x=v in exI) apply(rule_tac x="1 - v" in exI) apply simp
himmelma@33175
  1034
  apply(rule_tac x=u in exI) apply simp apply(rule_tac x="\<lambda>x. v" in exI) by simp qed
himmelma@33175
  1035
himmelma@33175
  1036
lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *\<^sub>R (b - a) | u.  0 \<le> u \<and> u \<le> 1}"
himmelma@33175
  1037
  unfolding convex_hull_2 unfolding Collect_def 
himmelma@33175
  1038
proof(rule ext) have *:"\<And>x y ::real. x + y = 1 \<longleftrightarrow> x = 1 - y" by auto
himmelma@33175
  1039
  fix x show "(\<exists>v u. x = v *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> v \<and> 0 \<le> u \<and> v + u = 1) = (\<exists>u. x = a + u *\<^sub>R (b - a) \<and> 0 \<le> u \<and> u \<le> 1)"
himmelma@33175
  1040
    unfolding * apply auto apply(rule_tac[!] x=u in exI) by (auto simp add: algebra_simps) qed
himmelma@33175
  1041
himmelma@33175
  1042
lemma convex_hull_3:
himmelma@33175
  1043
  "convex hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c | u v w. 0 \<le> u \<and> 0 \<le> v \<and> 0 \<le> w \<and> u + v + w = 1}"
himmelma@33175
  1044
proof-
himmelma@33175
  1045
  have fin:"finite {a,b,c}" "finite {b,c}" "finite {c}" by auto
himmelma@33175
  1046
  have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z"
himmelma@34289
  1047
         "\<And>x y z ::real^_. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by (auto simp add: ring_simps)
himmelma@33175
  1048
  show ?thesis unfolding convex_hull_finite[OF fin(1)] and Collect_def and convex_hull_finite_step[OF fin(2)] and *
himmelma@33175
  1049
    unfolding convex_hull_finite_step[OF fin(3)] apply(rule ext) apply simp apply auto
himmelma@33175
  1050
    apply(rule_tac x=va in exI) apply (rule_tac x="u c" in exI) apply simp
himmelma@33175
  1051
    apply(rule_tac x="1 - v - w" in exI) apply simp apply(rule_tac x=v in exI) apply simp apply(rule_tac x="\<lambda>x. w" in exI) by simp qed
himmelma@33175
  1052
himmelma@33175
  1053
lemma convex_hull_3_alt:
himmelma@33175
  1054
  "convex hull {a,b,c} = {a + u *\<^sub>R (b - a) + v *\<^sub>R (c - a) | u v.  0 \<le> u \<and> 0 \<le> v \<and> u + v \<le> 1}"
himmelma@33175
  1055
proof- have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by auto
himmelma@33175
  1056
  show ?thesis unfolding convex_hull_3 apply (auto simp add: *) apply(rule_tac x=v in exI) apply(rule_tac x=w in exI) apply (simp add: algebra_simps)
himmelma@33175
  1057
    apply(rule_tac x=u in exI) apply(rule_tac x=v in exI) by (simp add: algebra_simps) qed
himmelma@33175
  1058
himmelma@33175
  1059
subsection {* Relations among closure notions and corresponding hulls. *}
himmelma@33175
  1060
himmelma@33175
  1061
text {* TODO: Generalize linear algebra concepts defined in @{text
himmelma@33175
  1062
Euclidean_Space.thy} so that we can generalize these lemmas. *}
himmelma@33175
  1063
himmelma@33175
  1064
lemma subspace_imp_affine:
himmelma@33175
  1065
  fixes s :: "(real ^ _) set" shows "subspace s \<Longrightarrow> affine s"
himmelma@33175
  1066
  unfolding subspace_def affine_def smult_conv_scaleR by auto
himmelma@33175
  1067
himmelma@33175
  1068
lemma affine_imp_convex: "affine s \<Longrightarrow> convex s"
himmelma@33175
  1069
  unfolding affine_def convex_def by auto
himmelma@33175
  1070
himmelma@33175
  1071
lemma subspace_imp_convex:
himmelma@33175
  1072
  fixes s :: "(real ^ _) set" shows "subspace s \<Longrightarrow> convex s"
himmelma@33175
  1073
  using subspace_imp_affine affine_imp_convex by auto
himmelma@33175
  1074
himmelma@33175
  1075
lemma affine_hull_subset_span:
himmelma@33175
  1076
  fixes s :: "(real ^ _) set" shows "(affine hull s) \<subseteq> (span s)"
himmelma@33175
  1077
  unfolding span_def apply(rule hull_antimono) unfolding subset_eq Ball_def mem_def
himmelma@33175
  1078
  using subspace_imp_affine  by auto
himmelma@33175
  1079
himmelma@33175
  1080
lemma convex_hull_subset_span:
himmelma@33175
  1081
  fixes s :: "(real ^ _) set" shows "(convex hull s) \<subseteq> (span s)"
himmelma@33175
  1082
  unfolding span_def apply(rule hull_antimono) unfolding subset_eq Ball_def mem_def
himmelma@33175
  1083
  using subspace_imp_convex by auto
himmelma@33175
  1084
himmelma@33175
  1085
lemma convex_hull_subset_affine_hull: "(convex hull s) \<subseteq> (affine hull s)"
himmelma@33175
  1086
  unfolding span_def apply(rule hull_antimono) unfolding subset_eq Ball_def mem_def
himmelma@33175
  1087
  using affine_imp_convex by auto
himmelma@33175
  1088
himmelma@33175
  1089
lemma affine_dependent_imp_dependent:
himmelma@33175
  1090
  fixes s :: "(real ^ _) set" shows "affine_dependent s \<Longrightarrow> dependent s"
himmelma@33175
  1091
  unfolding affine_dependent_def dependent_def 
himmelma@33175
  1092
  using affine_hull_subset_span by auto
himmelma@33175
  1093
himmelma@33175
  1094
lemma dependent_imp_affine_dependent:
himmelma@33175
  1095
  fixes s :: "(real ^ _) set"
himmelma@33175
  1096
  assumes "dependent {x - a| x . x \<in> s}" "a \<notin> s"
himmelma@33175
  1097
  shows "affine_dependent (insert a s)"
himmelma@33175
  1098
proof-
himmelma@33175
  1099
  from assms(1)[unfolded dependent_explicit smult_conv_scaleR] obtain S u v 
himmelma@33175
  1100
    where obt:"finite S" "S \<subseteq> {x - a |x. x \<in> s}" "v\<in>S" "u v  \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" by auto
himmelma@33175
  1101
  def t \<equiv> "(\<lambda>x. x + a) ` S"
himmelma@33175
  1102
himmelma@33175
  1103
  have inj:"inj_on (\<lambda>x. x + a) S" unfolding inj_on_def by auto
himmelma@33175
  1104
  have "0\<notin>S" using obt(2) assms(2) unfolding subset_eq by auto
himmelma@33175
  1105
  have fin:"finite t" and  "t\<subseteq>s" unfolding t_def using obt(1,2) by auto 
himmelma@33175
  1106
himmelma@33175
  1107
  hence "finite (insert a t)" and "insert a t \<subseteq> insert a s" by auto 
himmelma@33175
  1108
  moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x)) = (\<Sum>x\<in>t. Q x)"
himmelma@33175
  1109
    apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto
himmelma@33175
  1110
  have "(\<Sum>x\<in>insert a t. if x = a then - (\<Sum>x\<in>t. u (x - a)) else u (x - a)) = 0"
himmelma@33175
  1111
    unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` apply auto unfolding * by auto
himmelma@33175
  1112
  moreover have "\<exists>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) \<noteq> 0"
himmelma@33175
  1113
    apply(rule_tac x="v + a" in bexI) using obt(3,4) and `0\<notin>S` unfolding t_def by auto
himmelma@33175
  1114
  moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x) *\<^sub>R x) = (\<Sum>x\<in>t. Q x *\<^sub>R x)"
himmelma@33175
  1115
    apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto
himmelma@33175
  1116
  have "(\<Sum>x\<in>t. u (x - a)) *\<^sub>R a = (\<Sum>v\<in>t. u (v - a) *\<^sub>R v)" 
himmelma@33175
  1117
    unfolding scaleR_left.setsum unfolding t_def and setsum_reindex[OF inj] and o_def
himmelma@33175
  1118
    using obt(5) by (auto simp add: setsum_addf scaleR_right_distrib)
himmelma@33175
  1119
  hence "(\<Sum>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) *\<^sub>R v) = 0"
himmelma@33175
  1120
    unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` by (auto simp add: *  vector_smult_lneg) 
himmelma@33175
  1121
  ultimately show ?thesis unfolding affine_dependent_explicit
himmelma@33175
  1122
    apply(rule_tac x="insert a t" in exI) by auto 
himmelma@33175
  1123
qed
himmelma@33175
  1124
himmelma@33175
  1125
lemma convex_cone:
himmelma@33175
  1126
  "convex s \<and> cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. (x + y) \<in> s) \<and> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)" (is "?lhs = ?rhs")
himmelma@33175
  1127
proof-
himmelma@33175
  1128
  { fix x y assume "x\<in>s" "y\<in>s" and ?lhs
himmelma@33175
  1129
    hence "2 *\<^sub>R x \<in>s" "2 *\<^sub>R y \<in> s" unfolding cone_def by auto
himmelma@33175
  1130
    hence "x + y \<in> s" using `?lhs`[unfolded convex_def, THEN conjunct1]
himmelma@33175
  1131
      apply(erule_tac x="2*\<^sub>R x" in ballE) apply(erule_tac x="2*\<^sub>R y" in ballE)
himmelma@33175
  1132
      apply(erule_tac x="1/2" in allE) apply simp apply(erule_tac x="1/2" in allE) by auto  }
paulson@33270
  1133
  thus ?thesis unfolding convex_def cone_def by auto
himmelma@33175
  1134
qed
himmelma@33175
  1135
hoelzl@34291
  1136
lemma affine_dependent_biggerset: fixes s::"(real^'n) set"
himmelma@33175
  1137
  assumes "finite s" "card s \<ge> CARD('n) + 2"
himmelma@33175
  1138
  shows "affine_dependent s"
himmelma@33175
  1139
proof-
himmelma@33175
  1140
  have "s\<noteq>{}" using assms by auto then obtain a where "a\<in>s" by auto
himmelma@33175
  1141
  have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
himmelma@33175
  1142
  have "card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
himmelma@33175
  1143
    apply(rule card_image) unfolding inj_on_def by auto
himmelma@33175
  1144
  also have "\<dots> > CARD('n)" using assms(2)
himmelma@33175
  1145
    unfolding card_Diff_singleton[OF assms(1) `a\<in>s`] by auto
himmelma@33175
  1146
  finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym])
himmelma@33175
  1147
    apply(rule dependent_imp_affine_dependent)
himmelma@33175
  1148
    apply(rule dependent_biggerset) by auto qed
himmelma@33175
  1149
himmelma@33175
  1150
lemma affine_dependent_biggerset_general:
hoelzl@34291
  1151
  assumes "finite (s::(real^'n) set)" "card s \<ge> dim s + 2"
himmelma@33175
  1152
  shows "affine_dependent s"
himmelma@33175
  1153
proof-
himmelma@33175
  1154
  from assms(2) have "s \<noteq> {}" by auto
himmelma@33175
  1155
  then obtain a where "a\<in>s" by auto
himmelma@33175
  1156
  have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
himmelma@33175
  1157
  have **:"card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
himmelma@33175
  1158
    apply(rule card_image) unfolding inj_on_def by auto
himmelma@33175
  1159
  have "dim {x - a |x. x \<in> s - {a}} \<le> dim s"
himmelma@33175
  1160
    apply(rule subset_le_dim) unfolding subset_eq
himmelma@33175
  1161
    using `a\<in>s` by (auto simp add:span_superset span_sub)
himmelma@33175
  1162
  also have "\<dots> < dim s + 1" by auto
himmelma@33175
  1163
  also have "\<dots> \<le> card (s - {a})" using assms
himmelma@33175
  1164
    using card_Diff_singleton[OF assms(1) `a\<in>s`] by auto
himmelma@33175
  1165
  finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym])
himmelma@33175
  1166
    apply(rule dependent_imp_affine_dependent) apply(rule dependent_biggerset_general) unfolding ** by auto qed
himmelma@33175
  1167
himmelma@33175
  1168
subsection {* Caratheodory's theorem. *}
himmelma@33175
  1169
hoelzl@34291
  1170
lemma convex_hull_caratheodory: fixes p::"(real^'n) set"
himmelma@33175
  1171
  shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and>
himmelma@33175
  1172
  (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}"
himmelma@33175
  1173
  unfolding convex_hull_explicit expand_set_eq mem_Collect_eq
himmelma@33175
  1174
proof(rule,rule)
himmelma@33175
  1175
  fix y let ?P = "\<lambda>n. \<exists>s u. finite s \<and> card s = n \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
himmelma@33175
  1176
  assume "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
himmelma@33175
  1177
  then obtain N where "?P N" by auto
himmelma@33175
  1178
  hence "\<exists>n\<le>N. (\<forall>k<n. \<not> ?P k) \<and> ?P n" apply(rule_tac ex_least_nat_le) by auto
himmelma@33175
  1179
  then obtain n where "?P n" and smallest:"\<forall>k<n. \<not> ?P k" by blast
himmelma@33175
  1180
  then obtain s u where obt:"finite s" "card s = n" "s\<subseteq>p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1"  "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto
himmelma@33175
  1181
himmelma@33175
  1182
  have "card s \<le> CARD('n) + 1" proof(rule ccontr, simp only: not_le)
himmelma@33175
  1183
    assume "CARD('n) + 1 < card s"
himmelma@33175
  1184
    hence "affine_dependent s" using affine_dependent_biggerset[OF obt(1)] by auto
himmelma@33175
  1185
    then obtain w v where wv:"setsum w s = 0" "v\<in>s" "w v \<noteq> 0" "(\<Sum>v\<in>s. w v *\<^sub>R v) = 0"
himmelma@33175
  1186
      using affine_dependent_explicit_finite[OF obt(1)] by auto
himmelma@33175
  1187
    def i \<equiv> "(\<lambda>v. (u v) / (- w v)) ` {v\<in>s. w v < 0}"  def t \<equiv> "Min i"
himmelma@33175
  1188
    have "\<exists>x\<in>s. w x < 0" proof(rule ccontr, simp add: not_less)
himmelma@33175
  1189
      assume as:"\<forall>x\<in>s. 0 \<le> w x"
himmelma@33175
  1190
      hence "setsum w (s - {v}) \<ge> 0" apply(rule_tac setsum_nonneg) by auto
himmelma@33175
  1191
      hence "setsum w s > 0" unfolding setsum_diff1'[OF obt(1) `v\<in>s`]
himmelma@33175
  1192
        using as[THEN bspec[where x=v]] and `v\<in>s` using `w v \<noteq> 0` by auto
himmelma@33175
  1193
      thus False using wv(1) by auto
himmelma@33175
  1194
    qed hence "i\<noteq>{}" unfolding i_def by auto
himmelma@33175
  1195
himmelma@33175
  1196
    hence "t \<ge> 0" using Min_ge_iff[of i 0 ] and obt(1) unfolding t_def i_def
himmelma@33175
  1197
      using obt(4)[unfolded le_less] apply auto unfolding divide_le_0_iff by auto 
himmelma@33175
  1198
    have t:"\<forall>v\<in>s. u v + t * w v \<ge> 0" proof
himmelma@33175
  1199
      fix v assume "v\<in>s" hence v:"0\<le>u v" using obt(4)[THEN bspec[where x=v]] by auto
himmelma@33175
  1200
      show"0 \<le> u v + t * w v" proof(cases "w v < 0")
himmelma@33175
  1201
        case False thus ?thesis apply(rule_tac add_nonneg_nonneg) 
himmelma@33175
  1202
          using v apply simp apply(rule mult_nonneg_nonneg) using `t\<ge>0` by auto next
himmelma@33175
  1203
        case True hence "t \<le> u v / (- w v)" using `v\<in>s`
himmelma@33175
  1204
          unfolding t_def i_def apply(rule_tac Min_le) using obt(1) by auto 
himmelma@33175
  1205
        thus ?thesis unfolding real_0_le_add_iff
himmelma@33175
  1206
          using pos_le_divide_eq[OF True[unfolded neg_0_less_iff_less[THEN sym]]] by auto
himmelma@33175
  1207
      qed qed
himmelma@33175
  1208
himmelma@33175
  1209
    obtain a where "a\<in>s" and "t = (\<lambda>v. (u v) / (- w v)) a" and "w a < 0"
himmelma@33175
  1210
      using Min_in[OF _ `i\<noteq>{}`] and obt(1) unfolding i_def t_def by auto
himmelma@33175
  1211
    hence a:"a\<in>s" "u a + t * w a = 0" by auto
himmelma@33175
  1212
    have *:"\<And>f. setsum f (s - {a}) = setsum f s - ((f a)::'a::ring)" unfolding setsum_diff1'[OF obt(1) `a\<in>s`] by auto 
himmelma@33175
  1213
    have "(\<Sum>v\<in>s. u v + t * w v) = 1"
himmelma@33175
  1214
      unfolding setsum_addf wv(1) setsum_right_distrib[THEN sym] obt(5) by auto
himmelma@33175
  1215
    moreover have "(\<Sum>v\<in>s. u v *\<^sub>R v + (t * w v) *\<^sub>R v) - (u a *\<^sub>R a + (t * w a) *\<^sub>R a) = y" 
himmelma@33175
  1216
      unfolding setsum_addf obt(6) scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] wv(4)
himmelma@33175
  1217
      using a(2) [THEN eq_neg_iff_add_eq_0 [THEN iffD2]]
himmelma@33175
  1218
      by (simp add: vector_smult_lneg)
himmelma@33175
  1219
    ultimately have "?P (n - 1)" apply(rule_tac x="(s - {a})" in exI)
himmelma@33175
  1220
      apply(rule_tac x="\<lambda>v. u v + t * w v" in exI) using obt(1-3) and t and a by (auto simp add: * scaleR_left_distrib)
himmelma@33175
  1221
    thus False using smallest[THEN spec[where x="n - 1"]] by auto qed
himmelma@33175
  1222
  thus "\<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1
himmelma@33175
  1223
    \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" using obt by auto
himmelma@33175
  1224
qed auto
himmelma@33175
  1225
himmelma@33175
  1226
lemma caratheodory:
hoelzl@34291
  1227
 "convex hull p = {x::real^'n. \<exists>s. finite s \<and> s \<subseteq> p \<and>
himmelma@33175
  1228
      card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s}"
himmelma@33175
  1229
  unfolding expand_set_eq apply(rule, rule) unfolding mem_Collect_eq proof-
himmelma@33175
  1230
  fix x assume "x \<in> convex hull p"
himmelma@33175
  1231
  then obtain s u where "finite s" "s \<subseteq> p" "card s \<le> CARD('n) + 1"
himmelma@33175
  1232
     "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"unfolding convex_hull_caratheodory by auto
himmelma@33175
  1233
  thus "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s"
himmelma@33175
  1234
    apply(rule_tac x=s in exI) using hull_subset[of s convex]
himmelma@33175
  1235
  using convex_convex_hull[unfolded convex_explicit, of s, THEN spec[where x=s], THEN spec[where x=u]] by auto
himmelma@33175
  1236
next
himmelma@33175
  1237
  fix x assume "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s"
himmelma@33175
  1238
  then obtain s where "finite s" "s \<subseteq> p" "card s \<le> CARD('n) + 1" "x \<in> convex hull s" by auto
himmelma@33175
  1239
  thus "x \<in> convex hull p" using hull_mono[OF `s\<subseteq>p`] by auto
himmelma@33175
  1240
qed
himmelma@33175
  1241
himmelma@33175
  1242
subsection {* Openness and compactness are preserved by convex hull operation. *}
himmelma@33175
  1243
hoelzl@34951
  1244
lemma open_convex_hull[intro]:
himmelma@33175
  1245
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
  1246
  assumes "open s"
himmelma@33175
  1247
  shows "open(convex hull s)"
himmelma@33175
  1248
  unfolding open_contains_cball convex_hull_explicit unfolding mem_Collect_eq ball_simps(10) 
himmelma@33175
  1249
proof(rule, rule) fix a
himmelma@33175
  1250
  assume "\<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = a"
himmelma@33175
  1251
  then obtain t u where obt:"finite t" "t\<subseteq>s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = a" by auto
himmelma@33175
  1252
himmelma@33175
  1253
  from assms[unfolded open_contains_cball] obtain b where b:"\<forall>x\<in>s. 0 < b x \<and> cball x (b x) \<subseteq> s"
himmelma@33175
  1254
    using bchoice[of s "\<lambda>x e. e>0 \<and> cball x e \<subseteq> s"] by auto
himmelma@33175
  1255
  have "b ` t\<noteq>{}" unfolding i_def using obt by auto  def i \<equiv> "b ` t"
himmelma@33175
  1256
himmelma@33175
  1257
  show "\<exists>e>0. cball a e \<subseteq> {y. \<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y}"
himmelma@33175
  1258
    apply(rule_tac x="Min i" in exI) unfolding subset_eq apply rule defer apply rule unfolding mem_Collect_eq
himmelma@33175
  1259
  proof-
himmelma@33175
  1260
    show "0 < Min i" unfolding i_def and Min_gr_iff[OF finite_imageI[OF obt(1)] `b \` t\<noteq>{}`]
himmelma@33175
  1261
      using b apply simp apply rule apply(erule_tac x=x in ballE) using `t\<subseteq>s` by auto
himmelma@33175
  1262
  next  fix y assume "y \<in> cball a (Min i)"
himmelma@33175
  1263
    hence y:"norm (a - y) \<le> Min i" unfolding dist_norm[THEN sym] by auto
himmelma@33175
  1264
    { fix x assume "x\<in>t"
himmelma@33175
  1265
      hence "Min i \<le> b x" unfolding i_def apply(rule_tac Min_le) using obt(1) by auto
himmelma@33175
  1266
      hence "x + (y - a) \<in> cball x (b x)" using y unfolding mem_cball dist_norm by auto
himmelma@33175
  1267
      moreover from `x\<in>t` have "x\<in>s" using obt(2) by auto
himmelma@33175
  1268
      ultimately have "x + (y - a) \<in> s" using y and b[THEN bspec[where x=x]] unfolding subset_eq by auto }
himmelma@33175
  1269
    moreover
himmelma@33175
  1270
    have *:"inj_on (\<lambda>v. v + (y - a)) t" unfolding inj_on_def by auto
himmelma@33175
  1271
    have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a))) = 1"
himmelma@33175
  1272
      unfolding setsum_reindex[OF *] o_def using obt(4) by auto
himmelma@33175
  1273
    moreover have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a)) *\<^sub>R v) = y"
himmelma@33175
  1274
      unfolding setsum_reindex[OF *] o_def using obt(4,5)
himmelma@33175
  1275
      by (simp add: setsum_addf setsum_subtractf scaleR_left.setsum[THEN sym] scaleR_right_distrib)
himmelma@33175
  1276
    ultimately show "\<exists>sa u. finite sa \<and> (\<forall>x\<in>sa. x \<in> s) \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y"
himmelma@33175
  1277
      apply(rule_tac x="(\<lambda>v. v + (y - a)) ` t" in exI) apply(rule_tac x="\<lambda>v. u (v - (y - a))" in exI)
himmelma@33175
  1278
      using obt(1, 3) by auto
himmelma@33175
  1279
  qed
himmelma@33175
  1280
qed
himmelma@33175
  1281
himmelma@33175
  1282
lemma open_dest_vec1_vimage: "open S \<Longrightarrow> open (dest_vec1 -` S)"
hoelzl@34951
  1283
unfolding open_vector_def forall_1 by auto
himmelma@33175
  1284
himmelma@33175
  1285
lemma tendsto_dest_vec1 [tendsto_intros]:
himmelma@33175
  1286
  "(f ---> l) net \<Longrightarrow> ((\<lambda>x. dest_vec1 (f x)) ---> dest_vec1 l) net"
himmelma@33175
  1287
  unfolding tendsto_def
himmelma@33175
  1288
  apply clarify
himmelma@33175
  1289
  apply (drule_tac x="dest_vec1 -` S" in spec)
himmelma@33175
  1290
  apply (simp add: open_dest_vec1_vimage)
himmelma@33175
  1291
  done
himmelma@33175
  1292
himmelma@33175
  1293
lemma continuous_dest_vec1: "continuous net f \<Longrightarrow> continuous net (\<lambda>x. dest_vec1 (f x))"
himmelma@33175
  1294
  unfolding continuous_def by (rule tendsto_dest_vec1)
himmelma@33175
  1295
himmelma@33175
  1296
(* TODO: move *)
himmelma@33175
  1297
lemma compact_real_interval:
himmelma@33175
  1298
  fixes a b :: real shows "compact {a..b}"
himmelma@33175
  1299
proof -
himmelma@33175
  1300
  have "continuous_on {vec1 a .. vec1 b} dest_vec1"
himmelma@33175
  1301
    unfolding continuous_on
himmelma@33175
  1302
    by (simp add: tendsto_dest_vec1 Lim_at_within Lim_ident_at)
himmelma@33175
  1303
  moreover have "compact {vec1 a .. vec1 b}" by (rule compact_interval)
himmelma@33175
  1304
  ultimately have "compact (dest_vec1 ` {vec1 a .. vec1 b})"
himmelma@33175
  1305
    by (rule compact_continuous_image)
himmelma@33175
  1306
  also have "dest_vec1 ` {vec1 a .. vec1 b} = {a..b}"
himmelma@33175
  1307
    by (auto simp add: image_def Bex_def exists_vec1)
himmelma@33175
  1308
  finally show ?thesis .
himmelma@33175
  1309
qed
himmelma@33175
  1310
himmelma@33175
  1311
lemma compact_convex_combinations:
himmelma@33175
  1312
  fixes s t :: "'a::real_normed_vector set"
himmelma@33175
  1313
  assumes "compact s" "compact t"
himmelma@33175
  1314
  shows "compact { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t}"
himmelma@33175
  1315
proof-
himmelma@33175
  1316
  let ?X = "{0..1} \<times> s \<times> t"
himmelma@33175
  1317
  let ?h = "(\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))"
himmelma@33175
  1318
  have *:"{ (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t} = ?h ` ?X"
himmelma@33175
  1319
    apply(rule set_ext) unfolding image_iff mem_Collect_eq
himmelma@33175
  1320
    apply rule apply auto
himmelma@33175
  1321
    apply (rule_tac x=u in rev_bexI, simp)
himmelma@33175
  1322
    apply (erule rev_bexI, erule rev_bexI, simp)
himmelma@33175
  1323
    by auto
himmelma@33175
  1324
  have "continuous_on ({0..1} \<times> s \<times> t)
himmelma@33175
  1325
     (\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))"
himmelma@33175
  1326
    unfolding continuous_on by (rule ballI) (intro tendsto_intros)
himmelma@33175
  1327
  thus ?thesis unfolding *
himmelma@33175
  1328
    apply (rule compact_continuous_image)
himmelma@33175
  1329
    apply (intro compact_Times compact_real_interval assms)
himmelma@33175
  1330
    done
himmelma@33175
  1331
qed
himmelma@33175
  1332
hoelzl@34291
  1333
lemma compact_convex_hull: fixes s::"(real^'n) set"
himmelma@33175
  1334
  assumes "compact s"  shows "compact(convex hull s)"
himmelma@33175
  1335
proof(cases "s={}")
himmelma@33175
  1336
  case True thus ?thesis using compact_empty by simp
himmelma@33175
  1337
next
himmelma@33175
  1338
  case False then obtain w where "w\<in>s" by auto
himmelma@33175
  1339
  show ?thesis unfolding caratheodory[of s]
berghofe@34915
  1340
  proof(induct ("CARD('n) + 1"))
himmelma@33175
  1341
    have *:"{x.\<exists>sa. finite sa \<and> sa \<subseteq> s \<and> card sa \<le> 0 \<and> x \<in> convex hull sa} = {}" 
himmelma@33175
  1342
      using compact_empty by (auto simp add: convex_hull_empty)
himmelma@33175
  1343
    case 0 thus ?case unfolding * by simp
himmelma@33175
  1344
  next
himmelma@33175
  1345
    case (Suc n)
himmelma@33175
  1346
    show ?case proof(cases "n=0")
himmelma@33175
  1347
      case True have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} = s"
himmelma@33175
  1348
        unfolding expand_set_eq and mem_Collect_eq proof(rule, rule)
himmelma@33175
  1349
        fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
himmelma@33175
  1350
        then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto
himmelma@33175
  1351
        show "x\<in>s" proof(cases "card t = 0")
himmelma@33175
  1352
          case True thus ?thesis using t(4) unfolding card_0_eq[OF t(1)] by(simp add: convex_hull_empty)
himmelma@33175
  1353
        next
himmelma@33175
  1354
          case False hence "card t = Suc 0" using t(3) `n=0` by auto
himmelma@33175
  1355
          then obtain a where "t = {a}" unfolding card_Suc_eq by auto
himmelma@33175
  1356
          thus ?thesis using t(2,4) by (simp add: convex_hull_singleton)
himmelma@33175
  1357
        qed
himmelma@33175
  1358
      next
himmelma@33175
  1359
        fix x assume "x\<in>s"
himmelma@33175
  1360
        thus "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
himmelma@33175
  1361
          apply(rule_tac x="{x}" in exI) unfolding convex_hull_singleton by auto 
himmelma@33175
  1362
      qed thus ?thesis using assms by simp
himmelma@33175
  1363
    next
himmelma@33175
  1364
      case False have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} =
himmelma@33175
  1365
        { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 
himmelma@33175
  1366
        0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> {x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> x \<in> convex hull t}}"
himmelma@33175
  1367
        unfolding expand_set_eq and mem_Collect_eq proof(rule,rule)
himmelma@33175
  1368
        fix x assume "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and>
himmelma@33175
  1369
          0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)"
himmelma@33175
  1370
        then obtain u v c t where obt:"x = (1 - c) *\<^sub>R u + c *\<^sub>R v"
himmelma@33175
  1371
          "0 \<le> c \<and> c \<le> 1" "u \<in> s" "finite t" "t \<subseteq> s" "card t \<le> n"  "v \<in> convex hull t" by auto
himmelma@33175
  1372
        moreover have "(1 - c) *\<^sub>R u + c *\<^sub>R v \<in> convex hull insert u t"
himmelma@33175
  1373
          apply(rule mem_convex) using obt(2) and convex_convex_hull and hull_subset[of "insert u t" convex]
himmelma@33175
  1374
          using obt(7) and hull_mono[of t "insert u t"] by auto
himmelma@33175
  1375
        ultimately show "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
himmelma@33175
  1376
          apply(rule_tac x="insert u t" in exI) by (auto simp add: card_insert_if)
himmelma@33175
  1377
      next
himmelma@33175
  1378
        fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
himmelma@33175
  1379
        then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto
himmelma@33175
  1380
        let ?P = "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and>
himmelma@33175
  1381
          0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)"
himmelma@33175
  1382
        show ?P proof(cases "card t = Suc n")
himmelma@33175
  1383
          case False hence "card t \<le> n" using t(3) by auto
himmelma@33175
  1384
          thus ?P apply(rule_tac x=w in exI, rule_tac x=x in exI, rule_tac x=1 in exI) using `w\<in>s` and t
himmelma@33175
  1385
            by(auto intro!: exI[where x=t])
himmelma@33175
  1386
        next
himmelma@33175
  1387
          case True then obtain a u where au:"t = insert a u" "a\<notin>u" apply(drule_tac card_eq_SucD) by auto
himmelma@33175
  1388
          show ?P proof(cases "u={}")
himmelma@33175
  1389
            case True hence "x=a" using t(4)[unfolded au] by auto
himmelma@33175
  1390
            show ?P unfolding `x=a` apply(rule_tac x=a in exI, rule_tac x=a in exI, rule_tac x=1 in exI)
himmelma@33175
  1391
              using t and `n\<noteq>0` unfolding au by(auto intro!: exI[where x="{a}"] simp add: convex_hull_singleton)
himmelma@33175
  1392
          next
himmelma@33175
  1393
            case False obtain ux vx b where obt:"ux\<ge>0" "vx\<ge>0" "ux + vx = 1" "b \<in> convex hull u" "x = ux *\<^sub>R a + vx *\<^sub>R b"
himmelma@33175
  1394
              using t(4)[unfolded au convex_hull_insert[OF False]] by auto
himmelma@33175
  1395
            have *:"1 - vx = ux" using obt(3) by auto
himmelma@33175
  1396
            show ?P apply(rule_tac x=a in exI, rule_tac x=b in exI, rule_tac x=vx in exI)
himmelma@33175
  1397
              using obt and t(1-3) unfolding au and * using card_insert_disjoint[OF _ au(2)]
himmelma@33175
  1398
              by(auto intro!: exI[where x=u])
himmelma@33175
  1399
          qed
himmelma@33175
  1400
        qed
himmelma@33175
  1401
      qed
himmelma@33175
  1402
      thus ?thesis using compact_convex_combinations[OF assms Suc] by simp 
himmelma@33175
  1403
    qed
himmelma@33175
  1404
  qed 
himmelma@33175
  1405
qed
himmelma@33175
  1406
himmelma@33175
  1407
lemma finite_imp_compact_convex_hull:
himmelma@33175
  1408
  fixes s :: "(real ^ _) set"
himmelma@33175
  1409
  shows "finite s \<Longrightarrow> compact(convex hull s)"
himmelma@33175
  1410
  apply(drule finite_imp_compact, drule compact_convex_hull) by assumption
himmelma@33175
  1411
himmelma@33175
  1412
subsection {* Extremal points of a simplex are some vertices. *}
himmelma@33175
  1413
himmelma@33175
  1414
lemma dist_increases_online:
himmelma@33175
  1415
  fixes a b d :: "'a::real_inner"
himmelma@33175
  1416
  assumes "d \<noteq> 0"
himmelma@33175
  1417
  shows "dist a (b + d) > dist a b \<or> dist a (b - d) > dist a b"
himmelma@33175
  1418
proof(cases "inner a d - inner b d > 0")
himmelma@33175
  1419
  case True hence "0 < inner d d + (inner a d * 2 - inner b d * 2)" 
himmelma@33175
  1420
    apply(rule_tac add_pos_pos) using assms by auto
himmelma@33175
  1421
  thus ?thesis apply(rule_tac disjI2) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff
himmelma@33175
  1422
    by (simp add: algebra_simps inner_commute)
himmelma@33175
  1423
next
himmelma@33175
  1424
  case False hence "0 < inner d d + (inner b d * 2 - inner a d * 2)" 
himmelma@33175
  1425
    apply(rule_tac add_pos_nonneg) using assms by auto
himmelma@33175
  1426
  thus ?thesis apply(rule_tac disjI1) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff
himmelma@33175
  1427
    by (simp add: algebra_simps inner_commute)
himmelma@33175
  1428
qed
himmelma@33175
  1429
himmelma@33175
  1430
lemma norm_increases_online:
himmelma@33175
  1431
  fixes d :: "'a::real_inner"
himmelma@33175
  1432
  shows "d \<noteq> 0 \<Longrightarrow> norm(a + d) > norm a \<or> norm(a - d) > norm a"
himmelma@33175
  1433
  using dist_increases_online[of d a 0] unfolding dist_norm by auto
himmelma@33175
  1434
himmelma@33175
  1435
lemma simplex_furthest_lt:
himmelma@33175
  1436
  fixes s::"'a::real_inner set" assumes "finite s"
himmelma@33175
  1437
  shows "\<forall>x \<in> (convex hull s).  x \<notin> s \<longrightarrow> (\<exists>y\<in>(convex hull s). norm(x - a) < norm(y - a))"
himmelma@33175
  1438
proof(induct_tac rule: finite_induct[of s])
himmelma@33175
  1439
  fix x s assume as:"finite s" "x\<notin>s" "\<forall>x\<in>convex hull s. x \<notin> s \<longrightarrow> (\<exists>y\<in>convex hull s. norm (x - a) < norm (y - a))"
himmelma@33175
  1440
  show "\<forall>xa\<in>convex hull insert x s. xa \<notin> insert x s \<longrightarrow> (\<exists>y\<in>convex hull insert x s. norm (xa - a) < norm (y - a))"
himmelma@33175
  1441
  proof(rule,rule,cases "s = {}")
himmelma@33175
  1442
    case False fix y assume y:"y \<in> convex hull insert x s" "y \<notin> insert x s"
himmelma@33175
  1443
    obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "y = u *\<^sub>R x + v *\<^sub>R b"
himmelma@33175
  1444
      using y(1)[unfolded convex_hull_insert[OF False]] by auto
himmelma@33175
  1445
    show "\<exists>z\<in>convex hull insert x s. norm (y - a) < norm (z - a)"
himmelma@33175
  1446
    proof(cases "y\<in>convex hull s")
himmelma@33175
  1447
      case True then obtain z where "z\<in>convex hull s" "norm (y - a) < norm (z - a)"
himmelma@33175
  1448
        using as(3)[THEN bspec[where x=y]] and y(2) by auto
himmelma@33175
  1449
      thus ?thesis apply(rule_tac x=z in bexI) unfolding convex_hull_insert[OF False] by auto
himmelma@33175
  1450
    next
himmelma@33175
  1451
      case False show ?thesis  using obt(3) proof(cases "u=0", case_tac[!] "v=0")
himmelma@33175
  1452
        assume "u=0" "v\<noteq>0" hence "y = b" using obt by auto
himmelma@33175
  1453
        thus ?thesis using False and obt(4) by auto
himmelma@33175
  1454
      next
himmelma@33175
  1455
        assume "u\<noteq>0" "v=0" hence "y = x" using obt by auto
himmelma@33175
  1456
        thus ?thesis using y(2) by auto
himmelma@33175
  1457
      next
himmelma@33175
  1458
        assume "u\<noteq>0" "v\<noteq>0"
himmelma@33175
  1459
        then obtain w where w:"w>0" "w<u" "w<v" using real_lbound_gt_zero[of u v] and obt(1,2) by auto
himmelma@33175
  1460
        have "x\<noteq>b" proof(rule ccontr) 
himmelma@33175
  1461
          assume "\<not> x\<noteq>b" hence "y=b" unfolding obt(5)
himmelma@33175
  1462
            using obt(3) by(auto simp add: scaleR_left_distrib[THEN sym])
himmelma@33175
  1463
          thus False using obt(4) and False by simp qed
himmelma@33175
  1464
        hence *:"w *\<^sub>R (x - b) \<noteq> 0" using w(1) by auto
himmelma@33175
  1465
        show ?thesis using dist_increases_online[OF *, of a y]
himmelma@33175
  1466
        proof(erule_tac disjE)
himmelma@33175
  1467
          assume "dist a y < dist a (y + w *\<^sub>R (x - b))"
himmelma@33175
  1468
          hence "norm (y - a) < norm ((u + w) *\<^sub>R x + (v - w) *\<^sub>R b - a)"
himmelma@33175
  1469
            unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps)
himmelma@33175
  1470
          moreover have "(u + w) *\<^sub>R x + (v - w) *\<^sub>R b \<in> convex hull insert x s"
himmelma@33175
  1471
            unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
himmelma@33175
  1472
            apply(rule_tac x="u + w" in exI) apply rule defer 
himmelma@33175
  1473
            apply(rule_tac x="v - w" in exI) using `u\<ge>0` and w and obt(3,4) by auto
himmelma@33175
  1474
          ultimately show ?thesis by auto
himmelma@33175
  1475
        next
himmelma@33175
  1476
          assume "dist a y < dist a (y - w *\<^sub>R (x - b))"
himmelma@33175
  1477
          hence "norm (y - a) < norm ((u - w) *\<^sub>R x + (v + w) *\<^sub>R b - a)"
himmelma@33175
  1478
            unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps)
himmelma@33175
  1479
          moreover have "(u - w) *\<^sub>R x + (v + w) *\<^sub>R b \<in> convex hull insert x s"
himmelma@33175
  1480
            unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
himmelma@33175
  1481
            apply(rule_tac x="u - w" in exI) apply rule defer 
himmelma@33175
  1482
            apply(rule_tac x="v + w" in exI) using `u\<ge>0` and w and obt(3,4) by auto
himmelma@33175
  1483
          ultimately show ?thesis by auto
himmelma@33175
  1484
        qed
himmelma@33175
  1485
      qed auto
himmelma@33175
  1486
    qed
himmelma@33175
  1487
  qed auto
himmelma@33175
  1488
qed (auto simp add: assms)
himmelma@33175
  1489
himmelma@33175
  1490
lemma simplex_furthest_le:
himmelma@33175
  1491
  fixes s :: "(real ^ _) set"
himmelma@33175
  1492
  assumes "finite s" "s \<noteq> {}"
himmelma@33175
  1493
  shows "\<exists>y\<in>s. \<forall>x\<in>(convex hull s). norm(x - a) \<le> norm(y - a)"
himmelma@33175
  1494
proof-
himmelma@33175
  1495
  have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
himmelma@33175
  1496
  then obtain x where x:"x\<in>convex hull s" "\<forall>y\<in>convex hull s. norm (y - a) \<le> norm (x - a)"
himmelma@33175
  1497
    using distance_attains_sup[OF finite_imp_compact_convex_hull[OF assms(1)], of a]
himmelma@33175
  1498
    unfolding dist_commute[of a] unfolding dist_norm by auto
himmelma@33175
  1499
  thus ?thesis proof(cases "x\<in>s")
himmelma@33175
  1500
    case False then obtain y where "y\<in>convex hull s" "norm (x - a) < norm (y - a)"
himmelma@33175
  1501
      using simplex_furthest_lt[OF assms(1), THEN bspec[where x=x]] and x(1) by auto
himmelma@33175
  1502
    thus ?thesis using x(2)[THEN bspec[where x=y]] by auto
himmelma@33175
  1503
  qed auto
himmelma@33175
  1504
qed
himmelma@33175
  1505
himmelma@33175
  1506
lemma simplex_furthest_le_exists:
himmelma@33175
  1507
  fixes s :: "(real ^ _) set"
himmelma@33175
  1508
  shows "finite s \<Longrightarrow> (\<forall>x\<in>(convex hull s). \<exists>y\<in>s. norm(x - a) \<le> norm(y - a))"
himmelma@33175
  1509
  using simplex_furthest_le[of s] by (cases "s={}")auto
himmelma@33175
  1510
himmelma@33175
  1511
lemma simplex_extremal_le:
himmelma@33175
  1512
  fixes s :: "(real ^ _) set"
himmelma@33175
  1513
  assumes "finite s" "s \<noteq> {}"
himmelma@33175
  1514
  shows "\<exists>u\<in>s. \<exists>v\<in>s. \<forall>x\<in>convex hull s. \<forall>y \<in> convex hull s. norm(x - y) \<le> norm(u - v)"
himmelma@33175
  1515
proof-
himmelma@33175
  1516
  have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
himmelma@33175
  1517
  then obtain u v where obt:"u\<in>convex hull s" "v\<in>convex hull s"
himmelma@33175
  1518
    "\<forall>x\<in>convex hull s. \<forall>y\<in>convex hull s. norm (x - y) \<le> norm (u - v)"
himmelma@33175
  1519
    using compact_sup_maxdistance[OF finite_imp_compact_convex_hull[OF assms(1)]] by auto
himmelma@33175
  1520
  thus ?thesis proof(cases "u\<notin>s \<or> v\<notin>s", erule_tac disjE)
himmelma@33175
  1521
    assume "u\<notin>s" then obtain y where "y\<in>convex hull s" "norm (u - v) < norm (y - v)"
himmelma@33175
  1522
      using simplex_furthest_lt[OF assms(1), THEN bspec[where x=u]] and obt(1) by auto
himmelma@33175
  1523
    thus ?thesis using obt(3)[THEN bspec[where x=y], THEN bspec[where x=v]] and obt(2) by auto
himmelma@33175
  1524
  next
himmelma@33175
  1525
    assume "v\<notin>s" then obtain y where "y\<in>convex hull s" "norm (v - u) < norm (y - u)"
himmelma@33175
  1526
      using simplex_furthest_lt[OF assms(1), THEN bspec[where x=v]] and obt(2) by auto
himmelma@33175
  1527
    thus ?thesis using obt(3)[THEN bspec[where x=u], THEN bspec[where x=y]] and obt(1)
himmelma@33175
  1528
      by (auto simp add: norm_minus_commute)
himmelma@33175
  1529
  qed auto
himmelma@33175
  1530
qed 
himmelma@33175
  1531
himmelma@33175
  1532
lemma simplex_extremal_le_exists:
himmelma@33175
  1533
  fixes s :: "(real ^ _) set"
himmelma@33175
  1534
  shows "finite s \<Longrightarrow> x \<in> convex hull s \<Longrightarrow> y \<in> convex hull s
himmelma@33175
  1535
  \<Longrightarrow> (\<exists>u\<in>s. \<exists>v\<in>s. norm(x - y) \<le> norm(u - v))"
himmelma@33175
  1536
  using convex_hull_empty simplex_extremal_le[of s] by(cases "s={}")auto
himmelma@33175
  1537
himmelma@33175
  1538
subsection {* Closest point of a convex set is unique, with a continuous projection. *}
himmelma@33175
  1539
himmelma@33175
  1540
definition
hoelzl@34291
  1541
  closest_point :: "(real ^ 'n) set \<Rightarrow> real ^ 'n \<Rightarrow> real ^ 'n" where
himmelma@33175
  1542
 "closest_point s a = (SOME x. x \<in> s \<and> (\<forall>y\<in>s. dist a x \<le> dist a y))"
himmelma@33175
  1543
himmelma@33175
  1544
lemma closest_point_exists:
himmelma@33175
  1545
  assumes "closed s" "s \<noteq> {}"
himmelma@33175
  1546
  shows  "closest_point s a \<in> s" "\<forall>y\<in>s. dist a (closest_point s a) \<le> dist a y"
himmelma@33175
  1547
  unfolding closest_point_def apply(rule_tac[!] someI2_ex) 
himmelma@33175
  1548
  using distance_attains_inf[OF assms(1,2), of a] by auto
himmelma@33175
  1549
himmelma@33175
  1550
lemma closest_point_in_set:
himmelma@33175
  1551
  "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s a) \<in> s"
himmelma@33175
  1552
  by(meson closest_point_exists)
himmelma@33175
  1553
himmelma@33175
  1554
lemma closest_point_le:
himmelma@33175
  1555
  "closed s \<Longrightarrow> x \<in> s \<Longrightarrow> dist a (closest_point s a) \<le> dist a x"
himmelma@33175
  1556
  using closest_point_exists[of s] by auto
himmelma@33175
  1557
himmelma@33175
  1558
lemma closest_point_self:
himmelma@33175
  1559
  assumes "x \<in> s"  shows "closest_point s x = x"
himmelma@33175
  1560
  unfolding closest_point_def apply(rule some1_equality, rule ex1I[of _ x]) 
himmelma@33175
  1561
  using assms by auto
himmelma@33175
  1562
himmelma@33175
  1563
lemma closest_point_refl:
himmelma@33175
  1564
 "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s x = x \<longleftrightarrow> x \<in> s)"
himmelma@33175
  1565
  using closest_point_in_set[of s x] closest_point_self[of x s] by auto
himmelma@33175
  1566
himmelma@33175
  1567
(* TODO: move *)
himmelma@33175
  1568
lemma norm_lt: "norm x < norm y \<longleftrightarrow> inner x x < inner y y"
himmelma@33175
  1569
  unfolding norm_eq_sqrt_inner by simp
himmelma@33175
  1570
himmelma@33175
  1571
(* TODO: move *)
himmelma@33175
  1572
lemma norm_le: "norm x \<le> norm y \<longleftrightarrow> inner x x \<le> inner y y"
himmelma@33175
  1573
  unfolding norm_eq_sqrt_inner by simp
himmelma@33175
  1574
hoelzl@34291
  1575
lemma closer_points_lemma: fixes y::"real^'n"
himmelma@33175
  1576
  assumes "inner y z > 0"
himmelma@33175
  1577
  shows "\<exists>u>0. \<forall>v>0. v \<le> u \<longrightarrow> norm(v *\<^sub>R z - y) < norm y"
himmelma@33175
  1578
proof- have z:"inner z z > 0" unfolding inner_gt_zero_iff using assms by auto
himmelma@33175
  1579
  thus ?thesis using assms apply(rule_tac x="inner y z / inner z z" in exI) apply(rule) defer proof(rule+)
himmelma@33175
  1580
    fix v assume "0<v" "v \<le> inner y z / inner z z"
himmelma@33175
  1581
    thus "norm (v *\<^sub>R z - y) < norm y" unfolding norm_lt using z and assms
himmelma@33175
  1582
      by (simp add: field_simps inner_diff inner_commute mult_strict_left_mono[OF _ `0<v`])
himmelma@33175
  1583
  qed(rule divide_pos_pos, auto) qed
himmelma@33175
  1584
himmelma@33175
  1585
lemma closer_point_lemma:
hoelzl@34291
  1586
  fixes x y z :: "real ^ 'n"
himmelma@33175
  1587
  assumes "inner (y - x) (z - x) > 0"
himmelma@33175
  1588
  shows "\<exists>u>0. u \<le> 1 \<and> dist (x + u *\<^sub>R (z - x)) y < dist x y"
himmelma@33175
  1589
proof- obtain u where "u>0" and u:"\<forall>v>0. v \<le> u \<longrightarrow> norm (v *\<^sub>R (z - x) - (y - x)) < norm (y - x)"
himmelma@33175
  1590
    using closer_points_lemma[OF assms] by auto
himmelma@33175
  1591
  show ?thesis apply(rule_tac x="min u 1" in exI) using u[THEN spec[where x="min u 1"]] and `u>0`
himmelma@33175
  1592
    unfolding dist_norm by(auto simp add: norm_minus_commute field_simps) qed
himmelma@33175
  1593
himmelma@33175
  1594
lemma any_closest_point_dot:
himmelma@33175
  1595
  fixes s :: "(real ^ _) set"
himmelma@33175
  1596
  assumes "convex s" "closed s" "x \<in> s" "y \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z"
himmelma@33175
  1597
  shows "inner (a - x) (y - x) \<le> 0"
himmelma@33175
  1598
proof(rule ccontr) assume "\<not> inner (a - x) (y - x) \<le> 0"
himmelma@33175
  1599
  then obtain u where u:"u>0" "u\<le>1" "dist (x + u *\<^sub>R (y - x)) a < dist x a" using closer_point_lemma[of a x y] by auto
himmelma@33175
  1600
  let ?z = "(1 - u) *\<^sub>R x + u *\<^sub>R y" have "?z \<in> s" using mem_convex[OF assms(1,3,4), of u] using u by auto
himmelma@33175
  1601
  thus False using assms(5)[THEN bspec[where x="?z"]] and u(3) by (auto simp add: dist_commute algebra_simps) qed
himmelma@33175
  1602
himmelma@33175
  1603
(* TODO: move *)
himmelma@33175
  1604
lemma norm_le_square: "norm x \<le> a \<longleftrightarrow> 0 \<le> a \<and> inner x x \<le> a\<twosuperior>"
himmelma@33175
  1605
proof -
himmelma@33175
  1606
  have "norm x \<le> a \<longleftrightarrow> 0 \<le> a \<and> norm x \<le> a"
himmelma@33175
  1607
    using norm_ge_zero [of x] by arith
himmelma@33175
  1608
  also have "\<dots> \<longleftrightarrow> 0 \<le> a \<and> (norm x)\<twosuperior> \<le> a\<twosuperior>"
himmelma@33175
  1609
    by (auto intro: power_mono dest: power2_le_imp_le)
himmelma@33175
  1610
  also have "\<dots> \<longleftrightarrow> 0 \<le> a \<and> inner x x \<le> a\<twosuperior>"
himmelma@33175
  1611
    unfolding power2_norm_eq_inner ..
himmelma@33175
  1612
  finally show ?thesis .
himmelma@33175
  1613
qed
himmelma@33175
  1614
himmelma@33175
  1615
lemma any_closest_point_unique:
himmelma@33175
  1616
  fixes s :: "(real ^ _) set"
himmelma@33175
  1617
  assumes "convex s" "closed s" "x \<in> s" "y \<in> s"
himmelma@33175
  1618
  "\<forall>z\<in>s. dist a x \<le> dist a z" "\<forall>z\<in>s. dist a y \<le> dist a z"
himmelma@33175
  1619
  shows "x = y" using any_closest_point_dot[OF assms(1-4,5)] and any_closest_point_dot[OF assms(1-2,4,3,6)]
himmelma@33175
  1620
  unfolding norm_pths(1) and norm_le_square
himmelma@33175
  1621
  by (auto simp add: algebra_simps)
himmelma@33175
  1622
himmelma@33175
  1623
lemma closest_point_unique:
himmelma@33175
  1624
  assumes "convex s" "closed s" "x \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z"
himmelma@33175
  1625
  shows "x = closest_point s a"
himmelma@33175
  1626
  using any_closest_point_unique[OF assms(1-3) _ assms(4), of "closest_point s a"] 
himmelma@33175
  1627
  using closest_point_exists[OF assms(2)] and assms(3) by auto
himmelma@33175
  1628
himmelma@33175
  1629
lemma closest_point_dot:
himmelma@33175
  1630
  assumes "convex s" "closed s" "x \<in> s"
himmelma@33175
  1631
  shows "inner (a - closest_point s a) (x - closest_point s a) \<le> 0"
himmelma@33175
  1632
  apply(rule any_closest_point_dot[OF assms(1,2) _ assms(3)])
himmelma@33175
  1633
  using closest_point_exists[OF assms(2)] and assms(3) by auto
himmelma@33175
  1634
himmelma@33175
  1635
lemma closest_point_lt:
himmelma@33175
  1636
  assumes "convex s" "closed s" "x \<in> s" "x \<noteq> closest_point s a"
himmelma@33175
  1637
  shows "dist a (closest_point s a) < dist a x"
himmelma@33175
  1638
  apply(rule ccontr) apply(rule_tac notE[OF assms(4)])
himmelma@33175
  1639
  apply(rule closest_point_unique[OF assms(1-3), of a])
himmelma@33175
  1640
  using closest_point_le[OF assms(2), of _ a] by fastsimp
himmelma@33175
  1641
himmelma@33175
  1642
lemma closest_point_lipschitz:
himmelma@33175
  1643
  assumes "convex s" "closed s" "s \<noteq> {}"
himmelma@33175
  1644
  shows "dist (closest_point s x) (closest_point s y) \<le> dist x y"
himmelma@33175
  1645
proof-
himmelma@33175
  1646
  have "inner (x - closest_point s x) (closest_point s y - closest_point s x) \<le> 0"
himmelma@33175
  1647
       "inner (y - closest_point s y) (closest_point s x - closest_point s y) \<le> 0"
himmelma@33175
  1648
    apply(rule_tac[!] any_closest_point_dot[OF assms(1-2)])
himmelma@33175
  1649
    using closest_point_exists[OF assms(2-3)] by auto
himmelma@33175
  1650
  thus ?thesis unfolding dist_norm and norm_le
himmelma@33175
  1651
    using inner_ge_zero[of "(x - closest_point s x) - (y - closest_point s y)"]
himmelma@33175
  1652
    by (simp add: inner_add inner_diff inner_commute) qed
himmelma@33175
  1653
himmelma@33175
  1654
lemma continuous_at_closest_point:
himmelma@33175
  1655
  assumes "convex s" "closed s" "s \<noteq> {}"
himmelma@33175
  1656
  shows "continuous (at x) (closest_point s)"
himmelma@33175
  1657
  unfolding continuous_at_eps_delta 
himmelma@33175
  1658
  using le_less_trans[OF closest_point_lipschitz[OF assms]] by auto
himmelma@33175
  1659
himmelma@33175
  1660
lemma continuous_on_closest_point:
himmelma@33175
  1661
  assumes "convex s" "closed s" "s \<noteq> {}"
himmelma@33175
  1662
  shows "continuous_on t (closest_point s)"
himmelma@33175
  1663
  apply(rule continuous_at_imp_continuous_on) using continuous_at_closest_point[OF assms] by auto
himmelma@33175
  1664
himmelma@33175
  1665
subsection {* Various point-to-set separating/supporting hyperplane theorems. *}
himmelma@33175
  1666
himmelma@33175
  1667
lemma supporting_hyperplane_closed_point:
himmelma@33175
  1668
  fixes s :: "(real ^ _) set"
himmelma@33175
  1669
  assumes "convex s" "closed s" "s \<noteq> {}" "z \<notin> s"
himmelma@33175
  1670
  shows "\<exists>a b. \<exists>y\<in>s. inner a z < b \<and> (inner a y = b) \<and> (\<forall>x\<in>s. inner a x \<ge> b)"
himmelma@33175
  1671
proof-
himmelma@33175
  1672
  from distance_attains_inf[OF assms(2-3)] obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x" by auto
himmelma@33175
  1673
  show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) y" in exI, rule_tac x=y in bexI)
himmelma@33175
  1674
    apply rule defer apply rule defer apply(rule, rule ccontr) using `y\<in>s` proof-
himmelma@33175
  1675
    show "inner (y - z) z < inner (y - z) y" apply(subst diff_less_iff(1)[THEN sym])
himmelma@33175
  1676
      unfolding inner_diff_right[THEN sym] and inner_gt_zero_iff using `y\<in>s` `z\<notin>s` by auto
himmelma@33175
  1677
  next
himmelma@33175
  1678
    fix x assume "x\<in>s" have *:"\<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> dist z y \<le> dist z ((1 - u) *\<^sub>R y + u *\<^sub>R x)"
himmelma@33175
  1679
      using assms(1)[unfolded convex_alt] and y and `x\<in>s` and `y\<in>s` by auto
himmelma@33175
  1680
    assume "\<not> inner (y - z) y \<le> inner (y - z) x" then obtain v where
himmelma@33175
  1681
      "v>0" "v\<le>1" "dist (y + v *\<^sub>R (x - y)) z < dist y z" using closer_point_lemma[of z y x] apply - by (auto simp add: inner_diff)
himmelma@33175
  1682
    thus False using *[THEN spec[where x=v]] by(auto simp add: dist_commute algebra_simps)
himmelma@33175
  1683
  qed auto
himmelma@33175
  1684
qed
himmelma@33175
  1685
himmelma@33175
  1686
lemma separating_hyperplane_closed_point:
himmelma@33175
  1687
  fixes s :: "(real ^ _) set"
himmelma@33175
  1688
  assumes "convex s" "closed s" "z \<notin> s"
himmelma@33175
  1689
  shows "\<exists>a b. inner a z < b \<and> (\<forall>x\<in>s. inner a x > b)"
himmelma@33175
  1690
proof(cases "s={}")
himmelma@33175
  1691
  case True thus ?thesis apply(rule_tac x="-z" in exI, rule_tac x=1 in exI)
himmelma@33175
  1692
    using less_le_trans[OF _ inner_ge_zero[of z]] by auto
himmelma@33175
  1693
next
himmelma@33175
  1694
  case False obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x"
himmelma@33175
  1695
    using distance_attains_inf[OF assms(2) False] by auto
himmelma@33175
  1696
  show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) z + (norm(y - z))\<twosuperior> / 2" in exI)
himmelma@33175
  1697
    apply rule defer apply rule proof-
himmelma@33175
  1698
    fix x assume "x\<in>s"
himmelma@33175
  1699
    have "\<not> 0 < inner (z - y) (x - y)" apply(rule_tac notI) proof(drule closer_point_lemma)
himmelma@33175
  1700
      assume "\<exists>u>0. u \<le> 1 \<and> dist (y + u *\<^sub>R (x - y)) z < dist y z"
himmelma@33175
  1701
      then obtain u where "u>0" "u\<le>1" "dist (y + u *\<^sub>R (x - y)) z < dist y z" by auto
himmelma@33175
  1702
      thus False using y[THEN bspec[where x="y + u *\<^sub>R (x - y)"]]
himmelma@33175
  1703
        using assms(1)[unfolded convex_alt, THEN bspec[where x=y]]
himmelma@33175
  1704
        using `x\<in>s` `y\<in>s` by (auto simp add: dist_commute algebra_simps) qed
himmelma@33175
  1705
    moreover have "0 < norm (y - z) ^ 2" using `y\<in>s` `z\<notin>s` by auto
himmelma@33175
  1706
    hence "0 < inner (y - z) (y - z)" unfolding power2_norm_eq_inner by simp
himmelma@33175
  1707
    ultimately show "inner (y - z) z + (norm (y - z))\<twosuperior> / 2 < inner (y - z) x"
himmelma@33175
  1708
      unfolding power2_norm_eq_inner and not_less by (auto simp add: field_simps inner_commute inner_diff)
himmelma@33175
  1709
  qed(insert `y\<in>s` `z\<notin>s`, auto)
himmelma@33175
  1710
qed
himmelma@33175
  1711
himmelma@33175
  1712
lemma separating_hyperplane_closed_0:
hoelzl@34291
  1713
  assumes "convex (s::(real^'n) set)" "closed s" "0 \<notin> s"
himmelma@33175
  1714
  shows "\<exists>a b. a \<noteq> 0 \<and> 0 < b \<and> (\<forall>x\<in>s. inner a x > b)"
himmelma@33175
  1715
  proof(cases "s={}") guess a using UNIV_witness[where 'a='n] ..
hoelzl@34291
  1716
  case True have "norm ((basis a)::real^'n) = 1" 
himmelma@33175
  1717
    using norm_basis and dimindex_ge_1 by auto
himmelma@33175
  1718
  thus ?thesis apply(rule_tac x="basis a" in exI, rule_tac x=1 in exI) using True by auto
himmelma@33175
  1719
next case False thus ?thesis using False using separating_hyperplane_closed_point[OF assms]
himmelma@33175
  1720
    apply - apply(erule exE)+ unfolding dot_rzero apply(rule_tac x=a in exI, rule_tac x=b in exI) by auto qed
himmelma@33175
  1721
himmelma@33175
  1722
subsection {* Now set-to-set for closed/compact sets. *}
himmelma@33175
  1723
himmelma@33175
  1724
lemma separating_hyperplane_closed_compact:
hoelzl@34291
  1725
  assumes "convex (s::(real^'n) set)" "closed s" "convex t" "compact t" "t \<noteq> {}" "s \<inter> t = {}"
himmelma@33175
  1726
  shows "\<exists>a b. (\<forall>x\<in>s. inner a x < b) \<and> (\<forall>x\<in>t. inner a x > b)"
himmelma@33175
  1727
proof(cases "s={}")
himmelma@33175
  1728
  case True
himmelma@33175
  1729
  obtain b where b:"b>0" "\<forall>x\<in>t. norm x \<le> b" using compact_imp_bounded[OF assms(4)] unfolding bounded_pos by auto
himmelma@33175
  1730
  obtain z::"real^'n" where z:"norm z = b + 1" using vector_choose_size[of "b + 1"] and b(1) by auto
himmelma@33175
  1731
  hence "z\<notin>t" using b(2)[THEN bspec[where x=z]] by auto
himmelma@33175
  1732
  then obtain a b where ab:"inner a z < b" "\<forall>x\<in>t. b < inner a x"
himmelma@33175
  1733
    using separating_hyperplane_closed_point[OF assms(3) compact_imp_closed[OF assms(4)], of z] by auto
himmelma@33175
  1734
  thus ?thesis using True by auto
himmelma@33175
  1735
next
himmelma@33175
  1736
  case False then obtain y where "y\<in>s" by auto
himmelma@33175
  1737
  obtain a b where "0 < b" "\<forall>x\<in>{x - y |x y. x \<in> s \<and> y \<in> t}. b < inner a x"
himmelma@33175
  1738
    using separating_hyperplane_closed_point[OF convex_differences[OF assms(1,3)], of 0]
himmelma@33175
  1739
    using closed_compact_differences[OF assms(2,4)] using assms(6) by(auto, blast)
himmelma@33175
  1740
  hence ab:"\<forall>x\<in>s. \<forall>y\<in>t. b + inner a y < inner a x" apply- apply(rule,rule) apply(erule_tac x="x - y" in ballE) by (auto simp add: inner_diff)
paulson@33270
  1741
  def k \<equiv> "Sup ((\<lambda>x. inner a x) ` t)"
himmelma@33175
  1742
  show ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-(k + b / 2)" in exI)
himmelma@33175
  1743
    apply(rule,rule) defer apply(rule) unfolding inner_minus_left and neg_less_iff_less proof-
himmelma@33175
  1744
    from ab have "((\<lambda>x. inner a x) ` t) *<= (inner a y - b)"
himmelma@33175
  1745
      apply(erule_tac x=y in ballE) apply(rule setleI) using `y\<in>s` by auto
paulson@33270
  1746
    hence k:"isLub UNIV ((\<lambda>x. inner a x) ` t) k" unfolding k_def apply(rule_tac Sup) using assms(5) by auto
himmelma@33175
  1747
    fix x assume "x\<in>t" thus "inner a x < (k + b / 2)" using `0<b` and isLubD2[OF k, of "inner a x"] by auto
himmelma@33175
  1748
  next
himmelma@33175
  1749
    fix x assume "x\<in>s" 
paulson@33270
  1750
    hence "k \<le> inner a x - b" unfolding k_def apply(rule_tac Sup_least) using assms(5)
himmelma@33175
  1751
      using ab[THEN bspec[where x=x]] by auto
himmelma@33175
  1752
    thus "k + b / 2 < inner a x" using `0 < b` by auto
himmelma@33175
  1753
  qed
himmelma@33175
  1754
qed
himmelma@33175
  1755
himmelma@33175
  1756
lemma separating_hyperplane_compact_closed:
himmelma@33175
  1757
  fixes s :: "(real ^ _) set"
himmelma@33175
  1758
  assumes "convex s" "compact s" "s \<noteq> {}" "convex t" "closed t" "s \<inter> t = {}"
himmelma@33175
  1759
  shows "\<exists>a b. (\<forall>x\<in>s. inner a x < b) \<and> (\<forall>x\<in>t. inner a x > b)"
himmelma@33175
  1760
proof- obtain a b where "(\<forall>x\<in>t. inner a x < b) \<and> (\<forall>x\<in>s. b < inner a x)"
himmelma@33175
  1761
    using separating_hyperplane_closed_compact[OF assms(4-5,1-2,3)] and assms(6) by auto
himmelma@33175
  1762
  thus ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-b" in exI) by auto qed
himmelma@33175
  1763
himmelma@33175
  1764
subsection {* General case without assuming closure and getting non-strict separation. *}
himmelma@33175
  1765
himmelma@33175
  1766
lemma separating_hyperplane_set_0:
hoelzl@34291
  1767
  assumes "convex s" "(0::real^'n) \<notin> s"
himmelma@33175
  1768
  shows "\<exists>a. a \<noteq> 0 \<and> (\<forall>x\<in>s. 0 \<le> inner a x)"
himmelma@33175
  1769
proof- let ?k = "\<lambda>c. {x::real^'n. 0 \<le> inner c x}"
himmelma@33175
  1770
  have "frontier (cball 0 1) \<inter> (\<Inter> (?k ` s)) \<noteq> {}"
himmelma@33175
  1771
    apply(rule compact_imp_fip) apply(rule compact_frontier[OF compact_cball])
himmelma@33175
  1772
    defer apply(rule,rule,erule conjE) proof-
himmelma@33175
  1773
    fix f assume as:"f \<subseteq> ?k ` s" "finite f"
himmelma@33175
  1774
    obtain c where c:"f = ?k ` c" "c\<subseteq>s" "finite c" using finite_subset_image[OF as(2,1)] by auto
himmelma@33175
  1775
    then obtain a b where ab:"a \<noteq> 0" "0 < b"  "\<forall>x\<in>convex hull c. b < inner a x"
himmelma@33175
  1776
      using separating_hyperplane_closed_0[OF convex_convex_hull, of c]
himmelma@33175
  1777
      using finite_imp_compact_convex_hull[OF c(3), THEN compact_imp_closed] and assms(2)
himmelma@33175
  1778
      using subset_hull[unfolded mem_def, of convex, OF assms(1), THEN sym, of c] by auto
himmelma@33175
  1779
    hence "\<exists>x. norm x = 1 \<and> (\<forall>y\<in>c. 0 \<le> inner y x)" apply(rule_tac x="inverse(norm a) *\<^sub>R a" in exI)
himmelma@33175
  1780
       using hull_subset[of c convex] unfolding subset_eq and inner_scaleR
himmelma@33175
  1781
       apply- apply rule defer apply rule apply(rule mult_nonneg_nonneg)
himmelma@33175
  1782
       by(auto simp add: inner_commute elim!: ballE)
himmelma@33175
  1783
    thus "frontier (cball 0 1) \<inter> \<Inter>f \<noteq> {}" unfolding c(1) frontier_cball dist_norm by auto
himmelma@33175
  1784
  qed(insert closed_halfspace_ge, auto)
himmelma@33175
  1785
  then obtain x where "norm x = 1" "\<forall>y\<in>s. x\<in>?k y" unfolding frontier_cball dist_norm by auto
himmelma@33175
  1786
  thus ?thesis apply(rule_tac x=x in exI) by(auto simp add: inner_commute) qed
himmelma@33175
  1787
himmelma@33175
  1788
lemma separating_hyperplane_sets:
hoelzl@34291
  1789
  assumes "convex s" "convex (t::(real^'n) set)" "s \<noteq> {}" "t \<noteq> {}" "s \<inter> t = {}"
himmelma@33175
  1790
  shows "\<exists>a b. a \<noteq> 0 \<and> (\<forall>x\<in>s. inner a x \<le> b) \<and> (\<forall>x\<in>t. inner a x \<ge> b)"
himmelma@33175
  1791
proof- from separating_hyperplane_set_0[OF convex_differences[OF assms(2,1)]]
paulson@33270
  1792
  obtain a where "a\<noteq>0" "\<forall>x\<in>{x - y |x y. x \<in> t \<and> y \<in> s}. 0 \<le> inner a x" 
paulson@33270
  1793
    using assms(3-5) by auto 
paulson@33270
  1794
  hence "\<forall>x\<in>t. \<forall>y\<in>s. inner a y \<le> inner a x"
paulson@33270
  1795
    by (force simp add: inner_diff)
paulson@33270
  1796
  thus ?thesis
paulson@33270
  1797
    apply(rule_tac x=a in exI, rule_tac x="Sup ((\<lambda>x. inner a x) ` s)" in exI) using `a\<noteq>0`
paulson@33270
  1798
    apply auto
paulson@33270
  1799
    apply (rule Sup[THEN isLubD2]) 
paulson@33270
  1800
    prefer 4
paulson@33270
  1801
    apply (rule Sup_least) 
paulson@33270
  1802
     using assms(3-5) apply (auto simp add: setle_def)
paulson@33270
  1803
    apply (metis COMBC_def Collect_def Collect_mem_eq) 
paulson@33270
  1804
    done
paulson@33270
  1805
qed
himmelma@33175
  1806
himmelma@33175
  1807
subsection {* More convexity generalities. *}
himmelma@33175
  1808
himmelma@33175
  1809
lemma convex_closure:
himmelma@33175
  1810
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
  1811
  assumes "convex s" shows "convex(closure s)"
himmelma@33175
  1812
  unfolding convex_def Ball_def closure_sequential
himmelma@33175
  1813
  apply(rule,rule,rule,rule,rule,rule,rule,rule,rule) apply(erule_tac exE)+
himmelma@33175
  1814
  apply(rule_tac x="\<lambda>n. u *\<^sub>R xb n + v *\<^sub>R xc n" in exI) apply(rule,rule)
himmelma@33175
  1815
  apply(rule assms[unfolded convex_def, rule_format]) prefer 6
himmelma@33175
  1816
  apply(rule Lim_add) apply(rule_tac [1-2] Lim_cmul) by auto
himmelma@33175
  1817
himmelma@33175
  1818
lemma convex_interior:
himmelma@33175
  1819
  fixes s :: "'a::real_normed_vector set"
himmelma@33175
  1820
  assumes "convex s" shows "convex(interior s)"
himmelma@33175
  1821
  unfolding convex_alt Ball_def mem_interior apply(rule,rule,rule,rule,rule,rule) apply(erule exE | erule conjE)+ proof-
himmelma@33175
  1822
  fix x y u assume u:"0 \<le> u" "u \<le> (1::real)"
himmelma@33175
  1823
  fix e d assume ed:"ball x e \<subseteq> s" "ball y d \<subseteq> s" "0<d" "0<e" 
himmelma@33175
  1824
  show "\<exists>e>0. ball ((1 - u) *\<^sub>R x + u *\<^sub>R y) e \<subseteq> s" apply(rule_tac x="min d e" in exI)
himmelma@33175
  1825
    apply rule unfolding subset_eq defer apply rule proof-
himmelma@33175
  1826
    fix z assume "z \<in> ball ((1 - u) *\<^sub>R x + u *\<^sub>R y) (min d e)"
himmelma@33175
  1827
    hence "(1- u) *\<^sub>R (z - u *\<^sub>R (y - x)) + u *\<^sub>R (z + (1 - u) *\<^sub>R (y - x)) \<in> s"
himmelma@33175
  1828
      apply(rule_tac assms[unfolded convex_alt, rule_format])
himmelma@33175
  1829
      using ed(1,2) and u unfolding subset_eq mem_ball Ball_def dist_norm by(auto simp add: algebra_simps)
himmelma@33175
  1830
    thus "z \<in> s" using u by (auto simp add: algebra_simps) qed(insert u ed(3-4), auto) qed
himmelma@33175
  1831
hoelzl@34951
  1832
lemma convex_hull_eq_empty[simp]: "convex hull s = {} \<longleftrightarrow> s = {}"
himmelma@33175
  1833
  using hull_subset[of s convex] convex_hull_empty by auto
himmelma@33175
  1834
himmelma@33175
  1835
subsection {* Moving and scaling convex hulls. *}
himmelma@33175
  1836
himmelma@33175
  1837
lemma convex_hull_translation_lemma:
himmelma@33175
  1838
  "convex hull ((\<lambda>x. a + x) ` s) \<subseteq> (\<lambda>x. a + x) ` (convex hull s)"
himmelma@33175
  1839
  apply(rule hull_minimal, rule image_mono, rule hull_subset) unfolding mem_def
himmelma@33175
  1840
  using convex_translation[OF convex_convex_hull, of a s] by assumption
himmelma@33175
  1841
himmelma@33175
  1842
lemma convex_hull_bilemma: fixes neg
himmelma@33175
  1843
  assumes "(\<forall>s a. (convex hull (up a s)) \<subseteq> up a (convex hull s))"
himmelma@33175
  1844
  shows "(\<forall>s. up a (up (neg a) s) = s) \<and> (\<forall>s. up (neg a) (up a s) = s) \<and> (\<forall>s t a. s \<subseteq> t \<longrightarrow> up a s \<subseteq> up a t)
himmelma@33175
  1845
  \<Longrightarrow> \<forall>s. (convex hull (up a s)) = up a (convex hull s)"
himmelma@33175
  1846
  using assms by(metis subset_antisym) 
himmelma@33175
  1847
himmelma@33175
  1848
lemma convex_hull_translation:
himmelma@33175
  1849
  "convex hull ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (convex hull s)"
himmelma@33175
  1850
  apply(rule convex_hull_bilemma[rule_format, of _ _ "\<lambda>a. -a"], rule convex_hull_translation_lemma) unfolding image_image by auto
himmelma@33175
  1851
himmelma@33175
  1852
lemma convex_hull_scaling_lemma:
himmelma@33175
  1853
 "(convex hull ((\<lambda>x. c *\<^sub>R x) ` s)) \<subseteq> (\<lambda>x. c *\<^sub>R x) ` (convex hull s)"
himmelma@33175
  1854
  apply(rule hull_minimal, rule image_mono, rule hull_subset)
himmelma@33175
  1855
  unfolding mem_def by(rule convex_scaling, rule convex_convex_hull)
himmelma@33175
  1856
himmelma@33175
  1857
lemma convex_hull_scaling:
himmelma@33175
  1858
  "convex hull ((\<lambda>x. c *\<^sub>R x) ` s) = (\<lambda>x. c *\<^sub>R x) ` (convex hull s)"
himmelma@33175
  1859
  apply(cases "c=0") defer apply(rule convex_hull_bilemma[rule_format, of _ _ inverse]) apply(rule convex_hull_scaling_lemma)
himmelma@33175
  1860
  unfolding image_image scaleR_scaleR by(auto simp add:image_constant_conv convex_hull_eq_empty)
himmelma@33175
  1861
himmelma@33175
  1862
lemma convex_hull_affinity:
himmelma@33175
  1863
  "convex hull ((\<lambda>x. a + c *\<^sub>R x) ` s) = (\<lambda>x. a + c *\<^sub>R x) ` (convex hull s)"
himmelma@33175
  1864
  unfolding image_image[THEN sym] convex_hull_scaling convex_hull_translation  ..
himmelma@33175
  1865
himmelma@33175
  1866
subsection {* Convex set as intersection of halfspaces. *}
himmelma@33175
  1867
himmelma@33175
  1868
lemma convex_halfspace_intersection:
himmelma@33175
  1869
  fixes s :: "(real ^ _) set"
himmelma@33175
  1870
  assumes "closed s" "convex s"
himmelma@33175
  1871
  shows "s = \<Inter> {h. s \<subseteq> h \<and> (\<exists>a b. h = {x. inner a x \<le> b})}"
himmelma@33175
  1872
  apply(rule set_ext, rule) unfolding Inter_iff Ball_def mem_Collect_eq apply(rule,rule,erule conjE) proof- 
himmelma@33175
  1873
  fix x  assume "\<forall>xa. s \<subseteq> xa \<and> (\<exists>a b. xa = {x. inner a x \<le> b}) \<longrightarrow> x \<in> xa"
himmelma@33175
  1874
  hence "\<forall>a b. s \<subseteq> {x. inner a x \<le> b} \<longrightarrow> x \<in> {x. inner a x \<le> b}" by blast
himmelma@33175
  1875
  thus "x\<in>s" apply(rule_tac ccontr) apply(drule separating_hyperplane_closed_point[OF assms(2,1)])
himmelma@33175
  1876
    apply(erule exE)+ apply(erule_tac x="-a" in allE, erule_tac x="-b" in allE) by auto
himmelma@33175
  1877
qed auto
himmelma@33175
  1878
himmelma@33175
  1879
subsection {* Radon's theorem (from Lars Schewe). *}
himmelma@33175
  1880
himmelma@33175
  1881
lemma radon_ex_lemma:
himmelma@33175
  1882
  assumes "finite c" "affine_dependent c"
himmelma@33175
  1883
  shows "\<exists>u. setsum u c = 0 \<and> (\<exists>v\<in>c. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) c = 0"
himmelma@33175
  1884
proof- from assms(2)[unfolded affine_dependent_explicit] guess s .. then guess u ..
himmelma@33175
  1885
  thus ?thesis apply(rule_tac x="\<lambda>v. if v\<in>s then u v else 0" in exI) unfolding if_smult scaleR_zero_left
himmelma@33175
  1886
    and setsum_restrict_set[OF assms(1), THEN sym] by(auto simp add: Int_absorb1) qed
himmelma@33175
  1887
himmelma@33175
  1888
lemma radon_s_lemma:
himmelma@33175
  1889
  assumes "finite s" "setsum f s = (0::real)"
himmelma@33175
  1890
  shows "setsum f {x\<in>s. 0 < f x} = - setsum f {x\<in>s. f x < 0}"
himmelma@33175
  1891
proof- have *:"\<And>x. (if f x < 0 then f x else 0) + (if 0 < f x then f x else 0) = f x" by auto
himmelma@33175
  1892
  show ?thesis unfolding real_add_eq_0_iff[THEN sym] and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and *
himmelma@33175
  1893
    using assms(2) by assumption qed
himmelma@33175
  1894
himmelma@33175
  1895
lemma radon_v_lemma:
himmelma@34289
  1896
  assumes "finite s" "setsum f s = 0" "\<forall>x. g x = (0::real) \<longrightarrow> f x = (0::real^_)"
himmelma@33175
  1897
  shows "(setsum f {x\<in>s. 0 < g x}) = - setsum f {x\<in>s. g x < 0}"
himmelma@33175
  1898
proof-
himmelma@33175
  1899
  have *:"\<And>x. (if 0 < g x then f x else 0) + (if g x < 0 then f x else 0) = f x" using assms(3) by auto 
himmelma@33175
  1900
  show ?thesis unfolding eq_neg_iff_add_eq_0 and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and *
himmelma@33175
  1901
    using assms(2) by assumption qed
himmelma@33175
  1902
himmelma@33175
  1903
lemma radon_partition:
himmelma@33175
  1904
  assumes "finite c" "affine_dependent c"
himmelma@33175
  1905
  shows "\<exists>m p. m \<inter> p = {} \<and> m \<union> p = c \<and> (convex hull m) \<inter> (convex hull p) \<noteq> {}" proof-
himmelma@33175
  1906
  obtain u v where uv:"setsum u c = 0" "v\<in>c" "u v \<noteq> 0"  "(\<Sum>v\<in>c. u v *\<^sub>R v) = 0" using radon_ex_lemma[OF assms] by auto
himmelma@33175
  1907
  have fin:"finite {x \<in> c. 0 < u x}" "finite {x \<in> c. 0 > u x}" using assms(1) by auto
himmelma@33175
  1908
  def z \<equiv> "(inverse (setsum u {x\<in>c. u x > 0})) *\<^sub>R setsum (\<lambda>x. u x *\<^sub>R x) {x\<in>c. u x > 0}"
himmelma@33175
  1909
  have "setsum u {x \<in> c. 0 < u x} \<noteq> 0" proof(cases "u v \<ge> 0")
himmelma@33175
  1910
    case False hence "u v < 0" by auto
himmelma@33175
  1911
    thus ?thesis proof(cases "\<exists>w\<in>{x \<in> c. 0 < u x}. u w > 0") 
himmelma@33175
  1912
      case True thus ?thesis using setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] by auto
himmelma@33175
  1913
    next
himmelma@33175
  1914
      case False hence "setsum u c \<le> setsum (\<lambda>x. if x=v then u v else 0) c" apply(rule_tac setsum_mono) by auto
himmelma@33175
  1915
      thus ?thesis unfolding setsum_delta[OF assms(1)] using uv(2) and `u v < 0` and uv(1) by auto qed
himmelma@33175
  1916
  qed (insert setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] uv(2-3), auto)
himmelma@33175
  1917
himmelma@33175
  1918
  hence *:"setsum u {x\<in>c. u x > 0} > 0" unfolding real_less_def apply(rule_tac conjI, rule_tac setsum_nonneg) by auto
himmelma@33175
  1919
  moreover have "setsum u ({x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}) = setsum u c"
himmelma@33175
  1920
    "(\<Sum>x\<in>{x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}. u x *\<^sub>R x) = (\<Sum>x\<in>c. u x *\<^sub>R x)"
himmelma@33175
  1921
    using assms(1) apply(rule_tac[!] setsum_mono_zero_left) by auto
himmelma@33175
  1922
  hence "setsum u {x \<in> c. 0 < u x} = - setsum u {x \<in> c. 0 > u x}"
himmelma@33175
  1923
   "(\<Sum>x\<in>{x \<in> c. 0 < u x}. u x *\<^sub>R x) = - (\<Sum>x\<in>{x \<in> c. 0 > u x}. u x *\<^sub>R x)" 
himmelma@33175
  1924
    unfolding eq_neg_iff_add_eq_0 using uv(1,4) by (auto simp add:  setsum_Un_zero[OF fin, THEN sym]) 
himmelma@33175
  1925
  moreover have "\<forall>x\<in>{v \<in> c. u v < 0}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * - u x" 
himmelma@33175
  1926
    apply (rule) apply (rule mult_nonneg_nonneg) using * by auto
himmelma@33175
  1927
himmelma@33175
  1928
  ultimately have "z \<in> convex hull {v \<in> c. u v \<le> 0}" unfolding convex_hull_explicit mem_Collect_eq
himmelma@33175
  1929
    apply(rule_tac x="{v \<in> c. u v < 0}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * - u y" in exI)
himmelma@33175
  1930
    using assms(1) unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and z_def
himmelma@33175
  1931
    by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym])
himmelma@33175
  1932
  moreover have "\<forall>x\<in>{v \<in> c. 0 < u v}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * u x" 
himmelma@33175
  1933
    apply (rule) apply (rule mult_nonneg_nonneg) using * by auto 
himmelma@33175
  1934
  hence "z \<in> convex hull {v \<in> c. u v > 0}" unfolding convex_hull_explicit mem_Collect_eq
himmelma@33175
  1935
    apply(rule_tac x="{v \<in> c. 0 < u v}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * u y" in exI)
himmelma@33175
  1936
    using assms(1) unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and z_def using *
himmelma@33175
  1937
    by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym])
himmelma@33175
  1938
  ultimately show ?thesis apply(rule_tac x="{v\<in>c. u v \<le> 0}" in exI, rule_tac x="{v\<in>c. u v > 0}" in exI) by auto
himmelma@33175
  1939
qed
himmelma@33175
  1940
himmelma@33175
  1941
lemma radon: assumes "affine_dependent c"
himmelma@33175
  1942
  obtains m p where "m\<subseteq>c" "p\<subseteq>c" "m \<inter> p = {}" "(convex hull m) \<inter> (convex hull p) \<noteq> {}"
himmelma@33175
  1943
proof- from assms[unfolded affine_dependent_explicit] guess s .. then guess u ..
himmelma@33175
  1944
  hence *:"finite s" "affine_dependent s" and s:"s \<subseteq> c" unfolding affine_dependent_explicit by auto
himmelma@33175
  1945
  from radon_partition[OF *] guess m .. then guess p ..
himmelma@33175
  1946
  thus ?thesis apply(rule_tac that[of p m]) using s by auto qed
himmelma@33175
  1947
himmelma@33175
  1948
subsection {* Helly's theorem. *}
himmelma@33175
  1949
hoelzl@34291
  1950
lemma helly_induct: fixes f::"(real^'n) set set"
hoelzl@33712
  1951
  assumes "card f = n" "n \<ge> CARD('n) + 1"
himmelma@33175
  1952
  "\<forall>s\<in>f. convex s" "\<forall>t\<subseteq>f. card t = CARD('n) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
himmelma@33175
  1953
  shows "\<Inter> f \<noteq> {}"
hoelzl@33712
  1954
using assms proof(induct n arbitrary: f)
himmelma@33175
  1955
case (Suc n)
hoelzl@33712
  1956
have "finite f" using `card f = Suc n` by (auto intro: card_ge_0_finite)
hoelzl@33712
  1957
show "\<Inter> f \<noteq> {}" apply(cases "n = CARD('n)") apply(rule Suc(5)[rule_format])
hoelzl@33712
  1958
  unfolding `card f = Suc n` proof-
himmelma@33175
  1959
  assume ng:"n \<noteq> CARD('n)" hence "\<exists>X. \<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" apply(rule_tac bchoice) unfolding ex_in_conv
hoelzl@33712
  1960
    apply(rule, rule Suc(1)[rule_format]) unfolding card_Diff_singleton_if[OF `finite f`] `card f = Suc n`
hoelzl@33712
  1961
    defer defer apply(rule Suc(4)[rule_format]) defer apply(rule Suc(5)[rule_format]) using Suc(3) `finite f` by auto
himmelma@33175
  1962
  then obtain X where X:"\<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" by auto
himmelma@33175
  1963
  show ?thesis proof(cases "inj_on X f")
himmelma@33175
  1964
    case False then obtain s t where st:"s\<noteq>t" "s\<in>f" "t\<in>f" "X s = X t" unfolding inj_on_def by auto
himmelma@33175
  1965
    hence *:"\<Inter> f = \<Inter> (f - {s}) \<inter> \<Inter> (f - {t})" by auto
himmelma@33175
  1966
    show ?thesis unfolding * unfolding ex_in_conv[THEN sym] apply(rule_tac x="X s" in exI)
himmelma@33175
  1967
      apply(rule, rule X[rule_format]) using X st by auto
himmelma@33175
  1968
  next case True then obtain m p where mp:"m \<inter> p = {}" "m \<union> p = X ` f" "convex hull m \<inter> convex hull p \<noteq> {}"
himmelma@33175
  1969
      using radon_partition[of "X ` f"] and affine_dependent_biggerset[of "X ` f"]
hoelzl@33712
  1970
      unfolding card_image[OF True] and `card f = Suc n` using Suc(3) `finite f` and ng by auto
himmelma@33175
  1971
    have "m \<subseteq> X ` f" "p \<subseteq> X ` f" using mp(2) by auto
himmelma@33175
  1972
    then obtain g h where gh:"m = X ` g" "p = X ` h" "g \<subseteq> f" "h \<subseteq> f" unfolding subset_image_iff by auto 
himmelma@33175
  1973
    hence "f \<union> (g \<union> h) = f" by auto
himmelma@33175
  1974
    hence f:"f = g \<union> h" using inj_on_Un_image_eq_iff[of X f "g \<union> h"] and True
himmelma@33175
  1975
      unfolding mp(2)[unfolded image_Un[THEN sym] gh] by auto
himmelma@33175
  1976
    have *:"g \<inter> h = {}" using mp(1) unfolding gh using inj_on_image_Int[OF True gh(3,4)] by auto
himmelma@33175
  1977
    have "convex hull (X ` h) \<subseteq> \<Inter> g" "convex hull (X ` g) \<subseteq> \<Inter> h"
hoelzl@33712
  1978
      apply(rule_tac [!] hull_minimal) using Suc gh(3-4)  unfolding mem_def unfolding subset_eq
himmelma@33175
  1979
      apply(rule_tac [2] convex_Inter, rule_tac [4] convex_Inter) apply rule prefer 3 apply rule proof-
himmelma@33175
  1980
      fix x assume "x\<in>X ` g" then guess y unfolding image_iff ..
himmelma@33175
  1981
      thus "x\<in>\<Inter>h" using X[THEN bspec[where x=y]] using * f by auto next
himmelma@33175
  1982
      fix x assume "x\<in>X ` h" then guess y unfolding image_iff ..
himmelma@33175
  1983
      thus "x\<in>\<Inter>g" using X[THEN bspec[where x=y]] using * f by auto
himmelma@33175
  1984
    qed(auto)
himmelma@33175
  1985
    thus ?thesis unfolding f using mp(3)[unfolded gh] by blast qed
himmelma@33175
  1986
qed(insert dimindex_ge_1, auto) qed(auto)
himmelma@33175
  1987
hoelzl@34291
  1988
lemma helly: fixes f::"(real^'n) set set"
hoelzl@33712
  1989
  assumes "card f \<ge> CARD('n) + 1" "\<forall>s\<in>f. convex s"
himmelma@33175
  1990
          "\<forall>t\<subseteq>f. card t = CARD('n) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
himmelma@33175
  1991
  shows "\<Inter> f \<noteq>{}"
hoelzl@33712
  1992
  apply(rule helly_induct) using assms by auto
himmelma@33175
  1993
himmelma@33175
  1994
subsection {* Convex hull is "preserved" by a linear function. *}
himmelma@33175
  1995
himmelma@33175
  1996
lemma convex_hull_linear_image:
himmelma@33175
  1997
  assumes "bounded_linear f"
himmelma@33175
  1998
  shows "f ` (convex hull s) = convex hull (f ` s)"
himmelma@33175
  1999
  apply rule unfolding subset_eq ball_simps apply(rule_tac[!] hull_induct, rule hull_inc) prefer 3  
himmelma@33175
  2000
  apply(erule imageE)apply(rule_tac x=xa in image_eqI) apply assumption
himmelma@33175
  2001
  apply(rule hull_subset[unfolded subset_eq, rule_format]) apply assumption
himmelma@33175
  2002
proof-
himmelma@33175
  2003
  interpret f: bounded_linear f by fact
himmelma@33175
  2004
  show "convex {x. f x \<in> convex hull f ` s}" 
himmelma@33175
  2005
  unfolding convex_def by(auto simp add: f.scaleR f.add convex_convex_hull[unfolded convex_def, rule_format]) next
himmelma@33175
  2006
  interpret f: bounded_linear f by fact
himmelma@33175
  2007
  show "convex {x. x \<in> f ` (convex hull s)}" using  convex_convex_hull[unfolded convex_def, of s] 
himmelma@33175
  2008
    unfolding convex_def by (auto simp add: f.scaleR [symmetric] f.add [symmetric])
himmelma@33175
  2009
qed auto
himmelma@33175
  2010
himmelma@33175
  2011
lemma in_convex_hull_linear_image:
himmelma@33175
  2012
  assumes "bounded_linear f" "x \<in> convex hull s"
himmelma@33175
  2013
  shows "(f x) \<in> convex hull (f ` s)"
himmelma@33175
  2014
using convex_hull_linear_image[OF assms(1)] assms(2) by auto
himmelma@33175
  2015
himmelma@33175
  2016
subsection {* Homeomorphism of all convex compact sets with nonempty interior. *}
himmelma@33175
  2017
himmelma@33175
  2018
lemma compact_frontier_line_lemma:
himmelma@33175
  2019
  fixes s :: "(real ^ _) set"
himmelma@33175
  2020
  assumes "compact s" "0 \<in> s" "x \<noteq> 0" 
himmelma@33175
  2021
  obtains u where "0 \<le> u" "(u *\<^sub>R x) \<in> frontier s" "\<forall>v>u. (v *\<^sub>R x) \<notin> s"
himmelma@33175
  2022
proof-
himmelma@33175
  2023
  obtain b where b:"b>0" "\<forall>x\<in>s. norm x \<le> b" using compact_imp_bounded[OF assms(1), unfolded bounded_pos] by auto
himmelma@33175
  2024
  let ?A = "{y. \<exists>u. 0 \<le> u \<and> u \<le> b / norm(x) \<and> (y = u *\<^sub>R x)}"
himmelma@33175
  2025
  have A:"?A = (\<lambda>u. dest_vec1 u *\<^sub>R x) ` {0 .. vec1 (b / norm x)}"
himmelma@33175
  2026
    unfolding image_image[of "\<lambda>u. u *\<^sub>R x" "\<lambda>x. dest_vec1 x", THEN sym]
himmelma@33175
  2027
    unfolding dest_vec1_inverval vec1_dest_vec1 by auto
himmelma@33175
  2028
  have "compact ?A" unfolding A apply(rule compact_continuous_image, rule continuous_at_imp_continuous_on)
himmelma@33175
  2029
    apply(rule, rule continuous_vmul)
himmelma@33175
  2030
    apply (rule continuous_dest_vec1)
himmelma@33175
  2031
    apply(rule continuous_at_id) by(rule compact_interval)
himmelma@33175
  2032
  moreover have "{y. \<exists>u\<ge>0. u \<le> b / norm x \<and> y = u *\<^sub>R x} \<inter> s \<noteq> {}" apply(rule not_disjointI[OF _ assms(2)])
himmelma@33175
  2033
    unfolding mem_Collect_eq using `b>0` assms(3) by(auto intro!: divide_nonneg_pos)
himmelma@33175
  2034
  ultimately obtain u y where obt: "u\<ge>0" "u \<le> b / norm x" "y = u *\<^sub>R x"
himmelma@33175
  2035
    "y\<in>?A" "y\<in>s" "\<forall>z\<in>?A \<inter> s. dist 0 z \<le> dist 0 y" using distance_attains_sup[OF compact_inter[OF _ assms(1), of ?A], of 0] by auto
himmelma@33175
  2036
himmelma@33175
  2037
  have "norm x > 0" using assms(3)[unfolded zero_less_norm_iff[THEN sym]] by auto
himmelma@33175
  2038
  { fix v assume as:"v > u" "v *\<^sub>R x \<in> s"
himmelma@33175
  2039
    hence "v \<le> b / norm x" using b(2)[rule_format, OF as(2)] 
himmelma@33175
  2040
      using `u\<ge>0` unfolding pos_le_divide_eq[OF `norm x > 0`] by auto
himmelma@33175
  2041
    hence "norm (v *\<^sub>R x) \<le> norm y" apply(rule_tac obt(6)[rule_format, unfolded dist_0_norm]) apply(rule IntI) defer 
himmelma@33175
  2042
      apply(rule as(2)) unfolding mem_Collect_eq apply(rule_tac x=v in exI) 
himmelma@33175
  2043
      using as(1) `u\<ge>0` by(auto simp add:field_simps) 
himmelma@33175
  2044
    hence False unfolding obt(3) using `u\<ge>0` `norm x > 0` `v>u` by(auto simp add:field_simps)
himmelma@33175
  2045
  } note u_max = this
himmelma@33175
  2046
himmelma@33175
  2047
  have "u *\<^sub>R x \<in> frontier s" unfolding frontier_straddle apply(rule,rule,rule) apply(rule_tac x="u *\<^sub>R x" in bexI) unfolding obt(3)[THEN sym]
himmelma@33175
  2048
    prefer 3 apply(rule_tac x="(u + (e / 2) / norm x) *\<^sub>R x" in exI) apply(rule, rule) proof-
himmelma@33175
  2049
    fix e  assume "0 < e" and as:"(u + e / 2 / norm x) *\<^sub>R x \<in> s"
himmelma@33175
  2050
    hence "u + e / 2 / norm x > u" using`norm x > 0` by(auto simp del:zero_less_norm_iff intro!: divide_pos_pos)
himmelma@33175
  2051
    thus False using u_max[OF _ as] by auto
himmelma@33175
  2052
  qed(insert `y\<in>s`, auto simp add: dist_norm scaleR_left_distrib obt(3))
himmelma@33175
  2053
  thus ?thesis apply(rule_tac that[of u]) apply(rule obt(1), assumption)
himmelma@33175
  2054
    apply(rule,rule,rule ccontr) apply(rule u_max) by auto qed
himmelma@33175
  2055
himmelma@33175
  2056
lemma starlike_compact_projective:
hoelzl@34291
  2057
  assumes "compact s" "cball (0::real^'n) 1 \<subseteq> s "
himmelma@33175
  2058
  "\<forall>x\<in>s. \<forall>u. 0 \<le> u \<and> u < 1 \<longrightarrow> (u *\<^sub>R x) \<in> (s - frontier s )"
hoelzl@34291
  2059
  shows "s homeomorphic (cball (0::real^'n) 1)"
himmelma@33175
  2060
proof-
himmelma@33175
  2061
  have fs:"frontier s \<subseteq> s" apply(rule frontier_subset_closed) using compact_imp_closed[OF assms(1)] by simp
himmelma@33175
  2062
  def pi \<equiv> "\<lambda>x::real^'n. inverse (norm x) *\<^sub>R x"
himmelma@33175
  2063
  have "0 \<notin> frontier s" unfolding frontier_straddle apply(rule ccontr) unfolding not_not apply(erule_tac x=1 in allE)
himmelma@33175
  2064
    using assms(2)[unfolded subset_eq Ball_def mem_cball] by auto
himmelma@33175
  2065
  have injpi:"\<And>x y. pi x = pi y \<and> norm x = norm y \<longleftrightarrow> x = y" unfolding pi_def by auto
himmelma@33175
  2066
himmelma@33175
  2067
  have contpi:"continuous_on (UNIV - {0}) pi" apply(rule continuous_at_imp_continuous_on)
himmelma@33175
  2068
    apply rule unfolding pi_def
himmelma@33175
  2069
    apply (rule continuous_mul)
himmelma@33175
  2070
    apply (rule continuous_at_inv[unfolded o_def])
himmelma@33175
  2071
    apply (rule continuous_at_norm)
himmelma@33175
  2072
    apply simp
himmelma@33175
  2073
    apply (rule continuous_at_id)
himmelma@33175
  2074
    done
himmelma@33175
  2075
  def sphere \<equiv> "{x::real^'n. norm x = 1}"
himmelma@33175
  2076
  have pi:"\<And>x. x \<noteq> 0 \<Longrightarrow> pi x \<in> sphere" "\<And>x u. u>0 \<Longrightarrow> pi (u *\<^sub>R x) = pi x" unfolding pi_def sphere_def by auto
himmelma@33175
  2077
himmelma@33175
  2078
  have "0\<in>s" using assms(2) and centre_in_cball[of 0 1] by auto
himmelma@33175
  2079
  have front_smul:"\<forall>x\<in>frontier s. \<forall>u\<ge>0. u *\<^sub>R x \<in> s \<longleftrightarrow> u \<le> 1" proof(rule,rule,rule)
himmelma@33175
  2080
    fix x u assume x:"x\<in>frontier s" and "(0::real)\<le>u"
himmelma@33175
  2081
    hence "x\<noteq>0" using `0\<notin>frontier s` by auto
himmelma@33175
  2082
    obtain v where v:"0 \<le> v" "v *\<^sub>R x \<in> frontier s" "\<forall>w>v. w *\<^sub>R x \<notin> s"
himmelma@33175
  2083
      using compact_frontier_line_lemma[OF assms(1) `0\<in>s` `x\<noteq>0`] by auto
himmelma@33175
  2084
    have "v=1" apply(rule ccontr) unfolding neq_iff apply(erule disjE) proof-
himmelma@33175
  2085
      assume "v<1" thus False using v(3)[THEN spec[where x=1]] using x and fs by auto next
himmelma@33175
  2086
      assume "v>1" thus False using assms(3)[THEN bspec[where x="v *\<^sub>R x"], THEN spec[where x="inverse v"]]
himmelma@33175
  2087
        using v and x and fs unfolding inverse_less_1_iff by auto qed
himmelma@33175
  2088
    show "u *\<^sub>R x \<in> s \<longleftrightarrow> u \<le> 1" apply rule  using v(3)[unfolded `v=1`, THEN spec[where x=u]] proof-
himmelma@33175
  2089
      assume "u\<le>1" thus "u *\<^sub>R x \<in> s" apply(cases "u=1")
himmelma@33175
  2090
        using assms(3)[THEN bspec[where x=x], THEN spec[where x=u]] using `0\<le>u` and x and fs by auto qed auto qed
himmelma@33175
  2091
himmelma@33175
  2092
  have "\<exists>surf. homeomorphism (frontier s) sphere pi surf"
himmelma@33175
  2093
    apply(rule homeomorphism_compact) apply(rule compact_frontier[OF assms(1)])
himmelma@33175
  2094
    apply(rule continuous_on_subset[OF contpi]) defer apply(rule set_ext,rule) 
himmelma@33175
  2095
    unfolding inj_on_def prefer 3 apply(rule,rule,rule)
himmelma@33175
  2096
  proof- fix x assume "x\<in>pi ` frontier s" then obtain y where "y\<in>frontier s" "x = pi y" by auto
himmelma@33175
  2097
    thus "x \<in> sphere" using pi(1)[of y] and `0 \<notin> frontier s` by auto
himmelma@33175
  2098
  next fix x assume "x\<in>sphere" hence "norm x = 1" "x\<noteq>0" unfolding sphere_def by auto
himmelma@33175
  2099
    then obtain u where "0 \<le> u" "u *\<^sub>R x \<in> frontier s" "\<forall>v>u. v *\<^sub>R x \<notin> s"
himmelma@33175
  2100
      using compact_frontier_line_lemma[OF assms(1) `0\<in>s`, of x] by auto
himmelma@33175
  2101
    thus "x \<in> pi ` frontier s" unfolding image_iff le_less pi_def apply(rule_tac x="u *\<^sub>R x" in bexI) using `norm x = 1` `0\<notin>frontier s` by auto
himmelma@33175
  2102
  next fix x y assume as:"x \<in> frontier s" "y \<in> frontier s" "pi x = pi y"
himmelma@33175
  2103
    hence xys:"x\<in>s" "y\<in>s" using fs by auto
himmelma@33175
  2104
    from as(1,2) have nor:"norm x \<noteq> 0" "norm y \<noteq> 0" using `0\<notin>frontier s` by auto 
himmelma@33175
  2105
    from nor have x:"x = norm x *\<^sub>R ((inverse (norm y)) *\<^sub>R y)" unfolding as(3)[unfolded pi_def, THEN sym] by auto 
himmelma@33175
  2106
    from nor have y:"y = norm y *\<^sub>R ((inverse (norm x)) *\<^sub>R x)" unfolding as(3)[unfolded pi_def] by auto 
himmelma@33175
  2107
    have "0 \<le> norm y * inverse (norm x)" "0 \<le> norm x * inverse (norm y)"
himmelma@33175
  2108
      unfolding divide_inverse[THEN sym] apply(rule_tac[!] divide_nonneg_pos) using nor by auto
himmelma@33175
  2109
    hence "norm x = norm y" apply(rule_tac ccontr) unfolding neq_iff
himmelma@33175
  2110
      using x y and front_smul[THEN bspec, OF as(1), THEN spec[where x="norm y * (inverse (norm x))"]]
himmelma@33175
  2111
      using front_smul[THEN bspec, OF as(2), THEN spec[where x="norm x * (inverse (norm y))"]]
himmelma@33175
  2112
      using xys nor by(auto simp add:field_simps divide_le_eq_1 divide_inverse[THEN sym])
himmelma@33175
  2113
    thus "x = y" apply(subst injpi[THEN sym]) using as(3) by auto
himmelma@33175
  2114
  qed(insert `0 \<notin> frontier s`, auto)
himmelma@33175
  2115
  then obtain surf where surf:"\<forall>x\<in>frontier s. surf (pi x) = x"  "pi ` frontier s = sphere" "continuous_on (frontier s) pi"
himmelma@33175
  2116
    "\<forall>y\<in>sphere. pi (surf y) = y" "surf ` sphere = frontier s" "continuous_on sphere surf" unfolding homeomorphism_def by auto
himmelma@33175
  2117
  
himmelma@33175
  2118
  have cont_surfpi:"continuous_on (UNIV -  {0}) (surf \<circ> pi)" apply(rule continuous_on_compose, rule contpi)
himmelma@33175
  2119
    apply(rule continuous_on_subset[of sphere], rule surf(6)) using pi(1) by auto
himmelma@33175
  2120
himmelma@33175
  2121
  { fix x assume as:"x \<in> cball (0::real^'n) 1"
himmelma@33175
  2122
    have "norm x *\<^sub>R surf (pi x) \<in> s" proof(cases "x=0 \<or> norm x = 1") 
himmelma@33175
  2123
      case False hence "pi x \<in> sphere" "norm x < 1" using pi(1)[of x] as by(auto simp add: dist_norm)
himmelma@33175
  2124
      thus ?thesis apply(rule_tac assms(3)[rule_format, THEN DiffD1])
himmelma@33175
  2125
        apply(rule_tac fs[unfolded subset_eq, rule_format])
himmelma@33175
  2126
        unfolding surf(5)[THEN sym] by auto
himmelma@33175
  2127
    next case True thus ?thesis apply rule defer unfolding pi_def apply(rule fs[unfolded subset_eq, rule_format])
himmelma@33175
  2128
        unfolding  surf(5)[unfolded sphere_def, THEN sym] using `0\<in>s` by auto qed } note hom = this
himmelma@33175
  2129
himmelma@33175
  2130
  { fix x assume "x\<in>s"
himmelma@33175
  2131
    hence "x \<in> (\<lambda>x. norm x *\<^sub>R surf (pi x)) ` cball 0 1" proof(cases "x=0")
himmelma@33175
  2132
      case True show ?thesis unfolding image_iff True apply(rule_tac x=0 in bexI) by auto
himmelma@33175
  2133
    next let ?a = "inverse (norm (surf (pi x)))"
himmelma@33175
  2134
      case False hence invn:"inverse (norm x) \<noteq> 0" by auto
himmelma@33175
  2135
      from False have pix:"pi x\<in>sphere" using pi(1) by auto
himmelma@33175
  2136
      hence "pi (surf (pi x)) = pi x" apply(rule_tac surf(4)[rule_format]) by assumption
himmelma@33175
  2137
      hence **:"norm x *\<^sub>R (?a *\<^sub>R surf (pi x)) = x" apply(rule_tac scaleR_left_imp_eq[OF invn]) unfolding pi_def using invn by auto
himmelma@33175
  2138
      hence *:"?a * norm x > 0" and"?a > 0" "?a \<noteq> 0" using surf(5) `0\<notin>frontier s` apply -
himmelma@33175
  2139
        apply(rule_tac mult_pos_pos) using False[unfolded zero_less_norm_iff[THEN sym]] by auto
himmelma@33175
  2140
      have "norm (surf (pi x)) \<noteq> 0" using ** False by auto
himmelma@33175
  2141
      hence "norm x = norm ((?a * norm x) *\<^sub>R surf (pi x))"
himmelma@33175
  2142
        unfolding norm_scaleR abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`] by auto
himmelma@33175
  2143
      moreover have "pi x = pi ((inverse (norm (surf (pi x))) * norm x) *\<^sub>R surf (pi x))" 
himmelma@33175
  2144
        unfolding pi(2)[OF *] surf(4)[rule_format, OF pix] ..
himmelma@33175
  2145
      moreover have "surf (pi x) \<in> frontier s" using surf(5) pix by auto
himmelma@33175
  2146
      hence "dist 0 (inverse (norm (surf (pi x))) *\<^sub>R x) \<le> 1" unfolding dist_norm
himmelma@33175
  2147
        using ** and * using front_smul[THEN bspec[where x="surf (pi x)"], THEN spec[where x="norm x * ?a"]]
himmelma@33175
  2148
        using False `x\<in>s` by(auto simp add:field_simps)
himmelma@33175
  2149
      ultimately show ?thesis unfolding image_iff apply(rule_tac x="inverse (norm (surf(pi x))) *\<^sub>R x" in bexI)
himmelma@33175
  2150
        apply(subst injpi[THEN sym]) unfolding abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`]
himmelma@33175
  2151
        unfolding pi(2)[OF `?a > 0`] by auto
himmelma@33175
  2152
    qed } note hom2 = this
himmelma@33175
  2153
himmelma@33175
  2154
  show ?thesis apply(subst homeomorphic_sym) apply(rule homeomorphic_compact[where f="\<lambda>x. norm x *\<^sub>R surf (pi x)"])
himmelma@33175
  2155
    apply(rule compact_cball) defer apply(rule set_ext, rule, erule imageE, drule hom)
himmelma@33175
  2156
    prefer 4 apply(rule continuous_at_imp_continuous_on, rule) apply(rule_tac [3] hom2) proof-
himmelma@33175
  2157
    fix x::"real^'n" assume as:"x \<in> cball 0 1"
himmelma@33175
  2158
    thus "continuous (at x) (\<lambda>x. norm x *\<^sub>R surf (pi x))" proof(cases "x=0")
himmelma@33175
  2159
      case False thus ?thesis apply(rule_tac continuous_mul, rule_tac continuous_at_norm)
himmelma@33175
  2160
        using cont_surfpi unfolding continuous_on_eq_continuous_at[OF open_delete[OF open_UNIV]] o_def by auto
himmelma@33175
  2161
    next guess a using UNIV_witness[where 'a = 'n] ..
himmelma@33175
  2162
      obtain B where B:"\<forall>x\<in>s. norm x \<le> B" using compact_imp_bounded[OF assms(1)] unfolding bounded_iff by auto
himmelma@33175
  2163
      hence "B > 0" using assms(2) unfolding subset_eq apply(erule_tac x="basis a" in ballE) defer apply(erule_tac x="basis a" in ballE)
himmelma@33175
  2164
        unfolding Ball_def mem_cball dist_norm by (auto simp add: norm_basis[unfolded One_nat_def])
himmelma@33175
  2165
      case True show ?thesis unfolding True continuous_at Lim_at apply(rule,rule) apply(rule_tac x="e / B" in exI)
himmelma@33175
  2166
        apply(rule) apply(rule divide_pos_pos) prefer 3 apply(rule,rule,erule conjE)
himmelma@33175
  2167
        unfolding norm_0 scaleR_zero_left dist_norm diff_0_right norm_scaleR abs_norm_cancel proof-
himmelma@33175
  2168
        fix e and x::"real^'n" assume as:"norm x < e / B" "0 < norm x" "0<e"
himmelma@33175
  2169
        hence "surf (pi x) \<in> frontier s" using pi(1)[of x] unfolding surf(5)[THEN sym] by auto
himmelma@33175
  2170
        hence "norm (surf (pi x)) \<le> B" using B fs by auto
himmelma@33175
  2171
        hence "norm x * norm (surf (pi x)) \<le> norm x * B" using as(2) by auto
himmelma@33175
  2172
        also have "\<dots> < e / B * B" apply(rule mult_strict_right_mono) using as(1) `B>0` by auto
himmelma@33175
  2173
        also have "\<dots> = e" using `B>0` by auto
himmelma@33175
  2174
        finally show "norm x * norm (surf (pi x)) < e" by assumption
himmelma@33175
  2175
      qed(insert `B>0`, auto) qed
himmelma@33175
  2176
  next { fix x assume as:"surf (pi x) = 0"
himmelma@33175
  2177
      have "x = 0" proof(rule ccontr)
himmelma@33175
  2178
        assume "x\<noteq>0" hence "pi x \<in> sphere" using pi(1) by auto
himmelma@33175
  2179
        hence "surf (pi x) \<in> frontier s" using surf(5) by auto
himmelma@33175
  2180
        thus False using `0\<notin>frontier s` unfolding as by simp qed
himmelma@33175
  2181
    } note surf_0 = this
himmelma@33175
  2182
    show "inj_on (\<lambda>x. norm x *\<^sub>R surf (pi x)) (cball 0 1)" unfolding inj_on_def proof(rule,rule,rule)
himmelma@33175
  2183
      fix x y assume as:"x \<in> cball 0 1" "y \<in> cball 0 1" "norm x *\<^sub>R surf (pi x) = norm y *\<^sub>R surf (pi y)"
himmelma@33175
  2184
      thus "x=y" proof(cases "x=0 \<or> y=0") 
himmelma@33175
  2185
        case True thus ?thesis using as by(auto elim: surf_0) next
himmelma@33175
  2186
        case False
himmelma@33175
  2187
        hence "pi (surf (pi x)) = pi (surf (pi y))" using as(3)
himmelma@33175
  2188
          using pi(2)[of "norm x" "surf (pi x)"] pi(2)[of "norm y" "surf (pi y)"] by auto
himmelma@33175
  2189
        moreover have "pi x \<in> sphere" "pi y \<in> sphere" using pi(1) False by auto
himmelma@33175
  2190
        ultimately have *:"pi x = pi y" using surf(4)[THEN bspec[where x="pi x"]] surf(4)[THEN bspec[where x="pi y"]] by auto 
himmelma@33175
  2191
        moreover have "norm x = norm y" using as(3)[unfolded *] using False by(auto dest:surf_0)
himmelma@33175
  2192
        ultimately show ?thesis using injpi by auto qed qed
himmelma@33175
  2193
  qed auto qed
himmelma@33175
  2194
hoelzl@34291
  2195
lemma homeomorphic_convex_compact_lemma: fixes s::"(real^'n) set"
himmelma@33175
  2196
  assumes "convex s" "compact s" "cball 0 1 \<subseteq> s"
himmelma@33175
  2197
  shows "s homeomorphic (cball (0::real^'n) 1)"
himmelma@33175
  2198
  apply(rule starlike_compact_projective[OF assms(2-3)]) proof(rule,rule,rule,erule conjE)
himmelma@33175
  2199
  fix x u assume as:"x \<in> s" "0 \<le> u" "u < (1::real)"
himmelma@33175
  2200
  hence "u *\<^sub>R x \<in> interior s" unfolding interior_def mem_Collect_eq
himmelma@33175
  2201
    apply(rule_tac x="ball (u *\<^sub>R x) (1 - u)" in exI) apply(rule, rule open_ball)
himmelma@33175
  2202
    unfolding centre_in_ball apply rule defer apply(rule) unfolding mem_ball proof-
himmelma@33175
  2203
    fix y assume "dist (u *\<^sub>R x) y < 1 - u"
himmelma@33175
  2204
    hence "inverse (1 - u) *\<^sub>R (y - u *\<^sub>R x) \<in> s"
himmelma@33175
  2205
      using assms(3) apply(erule_tac subsetD) unfolding mem_cball dist_commute dist_norm
himmelma@33175
  2206
      unfolding group_add_class.diff_0 group_add_class.diff_0_right norm_minus_cancel norm_scaleR
himmelma@33175
  2207
      apply (rule mult_left_le_imp_le[of "1 - u"])
himmelma@33175
  2208
      unfolding class_semiring.mul_a using `u<1` by auto
himmelma@33175
  2209
    thus "y \<in> s" using assms(1)[unfolded convex_def, rule_format, of "inverse(1 - u) *\<^sub>R (y - u *\<^sub>R x)" x "1 - u" u]
himmelma@33175
  2210
      using as unfolding scaleR_scaleR by auto qed auto
himmelma@33175
  2211
  thus "u *\<^sub>R x \<in> s - frontier s" using frontier_def and interior_subset by auto qed
himmelma@33175
  2212
hoelzl@34291
  2213
lemma homeomorphic_convex_compact_cball: fixes e::real and s::"(real^'n) set"
himmelma@33175
  2214
  assumes "convex s" "compact s" "interior s \<noteq> {}" "0 < e"
hoelzl@34291
  2215
  shows "s homeomorphic (cball (b::real^'n) e)"
himmelma@33175
  2216
proof- obtain a where "a\<in>interior s" using assms(3) by auto
himmelma@33175
  2217
  then obtain d where "d>0" and d:"cball a d \<subseteq> s" unfolding mem_interior_cball by auto
himmelma@33175
  2218
  let ?d = "inverse d" and ?n = "0::real^'n"
himmelma@33175
  2219
  have "cball ?n 1 \<subseteq> (\<lambda>x. inverse d *\<^sub>R (x - a)) ` s"
himmelma@33175
  2220
    apply(rule, rule_tac x="d *\<^sub>R x + a" in image_eqI) defer
himmelma@33175
  2221
    apply(rule d[unfolded subset_eq, rule_format]) using `d>0` unfolding mem_cball dist_norm
himmelma@33175
  2222
    by(auto simp add: mult_right_le_one_le)
himmelma@33175
  2223
  hence "(\<lambda>x. inverse d *\<^sub>R (x - a)) ` s homeomorphic cball ?n 1"
himmelma@33175
  2224
    using homeomorphic_convex_compact_lemma[of "(\<lambda>x. ?d *\<^sub>R -a + ?d *\<^sub>R x) ` s", OF convex_affinity compact_affinity]
himmelma@33175
  2225
    using assms(1,2) by(auto simp add: uminus_add_conv_diff scaleR_right_diff_distrib)
himmelma@33175
  2226
  thus ?thesis apply(rule_tac homeomorphic_trans[OF _ homeomorphic_balls(2)[of 1 _ ?n]])
himmelma@33175
  2227
    apply(rule homeomorphic_trans[OF homeomorphic_affinity[of "?d" s "?d *\<^sub>R -a"]])
himmelma@33175
  2228
    using `d>0` `e>0` by(auto simp add: uminus_add_conv_diff scaleR_right_diff_distrib) qed
himmelma@33175
  2229
hoelzl@34291
  2230
lemma homeomorphic_convex_compact: fixes s::"(real^'n) set" and t::"(real^'n) set"
himmelma@33175
  2231
  assumes "convex s" "compact s" "interior s \<noteq> {}"
himmelma@33175
  2232
          "convex t" "compact t" "interior t \<noteq> {}"
himmelma@33175
  2233
  shows "s homeomorphic t"
himmelma@33175
  2234
  using assms by(meson zero_less_one homeomorphic_trans homeomorphic_convex_compact_cball homeomorphic_sym)
himmelma@33175
  2235
himmelma@33175
  2236
subsection {* Epigraphs of convex functions. *}
himmelma@33175
  2237
hoelzl@34291
  2238
definition "epigraph s (f::real^'n \<Rightarrow> real) = {xy. fstcart xy \<in> s \<and> f(fstcart xy) \<le> dest_vec1 (sndcart xy)}"
himmelma@33175
  2239
himmelma@33175
  2240
lemma mem_epigraph: "(pastecart x (vec1 y)) \<in> epigraph s f \<longleftrightarrow> x \<in> s \<and> f x \<le> y" unfolding epigraph_def by auto
himmelma@33175
  2241
hoelzl@34951
  2242
(** move this**)
hoelzl@34951
  2243
lemma forall_dest_vec1: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P(dest_vec1 x))" 
hoelzl@34951
  2244
  apply safe defer apply(erule_tac x="vec1 x" in allE) by auto
hoelzl@34951
  2245
hoelzl@34951
  2246
(** This might break sooner or later. In fact it did already once. **)
himmelma@33175
  2247
lemma convex_epigraph: 
himmelma@33175
  2248
  "convex(epigraph s f) \<longleftrightarrow> convex_on s f \<and> convex s"
himmelma@33175
  2249
  unfolding convex_def convex_on_def unfolding Ball_def forall_pastecart epigraph_def
hoelzl@34951
  2250
  unfolding mem_Collect_eq fstcart_pastecart sndcart_pastecart sndcart_add sndcart_cmul [where 'a=real, unfolded smult_conv_scaleR] fstcart_add fstcart_cmul [where 'a=real, unfolded smult_conv_scaleR] Ball_def[symmetric] unfolding vector_add_component vector_scaleR_component
hoelzl@34951
  2251
  apply(subst forall_dest_vec1[THEN sym])+ 
hoelzl@34951
  2252
  apply safe defer apply(erule_tac x=x in allE,erule_tac x="f x" in allE) apply safe
hoelzl@34951
  2253
  apply(erule_tac x=xa in allE,erule_tac x="f xa" in allE) prefer 3
hoelzl@34951
  2254
  apply(rule_tac y="u * f x + v * f xb" in order_trans) defer by(auto intro!:mult_left_mono add_mono)
himmelma@33175
  2255
himmelma@33175
  2256
lemma convex_epigraphI: assumes "convex_on s f" "convex s"
himmelma@33175
  2257
  shows "convex(epigraph s f)" using assms unfolding convex_epigraph by auto
himmelma@33175
  2258
himmelma@33175
  2259
