doc-src/TutorialI/CTL/document/PDL.tex
author nipkow
Thu, 15 Mar 2001 10:41:32 +0100
changeset 11207 08188224c24e
parent 10983 59961d32b1ae
child 11231 30d96882f915
permissions -rw-r--r--
*** empty log message ***
     1 %
     2 \begin{isabellebody}%
     3 \def\isabellecontext{PDL}%
     4 %
     5 \isamarkupsubsection{Propositional Dynamic Logic --- PDL%
     6 }
     7 %
     8 \begin{isamarkuptext}%
     9 \index{PDL|(}
    10 The formulae of PDL\footnote{The customary definition of PDL
    11 \cite{HarelKT-DL} looks quite different from ours, but the two are easily
    12 shown to be equivalent.} are built up from atomic propositions via
    13 negation and conjunction and the two temporal
    14 connectives \isa{AX} and \isa{EF}. Since formulae are essentially
    15 syntax trees, they are naturally modelled as a datatype:%
    16 \end{isamarkuptext}%
    17 \isacommand{datatype}\ formula\ {\isacharequal}\ Atom\ atom\isanewline
    18 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ Neg\ formula\isanewline
    19 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ And\ formula\ formula\isanewline
    20 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ AX\ formula\isanewline
    21 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ EF\ formula%
    22 \begin{isamarkuptext}%
    23 \noindent
    24 This is almost the same as in the boolean expression case study in
    25 \S\ref{sec:boolex}.
    26 
    27 The meaning of these formulae is given by saying which formula is true in
    28 which state:%
    29 \end{isamarkuptext}%
    30 \isacommand{consts}\ valid\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}state\ {\isasymRightarrow}\ formula\ {\isasymRightarrow}\ bool{\isachardoublequote}\ \ \ {\isacharparenleft}{\isachardoublequote}{\isacharparenleft}{\isacharunderscore}\ {\isasymTurnstile}\ {\isacharunderscore}{\isacharparenright}{\isachardoublequote}\ {\isacharbrackleft}{\isadigit{8}}{\isadigit{0}}{\isacharcomma}{\isadigit{8}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{8}}{\isadigit{0}}{\isacharparenright}%
    31 \begin{isamarkuptext}%
    32 \noindent
    33 The syntax annotation allows us to write \isa{s\ {\isasymTurnstile}\ f} instead of
    34 \hbox{\isa{valid\ s\ f}}.
    35 
    36 \smallskip
    37 The definition of \isa{{\isasymTurnstile}} is by recursion over the syntax:%
    38 \end{isamarkuptext}%
    39 \isacommand{primrec}\isanewline
    40 {\isachardoublequote}s\ {\isasymTurnstile}\ Atom\ a\ \ {\isacharequal}\ {\isacharparenleft}a\ {\isasymin}\ L\ s{\isacharparenright}{\isachardoublequote}\isanewline
    41 {\isachardoublequote}s\ {\isasymTurnstile}\ Neg\ f\ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymnot}{\isacharparenleft}s\ {\isasymTurnstile}\ f{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
    42 {\isachardoublequote}s\ {\isasymTurnstile}\ And\ f\ g\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymand}\ s\ {\isasymTurnstile}\ g{\isacharparenright}{\isachardoublequote}\isanewline
    43 {\isachardoublequote}s\ {\isasymTurnstile}\ AX\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ {\isasymlongrightarrow}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}\isanewline
    44 {\isachardoublequote}s\ {\isasymTurnstile}\ EF\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}%
    45 \begin{isamarkuptext}%
    46 \noindent
    47 The first three equations should be self-explanatory. The temporal formula
    48 \isa{AX\ f} means that \isa{f} is true in \emph{A}ll ne\emph{X}t states whereas
    49 \isa{EF\ f} means that there \emph{E}xists some \emph{F}uture state in which \isa{f} is
    50 true. The future is expressed via \isa{\isactrlsup {\isacharasterisk}}, the reflexive transitive
    51 closure. Because of reflexivity, the future includes the present.
    52 
    53 Now we come to the model checker itself. It maps a formula into the set of
    54 states where the formula is true and is defined by recursion over the syntax,
    55 too:%
    56 \end{isamarkuptext}%
    57 \isacommand{consts}\ mc\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}formula\ {\isasymRightarrow}\ state\ set{\isachardoublequote}\isanewline
    58 \isacommand{primrec}\isanewline
    59 {\isachardoublequote}mc{\isacharparenleft}Atom\ a{\isacharparenright}\ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ a\ {\isasymin}\ L\ s{\isacharbraceright}{\isachardoublequote}\isanewline
    60 {\isachardoublequote}mc{\isacharparenleft}Neg\ f{\isacharparenright}\ \ \ {\isacharequal}\ {\isacharminus}mc\ f{\isachardoublequote}\isanewline
    61 {\isachardoublequote}mc{\isacharparenleft}And\ f\ g{\isacharparenright}\ {\isacharequal}\ mc\ f\ {\isasyminter}\ mc\ g{\isachardoublequote}\isanewline
    62 {\isachardoublequote}mc{\isacharparenleft}AX\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ \ {\isasymlongrightarrow}\ t\ {\isasymin}\ mc\ f{\isacharbraceright}{\isachardoublequote}\isanewline
    63 {\isachardoublequote}mc{\isacharparenleft}EF\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}{\isachardoublequote}%
    64 \begin{isamarkuptext}%
    65 \noindent
    66 Only the equation for \isa{EF} deserves some comments. Remember that the
    67 postfix \isa{{\isasyminverse}} and the infix \isa{{\isacharbackquote}{\isacharbackquote}} are predefined and denote the
    68 converse of a relation and the image of a set under a relation.  Thus
    69 \isa{M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T} is the set of all predecessors of \isa{T} and the least
    70 fixed point (\isa{lfp}) of \isa{{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T} is the least set
    71 \isa{T} containing \isa{mc\ f} and all predecessors of \isa{T}. If you
    72 find it hard to see that \isa{mc\ {\isacharparenleft}EF\ f{\isacharparenright}} contains exactly those states from
    73 which there is a path to a state where \isa{f} is true, do not worry --- this
    74 will be proved in a moment.
    75 
    76 First we prove monotonicity of the function inside \isa{lfp}
    77 in order to make sure it really has a least fixed point.%
    78 \end{isamarkuptext}%
    79 \isacommand{lemma}\ mono{\isacharunderscore}ef{\isacharcolon}\ {\isachardoublequote}mono{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
    80 \isacommand{apply}{\isacharparenleft}rule\ monoI{\isacharparenright}\isanewline
    81 \isacommand{apply}\ blast\isanewline
    82 \isacommand{done}%
    83 \begin{isamarkuptext}%
    84 \noindent
    85 Now we can relate model checking and semantics. For the \isa{EF} case we need
    86 a separate lemma:%
    87 \end{isamarkuptext}%
    88 \isacommand{lemma}\ EF{\isacharunderscore}lemma{\isacharcolon}\isanewline
    89 \ \ {\isachardoublequote}lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isachardoublequote}%
    90 \begin{isamarkuptxt}%
    91 \noindent
    92 The equality is proved in the canonical fashion by proving that each set
    93 includes the other; the inclusion is shown pointwise:%
    94 \end{isamarkuptxt}%
    95 \isacommand{apply}{\isacharparenleft}rule\ equalityI{\isacharparenright}\isanewline
    96 \ \isacommand{apply}{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline
    97 \ \isacommand{apply}{\isacharparenleft}simp{\isacharparenright}%
    98 \begin{isamarkuptxt}%
    99 \noindent
   100 Simplification leaves us with the following first subgoal
   101 \begin{isabelle}%
   102 \ {\isadigit{1}}{\isachardot}\ {\isasymAnd}s{\isachardot}\ s\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A%
   103 \end{isabelle}
   104 which is proved by \isa{lfp}-induction:%
   105 \end{isamarkuptxt}%
   106 \ \isacommand{apply}{\isacharparenleft}erule\ lfp{\isacharunderscore}induct{\isacharparenright}\isanewline
   107 \ \ \isacommand{apply}{\isacharparenleft}rule\ mono{\isacharunderscore}ef{\isacharparenright}\isanewline
   108 \ \isacommand{apply}{\isacharparenleft}simp{\isacharparenright}%
   109 \begin{isamarkuptxt}%
   110 \noindent
   111 Having disposed of the monotonicity subgoal,
   112 simplification leaves us with the following main goal
   113 \begin{isabelle}
   114 \ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymor}\isanewline
   115 \ \ \ \ \ \ \ \ \ x\ {\isasymin}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ {\isacharparenleft}lfp\ {\isacharparenleft}\dots{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
   116 \ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
   117 \end{isabelle}
   118 which is proved by \isa{blast} with the help of transitivity of \isa{\isactrlsup {\isacharasterisk}}:%
   119 \end{isamarkuptxt}%
   120 \ \isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtrancl{\isacharunderscore}trans{\isacharparenright}%
   121 \begin{isamarkuptxt}%
   122 We now return to the second set inclusion subgoal, which is again proved
   123 pointwise:%
   124 \end{isamarkuptxt}%
   125 \isacommand{apply}{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline
   126 \isacommand{apply}{\isacharparenleft}simp{\isacharcomma}\ clarify{\isacharparenright}%
   127 \begin{isamarkuptxt}%
   128 \noindent
   129 After simplification and clarification we are left with
   130 \begin{isabelle}%
   131 \ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ t\ {\isasymin}\ A{\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}%
   132 \end{isabelle}
   133 This goal is proved by induction on \isa{{\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}}. But since the model
   134 checker works backwards (from \isa{t} to \isa{s}), we cannot use the
   135 induction theorem \isa{rtrancl{\isacharunderscore}induct} because it works in the
   136 forward direction. Fortunately the converse induction theorem
   137 \isa{converse{\isacharunderscore}rtrancl{\isacharunderscore}induct} already exists:
   138 \begin{isabelle}%
   139 \ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}a{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ P\ b{\isacharsemicolon}\isanewline
   140 \isaindent{\ \ \ \ \ \ \ \ }{\isasymAnd}y\ z{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}z{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ P\ z{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ y{\isasymrbrakk}\isanewline
   141 \isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ P\ a%
   142 \end{isabelle}
   143 It says that if \isa{{\isacharparenleft}a{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}} and we know \isa{P\ b} then we can infer
   144 \isa{P\ a} provided each step backwards from a predecessor \isa{z} of
   145 \isa{b} preserves \isa{P}.%
   146 \end{isamarkuptxt}%
   147 \isacommand{apply}{\isacharparenleft}erule\ converse{\isacharunderscore}rtrancl{\isacharunderscore}induct{\isacharparenright}%
   148 \begin{isamarkuptxt}%
   149 \noindent
   150 The base case
   151 \begin{isabelle}%
   152 \ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ t\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}%
   153 \end{isabelle}
   154 is solved by unrolling \isa{lfp} once%
   155 \end{isamarkuptxt}%
   156 \ \isacommand{apply}{\isacharparenleft}rule\ ssubst{\isacharbrackleft}OF\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}ef{\isacharbrackright}{\isacharbrackright}{\isacharparenright}%
   157 \begin{isamarkuptxt}%
   158 \begin{isabelle}%
   159 \ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ t\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}%
   160 \end{isabelle}
   161 and disposing of the resulting trivial subgoal automatically:%
   162 \end{isamarkuptxt}%
   163 \ \isacommand{apply}{\isacharparenleft}blast{\isacharparenright}%
   164 \begin{isamarkuptxt}%
   165 \noindent
   166 The proof of the induction step is identical to the one for the base case:%
   167 \end{isamarkuptxt}%
   168 \isacommand{apply}{\isacharparenleft}rule\ ssubst{\isacharbrackleft}OF\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}ef{\isacharbrackright}{\isacharbrackright}{\isacharparenright}\isanewline
   169 \isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
   170 \isacommand{done}%
   171 \begin{isamarkuptext}%
   172 The main theorem is proved in the familiar manner: induction followed by
   173 \isa{auto} augmented with the lemma as a simplification rule.%
   174 \end{isamarkuptext}%
   175 \isacommand{theorem}\ {\isachardoublequote}mc\ f\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ s\ {\isasymTurnstile}\ f{\isacharbraceright}{\isachardoublequote}\isanewline
   176 \isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ f{\isacharparenright}\isanewline
   177 \isacommand{apply}{\isacharparenleft}auto\ simp\ add{\isacharcolon}EF{\isacharunderscore}lemma{\isacharparenright}\isanewline
   178 \isacommand{done}%
   179 \begin{isamarkuptext}%
   180 \begin{exercise}
   181 \isa{AX} has a dual operator \isa{EN}\footnote{We cannot use the customary \isa{EX}
   182 as that is the \textsc{ascii}-equivalent of \isa{{\isasymexists}}}
   183 (``there exists a next state such that'') with the intended semantics
   184 \begin{isabelle}%
   185 \ \ \ \ \ s\ {\isasymTurnstile}\ EN\ f\ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}%
   186 \end{isabelle}
   187 Fortunately, \isa{EN\ f} can already be expressed as a PDL formula. How?
   188 
   189 Show that the semantics for \isa{EF} satisfies the following recursion equation:
   190 \begin{isabelle}%
   191 \ \ \ \ \ s\ {\isasymTurnstile}\ EF\ f\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymor}\ s\ {\isasymTurnstile}\ EN\ {\isacharparenleft}EF\ f{\isacharparenright}{\isacharparenright}%
   192 \end{isabelle}
   193 \end{exercise}
   194 \index{PDL|)}%
   195 \end{isamarkuptext}%
   196 \end{isabellebody}%
   197 %%% Local Variables:
   198 %%% mode: latex
   199 %%% TeX-master: "root"
   200 %%% End: