doc-src/TutorialI/CTL/document/PDL.tex
author nipkow
Thu, 15 Mar 2001 10:41:32 +0100
changeset 11207 08188224c24e
parent 10983 59961d32b1ae
child 11231 30d96882f915
permissions -rw-r--r--
*** empty log message ***
nipkow@10123
     1
%
nipkow@10123
     2
\begin{isabellebody}%
nipkow@10123
     3
\def\isabellecontext{PDL}%
nipkow@10123
     4
%
nipkow@10971
     5
\isamarkupsubsection{Propositional Dynamic Logic --- PDL%
wenzelm@10395
     6
}
nipkow@10133
     7
%
nipkow@10133
     8
\begin{isamarkuptext}%
nipkow@10178
     9
\index{PDL|(}
nipkow@11207
    10
The formulae of PDL\footnote{The customary definition of PDL
nipkow@11207
    11
\cite{HarelKT-DL} looks quite different from ours, but the two are easily
nipkow@11207
    12
shown to be equivalent.} are built up from atomic propositions via
nipkow@11207
    13
negation and conjunction and the two temporal
nipkow@10133
    14
connectives \isa{AX} and \isa{EF}. Since formulae are essentially
paulson@10867
    15
syntax trees, they are naturally modelled as a datatype:%
nipkow@10133
    16
\end{isamarkuptext}%
nipkow@10149
    17
\isacommand{datatype}\ formula\ {\isacharequal}\ Atom\ atom\isanewline
nipkow@10149
    18
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ Neg\ formula\isanewline
nipkow@10149
    19
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ And\ formula\ formula\isanewline
nipkow@10149
    20
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ AX\ formula\isanewline
nipkow@10149
    21
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ EF\ formula%
nipkow@10133
    22
\begin{isamarkuptext}%
nipkow@10133
    23
\noindent
nipkow@10149
    24
This is almost the same as in the boolean expression case study in
paulson@10867
    25
\S\ref{sec:boolex}.
nipkow@10149
    26
nipkow@10133
    27
The meaning of these formulae is given by saying which formula is true in
nipkow@10133
    28
which state:%
nipkow@10133
    29
\end{isamarkuptext}%
nipkow@10187
    30
\isacommand{consts}\ valid\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}state\ {\isasymRightarrow}\ formula\ {\isasymRightarrow}\ bool{\isachardoublequote}\ \ \ {\isacharparenleft}{\isachardoublequote}{\isacharparenleft}{\isacharunderscore}\ {\isasymTurnstile}\ {\isacharunderscore}{\isacharparenright}{\isachardoublequote}\ {\isacharbrackleft}{\isadigit{8}}{\isadigit{0}}{\isacharcomma}{\isadigit{8}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{8}}{\isadigit{0}}{\isacharparenright}%
nipkow@10149
    31
\begin{isamarkuptext}%
nipkow@10149
    32
\noindent
paulson@10867
    33
The syntax annotation allows us to write \isa{s\ {\isasymTurnstile}\ f} instead of
paulson@10867
    34
\hbox{\isa{valid\ s\ f}}.
nipkow@10149
    35
paulson@10867
    36
\smallskip
nipkow@10149
    37
The definition of \isa{{\isasymTurnstile}} is by recursion over the syntax:%
nipkow@10149
    38
\end{isamarkuptext}%
nipkow@10123
    39
\isacommand{primrec}\isanewline
nipkow@10133
    40
{\isachardoublequote}s\ {\isasymTurnstile}\ Atom\ a\ \ {\isacharequal}\ {\isacharparenleft}a\ {\isasymin}\ L\ s{\isacharparenright}{\isachardoublequote}\isanewline
nipkow@10149
    41
{\isachardoublequote}s\ {\isasymTurnstile}\ Neg\ f\ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymnot}{\isacharparenleft}s\ {\isasymTurnstile}\ f{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
nipkow@10123
    42
{\isachardoublequote}s\ {\isasymTurnstile}\ And\ f\ g\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymand}\ s\ {\isasymTurnstile}\ g{\isacharparenright}{\isachardoublequote}\isanewline
nipkow@10123
    43
{\isachardoublequote}s\ {\isasymTurnstile}\ AX\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ {\isasymlongrightarrow}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}\isanewline
nipkow@10801
    44
{\isachardoublequote}s\ {\isasymTurnstile}\ EF\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}%
nipkow@10133
    45
\begin{isamarkuptext}%
nipkow@10149
    46
\noindent
nipkow@10149
    47
The first three equations should be self-explanatory. The temporal formula
nipkow@10983
    48
\isa{AX\ f} means that \isa{f} is true in \emph{A}ll ne\emph{X}t states whereas
nipkow@10983
    49
\isa{EF\ f} means that there \emph{E}xists some \emph{F}uture state in which \isa{f} is
paulson@10867
    50
true. The future is expressed via \isa{\isactrlsup {\isacharasterisk}}, the reflexive transitive
nipkow@10149
    51
closure. Because of reflexivity, the future includes the present.