lemma convex_epigraph_convex: "convex s \<Longrightarrow> (convex_on s f \<longleftrightarrow> convex(epigraph s f))"
himmelma@33175
  2260
  using convex_epigraph by auto
himmelma@33175
  2261
himmelma@33175
  2262
subsection {* Use this to derive general bound property of convex function. *}
himmelma@33175
  2263
himmelma@33175
  2264
lemma forall_of_pastecart:
himmelma@33175
  2265
  "(\<forall>p. P (\<lambda>x. fstcart (p x)) (\<lambda>x. sndcart (p x))) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson
himmelma@33175
  2266
  apply(erule_tac x="\<lambda>a. pastecart (x a) (y a)" in allE) unfolding o_def by auto
himmelma@33175
  2267
himmelma@33175
  2268
lemma forall_of_pastecart':
himmelma@33175
  2269
  "(\<forall>p. P (fstcart p) (sndcart p)) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson
himmelma@33175
  2270
  apply(erule_tac x="pastecart x y" in allE) unfolding o_def by auto
himmelma@33175
  2271
himmelma@33175
  2272
lemma forall_of_dest_vec1: "(\<forall>v. P (\<lambda>x. dest_vec1 (v x))) \<longleftrightarrow> (\<forall>x. P x)"
himmelma@33175
  2273
  apply rule apply rule apply(erule_tac x="(vec1 \<circ> x)" in allE) unfolding o_def vec1_dest_vec1 by auto 
himmelma@33175
  2274
himmelma@33175
  2275
lemma forall_of_dest_vec1': "(\<forall>v. P (dest_vec1 v)) \<longleftrightarrow> (\<forall>x. P x)"
himmelma@33175
  2276
  apply rule apply rule apply(erule_tac x="(vec1 x)" in allE) defer apply rule 
himmelma@33175
  2277
  apply(erule_tac x="dest_vec1 v" in allE) unfolding o_def vec1_dest_vec1 by auto
himmelma@33175
  2278
himmelma@33175
  2279
lemma convex_on:
himmelma@33175
  2280
  fixes s :: "(real ^ _) set"
himmelma@33175
  2281
  assumes "convex s"
himmelma@33175
  2282
  shows "convex_on s f \<longleftrightarrow> (\<forall>k u x. (\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow>
himmelma@33175
  2283
   f (setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} ) \<le> setsum (\<lambda>i. u i * f(x i)) {1..k} ) "
himmelma@33175
  2284
  unfolding convex_epigraph_convex[OF assms] convex epigraph_def Ball_def mem_Collect_eq
himmelma@33175
  2285
  unfolding sndcart_setsum[OF finite_atLeastAtMost] fstcart_setsum[OF finite_atLeastAtMost] dest_vec1_setsum[OF finite_atLeastAtMost]
hoelzl@34951
  2286
  unfolding fstcart_pastecart sndcart_pastecart sndcart_add sndcart_cmul [where 'a=real, unfolded smult_conv_scaleR] fstcart_add fstcart_cmul [where 'a=real, unfolded smult_conv_scaleR]  unfolding vector_scaleR_component
hoelzl@34951
  2287
  apply(subst forall_of_pastecart)+ apply(subst forall_of_dest_vec1)+ apply rule
himmelma@33175
  2288
  using assms[unfolded convex] apply simp apply(rule,rule,rule)
himmelma@33175
  2289
  apply(erule_tac x=k in allE, erule_tac x=u in allE, erule_tac x=x in allE) apply rule apply rule apply rule defer
himmelma@33175
  2290
  apply(rule_tac j="\<Sum>i = 1..k. u i * f (x i)" in real_le_trans)
hoelzl@34951
  2291
  defer apply(rule setsum_mono) apply(erule conjE)+ apply(erule_tac x=i in allE) unfolding real_scaleR_def
hoelzl@34951
  2292
  apply(rule mult_left_mono)using assms[unfolded convex] by auto
himmelma@33175
  2293
himmelma@33175
  2294
subsection {* Convexity of general and special intervals. *}
himmelma@33175
  2295
himmelma@33175
  2296
lemma is_interval_convex:
himmelma@33175
  2297
  fixes s :: "(real ^ _) set"
himmelma@33175
  2298
  assumes "is_interval s" shows "convex s"
himmelma@33175
  2299
  unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof-
himmelma@33175
  2300
  fix x y u v assume as:"x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"
himmelma@33175
  2301
  hence *:"u = 1 - v" "1 - v \<ge> 0" and **:"v = 1 - u" "1 - u \<ge> 0" by auto
himmelma@33175
  2302
  { fix a b assume "\<not> b \<le> u * a + v * b"
himmelma@33175
  2303
    hence "u * a < (1 - v) * b" unfolding not_le using as(4) by(auto simp add: field_simps)
himmelma@33175
  2304
    hence "a < b" unfolding * using as(4) *(2) apply(rule_tac mult_left_less_imp_less[of "1 - v"]) by(auto simp add: field_simps)
himmelma@33175
  2305
    hence "a \<le> u * a + v * b" unfolding * using as(4) by (auto simp add: field_simps intro!:mult_right_mono)
himmelma@33175
  2306
  } moreover
himmelma@33175
  2307
  { fix a b assume "\<not> u * a + v * b \<le> a"
himmelma@33175
  2308
    hence "v * b > (1 - u) * a" unfolding not_le using as(4) by(auto simp add: field_simps)
himmelma@33175
  2309
    hence "a < b" unfolding * using as(4) apply(rule_tac mult_left_less_imp_less) by(auto simp add: ring_simps)
himmelma@33175
  2310
    hence "u * a + v * b \<le> b" unfolding ** using **(2) as(3) by(auto simp add: field_simps intro!:mult_right_mono) }
himmelma@33175
  2311
  ultimately show "u *\<^sub>R x + v *\<^sub>R y \<in> s" apply- apply(rule assms[unfolded is_interval_def, rule_format, OF as(1,2)])
himmelma@33175
  2312
    using as(3-) dimindex_ge_1 apply- by(auto simp add: vector_component) qed
himmelma@33175
  2313
himmelma@33175
  2314
lemma is_interval_connected:
himmelma@33175
  2315
  fixes s :: "(real ^ _) set"
himmelma@33175
  2316
  shows "is_interval s \<Longrightarrow> connected s"
himmelma@33175
  2317
  using is_interval_convex convex_connected by auto
himmelma@33175
  2318
hoelzl@34291
  2319
lemma convex_interval: "convex {a .. b}" "convex {a<..<b::real^'n}"
himmelma@33175
  2320
  apply(rule_tac[!] is_interval_convex) using is_interval_interval by auto
himmelma@33175
  2321
himmelma@33175
  2322
subsection {* On @{text "real^1"}, @{text "is_interval"}, @{text "convex"} and @{text "connected"} are all equivalent. *}
himmelma@33175
  2323
himmelma@33175
  2324
lemma is_interval_1:
himmelma@33175
  2325
  "is_interval s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. \<forall> x. dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b \<longrightarrow> x \<in> s)"
hoelzl@34951
  2326
  unfolding is_interval_def forall_1 by auto
himmelma@33175
  2327
himmelma@33175
  2328
lemma is_interval_connected_1: "is_interval s \<longleftrightarrow> connected (s::(real^1) set)"
himmelma@33175
  2329
  apply(rule, rule is_interval_connected, assumption) unfolding is_interval_1
himmelma@33175
  2330
  apply(rule,rule,rule,rule,erule conjE,rule ccontr) proof-
himmelma@33175
  2331
  fix a b x assume as:"connected s" "a \<in> s" "b \<in> s" "dest_vec1 a \<le> dest_vec1 x" "dest_vec1 x \<le> dest_vec1 b" "x\<notin>s"
himmelma@33175
  2332
  hence *:"dest_vec1 a < dest_vec1 x" "dest_vec1 x < dest_vec1 b" apply(rule_tac [!] ccontr) unfolding not_less by auto
himmelma@33175
  2333
  let ?halfl = "{z. inner (basis 1) z < dest_vec1 x} " and ?halfr = "{z. inner (basis 1) z > dest_vec1 x} "
himmelma@33175
  2334
  { fix y assume "y \<in> s" have "y \<in> ?halfr \<union> ?halfl" apply(rule ccontr)
hoelzl@34951
  2335
    using as(6) `y\<in>s` by (auto simp add: inner_vector_def dest_vec1_eq) }
hoelzl@34951
  2336
  moreover have "a\<in>?halfl" "b\<in>?halfr" using * by (auto simp add: inner_vector_def)
himmelma@33175
  2337
  hence "?halfl \<inter> s \<noteq> {}" "?halfr \<inter> s \<noteq> {}"  using as(2-3) by auto
himmelma@33175
  2338
  ultimately show False apply(rule_tac notE[OF as(1)[unfolded connected_def]])
himmelma@33175
  2339
    apply(rule_tac x="?halfl" in exI, rule_tac x="?halfr" in exI) 
himmelma@33175
  2340
    apply(rule, rule open_halfspace_lt, rule, rule open_halfspace_gt) apply(rule, rule, rule ccontr)
himmelma@33175
  2341
    by(auto simp add: basis_component field_simps) qed 
himmelma@33175
  2342
himmelma@33175
  2343
lemma is_interval_convex_1:
himmelma@33175
  2344
  "is_interval s \<longleftrightarrow> convex (s::(real^1) set)" 
himmelma@33175
  2345
  using is_interval_convex convex_connected is_interval_connected_1 by auto
himmelma@33175
  2346
himmelma@33175
  2347
lemma convex_connected_1:
himmelma@33175
  2348
  "connected s \<longleftrightarrow> convex (s::(real^1) set)" 
himmelma@33175
  2349
  using is_interval_convex convex_connected is_interval_connected_1 by auto
himmelma@33175
  2350
himmelma@33175
  2351
subsection {* Another intermediate value theorem formulation. *}
himmelma@33175
  2352
hoelzl@34291
  2353
lemma ivt_increasing_component_on_1: fixes f::"real^1 \<Rightarrow> real^'n"
himmelma@33175
  2354
  assumes "dest_vec1 a \<le> dest_vec1 b" "continuous_on {a .. b} f" "(f a)$k \<le> y" "y \<le> (f b)$k"
himmelma@33175
  2355
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
himmelma@33175
  2356
proof- have "f a \<in> f ` {a..b}" "f b \<in> f ` {a..b}" apply(rule_tac[!] imageI) 
hoelzl@34951
  2357
    using assms(1) by(auto simp add: vector_le_def)
himmelma@33175
  2358
  thus ?thesis using connected_ivt_component[of "f ` {a..b}" "f a" "f b" k y]
himmelma@33175
  2359
    using connected_continuous_image[OF assms(2) convex_connected[OF convex_interval(1)]]
himmelma@33175
  2360
    using assms by(auto intro!: imageI) qed
himmelma@33175
  2361
hoelzl@34291
  2362
lemma ivt_increasing_component_1: fixes f::"real^1 \<Rightarrow> real^'n"
himmelma@33175
  2363
  assumes "dest_vec1 a \<le> dest_vec1 b"
himmelma@33175
  2364
  "\<forall>x\<in>{a .. b}. continuous (at x) f" "f a$k \<le> y" "y \<le> f b$k"
himmelma@33175
  2365
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
himmelma@33175
  2366
  apply(rule ivt_increasing_component_on_1) using assms using continuous_at_imp_continuous_on by auto
himmelma@33175
  2367
hoelzl@34291
  2368
lemma ivt_decreasing_component_on_1: fixes f::"real^1 \<Rightarrow> real^'n"
himmelma@33175
  2369
  assumes "dest_vec1 a \<le> dest_vec1 b" "continuous_on {a .. b} f" "(f b)$k \<le> y" "y \<le> (f a)$k"
himmelma@33175
  2370
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
himmelma@33175
  2371
  apply(subst neg_equal_iff_equal[THEN sym]) unfolding vector_uminus_component[THEN sym]
himmelma@33175
  2372
  apply(rule ivt_increasing_component_on_1) using assms using continuous_on_neg
himmelma@33175
  2373
  by(auto simp add:vector_uminus_component)
himmelma@33175
  2374
hoelzl@34291
  2375
lemma ivt_decreasing_component_1: fixes f::"real^1 \<Rightarrow> real^'n"
himmelma@33175
  2376
  assumes "dest_vec1 a \<le> dest_vec1 b" "\<forall>x\<in>{a .. b}. continuous (at x) f" "f b$k \<le> y" "y \<le> f a$k"
himmelma@33175
  2377
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
himmelma@33175
  2378
  apply(rule ivt_decreasing_component_on_1) using assms using continuous_at_imp_continuous_on by auto
himmelma@33175
  2379
himmelma@33175
  2380
subsection {* A bound within a convex hull, and so an interval. *}
himmelma@33175
  2381
himmelma@33175
  2382
lemma convex_on_convex_hull_bound:
himmelma@33175
  2383
  fixes s :: "(real ^ _) set"
himmelma@33175
  2384
  assumes "convex_on (convex hull s) f" "\<forall>x\<in>s. f x \<le> b"
himmelma@33175
  2385
  shows "\<forall>x\<in> convex hull s. f x \<le> b" proof
himmelma@33175
  2386
  fix x assume "x\<in>convex hull s"
himmelma@33175
  2387
  then obtain k u v where obt:"\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> v i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R v i) = x"
himmelma@33175
  2388
    unfolding convex_hull_indexed mem_Collect_eq by auto
himmelma@33175
  2389
  have "(\<Sum>i = 1..k. u i * f (v i)) \<le> b" using setsum_mono[of "{1..k}" "\<lambda>i. u i * f (v i)" "\<lambda>i. u i * b"]
himmelma@33175
  2390
    unfolding setsum_left_distrib[THEN sym] obt(2) mult_1 apply(drule_tac meta_mp) apply(rule mult_left_mono)
himmelma@33175
  2391
    using assms(2) obt(1) by auto
himmelma@33175
  2392
  thus "f x \<le> b" using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v]
himmelma@33175
  2393
    unfolding obt(2-3) using obt(1) and hull_subset[unfolded subset_eq, rule_format, of _ s] by auto qed
himmelma@33175
  2394
himmelma@33175
  2395
lemma unit_interval_convex_hull:
hoelzl@34291
  2396
  "{0::real^'n .. 1} = convex hull {x. \<forall>i. (x$i = 0) \<or> (x$i = 1)}" (is "?int = convex hull ?points")
himmelma@33175
  2397
proof- have 01:"{0,1} \<subseteq> convex hull ?points" apply rule apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) by auto
himmelma@33175
  2398
  { fix n x assume "x\<in>{0::real^'n .. 1}" "n \<le> CARD('n)" "card {i. x$i \<noteq> 0} \<le> n" 
himmelma@33175
  2399
  hence "x\<in>convex hull ?points" proof(induct n arbitrary: x)
himmelma@33175
  2400
    case 0 hence "x = 0" apply(subst Cart_eq) apply rule by auto
himmelma@33175
  2401
    thus "x\<in>convex hull ?points" using 01 by auto
himmelma@33175
  2402
  next
himmelma@33175
  2403
    case (Suc n) show "x\<in>convex hull ?points" proof(cases "{i. x$i \<noteq> 0} = {}")
himmelma@33175
  2404
      case True hence "x = 0" unfolding Cart_eq by auto
himmelma@33175
  2405
      thus "x\<in>convex hull ?points" using 01 by auto
himmelma@33175
  2406
    next
himmelma@33175
  2407
      case False def xi \<equiv> "Min ((\<lambda>i. x$i) ` {i. x$i \<noteq> 0})"
himmelma@33175
  2408
      have "xi \<in> (\<lambda>i. x$i) ` {i. x$i \<noteq> 0}" unfolding xi_def apply(rule Min_in) using False by auto
himmelma@33175
  2409
      then obtain i where i':"x$i = xi" "x$i \<noteq> 0" by auto
himmelma@33175
  2410
      have i:"\<And>j. x$j > 0 \<Longrightarrow> x$i \<le> x$j"
himmelma@33175
  2411
        unfolding i'(1) xi_def apply(rule_tac Min_le) unfolding image_iff
himmelma@33175
  2412
        defer apply(rule_tac x=j in bexI) using i' by auto
himmelma@33175
  2413
      have i01:"x$i \<le> 1" "x$i > 0" using Suc(2)[unfolded mem_interval,rule_format,of i] using i'(2) `x$i \<noteq> 0`
himmelma@33175
  2414
        by(auto simp add: Cart_lambda_beta) 
himmelma@33175
  2415
      show ?thesis proof(cases "x$i=1")
himmelma@33175
  2416
        case True have "\<forall>j\<in>{i. x$i \<noteq> 0}. x$j = 1" apply(rule, rule ccontr) unfolding mem_Collect_eq proof-
himmelma@33175
  2417
          fix j assume "x $ j \<noteq> 0" "x $ j \<noteq> 1"
hoelzl@33758
  2418
          hence j:"x$j \<in> {0<..<1}" using Suc(2) by(auto simp add: vector_le_def elim!:allE[where x=j])
himmelma@33175
  2419
          hence "x$j \<in> op $ x ` {i. x $ i \<noteq> 0}" by auto 
himmelma@33175
  2420
          hence "x$j \<ge> x$i" unfolding i'(1) xi_def apply(rule_tac Min_le) by auto
hoelzl@33758
  2421
          thus False using True Suc(2) j by(auto simp add: vector_le_def elim!:ballE[where x=j]) qed
himmelma@33175
  2422
        thus "x\<in>convex hull ?points" apply(rule_tac hull_subset[unfolded subset_eq, rule_format])
himmelma@33175
  2423
          by(auto simp add: Cart_lambda_beta)
himmelma@33175
  2424
      next let ?y = "\<lambda>j. if x$j = 0 then 0 else (x$j - x$i) / (1 - x$i)"
himmelma@33175
  2425
        case False hence *:"x = x$i *\<^sub>R (\<chi> j. if x$j = 0 then 0 else 1) + (1 - x$i) *\<^sub>R (\<chi> j. ?y j)" unfolding Cart_eq
himmelma@33175
  2426
          by(auto simp add: Cart_lambda_beta vector_add_component vector_smult_component vector_minus_component field_simps)
himmelma@33175
  2427
        { fix j have "x$j \<noteq> 0 \<Longrightarrow> 0 \<le> (x $ j - x $ i) / (1 - x $ i)" "(x $ j - x $ i) / (1 - x $ i) \<le> 1"
himmelma@33175
  2428
            apply(rule_tac divide_nonneg_pos) using i(1)[of j] using False i01
himmelma@33175
  2429
            using Suc(2)[unfolded mem_interval, rule_format, of j] by(auto simp add:field_simps Cart_lambda_beta) 
himmelma@33175
  2430
          hence "0 \<le> ?y j \<and> ?y j \<le> 1" by auto }
himmelma@33175
  2431
        moreover have "i\<in>{j. x$j \<noteq> 0} - {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0}" using i01 by(auto simp add: Cart_lambda_beta)
hoelzl@34291
  2432
        hence "{j. x$j \<noteq> 0} \<noteq> {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0}" by auto
hoelzl@34291
  2433
        hence **:"{j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0} \<subset> {j. x$j \<noteq> 0}" apply - apply rule by(auto simp add: Cart_lambda_beta)  
himmelma@33175
  2434
        have "card {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0} \<le> n" using less_le_trans[OF psubset_card_mono[OF _ **] Suc(4)] by auto
himmelma@33175
  2435
        ultimately show ?thesis apply(subst *) apply(rule convex_convex_hull[unfolded convex_def, rule_format])
himmelma@33175
  2436
          apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) defer apply(rule Suc(1))
himmelma@33175
  2437
          unfolding mem_interval using i01 Suc(3) by (auto simp add: Cart_lambda_beta)
himmelma@33175
  2438
      qed qed qed } note * = this
himmelma@33175
  2439
  show ?thesis apply rule defer apply(rule hull_minimal) unfolding subset_eq prefer 3 apply rule 
himmelma@33175
  2440
    apply(rule_tac n2="CARD('n)" in *) prefer 3 apply(rule card_mono) using 01 and convex_interval(1) prefer 5 apply - apply rule
himmelma@33175
  2441
    unfolding mem_interval apply rule unfolding mem_Collect_eq apply(erule_tac x=i in allE)
hoelzl@33758
  2442
    by(auto simp add: vector_le_def mem_def[of _ convex]) qed
himmelma@33175
  2443
himmelma@33175
  2444
subsection {* And this is a finite set of vertices. *}
himmelma@33175
  2445
hoelzl@34291
  2446
lemma unit_cube_convex_hull: obtains s where "finite s" "{0 .. 1::real^'n} = convex hull s"
hoelzl@34291
  2447
  apply(rule that[of "{x::real^'n. \<forall>i. x$i=0 \<or> x$i=1}"])
hoelzl@34291
  2448
  apply(rule finite_subset[of _ "(\<lambda>s. (\<chi> i. if i\<in>s then 1::real else 0)::real^'n) ` UNIV"])
himmelma@33175
  2449
  prefer 3 apply(rule unit_interval_convex_hull) apply rule unfolding mem_Collect_eq proof-
himmelma@33175
  2450
  fix x::"real^'n" assume as:"\<forall>i. x $ i = 0 \<or> x $ i = 1"
himmelma@33175
  2451
  show "x \<in> (\<lambda>s. \<chi> i. if i \<in> s then 1 else 0) ` UNIV" apply(rule image_eqI[where x="{i. x$i = 1}"])
himmelma@33175
  2452
    unfolding Cart_eq using as by(auto simp add:Cart_lambda_beta) qed auto
himmelma@33175
  2453
himmelma@33175
  2454
subsection {* Hence any cube (could do any nonempty interval). *}
himmelma@33175
  2455
himmelma@33175
  2456
lemma cube_convex_hull:
hoelzl@34291
  2457
  assumes "0 < d" obtains s::"(real^'n) set" where "finite s" "{x - (\<chi> i. d) .. x + (\<chi> i. d)} = convex hull s" proof-
himmelma@33175
  2458
  let ?d = "(\<chi> i. d)::real^'n"
himmelma@33175
  2459
  have *:"{x - ?d .. x + ?d} = (\<lambda>y. x - ?d + (2 * d) *\<^sub>R y) ` {0 .. 1}" apply(rule set_ext, rule)
himmelma@33175
  2460
    unfolding image_iff defer apply(erule bexE) proof-
himmelma@33175
  2461
    fix y assume as:"y\<in>{x - ?d .. x + ?d}"
himmelma@33175
  2462
    { fix i::'n have "x $ i \<le> d + y $ i" "y $ i \<le> d + x $ i" using as[unfolded mem_interval, THEN spec[where x=i]]
himmelma@33175
  2463
        by(auto simp add: vector_component)
himmelma@33175
  2464
      hence "1 \<ge> inverse d * (x $ i - y $ i)" "1 \<ge> inverse d * (y $ i - x $ i)"
himmelma@33175
  2465
        apply(rule_tac[!] mult_left_le_imp_le[OF _ assms]) unfolding mult_assoc[THEN sym]
himmelma@33175
  2466
        using assms by(auto simp add: field_simps right_inverse) 
himmelma@33175
  2467
      hence "inverse d * (x $ i * 2) \<le> 2 + inverse d * (y $ i * 2)"
himmelma@33175
  2468
            "inverse d * (y $ i * 2) \<le> 2 + inverse d * (x $ i * 2)" by(auto simp add:field_simps) }
himmelma@33175
  2469
    hence "inverse (2 * d) *\<^sub>R (y - (x - ?d)) \<in> {0..1}" unfolding mem_interval using assms
himmelma@33175
  2470
      by(auto simp add: Cart_eq vector_component_simps field_simps)
himmelma@33175
  2471
    thus "\<exists>z\<in>{0..1}. y = x - ?d + (2 * d) *\<^sub>R z" apply- apply(rule_tac x="inverse (2 * d) *\<^sub>R (y - (x - ?d))" in bexI) 
hoelzl@33758
  2472
      using assms by(auto simp add: Cart_eq vector_le_def Cart_lambda_beta)
himmelma@33175
  2473
  next
himmelma@33175
  2474
    fix y z assume as:"z\<in>{0..1}" "y = x - ?d + (2*d) *\<^sub>R z" 
himmelma@33175
  2475
    have "\<And>i. 0 \<le> d * z $ i \<and> d * z $ i \<le> d" using assms as(1)[unfolded mem_interval] apply(erule_tac x=i in allE)
himmelma@33175
  2476
      apply rule apply(rule mult_nonneg_nonneg) prefer 3 apply(rule mult_right_le_one_le)
himmelma@33175
  2477
      using assms by(auto simp add: vector_component_simps Cart_eq)
himmelma@33175
  2478
    thus "y \<in> {x - ?d..x + ?d}" unfolding as(2) mem_interval apply- apply rule using as(1)[unfolded mem_interval]
himmelma@33175
  2479
      apply(erule_tac x=i in allE) using assms by(auto simp add:  vector_component_simps Cart_eq) qed
himmelma@33175
  2480
  obtain s where "finite s" "{0..1::real^'n} = convex hull s" using unit_cube_convex_hull by auto
himmelma@33175
  2481
  thus ?thesis apply(rule_tac that[of "(\<lambda>y. x - ?d + (2 * d) *\<^sub>R y)` s"]) unfolding * and convex_hull_affinity by auto qed
himmelma@33175
  2482
himmelma@33175
  2483
subsection {* Bounded convex function on open set is continuous. *}
himmelma@33175
  2484
himmelma@33175
  2485
lemma convex_on_bounded_continuous:
himmelma@33175
  2486
  fixes s :: "(real ^ _) set"
himmelma@33175
  2487
  assumes "open s" "convex_on s f" "\<forall>x\<in>s. abs(f x) \<le> b"
himmelma@33175
  2488
  shows "continuous_on s f"
himmelma@33175
  2489
  apply(rule continuous_at_imp_continuous_on) unfolding continuous_at_real_range proof(rule,rule,rule)
himmelma@33175
  2490
  fix x e assume "x\<in>s" "(0::real) < e"
himmelma@33175
  2491
  def B \<equiv> "abs b + 1"
himmelma@33175
  2492
  have B:"0 < B" "\<And>x. x\<in>s \<Longrightarrow> abs (f x) \<le> B"
himmelma@33175
  2493
    unfolding B_def defer apply(drule assms(3)[rule_format]) by auto
himmelma@33175
  2494
  obtain k where "k>0"and k:"cball x k \<subseteq> s" using assms(1)[unfolded open_contains_cball, THEN bspec[where x=x]] using `x\<in>s` by auto
himmelma@33175
  2495
  show "\<exists>d>0. \<forall>x'. norm (x' - x) < d \<longrightarrow> \<bar>f x' - f x\<bar> < e"
himmelma@33175
  2496
    apply(rule_tac x="min (k / 2) (e / (2 * B) * k)" in exI) apply rule defer proof(rule,rule)
himmelma@33175
  2497
    fix y assume as:"norm (y - x) < min (k / 2) (e / (2 * B) * k)" 
himmelma@33175
  2498
    show "\<bar>f y - f x\<bar> < e" proof(cases "y=x")
himmelma@33175
  2499
      case False def t \<equiv> "k / norm (y - x)"
himmelma@33175
  2500
      have "2 < t" "0<t" unfolding t_def using as False and `k>0` by(auto simp add:field_simps)
himmelma@33175
  2501
      have "y\<in>s" apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm
himmelma@33175
  2502
        apply(rule order_trans[of _ "2 * norm (x - y)"]) using as by(auto simp add: field_simps norm_minus_commute) 
himmelma@33175
  2503
      { def w \<equiv> "x + t *\<^sub>R (y - x)"
himmelma@33175
  2504
        have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm 
himmelma@33175
  2505
          unfolding t_def using `k>0` by auto
himmelma@33175
  2506
        have "(1 / t) *\<^sub>R x + - x + ((t - 1) / t) *\<^sub>R x = (1 / t - 1 + (t - 1) / t) *\<^sub>R x" by (auto simp add: algebra_simps)
himmelma@33175
  2507
        also have "\<dots> = 0"  using `t>0` by(auto simp add:field_simps)
himmelma@33175
  2508
        finally have w:"(1 / t) *\<^sub>R w + ((t - 1) / t) *\<^sub>R x = y" unfolding w_def using False and `t>0` by (auto simp add: algebra_simps)
himmelma@33175
  2509
        have  "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) 
himmelma@33175
  2510
        hence "(f w - f x) / t < e"
himmelma@33175
  2511
          using B(2)[OF `w\<in>s`] and B(2)[OF `x\<in>s`] using `t>0` by(auto simp add:field_simps) 
himmelma@33175
  2512
        hence th1:"f y - f x < e" apply- apply(rule le_less_trans) defer apply assumption
himmelma@33175
  2513
          using assms(2)[unfolded convex_on_def,rule_format,of w x "1/t" "(t - 1)/t", unfolded w]
himmelma@33175
  2514
          using `0<t` `2<t` and `x\<in>s` `w\<in>s` by(auto simp add:field_simps) }
himmelma@33175
  2515
      moreover 
himmelma@33175
  2516
      { def w \<equiv> "x - t *\<^sub>R (y - x)"
himmelma@33175
  2517
        have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm 
himmelma@33175
  2518
          unfolding t_def using `k>0` by auto
himmelma@33175
  2519
        have "(1 / (1 + t)) *\<^sub>R x + (t / (1 + t)) *\<^sub>R x = (1 / (1 + t) + t / (1 + t)) *\<^sub>R x" by (auto simp add: algebra_simps)
himmelma@33175
  2520
        also have "\<dots>=x" using `t>0` by (auto simp add:field_simps)
himmelma@33175
  2521
        finally have w:"(1 / (1+t)) *\<^sub>R w + (t / (1 + t)) *\<^sub>R y = x" unfolding w_def using False and `t>0` by (auto simp add: algebra_simps)
himmelma@33175
  2522
        have  "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) 
himmelma@33175
  2523
        hence *:"(f w - f y) / t < e" using B(2)[OF `w\<in>s`] and B(2)[OF `y\<in>s`] using `t>0` by(auto simp add:field_simps) 
himmelma@33175
  2524
        have "f x \<le> 1 / (1 + t) * f w + (t / (1 + t)) * f y" 
himmelma@33175
  2525
          using assms(2)[unfolded convex_on_def,rule_format,of w y "1/(1+t)" "t / (1+t)",unfolded w]
himmelma@33175
  2526
          using `0<t` `2<t` and `y\<in>s` `w\<in>s` by (auto simp add:field_simps)
himmelma@33175
  2527
        also have "\<dots> = (f w + t * f y) / (1 + t)" using `t>0` unfolding real_divide_def by (auto simp add:field_simps)
himmelma@33175
  2528
        also have "\<dots> < e + f y" using `t>0` * `e>0` by(auto simp add:field_simps)
himmelma@33175
  2529
        finally have "f x - f y < e" by auto }
himmelma@33175
  2530
      ultimately show ?thesis by auto 
himmelma@33175
  2531
    qed(insert `0<e`, auto) 
himmelma@33175
  2532
  qed(insert `0<e` `0<k` `0<B`, auto simp add:field_simps intro!:mult_pos_pos) qed
himmelma@33175
  2533
himmelma@33175
  2534
subsection {* Upper bound on a ball implies upper and lower bounds. *}
himmelma@33175
  2535
himmelma@33175
  2536
lemma convex_bounds_lemma:
himmelma@33175
  2537
  fixes x :: "real ^ _"
himmelma@33175
  2538
  assumes "convex_on (cball x e) f"  "\<forall>y \<in> cball x e. f y \<le> b"
himmelma@33175
  2539
  shows "\<forall>y \<in> cball x e. abs(f y) \<le> b + 2 * abs(f x)"
himmelma@33175
  2540
  apply(rule) proof(cases "0 \<le> e") case True
himmelma@33175
  2541
  fix y assume y:"y\<in>cball x e" def z \<equiv> "2 *\<^sub>R x - y"
himmelma@33175
  2542
  have *:"x - (2 *\<^sub>R x - y) = y - x" by vector
himmelma@33175
  2543
  have z:"z\<in>cball x e" using y unfolding z_def mem_cball dist_norm * by(auto simp add: norm_minus_commute)
himmelma@33175
  2544
  have "(1 / 2) *\<^sub>R y + (1 / 2) *\<^sub>R z = x" unfolding z_def by (auto simp add: algebra_simps)
himmelma@33175
  2545
  thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using assms(1)[unfolded convex_on_def,rule_format, OF y z, of "1/2" "1/2"]
himmelma@33175
  2546
    using assms(2)[rule_format,OF y] assms(2)[rule_format,OF z] by(auto simp add:field_simps)
himmelma@33175
  2547
next case False fix y assume "y\<in>cball x e" 
himmelma@33175
  2548
  hence "dist x y < 0" using False unfolding mem_cball not_le by (auto simp del: dist_not_less_zero)
himmelma@33175
  2549
  thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using zero_le_dist[of x y] by auto qed
himmelma@33175
  2550
himmelma@33175
  2551
subsection {* Hence a convex function on an open set is continuous. *}
himmelma@33175
  2552
himmelma@33175
  2553
lemma convex_on_continuous:
hoelzl@34291
  2554
  assumes "open (s::(real^'n) set)" "convex_on s f" 
himmelma@33175
  2555
  shows "continuous_on s f"
himmelma@33175
  2556
  unfolding continuous_on_eq_continuous_at[OF assms(1)] proof
himmelma@33175
  2557
  note dimge1 = dimindex_ge_1[where 'a='n]
himmelma@33175
  2558
  fix x assume "x\<in>s"
himmelma@33175
  2559
  then obtain e where e:"cball x e \<subseteq> s" "e>0" using assms(1) unfolding open_contains_cball by auto
himmelma@33175
  2560
  def d \<equiv> "e / real CARD('n)"
himmelma@33175
  2561
  have "0 < d" unfolding d_def using `e>0` dimge1 by(rule_tac divide_pos_pos, auto) 
himmelma@33175
  2562
  let ?d = "(\<chi> i. d)::real^'n"
himmelma@33175
  2563
  obtain c where c:"finite c" "{x - ?d..x + ?d} = convex hull c" using cube_convex_hull[OF `d>0`, of x] by auto
himmelma@33175
  2564
  have "x\<in>{x - ?d..x + ?d}" using `d>0` unfolding mem_interval by(auto simp add:vector_component_simps)
himmelma@33175
  2565
  hence "c\<noteq>{}" apply(rule_tac ccontr) using c by(auto simp add:convex_hull_empty)
himmelma@33175
  2566
  def k \<equiv> "Max (f ` c)"
himmelma@33175
  2567
  have "convex_on {x - ?d..x + ?d} f" apply(rule convex_on_subset[OF assms(2)])
himmelma@33175
  2568
    apply(rule subset_trans[OF _ e(1)]) unfolding subset_eq mem_cball proof 
himmelma@33175
  2569
    fix z assume z:"z\<in>{x - ?d..x + ?d}"
himmelma@33175
  2570
    have e:"e = setsum (\<lambda>i. d) (UNIV::'n set)" unfolding setsum_constant d_def using dimge1
himmelma@33175
  2571
      by (metis card_enum field_simps d_def not_one_le_zero of_nat_le_iff real_eq_of_nat real_of_nat_1)
himmelma@33175
  2572
    show "dist x z \<le> e" unfolding dist_norm e apply(rule_tac order_trans[OF norm_le_l1], rule setsum_mono)
himmelma@33175
  2573
      using z[unfolded mem_interval] apply(erule_tac x=i in allE) by(auto simp add:field_simps vector_component_simps) qed
himmelma@33175
  2574
  hence k:"\<forall>y\<in>{x - ?d..x + ?d}. f y \<le> k" unfolding c(2) apply(rule_tac convex_on_convex_hull_bound) apply assumption
himmelma@33175
  2575
    unfolding k_def apply(rule, rule Max_ge) using c(1) by auto
himmelma@33175
  2576
  have "d \<le> e" unfolding d_def apply(rule mult_imp_div_pos_le) using `e>0` dimge1 unfolding mult_le_cancel_left1 using real_dimindex_ge_1 by auto
himmelma@33175
  2577
  hence dsube:"cball x d \<subseteq> cball x e" unfolding subset_eq Ball_def mem_cball by auto
himmelma@33175
  2578
  have conv:"convex_on (cball x d) f" apply(rule convex_on_subset, rule convex_on_subset[OF assms(2)]) apply(rule e(1)) using dsube by auto
himmelma@33175
  2579
  hence "\<forall>y\<in>cball x d. abs (f y) \<le> k + 2 * abs (f x)" apply(rule_tac convex_bounds_lemma) apply assumption proof
himmelma@33175
  2580
    fix y assume y:"y\<in>cball x d"
himmelma@33175
  2581
    { fix i::'n have "x $ i - d \<le> y $ i"  "y $ i \<le> x $ i + d" 
himmelma@33175
  2582
        using order_trans[OF component_le_norm y[unfolded mem_cball dist_norm], of i] by(auto simp add: vector_component)  }
himmelma@33175
  2583
    thus "f y \<le> k" apply(rule_tac k[rule_format]) unfolding mem_cball mem_interval dist_norm 
himmelma@33175
  2584
      by(auto simp add: vector_component_simps) qed
himmelma@33175
  2585
  hence "continuous_on (ball x d) f" apply(rule_tac convex_on_bounded_continuous)
paulson@33270
  2586
    apply(rule open_ball, rule convex_on_subset[OF conv], rule ball_subset_cball)
paulson@33270
  2587
    apply force
paulson@33270
  2588
    done
paulson@33270
  2589
  thus "continuous (at x) f" unfolding continuous_on_eq_continuous_at[OF open_ball]
paulson@33270
  2590
    using `d>0` by auto 
paulson@33270
  2591
qed
paulson@33270
  2592
paulson@33270
  2593
subsection {* Line segments, Starlike Sets, etc.*}
paulson@33270
  2594
paulson@33270
  2595
(* Use the same overloading tricks as for intervals, so that 
paulson@33270
  2596
   segment[a,b] is closed and segment(a,b) is open relative to affine hull. *)
himmelma@33175
  2597
himmelma@33175
  2598
definition
hoelzl@34291
  2599
  midpoint :: "real ^ 'n \<Rightarrow> real ^ 'n \<Rightarrow> real ^ 'n" where
himmelma@33175
  2600
  "midpoint a b = (inverse (2::real)) *\<^sub>R (a + b)"
himmelma@33175
  2601
himmelma@33175
  2602
definition
hoelzl@34291
  2603
  open_segment :: "real ^ 'n \<Rightarrow> real ^ 'n \<Rightarrow> (real ^ 'n) set" where
himmelma@33175
  2604
  "open_segment a b = {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real.  0 < u \<and> u < 1}"
himmelma@33175
  2605
himmelma@33175
  2606
definition
hoelzl@34291
  2607
  closed_segment :: "real ^ 'n \<Rightarrow> real ^ 'n \<Rightarrow> (real ^ 'n) set" where
himmelma@33175
  2608
  "closed_segment a b = {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real. 0 \<le> u \<and> u \<le> 1}"
himmelma@33175
  2609
himmelma@33175
  2610
definition "between = (\<lambda> (a,b). closed_segment a b)"
himmelma@33175
  2611
himmelma@33175
  2612
lemmas segment = open_segment_def closed_segment_def
himmelma@33175
  2613
himmelma@33175
  2614
definition "starlike s \<longleftrightarrow> (\<exists>a\<in>s. \<forall>x\<in>s. closed_segment a x \<subseteq> s)"
himmelma@33175
  2615
himmelma@33175
  2616
lemma midpoint_refl: "midpoint x x = x"
himmelma@33175
  2617
  unfolding midpoint_def unfolding scaleR_right_distrib unfolding scaleR_left_distrib[THEN sym] by auto
himmelma@33175
  2618
himmelma@33175
  2619
lemma midpoint_sym: "midpoint a b = midpoint b a" unfolding midpoint_def by (auto simp add: scaleR_right_distrib)
himmelma@33175
  2620
himmelma@33175
  2621
lemma dist_midpoint:
himmelma@33175
  2622
  "dist a (midpoint a b) = (dist a b) / 2" (is ?t1)
himmelma@33175
  2623
  "dist b (midpoint a b) = (dist a b) / 2" (is ?t2)
himmelma@33175
  2624
  "dist (midpoint a b) a = (dist a b) / 2" (is ?t3)
himmelma@33175
  2625
  "dist (midpoint a b) b = (dist a b) / 2" (is ?t4)
himmelma@33175
  2626
proof-
hoelzl@34291
  2627
  have *: "\<And>x y::real^'n. 2 *\<^sub>R x = - y \<Longrightarrow> norm x = (norm y) / 2" unfolding equation_minus_iff by auto
hoelzl@34291
  2628
  have **:"\<And>x y::real^'n. 2 *\<^sub>R x =   y \<Longrightarrow> norm x = (norm y) / 2" by auto
himmelma@33175
  2629
  note scaleR_right_distrib [simp]
himmelma@33175
  2630
  show ?t1 unfolding midpoint_def dist_norm apply (rule **) by(auto,vector)
himmelma@33175
  2631
  show ?t2 unfolding midpoint_def dist_norm apply (rule *)  by(auto,vector)
himmelma@33175
  2632
  show ?t3 unfolding midpoint_def dist_norm apply (rule *)  by(auto,vector)
himmelma@33175
  2633
  show ?t4 unfolding midpoint_def dist_norm apply (rule **) by(auto,vector) qed
himmelma@33175
  2634
himmelma@33175
  2635
lemma midpoint_eq_endpoint:
hoelzl@34291
  2636
  "midpoint a b = a \<longleftrightarrow> a = (b::real^'n)"
himmelma@33175
  2637
  "midpoint a b = b \<longleftrightarrow> a = b"
himmelma@33175
  2638
  unfolding dist_eq_0_iff[where 'a="real^'n", THEN sym] dist_midpoint by auto
himmelma@33175
  2639
himmelma@33175
  2640
lemma convex_contains_segment:
himmelma@33175
  2641
  "convex s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. closed_segment a b \<subseteq> s)"
himmelma@33175
  2642
  unfolding convex_alt closed_segment_def by auto
himmelma@33175
  2643
himmelma@33175
  2644
lemma convex_imp_starlike:
himmelma@33175
  2645
  "convex s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> starlike s"
himmelma@33175
  2646
  unfolding convex_contains_segment starlike_def by auto
himmelma@33175
  2647
himmelma@33175
  2648
lemma segment_convex_hull:
himmelma@33175
  2649
 "closed_segment a b = convex hull {a,b}" proof-
himmelma@33175
  2650
  have *:"\<And>x. {x} \<noteq> {}" by auto
himmelma@33175
  2651
  have **:"\<And>u v. u + v = 1 \<longleftrightarrow> u = 1 - (v::real)" by auto
himmelma@33175
  2652
  show ?thesis unfolding segment convex_hull_insert[OF *] convex_hull_singleton apply(rule set_ext)
himmelma@33175
  2653
    unfolding mem_Collect_eq apply(rule,erule exE) 
himmelma@33175
  2654
    apply(rule_tac x="1 - u" in exI) apply rule defer apply(rule_tac x=u in exI) defer
himmelma@33175
  2655
    apply(erule exE, (erule conjE)?)+ apply(rule_tac x="1 - u" in exI) unfolding ** by auto qed
himmelma@33175
  2656
himmelma@33175
  2657
lemma convex_segment: "convex (closed_segment a b)"
himmelma@33175
  2658
  unfolding segment_convex_hull by(rule convex_convex_hull)
himmelma@33175
  2659
himmelma@33175
  2660
lemma ends_in_segment: "a \<in> closed_segment a b" "b \<in> closed_segment a b"
himmelma@33175
  2661
  unfolding segment_convex_hull apply(rule_tac[!] hull_subset[unfolded subset_eq, rule_format]) by auto
himmelma@33175
  2662
himmelma@33175
  2663
lemma segment_furthest_le:
himmelma@33175
  2664
  assumes "x \<in> closed_segment a b" shows "norm(y - x) \<le> norm(y - a) \<or>  norm(y - x) \<le> norm(y - b)" proof-
himmelma@33175
  2665
  obtain z where "z\<in>{a, b}" "norm (x - y) \<le> norm (z - y)" using simplex_furthest_le[of "{a, b}" y]
himmelma@33175
  2666
    using assms[unfolded segment_convex_hull] by auto
himmelma@33175
  2667
  thus ?thesis by(auto simp add:norm_minus_commute) qed
himmelma@33175
  2668
himmelma@33175
  2669
lemma segment_bound:
himmelma@33175
  2670
  assumes "x \<in> closed_segment a b"
himmelma@33175
  2671
  shows "norm(x - a) \<le> norm(b - a)" "norm(x - b) \<le> norm(b - a)"
himmelma@33175
  2672
  using segment_furthest_le[OF assms, of a]
himmelma@33175
  2673
  using segment_furthest_le[OF assms, of b]
himmelma@33175
  2674
  by (auto simp add:norm_minus_commute) 
himmelma@33175
  2675
himmelma@33175
  2676
lemma segment_refl:"closed_segment a a = {a}" unfolding segment by (auto simp add: algebra_simps)
himmelma@33175
  2677
himmelma@33175
  2678
lemma between_mem_segment: "between (a,b) x \<longleftrightarrow> x \<in> closed_segment a b"
himmelma@33175
  2679
  unfolding between_def mem_def by auto
himmelma@33175
  2680
hoelzl@34291
  2681
lemma between:"between (a,b) (x::real^'n) \<longleftrightarrow> dist a b = (dist a x) + (dist x b)"
himmelma@33175
  2682
proof(cases "a = b")
himmelma@33175
  2683
  case True thus ?thesis unfolding between_def split_conv mem_def[of x, symmetric]
himmelma@33175
  2684
    by(auto simp add:segment_refl dist_commute) next
himmelma@33175
  2685
  case False hence Fal:"norm (a - b) \<noteq> 0" and Fal2: "norm (a - b) > 0" by auto 
himmelma@33175
  2686
  have *:"\<And>u. a - ((1 - u) *\<^sub>R a + u *\<^sub>R b) = u *\<^sub>R (a - b)" by (auto simp add: algebra_simps)
himmelma@33175
  2687
  show ?thesis unfolding between_def split_conv mem_def[of x, symmetric] closed_segment_def mem_Collect_eq
himmelma@33175
  2688
    apply rule apply(erule exE, (erule conjE)+) apply(subst dist_triangle_eq) proof-
himmelma@33175
  2689
      fix u assume as:"x = (1 - u) *\<^sub>R a + u *\<^sub>R b" "0 \<le> u" "u \<le> 1" 
himmelma@33175
  2690
      hence *:"a - x = u *\<^sub>R (a - b)" "x - b = (1 - u) *\<^sub>R (a - b)"
himmelma@33175
  2691
        unfolding as(1) by(auto simp add:algebra_simps)
himmelma@33175
  2692
      show "norm (a - x) *\<^sub>R (x - b) = norm (x - b) *\<^sub>R (a - x)"
himmelma@33175
  2693
        unfolding norm_minus_commute[of x a] * Cart_eq using as(2,3)
himmelma@33175
  2694
        by(auto simp add: vector_component_simps field_simps)
himmelma@33175
  2695
    next assume as:"dist a b = dist a x + dist x b"
himmelma@33175
  2696
      have "norm (a - x) / norm (a - b) \<le> 1" unfolding divide_le_eq_1_pos[OF Fal2] unfolding as[unfolded dist_norm] norm_ge_zero by auto 
himmelma@33175
  2697
      thus "\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> u \<and> u \<le> 1" apply(rule_tac x="dist a x / dist a b" in exI)
himmelma@33175
  2698
        unfolding dist_norm Cart_eq apply- apply rule defer apply(rule, rule divide_nonneg_pos) prefer 4 proof rule
himmelma@33175
  2699
          fix i::'n have "((1 - norm (a - x) / norm (a - b)) *\<^sub>R a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $ i =
himmelma@33175
  2700
            ((norm (a - b) - norm (a - x)) * (a $ i) + norm (a - x) * (b $ i)) / norm (a - b)"
himmelma@33175
  2701
            using Fal by(auto simp add:vector_component_simps field_simps)
himmelma@33175
  2702
          also have "\<dots> = x$i" apply(rule divide_eq_imp[OF Fal])
himmelma@33175
  2703
            unfolding as[unfolded dist_norm] using as[unfolded dist_triangle_eq Cart_eq,rule_format, of i]
himmelma@33175
  2704
            by(auto simp add:field_simps vector_component_simps)
himmelma@33175
  2705
          finally show "x $ i = ((1 - norm (a - x) / norm (a - b)) *\<^sub>R a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $ i" by auto
himmelma@33175
  2706
        qed(insert Fal2, auto) qed qed
himmelma@33175
  2707
hoelzl@34291
  2708
lemma between_midpoint: fixes a::"real^'n" shows
himmelma@33175
  2709
  "between (a,b) (midpoint a b)" (is ?t1) 
himmelma@33175
  2710
  "between (b,a) (midpoint a b)" (is ?t2)
himmelma@33175
  2711
proof- have *:"\<And>x y z. x = (1/2::real) *\<^sub>R z \<Longrightarrow> y = (1/2) *\<^sub>R z \<Longrightarrow> norm z = norm x + norm y" by auto
himmelma@33175
  2712
  show ?t1 ?t2 unfolding between midpoint_def dist_norm apply(rule_tac[!] *)
himmelma@33175
  2713
    by(auto simp add:field_simps Cart_eq vector_component_simps) qed
himmelma@33175
  2714
himmelma@33175
  2715
lemma between_mem_convex_hull:
himmelma@33175
  2716
  "between (a,b) x \<longleftrightarrow> x \<in> convex hull {a,b}"
himmelma@33175
  2717
  unfolding between_mem_segment segment_convex_hull ..
himmelma@33175
  2718
himmelma@33175
  2719
subsection {* Shrinking towards the interior of a convex set. *}
himmelma@33175
  2720
himmelma@33175
  2721
lemma mem_interior_convex_shrink:
himmelma@33175
  2722
  fixes s :: "(real ^ _) set"
himmelma@33175
  2723
  assumes "convex s" "c \<in> interior s" "x \<in> s" "0 < e" "e \<le> 1"
himmelma@33175
  2724
  shows "x - e *\<^sub>R (x - c) \<in> interior s"
himmelma@33175
  2725
proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto
himmelma@33175
  2726
  show ?thesis unfolding mem_interior apply(rule_tac x="e*d" in exI)
himmelma@33175
  2727
    apply(rule) defer unfolding subset_eq Ball_def mem_ball proof(rule,rule)
himmelma@33175
  2728
    fix y assume as:"dist (x - e *\<^sub>R (x - c)) y < e * d"
himmelma@33175
  2729
    have *:"y = (1 - (1 - e)) *\<^sub>R ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) + (1 - e) *\<^sub>R x" using `e>0` by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib)
himmelma@33175
  2730
    have "dist c ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) = abs(1/e) * norm (e *\<^sub>R c - y + (1 - e) *\<^sub>R x)"
himmelma@33175
  2731
      unfolding dist_norm unfolding norm_scaleR[THEN sym] apply(rule norm_eqI) using `e>0`
himmelma@33175
  2732
      by(auto simp add:vector_component_simps Cart_eq field_simps) 
himmelma@33175
  2733
    also have "\<dots> = abs(1/e) * norm (x - e *\<^sub>R (x - c) - y)" by(auto intro!:norm_eqI simp add: algebra_simps)
himmelma@33175
  2734
    also have "\<dots> < d" using as[unfolded dist_norm] and `e>0`
himmelma@33175
  2735
      by(auto simp add:pos_divide_less_eq[OF `e>0`] real_mult_commute)
himmelma@33175
  2736
    finally show "y \<in> s" apply(subst *) apply(rule assms(1)[unfolded convex_alt,rule_format])
himmelma@33175
  2737
      apply(rule d[unfolded subset_eq,rule_format]) unfolding mem_ball using assms(3-5) by auto
himmelma@33175
  2738
  qed(rule mult_pos_pos, insert `e>0` `d>0`, auto) qed
himmelma@33175
  2739
himmelma@33175
  2740
lemma mem_interior_closure_convex_shrink:
himmelma@33175
  2741
  fixes s :: "(real ^ _) set"
himmelma@33175
  2742
  assumes "convex s" "c \<in> interior s" "x \<in> closure s" "0 < e" "e \<le> 1"
himmelma@33175
  2743
  shows "x - e *\<^sub>R (x - c) \<in> interior s"
himmelma@33175
  2744
proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto
himmelma@33175
  2745
  have "\<exists>y\<in>s. norm (y - x) * (1 - e) < e * d" proof(cases "x\<in>s")
himmelma@33175
  2746
    case True thus ?thesis using `e>0` `d>0` by(rule_tac bexI[where x=x], auto intro!: mult_pos_pos) next
himmelma@33175
  2747
    case False hence x:"x islimpt s" using assms(3)[unfolded closure_def] by auto
himmelma@33175
  2748
    show ?thesis proof(cases "e=1")
himmelma@33175
  2749
      case True obtain y where "y\<in>s" "y \<noteq> x" "dist y x < 1"
himmelma@33175
  2750
        using x[unfolded islimpt_approachable,THEN spec[where x=1]] by auto
himmelma@33175
  2751
      thus ?thesis apply(rule_tac x=y in bexI) unfolding True using `d>0` by auto next
himmelma@33175
  2752
      case False hence "0 < e * d / (1 - e)" and *:"1 - e > 0"
himmelma@33175
  2753
        using `e\<le>1` `e>0` `d>0` by(auto intro!:mult_pos_pos divide_pos_pos)
himmelma@33175
  2754
      then obtain y where "y\<in>s" "y \<noteq> x" "dist y x < e * d / (1 - e)"
himmelma@33175
  2755
        using x[unfolded islimpt_approachable,THEN spec[where x="e*d / (1 - e)"]] by auto
himmelma@33175
  2756
      thus ?thesis apply(rule_tac x=y in bexI) unfolding dist_norm using pos_less_divide_eq[OF *] by auto qed qed
himmelma@33175
  2757
  then obtain y where "y\<in>s" and y:"norm (y - x) * (1 - e) < e * d" by auto
himmelma@33175
  2758
  def z \<equiv> "c + ((1 - e) / e) *\<^sub>R (x - y)"
himmelma@33175
  2759
  have *:"x - e *\<^sub>R (x - c) = y - e *\<^sub>R (y - z)" unfolding z_def using `e>0` by (auto simp add: scaleR_right_diff_distrib scaleR_right_distrib scaleR_left_diff_distrib)
himmelma@33175
  2760
  have "z\<in>interior s" apply(rule subset_interior[OF d,unfolded subset_eq,rule_format])
himmelma@33175
  2761
    unfolding interior_open[OF open_ball] mem_ball z_def dist_norm using y and assms(4,5)
himmelma@33175
  2762
    by(auto simp add:field_simps norm_minus_commute)
himmelma@33175
  2763
  thus ?thesis unfolding * apply - apply(rule mem_interior_convex_shrink) 
himmelma@33175
  2764
    using assms(1,4-5) `y\<in>s` by auto qed
himmelma@33175
  2765
himmelma@33175
  2766
subsection {* Some obvious but surprisingly hard simplex lemmas. *}
himmelma@33175
  2767
himmelma@33175
  2768
lemma simplex:
himmelma@33175
  2769
  assumes "finite s" "0 \<notin> s"
himmelma@33175
  2770
  shows "convex hull (insert 0 s) =  { y. (\<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s \<le> 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y)}"
himmelma@33175
  2771
  unfolding convex_hull_finite[OF finite.insertI[OF assms(1)]] apply(rule set_ext, rule) unfolding mem_Collect_eq
himmelma@33175
  2772
  apply(erule_tac[!] exE) apply(erule_tac[!] conjE)+ unfolding setsum_clauses(2)[OF assms(1)]
himmelma@33175
  2773
  apply(rule_tac x=u in exI) defer apply(rule_tac x="\<lambda>x. if x = 0 then 1 - setsum u s else u x" in exI) using assms(2)
himmelma@33175
  2774
  unfolding if_smult and setsum_delta_notmem[OF assms(2)] by auto
himmelma@33175
  2775
himmelma@33175
  2776
lemma std_simplex:
himmelma@33175
  2777
  "convex hull (insert 0 { basis i | i. i\<in>UNIV}) =
hoelzl@34291
  2778
        {x::real^'n . (\<forall>i. 0 \<le> x$i) \<and> setsum (\<lambda>i. x$i) UNIV \<le> 1 }" (is "convex hull (insert 0 ?p) = ?s")
himmelma@33175
  2779
proof- let ?D = "UNIV::'n set"
himmelma@33175
  2780
  have "0\<notin>?p" by(auto simp add: basis_nonzero)
himmelma@33175
  2781
  have "{(basis i)::real^'n |i. i \<in> ?D} = basis ` ?D" by auto
himmelma@33175
  2782
  note sumbas = this  setsum_reindex[OF basis_inj, unfolded o_def]
himmelma@33175
  2783
  show ?thesis unfolding simplex[OF finite_stdbasis `0\<notin>?p`] apply(rule set_ext) unfolding mem_Collect_eq apply rule
himmelma@33175
  2784
    apply(erule exE, (erule conjE)+) apply(erule_tac[2] conjE)+ proof-
himmelma@33175
  2785
    fix x::"real^'n" and u assume as: "\<forall>x\<in>{basis i |i. i \<in>?D}. 0 \<le> u x" "setsum u {basis i |i. i \<in> ?D} \<le> 1" "(\<Sum>x\<in>{basis i |i. i \<in>?D}. u x *\<^sub>R x) = x"
himmelma@33175
  2786
    have *:"\<forall>i. u (basis i) = x$i" using as(3) unfolding sumbas and basis_expansion_unique [where 'a=real, unfolded smult_conv_scaleR] by auto
himmelma@33175
  2787
    hence **:"setsum u {basis i |i. i \<in> ?D} = setsum (op $ x) ?D" unfolding sumbas by(rule_tac setsum_cong, auto)
himmelma@33175
  2788
    show " (\<forall>i. 0 \<le> x $ i) \<and> setsum (op $ x) ?D \<le> 1" apply - proof(rule,rule)
himmelma@33175
  2789
      fix i::'n show "0 \<le> x$i" unfolding *[rule_format,of i,THEN sym] apply(rule_tac as(1)[rule_format]) by auto
himmelma@33175
  2790
    qed(insert as(2)[unfolded **], auto)
himmelma@33175
  2791
  next fix x::"real^'n" assume as:"\<forall>i. 0 \<le> x $ i" "setsum (op $ x) ?D \<le> 1"
himmelma@33175
  2792
    show "\<exists>u. (\<forall>x\<in>{basis i |i. i \<in> ?D}. 0 \<le> u x) \<and> setsum u {basis i |i. i \<in> ?D} \<le> 1 \<and> (\<Sum>x\<in>{basis i |i. i \<in> ?D}. u x *\<^sub>R x) = x"
himmelma@33175
  2793
      apply(rule_tac x="\<lambda>y. inner y x" in exI) apply(rule,rule) unfolding mem_Collect_eq apply(erule exE) using as(1) apply(erule_tac x=i in allE) 
himmelma@33175
  2794
      unfolding sumbas using as(2) and basis_expansion_unique [where 'a=real, unfolded smult_conv_scaleR] by(auto simp add:inner_basis) qed qed 
himmelma@33175
  2795
himmelma@33175
  2796
lemma interior_std_simplex:
himmelma@33175
  2797
  "interior (convex hull (insert 0 { basis i| i. i\<in>UNIV})) =
hoelzl@34291
  2798
  {x::real^'n. (\<forall>i. 0 < x$i) \<and> setsum (\<lambda>i. x$i) UNIV < 1 }"
himmelma@33175
  2799
  apply(rule set_ext) unfolding mem_interior std_simplex unfolding subset_eq mem_Collect_eq Ball_def mem_ball
himmelma@33175
  2800
  unfolding Ball_def[symmetric] apply rule apply(erule exE, (erule conjE)+) defer apply(erule conjE) proof-
himmelma@33175
  2801
  fix x::"real^'n" and e assume "0<e" and as:"\<forall>xa. dist x xa < e \<longrightarrow> (\<forall>x. 0 \<le> xa $ x) \<and> setsum (op $ xa) UNIV \<le> 1"
himmelma@33175
  2802
  show "(\<forall>xa. 0 < x $ xa) \<and> setsum (op $ x) UNIV < 1" apply(rule,rule) proof-
himmelma@33175
  2803
    fix i::'n show "0 < x $ i" using as[THEN spec[where x="x - (e / 2) *\<^sub>R basis i"]] and `e>0`
himmelma@33175
  2804
      unfolding dist_norm by(auto simp add: norm_basis vector_component_simps basis_component elim:allE[where x=i])
himmelma@33175
  2805
  next guess a using UNIV_witness[where 'a='n] ..
himmelma@33175
  2806
    have **:"dist x (x + (e / 2) *\<^sub>R basis a) < e" using  `e>0` and norm_basis[of a]
himmelma@33175
  2807
      unfolding dist_norm by(auto simp add: vector_component_simps basis_component intro!: mult_strict_left_mono_comm)
himmelma@33175
  2808
    have "\<And>i. (x + (e / 2) *\<^sub>R basis a) $ i = x$i + (if i = a then e/2 else 0)" by(auto simp add:vector_component_simps)
himmelma@33175
  2809
    hence *:"setsum (op $ (x + (e / 2) *\<^sub>R basis a)) UNIV = setsum (\<lambda>i. x$i + (if a = i then e/2 else 0)) UNIV" by(rule_tac setsum_cong, auto) 
himmelma@33175
  2810
    have "setsum (op $ x) UNIV < setsum (op $ (x + (e / 2) *\<^sub>R basis a)) UNIV" unfolding * setsum_addf
himmelma@33175
  2811
      using `0<e` dimindex_ge_1 by(auto simp add: setsum_delta')
himmelma@33175
  2812
    also have "\<dots> \<le> 1" using ** apply(drule_tac as[rule_format]) by auto
himmelma@33175
  2813
    finally show "setsum (op $ x) UNIV < 1" by auto qed
himmelma@33175
  2814
next
hoelzl@34291
  2815
  fix x::"real^'n" assume as:"\<forall>i. 0 < x $ i" "setsum (op $ x) UNIV < 1"
himmelma@33175
  2816
  guess a using UNIV_witness[where 'a='b] ..
himmelma@33175
  2817
  let ?d = "(1 - setsum (op $ x) UNIV) / real (CARD('n))"
himmelma@33175
  2818
  have "Min ((op $ x) ` UNIV) > 0" apply(rule Min_grI) using as(1) dimindex_ge_1 by auto
himmelma@33175
  2819
  moreover have"?d > 0" apply(rule divide_pos_pos) using as(2) using dimindex_ge_1 by(auto simp add: Suc_le_eq)
himmelma@33175
  2820
  ultimately show "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> (\<forall>i. 0 \<le> y $ i) \<and> setsum (op $ y) UNIV \<le> 1"
himmelma@33175
  2821
    apply(rule_tac x="min (Min ((op $ x) ` UNIV)) ?D" in exI) apply rule defer apply(rule,rule) proof-
himmelma@33175
  2822
    fix y assume y:"dist x y < min (Min (op $ x ` UNIV)) ?d"
himmelma@33175
  2823
    have "setsum (op $ y) UNIV \<le> setsum (\<lambda>i. x$i + ?d) UNIV" proof(rule setsum_mono)
himmelma@33175
  2824
      fix i::'n have "abs (y$i - x$i) < ?d" apply(rule le_less_trans) using component_le_norm[of "y - x" i]
himmelma@33175
  2825
        using y[unfolded min_less_iff_conj dist_norm, THEN conjunct2] by(auto simp add:vector_component_simps norm_minus_commute)
himmelma@33175
  2826
      thus "y $ i \<le> x $ i + ?d" by auto qed
himmelma@33175
  2827
    also have "\<dots> \<le> 1" unfolding setsum_addf setsum_constant card_enum real_eq_of_nat using dimindex_ge_1 by(auto simp add: Suc_le_eq)
himmelma@33175
  2828
    finally show "(\<forall>i. 0 \<le> y $ i) \<and> setsum (op $ y) UNIV \<le> 1" apply- proof(rule,rule)
himmelma@33175
  2829
      fix i::'n have "norm (x - y) < x$i" using y[unfolded min_less_iff_conj dist_norm, THEN conjunct1]
himmelma@33175
  2830
        using Min_gr_iff[of "op $ x ` dimset x"] dimindex_ge_1 by auto
himmelma@33175
  2831
      thus "0 \<le> y$i" using component_le_norm[of "x - y" i] and as(1)[rule_format, of i] by(auto simp add: vector_component_simps)
himmelma@33175
  2832
    qed auto qed auto qed
himmelma@33175
  2833
hoelzl@34291
  2834
lemma interior_std_simplex_nonempty: obtains a::"real^'n" where
himmelma@33175
  2835
  "a \<in> interior(convex hull (insert 0 {basis i | i . i \<in> UNIV}))" proof-
himmelma@33175
  2836
  let ?D = "UNIV::'n set" let ?a = "setsum (\<lambda>b::real^'n. inverse (2 * real CARD('n)) *\<^sub>R b) {(basis i) | i. i \<in> ?D}"
himmelma@33175
  2837
  have *:"{basis i :: real ^ 'n | i. i \<in> ?D} = basis ` ?D" by auto
himmelma@33175
  2838
  { fix i have "?a $ i = inverse (2 * real CARD('n))"
himmelma@33175
  2839
    unfolding setsum_component vector_smult_component and * and setsum_reindex[OF basis_inj] and o_def
himmelma@33175
  2840
    apply(rule trans[of _ "setsum (\<lambda>j. if i = j then inverse (2 * real CARD('n)) else 0) ?D"]) apply(rule setsum_cong2)
himmelma@33175
  2841
      unfolding setsum_delta'[OF finite_UNIV[where 'a='n]] and real_dimindex_ge_1[where 'n='n] by(auto simp add: basis_component[of i]) }
himmelma@33175
  2842
  note ** = this
himmelma@33175
  2843
  show ?thesis apply(rule that[of ?a]) unfolding interior_std_simplex mem_Collect_eq proof(rule,rule)
himmelma@33175
  2844
    fix i::'n show "0 < ?a $ i" unfolding ** using dimindex_ge_1 by(auto simp add: Suc_le_eq) next
himmelma@33175
  2845
    have "setsum (op $ ?a) ?D = setsum (\<lambda>i. inverse (2 * real CARD('n))) ?D" by(rule setsum_cong2, rule **) 
himmelma@33175
  2846
    also have "\<dots> < 1" unfolding setsum_constant card_enum real_eq_of_nat real_divide_def[THEN sym] by (auto simp add:field_simps)
himmelma@33175
  2847
    finally show "setsum (op $ ?a) ?D < 1" by auto qed qed
himmelma@33175
  2848
himmelma@33175
  2849
subsection {* Paths. *}
himmelma@33175
  2850
hoelzl@34291
  2851
definition "path (g::real^1 \<Rightarrow> real^'n) \<longleftrightarrow> continuous_on {0 .. 1} g"
himmelma@33175
  2852
himmelma@33175
  2853
definition "pathstart (g::real^1 \<Rightarrow> real^'n) = g 0"
himmelma@33175
  2854
himmelma@33175
  2855
definition "pathfinish (g::real^1 \<Rightarrow> real^'n) = g 1"
himmelma@33175
  2856
himmelma@33175
  2857
definition "path_image (g::real^1 \<Rightarrow> real^'n) = g ` {0 .. 1}"
himmelma@33175
  2858
himmelma@33175
  2859
definition "reversepath (g::real^1 \<Rightarrow> real^'n) = (\<lambda>x. g(1 - x))"
himmelma@33175
  2860
himmelma@33175
  2861
definition joinpaths:: "(real^1 \<Rightarrow> real^'n) \<Rightarrow> (real^1 \<Rightarrow> real^'n) \<Rightarrow> (real^1 \<Rightarrow> real^'n)" (infixr "+++" 75)
himmelma@33175
  2862
  where "joinpaths g1 g2 = (\<lambda>x. if dest_vec1 x \<le> ((1 / 2)::real) then g1 (2 *\<^sub>R x) else g2(2 *\<^sub>R x - 1))"
himmelma@33175
  2863
definition "simple_path (g::real^1 \<Rightarrow> real^'n) \<longleftrightarrow>
himmelma@33175
  2864
  (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)"
himmelma@33175
  2865
himmelma@33175
  2866
definition "injective_path (g::real^1 \<Rightarrow> real^'n) \<longleftrightarrow>
himmelma@33175
  2867
  (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y)"
himmelma@33175
  2868
himmelma@33175
  2869
subsection {* Some lemmas about these concepts. *}
himmelma@33175
  2870
himmelma@33175
  2871
lemma injective_imp_simple_path:
himmelma@33175
  2872
  "injective_path g \<Longrightarrow> simple_path g"
himmelma@33175
  2873
  unfolding injective_path_def simple_path_def by auto
himmelma@33175
  2874
himmelma@33175
  2875
lemma path_image_nonempty: "path_image g \<noteq> {}"
himmelma@33175
  2876
  unfolding path_image_def image_is_empty interval_eq_empty by auto 
himmelma@33175
  2877
himmelma@33175
  2878
lemma pathstart_in_path_image[intro]: "(pathstart g) \<in> path_image g"
himmelma@33175
  2879
  unfolding pathstart_def path_image_def apply(rule imageI)
himmelma@33175
  2880
  unfolding mem_interval_1 vec_1[THEN sym] dest_vec1_vec by auto
himmelma@33175
  2881
himmelma@33175
  2882
lemma pathfinish_in_path_image[intro]: "(pathfinish g) \<in> path_image g"
himmelma@33175
  2883
  unfolding pathfinish_def path_image_def apply(rule imageI)
himmelma@33175
  2884
  unfolding mem_interval_1 vec_1[THEN sym] dest_vec1_vec by auto
himmelma@33175
  2885
himmelma@33175
  2886
lemma connected_path_image[intro]: "path g \<Longrightarrow> connected(path_image g)"
himmelma@33175
  2887
  unfolding path_def path_image_def apply(rule connected_continuous_image, assumption)
himmelma@33175
  2888
  by(rule convex_connected, rule convex_interval)
himmelma@33175
  2889
himmelma@33175
  2890
lemma compact_path_image[intro]: "path g \<Longrightarrow> compact(path_image g)"
himmelma@33175
  2891
  unfolding path_def path_image_def apply(rule compact_continuous_image, assumption)
himmelma@33175
  2892
  by(rule compact_interval)
himmelma@33175
  2893
himmelma@33175
  2894
lemma reversepath_reversepath[simp]: "reversepath(reversepath g) = g"
himmelma@33175
  2895
  unfolding reversepath_def by auto
himmelma@33175
  2896
himmelma@33175
  2897
lemma pathstart_reversepath[simp]: "pathstart(reversepath g) = pathfinish g"
himmelma@33175
  2898
  unfolding pathstart_def reversepath_def pathfinish_def by auto
himmelma@33175
  2899
himmelma@33175
  2900
lemma pathfinish_reversepath[simp]: "pathfinish(reversepath g) = pathstart g"
himmelma@33175
  2901
  unfolding pathstart_def reversepath_def pathfinish_def by auto
himmelma@33175
  2902
himmelma@33175
  2903
lemma pathstart_join[simp]: "pathstart(g1 +++ g2) = pathstart g1"
himmelma@33175
  2904
  unfolding pathstart_def joinpaths_def pathfinish_def by auto
himmelma@33175
  2905
himmelma@33175
  2906
lemma pathfinish_join[simp]:"pathfinish(g1 +++ g2) = pathfinish g2" proof-
himmelma@33175
  2907
  have "2 *\<^sub>R 1 - 1 = (1::real^1)" unfolding Cart_eq by(auto simp add:vector_component_simps)
himmelma@33175
  2908
  thus ?thesis unfolding pathstart_def joinpaths_def pathfinish_def
himmelma@33175
  2909
    unfolding vec_1[THEN sym] dest_vec1_vec by auto qed
himmelma@33175
  2910
himmelma@33175
  2911
lemma path_image_reversepath[simp]: "path_image(reversepath g) = path_image g" proof-
himmelma@33175
  2912
  have *:"\<And>g. path_image(reversepath g) \<subseteq> path_image g"
himmelma@33175
  2913
    unfolding path_image_def subset_eq reversepath_def Ball_def image_iff apply(rule,rule,erule bexE)  
hoelzl@33758
  2914
    apply(rule_tac x="1 - xa" in bexI) by(auto simp add:vector_le_def vector_component_simps elim!:ballE)
himmelma@33175
  2915
  show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by auto qed
himmelma@33175
  2916
himmelma@33175
  2917
lemma path_reversepath[simp]: "path(reversepath g) \<longleftrightarrow> path g" proof-
himmelma@33175
  2918
  have *:"\<And>g. path g \<Longrightarrow> path(reversepath g)" unfolding path_def reversepath_def
himmelma@33175
  2919
    apply(rule continuous_on_compose[unfolded o_def, of _ "\<lambda>x. 1 - x"])
himmelma@33175
  2920
    apply(rule continuous_on_sub, rule continuous_on_const, rule continuous_on_id)
hoelzl@34951
  2921
    apply(rule continuous_on_subset[of "{0..1}"], assumption) by auto
himmelma@33175
  2922
  show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by auto qed
himmelma@33175
  2923
himmelma@33175
  2924
lemmas reversepath_simps = path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath
himmelma@33175
  2925
himmelma@33175
  2926
lemma path_join[simp]: assumes "pathfinish g1 = pathstart g2" shows "path (g1 +++ g2) \<longleftrightarrow>  path g1 \<and> path g2"
himmelma@33175
  2927
  unfolding path_def pathfinish_def pathstart_def apply rule defer apply(erule conjE) proof-
himmelma@33175
  2928
  assume as:"continuous_on {0..1} (g1 +++ g2)"
himmelma@33175
  2929
  have *:"g1 = (\<lambda>x. g1 (2 *\<^sub>R x)) \<circ> (\<lambda>x. (1/2) *\<^sub>R x)" 
himmelma@33175
  2930
         "g2 = (\<lambda>x. g2 (2 *\<^sub>R x - 1)) \<circ> (\<lambda>x. (1/2) *\<^sub>R (x + 1))" unfolding o_def by auto
himmelma@33175
  2931
  have "op *\<^sub>R (1 / 2) ` {0::real^1..1} \<subseteq> {0..1}"  "(\<lambda>x. (1 / 2) *\<^sub>R (x + 1)) ` {(0::real^1)..1} \<subseteq> {0..1}"
hoelzl@34951
  2932
    unfolding image_smult_interval by auto 
himmelma@33175
  2933
  thus "continuous_on {0..1} g1 \<and> continuous_on {0..1} g2" apply -apply rule
himmelma@33175
  2934
    apply(subst *) defer apply(subst *) apply (rule_tac[!] continuous_on_compose)
himmelma@33175
  2935
    apply (rule continuous_on_cmul, rule continuous_on_add, rule continuous_on_id, rule continuous_on_const) defer
himmelma@33175
  2936
    apply (rule continuous_on_cmul, rule continuous_on_id) apply(rule_tac[!] continuous_on_eq[of _ "g1 +++ g2"]) defer prefer 3
himmelma@33175
  2937
    apply(rule_tac[1-2] continuous_on_subset[of "{0 .. 1}"]) apply(rule as, assumption, rule as, assumption)
himmelma@33175
  2938
    apply(rule) defer apply rule proof-
himmelma@33175
  2939
    fix x assume "x \<in> op *\<^sub>R (1 / 2) ` {0::real^1..1}"
himmelma@33175
  2940
    hence "dest_vec1 x \<le> 1 / 2" unfolding image_iff by(auto simp add: vector_component_simps)
himmelma@33175
  2941
    thus "(g1 +++ g2) x = g1 (2 *\<^sub>R x)" unfolding joinpaths_def by auto next
himmelma@33175
  2942
    fix x assume "x \<in> (\<lambda>x. (1 / 2) *\<^sub>R (x + 1)) ` {0::real^1..1}"
himmelma@33175
  2943
    hence "dest_vec1 x \<ge> 1 / 2" unfolding image_iff by(auto simp add: vector_component_simps)
himmelma@33175
  2944
    thus "(g1 +++ g2) x = g2 (2 *\<^sub>R x - 1)" proof(cases "dest_vec1 x = 1 / 2")
himmelma@33175
  2945
      case True hence "x = (1/2) *\<^sub>R 1" unfolding Cart_eq by(auto simp add: forall_1 vector_component_simps)
himmelma@33175
  2946
      thus ?thesis unfolding joinpaths_def using assms[unfolded pathstart_def pathfinish_def] by auto
himmelma@33175
  2947
    qed (auto simp add:le_less joinpaths_def) qed
himmelma@33175
  2948
next assume as:"continuous_on {0..1} g1" "continuous_on {0..1} g2"
himmelma@33175
  2949
  have *:"{0 .. 1::real^1} = {0.. (1/2)*\<^sub>R 1} \<union> {(1/2) *\<^sub>R 1 .. 1}" by(auto simp add: vector_component_simps) 
himmelma@33175
  2950
  have **:"op *\<^sub>R 2 ` {0..(1 / 2) *\<^sub>R 1} = {0..1::real^1}" apply(rule set_ext, rule) unfolding image_iff 
himmelma@33175
  2951
    defer apply(rule_tac x="(1/2)*\<^sub>R x" in bexI) by(auto simp add: vector_component_simps)
himmelma@33175
  2952
  have ***:"(\<lambda>x. 2 *\<^sub>R x - 1) ` {(1 / 2) *\<^sub>R 1..1} = {0..1::real^1}"
himmelma@33175
  2953
    unfolding image_affinity_interval[of _ "- 1", unfolded diff_def[symmetric]] and interval_eq_empty_1
himmelma@33175
  2954
    by(auto simp add: vector_component_simps)
himmelma@33175
  2955
  have ****:"\<And>x::real^1. x $ 1 * 2 = 1 \<longleftrightarrow> x = (1/2) *\<^sub>R 1" unfolding Cart_eq by(auto simp add: forall_1 vector_component_simps)
himmelma@33175
  2956
  show "continuous_on {0..1} (g1 +++ g2)" unfolding * apply(rule continuous_on_union) apply(rule closed_interval)+ proof-
himmelma@33175
  2957
    show "continuous_on {0..(1 / 2) *\<^sub>R 1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "\<lambda>x. g1 (2 *\<^sub>R x)"]) defer
himmelma@33175
  2958
      unfolding o_def[THEN sym] apply(rule continuous_on_compose) apply(rule continuous_on_cmul, rule continuous_on_id)
himmelma@33175
  2959
      unfolding ** apply(rule as(1)) unfolding joinpaths_def by(auto simp add: vector_component_simps) next
himmelma@33175
  2960
    show "continuous_on {(1/2)*\<^sub>R1..1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "g2 \<circ> (\<lambda>x. 2 *\<^sub>R x - 1)"]) defer
himmelma@33175
  2961
      apply(rule continuous_on_compose) apply(rule continuous_on_sub, rule continuous_on_cmul, rule continuous_on_id, rule continuous_on_const)
himmelma@33175
  2962
      unfolding *** o_def joinpaths_def apply(rule as(2)) using assms[unfolded pathstart_def pathfinish_def]
himmelma@33175
  2963
      by(auto simp add: vector_component_simps ****) qed qed
himmelma@33175
  2964
himmelma@33175
  2965
lemma path_image_join_subset: "path_image(g1 +++ g2) \<subseteq> (path_image g1 \<union> path_image g2)" proof
himmelma@33175
  2966
  fix x assume "x \<in> path_image (g1 +++ g2)"
himmelma@33175
  2967
  then obtain y where y:"y\<in>{0..1}" "x = (if dest_vec1 y \<le> 1 / 2 then g1 (2 *\<^sub>R y) else g2 (2 *\<^sub>R y - 1))"
himmelma@33175
  2968
    unfolding path_image_def image_iff joinpaths_def by auto
himmelma@33175
  2969
  thus "x \<in> path_image g1 \<union> path_image g2" apply(cases "dest_vec1 y \<le> 1/2")
himmelma@33175
  2970
    apply(rule_tac UnI1) defer apply(rule_tac UnI2) unfolding y(2) path_image_def using y(1)
himmelma@33175
  2971
    by(auto intro!: imageI simp add: vector_component_simps) qed
himmelma@33175
  2972
himmelma@33175
  2973
lemma subset_path_image_join:
himmelma@33175
  2974
  assumes "path_image g1 \<subseteq> s" "path_image g2 \<subseteq> s" shows "path_image(g1 +++ g2) \<subseteq> s"
himmelma@33175
  2975
  using path_image_join_subset[of g1 g2] and assms by auto
himmelma@33175
  2976
himmelma@33175
  2977
lemma path_image_join:
himmelma@33175
  2978
  assumes "path g1" "path g2" "pathfinish g1 = pathstart g2"
himmelma@33175
  2979
  shows "path_image(g1 +++ g2) = (path_image g1) \<union> (path_image g2)"
himmelma@33175
  2980
apply(rule, rule path_image_join_subset, rule) unfolding Un_iff proof(erule disjE)
himmelma@33175
  2981
  fix x assume "x \<in> path_image g1"
himmelma@33175
  2982
  then obtain y where y:"y\<in>{0..1}" "x = g1 y" unfolding path_image_def image_iff by auto
himmelma@33175
  2983
  thus "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff
himmelma@33175
  2984
    apply(rule_tac x="(1/2) *\<^sub>R y" in bexI) by(auto simp add: vector_component_simps) next
himmelma@33175
  2985
  fix x assume "x \<in> path_image g2"
himmelma@33175
  2986
  then obtain y where y:"y\<in>{0..1}" "x = g2 y" unfolding path_image_def image_iff by auto
himmelma@33175
  2987
  moreover have *:"y $ 1 = 0 \<Longrightarrow> y = 0" unfolding Cart_eq by auto
himmelma@33175
  2988
  ultimately show "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff
himmelma@33175
  2989
    apply(rule_tac x="(1/2) *\<^sub>R (y + 1)" in bexI) using assms(3)[unfolded pathfinish_def pathstart_def]
himmelma@33175
  2990
    by(auto simp add: vector_component_simps) qed 
himmelma@33175
  2991
himmelma@33175
  2992
lemma not_in_path_image_join:
himmelma@33175
  2993
  assumes "x \<notin> path_image g1" "x \<notin> path_image g2" shows "x \<notin> path_image(g1 +++ g2)"
himmelma@33175
  2994
  using assms and path_image_join_subset[of g1 g2] by auto
himmelma@33175
  2995
himmelma@33175
  2996
lemma simple_path_reversepath: assumes "simple_path g" shows "simple_path (reversepath g)"
himmelma@33175
  2997
  using assms unfolding simple_path_def reversepath_def apply- apply(rule ballI)+
himmelma@33175
  2998
  apply(erule_tac x="1-x" in ballE, erule_tac x="1-y" in ballE)
himmelma@33175
  2999
  unfolding mem_interval_1 by(auto simp add:vector_component_simps)
himmelma@33175
  3000
hoelzl@34951
  3001
(** move this **)
hoelzl@34951
  3002
declare vector_scaleR_component[simp]
himmelma@33175
  3003
himmelma@33175
  3004
lemma simple_path_join_loop:
himmelma@33175
  3005
  assumes "injective_path g1" "injective_path g2" "pathfinish g2 = pathstart g1"
himmelma@33175
  3006
  "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g1,pathstart g2}"
himmelma@33175
  3007
  shows "simple_path(g1 +++ g2)"
himmelma@33175
  3008
unfolding simple_path_def proof((rule ballI)+, rule impI) let ?g = "g1 +++ g2"
himmelma@33175
  3009
  note inj = assms(1,2)[unfolded injective_path_def, rule_format]
himmelma@33175
  3010
  fix x y::"real^1" assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "?g x = ?g y"
himmelma@33175
  3011
  show "x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0" proof(case_tac "x$1 \<le> 1/2",case_tac[!] "y$1 \<le> 1/2", unfold not_le)
himmelma@33175
  3012
    assume as:"x $ 1 \<le> 1 / 2" "y $ 1 \<le> 1 / 2"
hoelzl@34951
  3013
    hence "g1 (2 *\<^sub>R x) = g1 (2 *\<^sub>R y)" using xy(3) unfolding joinpaths_def by auto
himmelma@33175
  3014
    moreover have "2 *\<^sub>R x \<in> {0..1}" "2 *\<^sub>R y \<in> {0..1}" using xy(1,2) as
hoelzl@34951
  3015
      unfolding mem_interval_1 by(auto simp add:vector_component_simps)
himmelma@33175
  3016
    ultimately show ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] by auto
himmelma@33175
  3017
  next assume as:"x $ 1 > 1 / 2" "y $ 1 > 1 / 2"
hoelzl@34951
  3018
    hence "g2 (2 *\<^sub>R x - 1) = g2 (2 *\<^sub>R y - 1)" using xy(3) unfolding joinpaths_def by auto
hoelzl@34951
  3019
    moreover have "2 *\<^sub>R x - 1 \<in> {0..1}" "2 *\<^sub>R y - 1 \<in> {0..1}" using xy(1,2) as unfolding mem_interval_1 by(auto simp add:vector_component_simps)
himmelma@33175
  3020
    ultimately show ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] by auto
himmelma@33175
  3021
  next assume as:"x $ 1 \<le> 1 / 2" "y $ 1 > 1 / 2"
himmelma@33175
  3022
    hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def
himmelma@33175
  3023
      using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)
himmelma@33175
  3024
    moreover have "?g y \<noteq> pathstart g2" using as(2) unfolding pathstart_def joinpaths_def
himmelma@33175
  3025
      using inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(2)[unfolded mem_interval_1]
himmelma@33175
  3026
      apply(rule_tac ccontr) by(auto simp add:vector_component_simps field_simps Cart_eq)
himmelma@33175
  3027
    ultimately have *:"?g x = pathstart g1" using assms(4) unfolding xy(3) by auto
himmelma@33175
  3028
    hence "x = 0" unfolding pathstart_def joinpaths_def using as(1) and xy(1)[unfolded mem_interval_1]
himmelma@33175
  3029
      using inj(1)[of "2 *\<^sub>R x" 0] by(auto simp add:vector_component_simps)
himmelma@33175
  3030
    moreover have "y = 1" using * unfolding xy(3) assms(3)[THEN sym]
himmelma@33175
  3031
      unfolding joinpaths_def pathfinish_def using as(2) and xy(2)[unfolded mem_interval_1]
himmelma@33175
  3032
      using inj(2)[of "2 *\<^sub>R y - 1" 1] by (auto simp add:vector_component_simps Cart_eq)
himmelma@33175
  3033
    ultimately show ?thesis by auto 
himmelma@33175
  3034
  next assume as:"x $ 1 > 1 / 2" "y $ 1 \<le> 1 / 2"
himmelma@33175
  3035
    hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def
himmelma@33175
  3036
      using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)
himmelma@33175
  3037
    moreover have "?g x \<noteq> pathstart g2" using as(1) unfolding pathstart_def joinpaths_def
himmelma@33175
  3038
      using inj(2)[of "2 *\<^sub>R x - 1" 0] and xy(1)[unfolded mem_interval_1]
himmelma@33175
  3039
      apply(rule_tac ccontr) by(auto simp add:vector_component_simps field_simps Cart_eq)
himmelma@33175
  3040
    ultimately have *:"?g y = pathstart g1" using assms(4) unfolding xy(3) by auto
himmelma@33175
  3041
    hence "y = 0" unfolding pathstart_def joinpaths_def using as(2) and xy(2)[unfolded mem_interval_1]
himmelma@33175
  3042
      using inj(1)[of "2 *\<^sub>R y" 0] by(auto simp add:vector_component_simps)
himmelma@33175
  3043
    moreover have "x = 1" using * unfolding xy(3)[THEN sym] assms(3)[THEN sym]
himmelma@33175
  3044
      unfolding joinpaths_def pathfinish_def using as(1) and xy(1)[unfolded mem_interval_1]
himmelma@33175
  3045
      using inj(2)[of "2 *\<^sub>R x - 1" 1] by(auto simp add:vector_component_simps Cart_eq)
himmelma@33175
  3046
    ultimately show ?thesis by auto qed qed
himmelma@33175
  3047
himmelma@33175
  3048
lemma injective_path_join:
himmelma@33175
  3049
  assumes "injective_path g1" "injective_path g2" "pathfinish g1 = pathstart g2"
himmelma@33175
  3050
  "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g2}"
himmelma@33175
  3051
  shows "injective_path(g1 +++ g2)"
himmelma@33175
  3052
  unfolding injective_path_def proof(rule,rule,rule) let ?g = "g1 +++ g2"
himmelma@33175
  3053
  note inj = assms(1,2)[unfolded injective_path_def, rule_format]
hoelzl@34951
  3054
  have *:"\<And>x y::real^1. 2 *\<^sub>R x = 1 \<Longrightarrow> 2 *\<^sub>R y = 1 \<Longrightarrow> x = y" unfolding Cart_eq forall_1 by(auto simp del:dest_vec1_eq)
himmelma@33175
  3055
  fix x y assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "(g1 +++ g2) x = (g1 +++ g2) y"
himmelma@33175
  3056
  show "x = y" proof(cases "x$1 \<le> 1/2", case_tac[!] "y$1 \<le> 1/2", unfold not_le)
himmelma@33175
  3057
    assume "x $ 1 \<le> 1 / 2" "y $ 1 \<le> 1 / 2" thus ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] and xy
himmelma@33175
  3058
      unfolding mem_interval_1 joinpaths_def by(auto simp add:vector_component_simps)
himmelma@33175
  3059
  next assume "x $ 1 > 1 / 2" "y $ 1 > 1 / 2" thus ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] and xy
himmelma@33175
  3060
      unfolding mem_interval_1 joinpaths_def by(auto simp add:vector_component_simps)
himmelma@33175
  3061
  next assume as:"x $ 1 \<le> 1 / 2" "y $ 1 > 1 / 2" 
himmelma@33175
  3062
    hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def
himmelma@33175
  3063
      using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)
himmelma@33175
  3064
    hence "?g x = pathfinish g1" "?g y = pathstart g2" using assms(4) unfolding assms(3) xy(3) by auto
himmelma@33175
  3065
    thus ?thesis using as and inj(1)[of "2 *\<^sub>R x" 1] inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(1,2)
himmelma@33175
  3066
      unfolding pathstart_def pathfinish_def joinpaths_def mem_interval_1
hoelzl@34951
  3067
      by(auto simp add:vector_component_simps intro:*)
himmelma@33175
  3068
  next assume as:"x $ 1 > 1 / 2" "y $ 1 \<le> 1 / 2" 
himmelma@33175
  3069
    hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def
himmelma@33175
  3070
      using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)
himmelma@33175
  3071
    hence "?g x = pathstart g2" "?g y = pathfinish g1" using assms(4) unfolding assms(3) xy(3) by auto
himmelma@33175
  3072
    thus ?thesis using as and inj(2)[of "2 *\<^sub>R x - 1" 0] inj(1)[of "2 *\<^sub>R y" 1] and xy(1,2)
himmelma@33175
  3073
      unfolding pathstart_def pathfinish_def joinpaths_def mem_interval_1
hoelzl@34951
  3074
      by(auto simp add:vector_component_simps intro:*) qed qed
himmelma@33175
  3075
himmelma@33175
  3076
lemmas join_paths_simps = path_join path_image_join pathstart_join pathfinish_join
himmelma@33175
  3077
 
himmelma@33175
  3078
subsection {* Reparametrizing a closed curve to start at some chosen point. *}
himmelma@33175
  3079
himmelma@33175
  3080
definition "shiftpath a (f::real^1 \<Rightarrow> real^'n) =
himmelma@33175
  3081
  (\<lambda>x. if dest_vec1 (a + x) \<le> 1 then f(a + x) else f(a + x - 1))"
himmelma@33175
  3082
himmelma@33175
  3083
lemma pathstart_shiftpath: "a \<le> 1 \<Longrightarrow> pathstart(shiftpath a g) = g a"
himmelma@33175
  3084
  unfolding pathstart_def shiftpath_def by auto
himmelma@33175
  3085
himmelma@33175
  3086
(** move this **)
himmelma@33175
  3087
declare forall_1[simp] ex_1[simp]
himmelma@33175
  3088
himmelma@33175
  3089
lemma pathfinish_shiftpath: assumes "0 \<le> a" "pathfinish g = pathstart g"
himmelma@33175
  3090
  shows "pathfinish(shiftpath a g) = g a"
himmelma@33175
  3091
  using assms unfolding pathstart_def pathfinish_def shiftpath_def
himmelma@33175
  3092
  by(auto simp add: vector_component_simps)
himmelma@33175
  3093
himmelma@33175
  3094
lemma endpoints_shiftpath:
himmelma@33175
  3095
  assumes "pathfinish g = pathstart g" "a \<in> {0 .. 1}" 
himmelma@33175
  3096
  shows "pathfinish(shiftpath a g) = g a" "pathstart(shiftpath a g) = g a"
himmelma@33175
  3097
  using assms by(auto intro!:pathfinish_shiftpath pathstart_shiftpath)
himmelma@33175
  3098
himmelma@33175
  3099
lemma closed_shiftpath:
himmelma@33175
  3100
  assumes "pathfinish g = pathstart g" "a \<in> {0..1}"
himmelma@33175
  3101
  shows "pathfinish(shiftpath a g) = pathstart(shiftpath a g)"
himmelma@33175
  3102
  using endpoints_shiftpath[OF assms] by auto
himmelma@33175
  3103
himmelma@33175
  3104
lemma path_shiftpath:
himmelma@33175
  3105
  assumes "path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
himmelma@33175
  3106
  shows "path(shiftpath a g)" proof-
himmelma@33175
  3107
  have *:"{0 .. 1} = {0 .. 1-a} \<union> {1-a .. 1}" using assms(3) by(auto simp add: vector_component_simps)
himmelma@33175
  3108
  have **:"\<And>x. x + a = 1 \<Longrightarrow> g (x + a - 1) = g (x + a)"
himmelma@33175
  3109
    using assms(2)[unfolded pathfinish_def pathstart_def] by auto
himmelma@33175
  3110
  show ?thesis unfolding path_def shiftpath_def * apply(rule continuous_on_union)
himmelma@33175
  3111
    apply(rule closed_interval)+ apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a + x)"]) prefer 3
himmelma@33175
  3112
    apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a - 1 + x)"]) defer prefer 3
himmelma@33175
  3113
    apply(rule continuous_on_intros)+ prefer 2 apply(rule continuous_on_intros)+
himmelma@33175
  3114
    apply(rule_tac[1-2] continuous_on_subset[OF assms(1)[unfolded path_def]])
himmelma@33175
  3115
    using assms(3) and ** by(auto simp add:vector_component_simps field_simps Cart_eq) qed
himmelma@33175
  3116
himmelma@33175
  3117
lemma shiftpath_shiftpath: assumes "pathfinish g = pathstart g" "a \<in> {0..1}" "x \<in> {0..1}" 
himmelma@33175
  3118
  shows "shiftpath (1 - a) (shiftpath a g) x = g x"
himmelma@33175
  3119
  using assms unfolding pathfinish_def pathstart_def shiftpath_def 
himmelma@33175
  3120
  by(auto simp add: vector_component_simps)
himmelma@33175
  3121
himmelma@33175
  3122
lemma path_image_shiftpath:
himmelma@33175
  3123
  assumes "a \<in> {0..1}" "pathfinish g = pathstart g"
himmelma@33175
  3124
  shows "path_image(shiftpath a g) = path_image g" proof-
himmelma@33175
  3125
  { fix x assume as:"g 1 = g 0" "x \<in> {0..1::real^1}" " \<forall>y\<in>{0..1} \<inter> {x. \<not> a $ 1 + x $ 1 \<le> 1}. g x \<noteq> g (a + y - 1)" 
himmelma@33175
  3126
    hence "\<exists>y\<in>{0..1} \<inter> {x. a $ 1 + x $ 1 \<le> 1}. g x = g (a + y)" proof(cases "a \<le> x")
himmelma@33175
  3127
      case False thus ?thesis apply(rule_tac x="1 + x - a" in bexI)
himmelma@33175
  3128
        using as(1,2) and as(3)[THEN bspec[where x="1 + x - a"]] and assms(1)
himmelma@33175
  3129
        by(auto simp add:vector_component_simps field_simps atomize_not) next
himmelma@33175
  3130
      case True thus ?thesis using as(1-2) and assms(1) apply(rule_tac x="x - a" in bexI)
himmelma@33175
  3131
        by(auto simp add:vector_component_simps field_simps) qed }
himmelma@33175
  3132
  thus ?thesis using assms unfolding shiftpath_def path_image_def pathfinish_def pathstart_def 
himmelma@33175
  3133
    by(auto simp add:vector_component_simps image_iff) qed
himmelma@33175
  3134
himmelma@33175
  3135
subsection {* Special case of straight-line paths. *}
himmelma@33175
  3136
himmelma@33175
  3137
definition
hoelzl@34291
  3138
  linepath :: "real ^ 'n \<Rightarrow> real ^ 'n \<Rightarrow> real ^ 1 \<Rightarrow> real ^ 'n" where
himmelma@33175
  3139
  "linepath a b = (\<lambda>x. (1 - dest_vec1 x) *\<^sub>R a + dest_vec1 x *\<^sub>R b)"
himmelma@33175
  3140
himmelma@33175
  3141
lemma pathstart_linepath[simp]: "pathstart(linepath a b) = a"
himmelma@33175
  3142
  unfolding pathstart_def linepath_def by auto
himmelma@33175
  3143
himmelma@33175
  3144
lemma pathfinish_linepath[simp]: "pathfinish(linepath a b) = b"
himmelma@33175
  3145
  unfolding pathfinish_def linepath_def by auto
himmelma@33175
  3146
himmelma@33175
  3147
lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)"
himmelma@33175
  3148
  unfolding linepath_def
himmelma@33175
  3149
  by (intro continuous_intros continuous_dest_vec1)
himmelma@33175
  3150
himmelma@33175
  3151
lemma continuous_on_linepath[intro]: "continuous_on s (linepath a b)"
himmelma@33175
  3152
  using continuous_linepath_at by(auto intro!: continuous_at_imp_continuous_on)
himmelma@33175
  3153
himmelma@33175
  3154
lemma path_linepath[intro]: "path(linepath a b)"
himmelma@33175
  3155
  unfolding path_def by(rule continuous_on_linepath)
himmelma@33175
  3156
himmelma@33175
  3157
lemma path_image_linepath[simp]: "path_image(linepath a b) = (closed_segment a b)"
himmelma@33175
  3158
  unfolding path_image_def segment linepath_def apply (rule set_ext, rule) defer
himmelma@33175
  3159
  unfolding mem_Collect_eq image_iff apply(erule exE) apply(rule_tac x="u *\<^sub>R 1" in bexI)
himmelma@33175
  3160
  by(auto simp add:vector_component_simps)
himmelma@33175
  3161
himmelma@33175
  3162
lemma reversepath_linepath[simp]:  "reversepath(linepath a b) = linepath b a"
himmelma@33175
  3163
  unfolding reversepath_def linepath_def by(rule ext, auto simp add:vector_component_simps)
himmelma@33175
  3164
himmelma@33175
  3165
lemma injective_path_linepath: assumes "a \<noteq> b" shows "injective_path(linepath a b)" proof- 
himmelma@33175
  3166
  { obtain i where i:"a$i \<noteq> b$i" using assms[unfolded Cart_eq] by auto
himmelma@33175
  3167
    fix x y::"real^1" assume "x $ 1 *\<^sub>R b + y $ 1 *\<^sub>R a = x $ 1 *\<^sub>R a + y $ 1 *\<^sub>R b"
himmelma@33175
  3168
    hence "x$1 * (b$i - a$i) = y$1 * (b$i - a$i)" unfolding Cart_eq by(auto simp add:field_simps vector_component_simps)
himmelma@33175
  3169
    hence "x = y" unfolding mult_cancel_right Cart_eq using i(1) by(auto simp add:field_simps) }
himmelma@33175
  3170
  thus ?thesis unfolding injective_path_def linepath_def by(auto simp add:vector_component_simps algebra_simps) qed
himmelma@33175
  3171
himmelma@33175
  3172
lemma simple_path_linepath[intro]: "a \<noteq> b \<Longrightarrow> simple_path(linepath a b)" by(auto intro!: injective_imp_simple_path injective_path_linepath)
himmelma@33175
  3173
himmelma@33175
  3174
subsection {* Bounding a point away from a path. *}
himmelma@33175
  3175
himmelma@33175
  3176
lemma not_on_path_ball: assumes "path g" "z \<notin> path_image g"
himmelma@33175
  3177
  shows "\<exists>e>0. ball z e \<inter> (path_image g) = {}" proof-
himmelma@33175
  3178
  obtain a where "a\<in>path_image g" "\<forall>y\<in>path_image g. dist z a \<le> dist z y"
himmelma@33175
  3179
    using distance_attains_inf[OF _ path_image_nonempty, of g z]
himmelma@33175
  3180
    using compact_path_image[THEN compact_imp_closed, OF assms(1)] by auto
himmelma@33175
  3181
  thus ?thesis apply(rule_tac x="dist z a" in exI) using assms(2) by(auto intro!: dist_pos_lt) qed
himmelma@33175
  3182
himmelma@33175
  3183
lemma not_on_path_cball: assumes "path g" "z \<notin> path_image g"
himmelma@33175
  3184
  shows "\<exists>e>0. cball z e \<inter> (path_image g) = {}" proof-
himmelma@33175
  3185
  obtain e where "ball z e \<inter> path_image g = {}" "e>0" using not_on_path_ball[OF assms] by auto
himmelma@33175
  3186
  moreover have "cball z (e/2) \<subseteq> ball z e" using `e>0` by auto
himmelma@33175
  3187
  ultimately show ?thesis apply(rule_tac x="e/2" in exI) by auto qed
himmelma@33175
  3188
himmelma@33175
  3189
subsection {* Path component, considered as a "joinability" relation (from Tom Hales). *}
himmelma@33175
  3190
himmelma@33175
  3191
definition "path_component s x y \<longleftrightarrow> (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)"
himmelma@33175
  3192
himmelma@33175
  3193
lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_def 
himmelma@33175
  3194
himmelma@33175
  3195
lemma path_component_mem: assumes "path_component s x y" shows "x \<in> s" "y \<in> s"
himmelma@33175
  3196
  using assms unfolding path_defs by auto
himmelma@33175
  3197
himmelma@33175
  3198
lemma path_component_refl: assumes "x \<in> s" shows "path_component s x x"
himmelma@33175
  3199
  unfolding path_defs apply(rule_tac x="\<lambda>u. x" in exI) using assms 
himmelma@33175
  3200
  by(auto intro!:continuous_on_intros)    
himmelma@33175
  3201
himmelma@33175
  3202
lemma path_component_refl_eq: "path_component s x x \<longleftrightarrow> x \<in> s"
himmelma@33175
  3203
  by(auto intro!: path_component_mem path_component_refl) 
himmelma@33175
  3204
himmelma@33175
  3205
lemma path_component_sym: "path_component s x y \<Longrightarrow> path_component s y x"
himmelma@33175
  3206
  using assms unfolding path_component_def apply(erule exE) apply(rule_tac x="reversepath g" in exI) 
himmelma@33175
  3207
  by(auto simp add: reversepath_simps)
himmelma@33175
  3208
himmelma@33175
  3209
lemma path_component_trans: assumes "path_component s x y" "path_component s y z" shows "path_component s x z"
himmelma@33175
  3210
  using assms unfolding path_component_def apply- apply(erule exE)+ apply(rule_tac x="g +++ ga" in exI) by(auto simp add: path_image_join)
himmelma@33175
  3211
himmelma@33175
  3212
lemma path_component_of_subset: "s \<subseteq> t \<Longrightarrow>  path_component s x y \<Longrightarrow> path_component t x y"
himmelma@33175
  3213
  unfolding path_component_def by auto
himmelma@33175
  3214
himmelma@33175
  3215
subsection {* Can also consider it as a set, as the name suggests. *}
himmelma@33175
  3216
himmelma@33175
  3217
lemma path_component_set: "path_component s x = { y. (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y )}"
himmelma@33175
  3218
  apply(rule set_ext) unfolding mem_Collect_eq unfolding mem_def path_component_def by auto
himmelma@33175
  3219
himmelma@33175
  3220
lemma mem_path_component_set:"x \<in> path_component s y \<longleftrightarrow> path_component s y x" unfolding mem_def by auto
himmelma@33175
  3221
himmelma@33175
  3222
lemma path_component_subset: "(path_component s x) \<subseteq> s"
himmelma@33175
  3223
  apply(rule, rule path_component_mem(2)) by(auto simp add:mem_def)
himmelma@33175
  3224
himmelma@33175
  3225
lemma path_component_eq_empty: "path_component s x = {} \<longleftrightarrow> x \<notin> s"
himmelma@33175
  3226
  apply rule apply(drule equals0D[of _ x]) defer apply(rule equals0I) unfolding mem_path_component_set
himmelma@33175
  3227
  apply(drule path_component_mem(1)) using path_component_refl by auto
himmelma@33175
  3228
himmelma@33175
  3229
subsection {* Path connectedness of a space. *}
himmelma@33175
  3230
himmelma@33175
  3231
definition "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<exists>g. path g \<and> (path_image g) \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)"
himmelma@33175
  3232
himmelma@33175
  3233
lemma path_connected_component: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. path_component s x y)"
himmelma@33175
  3234
  unfolding path_connected_def path_component_def by auto
himmelma@33175
  3235
himmelma@33175
  3236
lemma path_connected_component_set: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. path_component s x = s)" 
himmelma@33175
  3237
  unfolding path_connected_component apply(rule, rule, rule, rule path_component_subset) 
himmelma@33175
  3238
  unfolding subset_eq mem_path_component_set Ball_def mem_def by auto
himmelma@33175
  3239
himmelma@33175
  3240
subsection {* Some useful lemmas about path-connectedness. *}
himmelma@33175
  3241
himmelma@33175
  3242
lemma convex_imp_path_connected: assumes "convex s" shows "path_connected s"
himmelma@33175
  3243
  unfolding path_connected_def apply(rule,rule,rule_tac x="linepath x y" in exI)
himmelma@33175
  3244
  unfolding path_image_linepath using assms[unfolded convex_contains_segment] by auto
himmelma@33175
  3245
himmelma@33175
  3246
lemma path_connected_imp_connected: assumes "path_connected s" shows "connected s"
himmelma@33175
  3247
  unfolding connected_def not_ex apply(rule,rule,rule ccontr) unfolding not_not apply(erule conjE)+ proof-
himmelma@33175
  3248
  fix e1 e2 assume as:"open e1" "open e2" "s \<subseteq> e1 \<union> e2" "e1 \<inter> e2 \<inter> s = {}" "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
himmelma@33175
  3249
  then obtain x1 x2 where obt:"x1\<in>e1\<inter>s" "x2\<in>e2\<inter>s" by auto
himmelma@33175
  3250
  then obtain g where g:"path g" "path_image g \<subseteq> s" "pathstart g = x1" "pathfinish g = x2"
himmelma@33175
  3251
    using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto
himmelma@33175
  3252
  have *:"connected {0..1::real^1}" by(auto intro!: convex_connected convex_interval)
himmelma@33175
  3253
  have "{0..1} \<subseteq> {x \<in> {0..1}. g x \<in> e1} \<union> {x \<in> {0..1}. g x \<in> e2}" using as(3) g(2)[unfolded path_defs] by blast
himmelma@33175
  3254
  moreover have "{x \<in> {0..1}. g x \<in> e1} \<inter> {x \<in> {0..1}. g x \<in> e2} = {}" using as(4) g(2)[unfolded path_defs] unfolding subset_eq by auto 
himmelma@33175
  3255
  moreover have "{x \<in> {0..1}. g x \<in> e1} \<noteq> {} \<and> {x \<in> {0..1}. g x \<in> e2} \<noteq> {}" using g(3,4)[unfolded path_defs] using obt by(auto intro!: exI)
himmelma@33175
  3256
  ultimately show False using *[unfolded connected_local not_ex,rule_format, of "{x\<in>{0..1}. g x \<in> e1}" "{x\<in>{0..1}. g x \<in> e2}"]
himmelma@33175
  3257
    using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(1)]
himmelma@33175
  3258
    using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(2)] by auto qed
himmelma@33175
  3259
himmelma@33175
  3260
lemma open_path_component: assumes "open s" shows "open(path_component s x)"
himmelma@33175
  3261
  unfolding open_contains_ball proof
himmelma@33175
  3262
  fix y assume as:"y \<in> path_component s x"
himmelma@33175
  3263
  hence "y\<in>s" apply- apply(rule path_component_mem(2)) unfolding mem_def by auto
himmelma@33175
  3264
  then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto
himmelma@33175
  3265
  show "\<exists>e>0. ball y e \<subseteq> path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule) unfolding mem_ball mem_path_component_set proof-
himmelma@33175
  3266
    fix z assume "dist y z < e" thus "path_component s x z" apply(rule_tac path_component_trans[of _ _ y]) defer 
himmelma@33175
  3267
      apply(rule path_component_of_subset[OF e(2)]) apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) using `e>0`
himmelma@33175
  3268
      using as[unfolded mem_def] by auto qed qed
himmelma@33175
  3269
himmelma@33175
  3270
lemma open_non_path_component: assumes "open s" shows "open(s - path_component s x)" unfolding open_contains_ball proof
himmelma@33175
  3271
  fix y assume as:"y\<in>s - path_component s x" 
himmelma@33175
  3272
  then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto
himmelma@33175
  3273
  show "\<exists>e>0. ball y e \<subseteq> s - path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule,rule) defer proof(rule ccontr)
himmelma@33175
  3274
    fix z assume "z\<in>ball y e" "\<not> z \<notin> path_component s x" 
himmelma@33175
  3275
    hence "y \<in> path_component s x" unfolding not_not mem_path_component_set using `e>0` 
himmelma@33175
  3276
      apply- apply(rule path_component_trans,assumption) apply(rule path_component_of_subset[OF e(2)])
himmelma@33175
  3277
      apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) by auto
himmelma@33175
  3278
    thus False using as by auto qed(insert e(2), auto) qed
himmelma@33175
  3279
himmelma@33175
  3280
lemma connected_open_path_connected: assumes "open s" "connected s" shows "path_connected s"
himmelma@33175
  3281
  unfolding path_connected_component_set proof(rule,rule,rule path_component_subset, rule)
himmelma@33175
  3282
  fix x y assume "x \<in> s" "y \<in> s" show "y \<in> path_component s x" proof(rule ccontr)
himmelma@33175
  3283
    assume "y \<notin> path_component s x" moreover
himmelma@33175
  3284
    have "path_component s x \<inter> s \<noteq> {}" using `x\<in>s` path_component_eq_empty path_component_subset[of s x] by auto
himmelma@33175
  3285
    ultimately show False using `y\<in>s` open_non_path_component[OF assms(1)] open_path_component[OF assms(1)]
himmelma@33175
  3286
    using assms(2)[unfolded connected_def not_ex, rule_format, of"path_component s x" "s - path_component s x"] by auto
himmelma@33175
  3287
qed qed
himmelma@33175
  3288
himmelma@33175
  3289
lemma path_connected_continuous_image:
himmelma@33175
  3290
  assumes "continuous_on s f" "path_connected s" shows "path_connected (f ` s)"
himmelma@33175
  3291
  unfolding path_connected_def proof(rule,rule)
himmelma@33175
  3292
  fix x' y' assume "x' \<in> f ` s" "y' \<in> f ` s"
himmelma@33175
  3293
  then obtain x y where xy:"x\<in>s" "y\<in>s" "x' = f x" "y' = f y" by auto
himmelma@33175
  3294
  guess g using assms(2)[unfolded path_connected_def,rule_format,OF xy(1,2)] ..
himmelma@33175
  3295
  thus "\<exists>g. path g \<and> path_image g \<subseteq> f ` s \<and> pathstart g = x' \<and> pathfinish g = y'"
himmelma@33175
  3296
    unfolding xy apply(rule_tac x="f \<circ> g" in exI) unfolding path_defs
himmelma@33175
  3297
    using assms(1) by(auto intro!: continuous_on_compose continuous_on_subset[of _ _ "g ` {0..1}"]) qed
himmelma@33175
  3298
himmelma@33175
  3299
lemma homeomorphic_path_connectedness:
himmelma@33175
  3300
  "s homeomorphic t \<Longrightarrow> (path_connected s \<longleftrightarrow> path_connected t)"
himmelma@33175
  3301
  unfolding homeomorphic_def homeomorphism_def apply(erule exE|erule conjE)+ apply rule
himmelma@33175
  3302
  apply(drule_tac f=f in path_connected_continuous_image) prefer 3
himmelma@33175
  3303
  apply(drule_tac f=g in path_connected_continuous_image) by auto
himmelma@33175
  3304
himmelma@33175
  3305
lemma path_connected_empty: "path_connected {}"
himmelma@33175
  3306
  unfolding path_connected_def by auto
himmelma@33175
  3307
himmelma@33175
  3308
lemma path_connected_singleton: "path_connected {a}"
himmelma@33175
  3309
  unfolding path_connected_def apply(rule,rule)
himmelma@33175
  3310
  apply(rule_tac x="linepath a a" in exI) by(auto simp add:segment scaleR_left_diff_distrib)
himmelma@33175
  3311
himmelma@33175
  3312
lemma path_connected_Un: assumes "path_connected s" "path_connected t" "s \<inter> t \<noteq> {}"
himmelma@33175
  3313
  shows "path_connected (s \<union> t)" unfolding path_connected_component proof(rule,rule)
himmelma@33175
  3314
  fix x y assume as:"x \<in> s \<union> t" "y \<in> s \<union> t" 
himmelma@33175
  3315
  from assms(3) obtain z where "z \<in> s \<inter> t" by auto
himmelma@33175
  3316
  thus "path_component (s \<union> t) x y" using as using assms(1-2)[unfolded path_connected_component] apply- 
himmelma@33175
  3317
    apply(erule_tac[!] UnE)+ apply(rule_tac[2-3] path_component_trans[of _ _ z])
himmelma@33175
  3318
    by(auto simp add:path_component_of_subset [OF Un_upper1] path_component_of_subset[OF Un_upper2]) qed
himmelma@33175
  3319
himmelma@33175
  3320
subsection {* sphere is path-connected. *}
himmelma@33175
  3321
himmelma@33175
  3322
lemma path_connected_punctured_universe:
hoelzl@34291
  3323
 assumes "2 \<le> CARD('n::finite)" shows "path_connected((UNIV::(real^'n) set) - {a})" proof-
himmelma@33175
  3324
  obtain \<psi> where \<psi>:"bij_betw \<psi> {1..CARD('n)} (UNIV::'n set)" using ex_bij_betw_nat_finite_1[OF finite_UNIV] by auto
himmelma@33175
  3325
  let ?U = "UNIV::(real^'n) set" let ?u = "?U - {0}"
himmelma@33175
  3326
  let ?basis = "\<lambda>k. basis (\<psi> k)"
himmelma@33175
  3327
  let ?A = "\<lambda>k. {x::real^'n. \<exists>i\<in>{1..k}. inner (basis (\<psi> i)) x \<noteq> 0}"
himmelma@33175
  3328
  have "\<forall>k\<in>{2..CARD('n)}. path_connected (?A k)" proof
himmelma@33175
  3329
    have *:"\<And>k. ?A (Suc k) = {x. inner (?basis (Suc k)) x < 0} \<union> {x. inner (?basis (Suc k)) x > 0} \<union> ?A k" apply(rule set_ext,rule) defer
himmelma@33175
  3330
      apply(erule UnE)+  unfolding mem_Collect_eq apply(rule_tac[1-2] x="Suc k" in bexI)
himmelma@33175
  3331
      by(auto elim!: ballE simp add: not_less le_Suc_eq)
himmelma@33175
  3332
    fix k assume "k \<in> {2..CARD('n)}" thus "path_connected (?A k)" proof(induct k)
himmelma@33175
  3333
      case (Suc k) show ?case proof(cases "k = 1")
himmelma@33175
  3334
        case False from Suc have d:"k \<in> {1..CARD('n)}" "Suc k \<in> {1..CARD('n)}" by auto
himmelma@33175
  3335
        hence "\<psi> k \<noteq> \<psi> (Suc k)" using \<psi>[unfolded bij_betw_def inj_on_def, THEN conjunct1, THEN bspec[where x=k]] by auto
himmelma@33175
  3336
        hence **:"?basis k + ?basis (Suc k) \<in> {x. 0 < inner (?basis (Suc k)) x} \<inter> (?A k)" 
himmelma@33175
  3337
          "?basis k - ?basis (Suc k) \<in> {x. 0 > inner (?basis (Suc k)) x} \<inter> ({x. 0 < inner (?basis (Suc k)) x} \<union> (?A k))" using d
himmelma@33175
  3338
          by(auto simp add: inner_basis vector_component_simps intro!:bexI[where x=k])
himmelma@33175
  3339
        show ?thesis unfolding * Un_assoc apply(rule path_connected_Un) defer apply(rule path_connected_Un) 
himmelma@33175
  3340
          prefer 5 apply(rule_tac[1-2] convex_imp_path_connected, rule convex_halfspace_lt, rule convex_halfspace_gt)
himmelma@33175
  3341
          apply(rule Suc(1)) apply(rule_tac[2-3] ccontr) using d ** False by auto
himmelma@33175
  3342
      next case True hence d:"1\<in>{1..CARD('n)}" "2\<in>{1..CARD('n)}" using Suc(2) by auto
himmelma@33175
  3343
        have ***:"Suc 1 = 2" by auto
himmelma@33175
  3344
        have **:"\<And>s t P Q. s \<union> t \<union> {x. P x \<or> Q x} = (s \<union> {x. P x}) \<union> (t \<union> {x. Q x})" by auto
hoelzl@34951
  3345
        have nequals0I:"\<And>x A. x\<in>A \<Longrightarrow> A \<noteq> {}" by auto
himmelma@33175
  3346
        have "\<psi> 2 \<noteq> \<psi> (Suc 0)" apply(rule ccontr) using \<psi>[unfolded bij_betw_def inj_on_def, THEN conjunct1, THEN bspec[where x=2]] using assms by auto
himmelma@33175
  3347
        thus ?thesis unfolding * True unfolding ** neq_iff bex_disj_distrib apply -
himmelma@33175
  3348
          apply(rule path_connected_Un, rule_tac[1-2] path_connected_Un) defer 3 apply(rule_tac[1-4] convex_imp_path_connected) 
himmelma@33175
  3349
          apply(rule_tac[5] x=" ?basis 1 + ?basis 2" in nequals0I)
himmelma@33175
  3350
          apply(rule_tac[6] x="-?basis 1 + ?basis 2" in nequals0I)
himmelma@33175
  3351
          apply(rule_tac[7] x="-?basis 1 - ?basis 2" in nequals0I)
himmelma@33175
  3352
          using d unfolding *** by(auto intro!: convex_halfspace_gt convex_halfspace_lt, auto simp add:vector_component_simps inner_basis)
himmelma@33175
  3353
  qed qed auto qed note lem = this
himmelma@33175
  3354
himmelma@33175
  3355
  have ***:"\<And>x::real^'n. (\<exists>i\<in>{1..CARD('n)}. inner (basis (\<psi> i)) x \<noteq> 0) \<longleftrightarrow> (\<exists>i. inner (basis i) x \<noteq> 0)"
himmelma@33175
  3356
    apply rule apply(erule bexE) apply(rule_tac x="\<psi> i" in exI) defer apply(erule exE) proof- 
himmelma@33175
  3357
    fix x::"real^'n" and i assume as:"inner (basis i) x \<noteq> 0"
himmelma@33175
  3358
    have "i\<in>\<psi> ` {1..CARD('n)}" using \<psi>[unfolded bij_betw_def, THEN conjunct2] by auto
himmelma@33175
  3359
    then obtain j where "j\<in>{1..CARD('n)}" "\<psi> j = i" by auto
himmelma@33175
  3360
    thus "\<exists>i\<in>{1..CARD('n)}. inner (basis (\<psi> i)) x \<noteq> 0" apply(rule_tac x=j in bexI) using as by auto qed auto
himmelma@33175
  3361
  have *:"?U - {a} = (\<lambda>x. x + a) ` {x. x \<noteq> 0}" apply(rule set_ext) unfolding image_iff 
himmelma@33175
  3362
    apply rule apply(rule_tac x="x - a" in bexI) by auto
himmelma@33175
  3363
  have **:"\<And>x::real^'n. x\<noteq>0 \<longleftrightarrow> (\<exists>i. inner (basis i) x \<noteq> 0)" unfolding Cart_eq by(auto simp add: inner_basis)
himmelma@33175
  3364
  show ?thesis unfolding * apply(rule path_connected_continuous_image) apply(rule continuous_on_intros)+ 
himmelma@33175
  3365
    unfolding ** apply(rule lem[THEN bspec[where x="CARD('n)"], unfolded ***]) using assms by auto qed
himmelma@33175
  3366
hoelzl@34291
  3367
lemma path_connected_sphere: assumes "2 \<le> CARD('n::finite)" shows "path_connected {x::real^'n. norm(x - a) = r}" proof(cases "r\<le>0")
himmelma@33175
  3368
  case True thus ?thesis proof(cases "r=0") 
himmelma@33175
  3369
    case False hence "{x::real^'n. norm(x - a) = r} = {}" using True by auto
himmelma@33175
  3370
    thus ?thesis using path_connected_empty by auto
himmelma@33175
  3371
  qed(auto intro!:path_connected_singleton) next
himmelma@33175
  3372
  case False hence *:"{x::real^'n. norm(x - a) = r} = (\<lambda>x. a + r *\<^sub>R x) ` {x. norm x = 1}" unfolding not_le apply -apply(rule set_ext,rule)
himmelma@33175
  3373
    unfolding image_iff apply(rule_tac x="(1/r) *\<^sub>R (x - a)" in bexI) unfolding mem_Collect_eq norm_scaleR by (auto simp add: scaleR_right_diff_distrib)
himmelma@33175
  3374
  have **:"{x::real^'n. norm x = 1} = (\<lambda>x. (1/norm x) *\<^sub>R x) ` (UNIV - {0})" apply(rule set_ext,rule)
himmelma@33175
  3375
    unfolding image_iff apply(rule_tac x=x in bexI) unfolding mem_Collect_eq by(auto split:split_if_asm)
himmelma@33175
  3376
  have "continuous_on (UNIV - {0}) (\<lambda>x::real^'n. 1 / norm x)" unfolding o_def continuous_on_eq_continuous_within
himmelma@33175
  3377
    apply(rule, rule continuous_at_within_inv[unfolded o_def inverse_eq_divide]) apply(rule continuous_at_within)
himmelma@33175
  3378
    apply(rule continuous_at_norm[unfolded o_def]) by auto
himmelma@33175
  3379
  thus ?thesis unfolding * ** using path_connected_punctured_universe[OF assms]
himmelma@33175
  3380
    by(auto intro!: path_connected_continuous_image continuous_on_intros continuous_on_mul) qed
himmelma@33175
  3381
hoelzl@34291
  3382
lemma connected_sphere: "2 \<le> CARD('n) \<Longrightarrow> connected {x::real^'n. norm(x - a) = r}"
himmelma@33175
  3383
  using path_connected_sphere path_connected_imp_connected by auto
hoelzl@34291
  3384
himmelma@33175
  3385
end