nipkow@10149
    52
nipkow@10133
    53
Now we come to the model checker itself. It maps a formula into the set of
nipkow@10149
    54
states where the formula is true and is defined by recursion over the syntax,
nipkow@10149
    55
too:%
nipkow@10133
    56
\end{isamarkuptext}%
nipkow@10149
    57
\isacommand{consts}\ mc\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}formula\ {\isasymRightarrow}\ state\ set{\isachardoublequote}\isanewline
nipkow@10123
    58
\isacommand{primrec}\isanewline
nipkow@10133
    59
{\isachardoublequote}mc{\isacharparenleft}Atom\ a{\isacharparenright}\ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ a\ {\isasymin}\ L\ s{\isacharbraceright}{\isachardoublequote}\isanewline
nipkow@10149
    60
{\isachardoublequote}mc{\isacharparenleft}Neg\ f{\isacharparenright}\ \ \ {\isacharequal}\ {\isacharminus}mc\ f{\isachardoublequote}\isanewline
nipkow@10133
    61
{\isachardoublequote}mc{\isacharparenleft}And\ f\ g{\isacharparenright}\ {\isacharequal}\ mc\ f\ {\isasyminter}\ mc\ g{\isachardoublequote}\isanewline
nipkow@10123
    62
{\isachardoublequote}mc{\isacharparenleft}AX\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ \ {\isasymlongrightarrow}\ t\ {\isasymin}\ mc\ f{\isacharbraceright}{\isachardoublequote}\isanewline
paulson@10867
    63
{\isachardoublequote}mc{\isacharparenleft}EF\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}{\isachardoublequote}%
nipkow@10133
    64
\begin{isamarkuptext}%
nipkow@10149
    65
\noindent
nipkow@10149
    66
Only the equation for \isa{EF} deserves some comments. Remember that the
nipkow@10839
    67
postfix \isa{{\isasyminverse}} and the infix \isa{{\isacharbackquote}{\isacharbackquote}} are predefined and denote the
paulson@10867
    68
converse of a relation and the image of a set under a relation.  Thus
nipkow@10839
    69
\isa{M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T} is the set of all predecessors of \isa{T} and the least
nipkow@10839
    70
fixed point (\isa{lfp}) of \isa{{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T} is the least set
nipkow@10149
    71
\isa{T} containing \isa{mc\ f} and all predecessors of \isa{T}. If you
nipkow@10149
    72
find it hard to see that \isa{mc\ {\isacharparenleft}EF\ f{\isacharparenright}} contains exactly those states from
nipkow@10983
    73
which there is a path to a state where \isa{f} is true, do not worry --- this
nipkow@10149
    74
will be proved in a moment.
nipkow@10149
    75
paulson@10867
    76
First we prove monotonicity of the function inside \isa{lfp}
paulson@10867
    77
in order to make sure it really has a least fixed point.%
nipkow@10133
    78
\end{isamarkuptext}%
paulson@10867
    79
\isacommand{lemma}\ mono{\isacharunderscore}ef{\isacharcolon}\ {\isachardoublequote}mono{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
nipkow@10123
    80
\isacommand{apply}{\isacharparenleft}rule\ monoI{\isacharparenright}\isanewline
nipkow@10159
    81
\isacommand{apply}\ blast\isanewline
nipkow@10159
    82
\isacommand{done}%
nipkow@10149
    83
\begin{isamarkuptext}%
nipkow@10149
    84
\noindent
nipkow@10149
    85
Now we can relate model checking and semantics. For the \isa{EF} case we need
nipkow@10149
    86
a separate lemma:%
nipkow@10149
    87
\end{isamarkuptext}%
nipkow@10149
    88
\isacommand{lemma}\ EF{\isacharunderscore}lemma{\isacharcolon}\isanewline
paulson@10867
    89
\ \ {\isachardoublequote}lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isachardoublequote}%
nipkow@10149
    90
\begin{isamarkuptxt}%
nipkow@10149
    91
\noindent
nipkow@10149
    92
The equality is proved in the canonical fashion by proving that each set
paulson@10867
    93
includes the other; the inclusion is shown pointwise:%
nipkow@10149
    94
\end{isamarkuptxt}%
nipkow@10123
    95
\isacommand{apply}{\isacharparenleft}rule\ equalityI{\isacharparenright}\isanewline
nipkow@10123
    96
\ \isacommand{apply}{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline
nipkow@10149
    97
\ \isacommand{apply}{\isacharparenleft}simp{\isacharparenright}%
nipkow@10149
    98
\begin{isamarkuptxt}%
nipkow@10149
    99
\noindent
nipkow@10149
   100
Simplification leaves us with the following first subgoal
nipkow@10363
   101
\begin{isabelle}%
nipkow@10839
   102
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}s{\isachardot}\ s\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A%
nipkow@10149
   103
\end{isabelle}
nipkow@10149
   104
which is proved by \isa{lfp}-induction:%
nipkow@10149
   105
\end{isamarkuptxt}%
wenzelm@10211
   106
\ \isacommand{apply}{\isacharparenleft}erule\ lfp{\isacharunderscore}induct{\isacharparenright}\isanewline
nipkow@10149
   107
\ \ \isacommand{apply}{\isacharparenleft}rule\ mono{\isacharunderscore}ef{\isacharparenright}\isanewline
nipkow@10149
   108
\ \isacommand{apply}{\isacharparenleft}simp{\isacharparenright}%
nipkow@10149
   109
\begin{isamarkuptxt}%
nipkow@10149
   110
\noindent
nipkow@10149
   111
Having disposed of the monotonicity subgoal,
nipkow@10149
   112
simplification leaves us with the following main goal
nipkow@10149
   113
\begin{isabelle}
nipkow@10801
   114
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymor}\isanewline
nipkow@10895
   115
\ \ \ \ \ \ \ \ \ x\ {\isasymin}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ {\isacharparenleft}lfp\ {\isacharparenleft}\dots{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
nipkow@10801
   116
\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
nipkow@10149
   117
\end{isabelle}
nipkow@10801
   118
which is proved by \isa{blast} with the help of transitivity of \isa{\isactrlsup {\isacharasterisk}}:%
nipkow@10149
   119
\end{isamarkuptxt}%
nipkow@10212
   120
\ \isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtrancl{\isacharunderscore}trans{\isacharparenright}%
nipkow@10149
   121
\begin{isamarkuptxt}%
paulson@10867
   122
We now return to the second set inclusion subgoal, which is again proved
nipkow@10149
   123
pointwise:%
nipkow@10149
   124
\end{isamarkuptxt}%
nipkow@10123
   125
\isacommand{apply}{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline
nipkow@10149
   126
\isacommand{apply}{\isacharparenleft}simp{\isacharcomma}\ clarify{\isacharparenright}%
nipkow@10149
   127
\begin{isamarkuptxt}%
nipkow@10149
   128
\noindent
nipkow@10149
   129
After simplification and clarification we are left with
nipkow@10363
   130
\begin{isabelle}%
nipkow@10839
   131
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ t\ {\isasymin}\ A{\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}%
nipkow@10149
   132
\end{isabelle}
wenzelm@10361
   133
This goal is proved by induction on \isa{{\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}}. But since the model
nipkow@10149
   134
checker works backwards (from \isa{t} to \isa{s}), we cannot use the
nipkow@10149
   135
induction theorem \isa{rtrancl{\isacharunderscore}induct} because it works in the
nipkow@10149
   136
forward direction. Fortunately the converse induction theorem
nipkow@10149
   137
\isa{converse{\isacharunderscore}rtrancl{\isacharunderscore}induct} already exists:
nipkow@10149
   138
\begin{isabelle}%
nipkow@10696
   139
\ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}a{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ P\ b{\isacharsemicolon}\isanewline
wenzelm@10950
   140
\isaindent{\ \ \ \ \ \ \ \ }{\isasymAnd}y\ z{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}z{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ P\ z{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ y{\isasymrbrakk}\isanewline
wenzelm@10950
   141
\isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ P\ a%
nipkow@10149
   142
\end{isabelle}
wenzelm@10361
   143
It says that if \isa{{\isacharparenleft}a{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}} and we know \isa{P\ b} then we can infer
nipkow@10149
   144
\isa{P\ a} provided each step backwards from a predecessor \isa{z} of
nipkow@10149
   145
\isa{b} preserves \isa{P}.%
nipkow@10149
   146
\end{isamarkuptxt}%
nipkow@10149
   147
\isacommand{apply}{\isacharparenleft}erule\ converse{\isacharunderscore}rtrancl{\isacharunderscore}induct{\isacharparenright}%
nipkow@10149
   148
\begin{isamarkuptxt}%
nipkow@10149
   149
\noindent
nipkow@10149
   150
The base case
nipkow@10363
   151
\begin{isabelle}%
nipkow@10839
   152
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ t\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}%
nipkow@10149
   153
\end{isabelle}
nipkow@10149
   154
is solved by unrolling \isa{lfp} once%
nipkow@10149
   155
\end{isamarkuptxt}%
nipkow@10186
   156
\ \isacommand{apply}{\isacharparenleft}rule\ ssubst{\isacharbrackleft}OF\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}ef{\isacharbrackright}{\isacharbrackright}{\isacharparenright}%
nipkow@10149
   157
\begin{isamarkuptxt}%
nipkow@10363
   158
\begin{isabelle}%
nipkow@10839
   159
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ t\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}%
nipkow@10149
   160
\end{isabelle}
nipkow@10149
   161
and disposing of the resulting trivial subgoal automatically:%
nipkow@10149
   162
\end{isamarkuptxt}%
nipkow@10149
   163
\ \isacommand{apply}{\isacharparenleft}blast{\isacharparenright}%
nipkow@10149
   164
\begin{isamarkuptxt}%
nipkow@10149
   165
\noindent
nipkow@10149
   166
The proof of the induction step is identical to the one for the base case:%
nipkow@10149
   167
\end{isamarkuptxt}%
nipkow@10186
   168
\isacommand{apply}{\isacharparenleft}rule\ ssubst{\isacharbrackleft}OF\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}ef{\isacharbrackright}{\isacharbrackright}{\isacharparenright}\isanewline
nipkow@10159
   169
\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
nipkow@10159
   170
\isacommand{done}%
nipkow@10149
   171
\begin{isamarkuptext}%
nipkow@10149
   172
The main theorem is proved in the familiar manner: induction followed by
nipkow@10149
   173
\isa{auto} augmented with the lemma as a simplification rule.%
nipkow@10149
   174
\end{isamarkuptext}%
nipkow@10123
   175
\isacommand{theorem}\ {\isachardoublequote}mc\ f\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ s\ {\isasymTurnstile}\ f{\isacharbraceright}{\isachardoublequote}\isanewline
nipkow@10123
   176
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ f{\isacharparenright}\isanewline
nipkow@10159
   177
\isacommand{apply}{\isacharparenleft}auto\ simp\ add{\isacharcolon}EF{\isacharunderscore}lemma{\isacharparenright}\isanewline
nipkow@10171
   178
\isacommand{done}%
nipkow@10171
   179
\begin{isamarkuptext}%
nipkow@10171
   180
\begin{exercise}
nipkow@10171
   181
\isa{AX} has a dual operator \isa{EN}\footnote{We cannot use the customary \isa{EX}
nipkow@10983
   182
as that is the \textsc{ascii}-equivalent of \isa{{\isasymexists}}}
nipkow@10171
   183
(``there exists a next state such that'') with the intended semantics
nipkow@10171
   184
\begin{isabelle}%
nipkow@10171
   185
\ \ \ \ \ s\ {\isasymTurnstile}\ EN\ f\ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}%
nipkow@10171
   186
\end{isabelle}
nipkow@10171
   187
Fortunately, \isa{EN\ f} can already be expressed as a PDL formula. How?
nipkow@10171
   188
nipkow@10171
   189
Show that the semantics for \isa{EF} satisfies the following recursion equation:
nipkow@10171
   190
\begin{isabelle}%
nipkow@10171
   191
\ \ \ \ \ s\ {\isasymTurnstile}\ EF\ f\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymor}\ s\ {\isasymTurnstile}\ EN\ {\isacharparenleft}EF\ f{\isacharparenright}{\isacharparenright}%
nipkow@10171
   192
\end{isabelle}
nipkow@10178
   193
\end{exercise}
nipkow@10178
   194
\index{PDL|)}%
nipkow@10171
   195
\end{isamarkuptext}%
nipkow@10171
   196
\end{isabellebody}%
nipkow@10123
   197
%%% Local Variables:
nipkow@10123
   198
%%% mode: latex
nipkow@10123
   199
%%% TeX-master: "root"
nipkow@10123
   200
%%% End: