doc-src/Ref/thm.tex
author wenzelm
Wed, 12 Jul 2000 16:44:34 +0200
changeset 9288 06a55195741b
parent 9258 2121ff73a37d
child 9499 7e6988210488
permissions -rw-r--r--
infix 'OF' is a version of 'MRS' with more appropriate argument order;
lcp@104
     1
%% $Id$
lcp@104
     2
\chapter{Theorems and Forward Proof}
lcp@104
     3
\index{theorems|(}
lcp@326
     4
wenzelm@3108
     5
Theorems, which represent the axioms, theorems and rules of
wenzelm@3108
     6
object-logics, have type \mltydx{thm}.  This chapter begins by
wenzelm@3108
     7
describing operations that print theorems and that join them in
wenzelm@3108
     8
forward proof.  Most theorem operations are intended for advanced
wenzelm@3108
     9
applications, such as programming new proof procedures.  Many of these
wenzelm@3108
    10
operations refer to signatures, certified terms and certified types,
wenzelm@3108
    11
which have the \ML{} types {\tt Sign.sg}, {\tt cterm} and {\tt ctyp}
wenzelm@3108
    12
and are discussed in Chapter~\ref{theories}.  Beginning users should
wenzelm@3108
    13
ignore such complexities --- and skip all but the first section of
wenzelm@3108
    14
this chapter.
lcp@104
    15
lcp@104
    16
The theorem operations do not print error messages.  Instead, they raise
lcp@326
    17
exception~\xdx{THM}\@.  Use \ttindex{print_exn} to display
lcp@104
    18
exceptions nicely:
lcp@104
    19
\begin{ttbox} 
lcp@104
    20
allI RS mp  handle e => print_exn e;
lcp@104
    21
{\out Exception THM raised:}
lcp@104
    22
{\out RSN: no unifiers -- premise 1}
lcp@104
    23
{\out (!!x. ?P(x)) ==> ALL x. ?P(x)}
lcp@104
    24
{\out [| ?P --> ?Q; ?P |] ==> ?Q}
lcp@104
    25
{\out}
lcp@104
    26
{\out uncaught exception THM}
lcp@104
    27
\end{ttbox}
lcp@104
    28
lcp@104
    29
lcp@104
    30
\section{Basic operations on theorems}
lcp@104
    31
\subsection{Pretty-printing a theorem}
lcp@326
    32
\index{theorems!printing of}
lcp@104
    33
\begin{ttbox} 
lcp@326
    34
prth          : thm -> thm
lcp@326
    35
prths         : thm list -> thm list
wenzelm@4276
    36
prthq         : thm Seq.seq -> thm Seq.seq
lcp@326
    37
print_thm     : thm -> unit
lcp@326
    38
print_goals   : int -> thm -> unit
lcp@326
    39
string_of_thm : thm -> string
lcp@104
    40
\end{ttbox}
lcp@326
    41
The first three commands are for interactive use.  They are identity
lcp@326
    42
functions that display, then return, their argument.  The \ML{} identifier
lcp@326
    43
{\tt it} will refer to the value just displayed.
lcp@326
    44
lcp@326
    45
The others are for use in programs.  Functions with result type {\tt unit}
lcp@326
    46
are convenient for imperative programming.
lcp@326
    47
lcp@326
    48
\begin{ttdescription}
lcp@104
    49
\item[\ttindexbold{prth} {\it thm}]  
lcp@104
    50
prints {\it thm\/} at the terminal.
lcp@104
    51
lcp@104
    52
\item[\ttindexbold{prths} {\it thms}]  
lcp@104
    53
prints {\it thms}, a list of theorems.
lcp@104
    54
lcp@104
    55
\item[\ttindexbold{prthq} {\it thmq}]  
lcp@104
    56
prints {\it thmq}, a sequence of theorems.  It is useful for inspecting
lcp@104
    57
the output of a tactic.
lcp@104
    58
lcp@104
    59
\item[\ttindexbold{print_thm} {\it thm}]  
lcp@104
    60
prints {\it thm\/} at the terminal.
lcp@104
    61
lcp@104
    62
\item[\ttindexbold{print_goals} {\it limit\/} {\it thm}]  
lcp@104
    63
prints {\it thm\/} in goal style, with the premises as subgoals.  It prints
lcp@104
    64
at most {\it limit\/} subgoals.  The subgoal module calls {\tt print_goals}
lcp@104
    65
to display proof states.
lcp@104
    66
lcp@104
    67
\item[\ttindexbold{string_of_thm} {\it thm}]  
lcp@104
    68
converts {\it thm\/} to a string.
lcp@326
    69
\end{ttdescription}
lcp@104
    70
lcp@104
    71
lcp@326
    72
\subsection{Forward proof: joining rules by resolution}
lcp@326
    73
\index{theorems!joining by resolution}
lcp@326
    74
\index{resolution}\index{forward proof}
lcp@104
    75
\begin{ttbox} 
paulson@8136
    76
RSN : thm * (int * thm) -> thm                 \hfill\textbf{infix}
paulson@8136
    77
RS  : thm * thm -> thm                         \hfill\textbf{infix}
paulson@8136
    78
MRS : thm list * thm -> thm                    \hfill\textbf{infix}
wenzelm@9288
    79
OF  : thm * thm list -> thm                    \hfill\textbf{infix}
paulson@8136
    80
RLN : thm list * (int * thm list) -> thm list  \hfill\textbf{infix}
paulson@8136
    81
RL  : thm list * thm list -> thm list          \hfill\textbf{infix}
paulson@8136
    82
MRL : thm list list * thm list -> thm list     \hfill\textbf{infix}
lcp@104
    83
\end{ttbox}
lcp@326
    84
Joining rules together is a simple way of deriving new rules.  These
lcp@876
    85
functions are especially useful with destruction rules.  To store
lcp@876
    86
the result in the theorem database, use \ttindex{bind_thm}
lcp@876
    87
(\S\ref{ExtractingAndStoringTheProvedTheorem}). 
lcp@326
    88
\begin{ttdescription}
lcp@104
    89
\item[\tt$thm@1$ RSN $(i,thm@2)$] \indexbold{*RSN} 
lcp@326
    90
  resolves the conclusion of $thm@1$ with the $i$th premise of~$thm@2$.
lcp@326
    91
  Unless there is precisely one resolvent it raises exception
lcp@326
    92
  \xdx{THM}; in that case, use {\tt RLN}.
lcp@104
    93
lcp@104
    94
\item[\tt$thm@1$ RS $thm@2$] \indexbold{*RS} 
lcp@104
    95
abbreviates \hbox{\tt$thm@1$ RSN $(1,thm@2)$}.  Thus, it resolves the
lcp@104
    96
conclusion of $thm@1$ with the first premise of~$thm@2$.
lcp@104
    97
lcp@104
    98
\item[\tt {$[thm@1,\ldots,thm@n]$} MRS $thm$] \indexbold{*MRS} 
lcp@332
    99
  uses {\tt RSN} to resolve $thm@i$ against premise~$i$ of $thm$, for
lcp@104
   100
  $i=n$, \ldots,~1.  This applies $thm@n$, \ldots, $thm@1$ to the first $n$
lcp@104
   101
  premises of $thm$.  Because the theorems are used from right to left, it
lcp@104
   102
  does not matter if the $thm@i$ create new premises.  {\tt MRS} is useful
lcp@104
   103
  for expressing proof trees.
wenzelm@9288
   104
  
wenzelm@9288
   105
\item[\tt {$thm$ OF $[thm@1,\ldots,thm@n]$}] \indexbold{*OF} is the same as
wenzelm@9288
   106
  \texttt{$[thm@1,\ldots,thm@n]$ MRS $thm$}, with slightly more readable
wenzelm@9288
   107
  argument order, though.
lcp@104
   108
wenzelm@151
   109
\item[\tt$thms@1$ RLN $(i,thms@2)$] \indexbold{*RLN} 
lcp@326
   110
  joins lists of theorems.  For every $thm@1$ in $thms@1$ and $thm@2$ in
lcp@326
   111
  $thms@2$, it resolves the conclusion of $thm@1$ with the $i$th premise
lcp@326
   112
  of~$thm@2$, accumulating the results. 
lcp@104
   113
wenzelm@151
   114
\item[\tt$thms@1$ RL $thms@2$] \indexbold{*RL} 
wenzelm@151
   115
abbreviates \hbox{\tt$thms@1$ RLN $(1,thms@2)$}. 
lcp@104
   116
lcp@104
   117
\item[\tt {$[thms@1,\ldots,thms@n]$} MRL $thms$] \indexbold{*MRL} 
lcp@104
   118
is analogous to {\tt MRS}, but combines theorem lists rather than theorems.
lcp@104
   119
It too is useful for expressing proof trees.
lcp@326
   120
\end{ttdescription}
lcp@104
   121
lcp@104
   122
lcp@104
   123
\subsection{Expanding definitions in theorems}
lcp@326
   124
\index{meta-rewriting!in theorems}
lcp@104
   125
\begin{ttbox} 
lcp@104
   126
rewrite_rule       : thm list -> thm -> thm
lcp@104
   127
rewrite_goals_rule : thm list -> thm -> thm
lcp@104
   128
\end{ttbox}
lcp@326
   129
\begin{ttdescription}
lcp@104
   130
\item[\ttindexbold{rewrite_rule} {\it defs} {\it thm}]  
lcp@104
   131
unfolds the {\it defs} throughout the theorem~{\it thm}.
lcp@104
   132
lcp@104
   133
\item[\ttindexbold{rewrite_goals_rule} {\it defs} {\it thm}]  
paulson@8136
   134
unfolds the {\it defs} in the premises of~{\it thm}, but it leaves the
paulson@8136
   135
conclusion unchanged.  This rule is the basis for \ttindex{rewrite_goals_tac},
paulson@8136
   136
but it serves little purpose in forward proof.
lcp@326
   137
\end{ttdescription}
lcp@104
   138
lcp@104
   139
paulson@4383
   140
\subsection{Instantiating unknowns in a theorem} \label{sec:instantiate}
lcp@326
   141
\index{instantiation}
paulson@8136
   142
\begin{alltt}\footnotesize
paulson@4383
   143
read_instantiate    :                (string*string) list -> thm -> thm
paulson@4383
   144
read_instantiate_sg :     Sign.sg -> (string*string) list -> thm -> thm
paulson@4383
   145
cterm_instantiate   :                  (cterm*cterm) list -> thm -> thm
paulson@4383
   146
instantiate'      : ctyp option list -> cterm option list -> thm -> thm
paulson@8136
   147
\end{alltt}
lcp@104
   148
These meta-rules instantiate type and term unknowns in a theorem.  They are
lcp@104
   149
occasionally useful.  They can prevent difficulties with higher-order
lcp@104
   150
unification, and define specialized versions of rules.
lcp@326
   151
\begin{ttdescription}
lcp@104
   152
\item[\ttindexbold{read_instantiate} {\it insts} {\it thm}] 
lcp@104
   153
processes the instantiations {\it insts} and instantiates the rule~{\it
lcp@104
   154
thm}.  The processing of instantiations is described
lcp@326
   155
in \S\ref{res_inst_tac}, under {\tt res_inst_tac}.  
lcp@104
   156
lcp@104
   157
Use {\tt res_inst_tac}, not {\tt read_instantiate}, to instantiate a rule
lcp@104
   158
and refine a particular subgoal.  The tactic allows instantiation by the
lcp@104
   159
subgoal's parameters, and reads the instantiations using the signature
lcp@326
   160
associated with the proof state.
lcp@104
   161
lcp@326
   162
Use {\tt read_instantiate_sg} below if {\it insts\/} appears to be treated
lcp@326
   163
incorrectly.
lcp@326
   164
lcp@326
   165
\item[\ttindexbold{read_instantiate_sg} {\it sg} {\it insts} {\it thm}]
paulson@4597
   166
  is like \texttt{read_instantiate {\it insts}~{\it thm}}, but it reads
lcp@326
   167
  the instantiations under signature~{\it sg}.  This is necessary to
lcp@326
   168
  instantiate a rule from a general theory, such as first-order logic,
lcp@326
   169
  using the notation of some specialized theory.  Use the function {\tt
lcp@326
   170
    sign_of} to get a theory's signature.
lcp@104
   171
lcp@104
   172
\item[\ttindexbold{cterm_instantiate} {\it ctpairs} {\it thm}] 
lcp@104
   173
is similar to {\tt read_instantiate}, but the instantiations are provided
lcp@104
   174
as pairs of certified terms, not as strings to be read.
wenzelm@4317
   175
wenzelm@4317
   176
\item[\ttindexbold{instantiate'} {\it ctyps} {\it cterms} {\it thm}]
wenzelm@4317
   177
  instantiates {\it thm} according to the positional arguments {\it
wenzelm@4317
   178
    ctyps} and {\it cterms}.  Counting from left to right, schematic
wenzelm@4317
   179
  variables $?x$ are either replaced by $t$ for any argument
wenzelm@4317
   180
  \texttt{Some\(\;t\)}, or left unchanged in case of \texttt{None} or
wenzelm@4317
   181
  if the end of the argument list is encountered.  Types are
wenzelm@4317
   182
  instantiated before terms.
wenzelm@4317
   183
lcp@326
   184
\end{ttdescription}
lcp@104
   185
lcp@104
   186
clasohm@866
   187
\subsection{Miscellaneous forward rules}\label{MiscellaneousForwardRules}
lcp@326
   188
\index{theorems!standardizing}
lcp@104
   189
\begin{ttbox} 
paulson@8969
   190
standard         :               thm -> thm
paulson@8969
   191
zero_var_indexes :               thm -> thm
paulson@8969
   192
make_elim        :               thm -> thm
paulson@8969
   193
rule_by_tactic   :     tactic -> thm -> thm
paulson@8969
   194
rotate_prems     :        int -> thm -> thm
paulson@8969
   195
permute_prems    : int -> int -> thm -> thm
lcp@104
   196
\end{ttbox}
lcp@326
   197
\begin{ttdescription}
wenzelm@3108
   198
\item[\ttindexbold{standard} $thm$] puts $thm$ into the standard form
wenzelm@3108
   199
  of object-rules.  It discharges all meta-assumptions, replaces free
wenzelm@3108
   200
  variables by schematic variables, renames schematic variables to
wenzelm@3108
   201
  have subscript zero, also strips outer (meta) quantifiers and
wenzelm@3108
   202
  removes dangling sort hypotheses.
lcp@104
   203
lcp@104
   204
\item[\ttindexbold{zero_var_indexes} $thm$] 
lcp@104
   205
makes all schematic variables have subscript zero, renaming them to avoid
lcp@104
   206
clashes. 
lcp@104
   207
lcp@104
   208
\item[\ttindexbold{make_elim} $thm$] 
lcp@104
   209
\index{rules!converting destruction to elimination}
paulson@8136
   210
converts $thm$, which should be  a destruction rule of the form
paulson@8136
   211
$\List{P@1;\ldots;P@m}\Imp 
lcp@104
   212
Q$, to the elimination rule $\List{P@1; \ldots; P@m; Q\Imp R}\Imp R$.  This
lcp@104
   213
is the basis for destruct-resolution: {\tt dresolve_tac}, etc.
lcp@104
   214
lcp@104
   215
\item[\ttindexbold{rule_by_tactic} {\it tac} {\it thm}] 
lcp@104
   216
  applies {\it tac\/} to the {\it thm}, freezing its variables first, then
lcp@104
   217
  yields the proof state returned by the tactic.  In typical usage, the
lcp@104
   218
  {\it thm\/} represents an instance of a rule with several premises, some
lcp@104
   219
  with contradictory assumptions (because of the instantiation).  The
lcp@104
   220
  tactic proves those subgoals and does whatever else it can, and returns
lcp@104
   221
  whatever is left.
paulson@4607
   222
  
paulson@4607
   223
\item[\ttindexbold{rotate_prems} $k$ $thm$] rotates the premises of $thm$ to
paulson@8969
   224
  the left by~$k$ positions (to the right if $k<0$).  It simply calls
paulson@8969
   225
  \texttt{permute_prems}, below, with $j=0$.  Used with
paulson@8969
   226
  \texttt{eresolve_tac}\index{*eresolve_tac!on other than first premise}, it
paulson@8969
   227
  gives the effect of applying the tactic to some other premise of $thm$ than
paulson@8969
   228
  the first.
paulson@8969
   229
paulson@8969
   230
\item[\ttindexbold{permute_prems} $j$ $k$ $thm$] rotates the premises of $thm$
paulson@8969
   231
  leaving the first $j$ premises unchanged.  It
paulson@8969
   232
  requires $0\leq j\leq n$, where $n$ is the number of premises.  If $k$ is
paulson@8969
   233
  positive then it rotates the remaining $n-j$ premises to the left; if $k$ is
paulson@8969
   234
  negative then it rotates the premises to the right.
lcp@326
   235
\end{ttdescription}
lcp@104
   236
lcp@104
   237
lcp@104
   238
\subsection{Taking a theorem apart}
lcp@326
   239
\index{theorems!taking apart}
lcp@104
   240
\index{flex-flex constraints}
lcp@104
   241
\begin{ttbox} 
wenzelm@4317
   242
cprop_of      : thm -> cterm
lcp@104
   243
concl_of      : thm -> term
lcp@104
   244
prems_of      : thm -> term list
wenzelm@4317
   245
cprems_of     : thm -> cterm list
lcp@104
   246
nprems_of     : thm -> int
paulson@4383
   247
tpairs_of     : thm -> (term*term) list
wenzelm@4317
   248
sign_of_thm   : thm -> Sign.sg
clasohm@866
   249
theory_of_thm : thm -> theory
paulson@8136
   250
dest_state : thm * int -> (term*term) list * term list * term * term
paulson@8136
   251
rep_thm    : thm -> \{sign_ref: Sign.sg_ref, der: deriv, maxidx: int,
paulson@8136
   252
                     shyps: sort list, hyps: term list, prop: term\}
paulson@8136
   253
crep_thm   : thm -> \{sign_ref: Sign.sg_ref, der: deriv, maxidx: int,
paulson@8136
   254
                     shyps: sort list, hyps: cterm list, prop:{\ts}cterm\}
lcp@104
   255
\end{ttbox}
lcp@326
   256
\begin{ttdescription}
wenzelm@4317
   257
\item[\ttindexbold{cprop_of} $thm$] returns the statement of $thm$ as
wenzelm@4317
   258
  a certified term.
wenzelm@4317
   259
  
wenzelm@4317
   260
\item[\ttindexbold{concl_of} $thm$] returns the conclusion of $thm$ as
wenzelm@4317
   261
  a term.
wenzelm@4317
   262
  
wenzelm@4317
   263
\item[\ttindexbold{prems_of} $thm$] returns the premises of $thm$ as a
wenzelm@4317
   264
  list of terms.
wenzelm@4317
   265
  
wenzelm@4317
   266
\item[\ttindexbold{cprems_of} $thm$] returns the premises of $thm$ as
wenzelm@4317
   267
  a list of certified terms.
lcp@104
   268
lcp@104
   269
\item[\ttindexbold{nprems_of} $thm$] 
lcp@286
   270
returns the number of premises in $thm$, and is equivalent to {\tt
wenzelm@4317
   271
  length~(prems_of~$thm$)}.
lcp@104
   272
wenzelm@4317
   273
\item[\ttindexbold{tpairs_of} $thm$] returns the flex-flex constraints
wenzelm@4317
   274
  of $thm$.
wenzelm@4317
   275
  
wenzelm@4317
   276
\item[\ttindexbold{sign_of_thm} $thm$] returns the signature
wenzelm@4317
   277
  associated with $thm$.
wenzelm@4317
   278
  
wenzelm@4317
   279
\item[\ttindexbold{theory_of_thm} $thm$] returns the theory associated
wenzelm@4317
   280
  with $thm$.  Note that this does a lookup in Isabelle's global
wenzelm@4317
   281
  database of loaded theories.
clasohm@866
   282
lcp@104
   283
\item[\ttindexbold{dest_state} $(thm,i)$] 
lcp@104
   284
decomposes $thm$ as a tuple containing a list of flex-flex constraints, a
lcp@104
   285
list of the subgoals~1 to~$i-1$, subgoal~$i$, and the rest of the theorem
lcp@104
   286
(this will be an implication if there are more than $i$ subgoals).
lcp@104
   287
wenzelm@4317
   288
\item[\ttindexbold{rep_thm} $thm$] decomposes $thm$ as a record
wenzelm@4317
   289
  containing the statement of~$thm$ ({\tt prop}), its list of
wenzelm@4317
   290
  meta-assumptions ({\tt hyps}), its derivation ({\tt der}), a bound
wenzelm@4317
   291
  on the maximum subscript of its unknowns ({\tt maxidx}), and a
wenzelm@4317
   292
  reference to its signature ({\tt sign_ref}).  The {\tt shyps} field
wenzelm@4317
   293
  is discussed below.
wenzelm@4317
   294
  
wenzelm@4317
   295
\item[\ttindexbold{crep_thm} $thm$] like \texttt{rep_thm}, but returns
wenzelm@4317
   296
  the hypotheses and statement as certified terms.
wenzelm@4317
   297
lcp@326
   298
\end{ttdescription}
lcp@104
   299
lcp@104
   300
wenzelm@5777
   301
\subsection{*Sort hypotheses} \label{sec:sort-hyps}
paulson@2040
   302
\index{sort hypotheses}
paulson@2040
   303
\begin{ttbox} 
wenzelm@7644
   304
strip_shyps         : thm -> thm
wenzelm@7644
   305
strip_shyps_warning : thm -> thm
paulson@2040
   306
\end{ttbox}
paulson@2040
   307
paulson@2044
   308
Isabelle's type variables are decorated with sorts, constraining them to
paulson@2044
   309
certain ranges of types.  This has little impact when sorts only serve for
paulson@2044
   310
syntactic classification of types --- for example, FOL distinguishes between
paulson@2044
   311
terms and other types.  But when type classes are introduced through axioms,
paulson@2044
   312
this may result in some sorts becoming {\em empty\/}: where one cannot exhibit
wenzelm@4317
   313
a type belonging to it because certain sets of axioms are unsatisfiable.
paulson@2040
   314
wenzelm@3108
   315
If a theorem contains a type variable that is constrained by an empty
paulson@3485
   316
sort, then that theorem has no instances.  It is basically an instance
wenzelm@3108
   317
of {\em ex falso quodlibet}.  But what if it is used to prove another
wenzelm@3108
   318
theorem that no longer involves that sort?  The latter theorem holds
wenzelm@3108
   319
only if under an additional non-emptiness assumption.
paulson@2040
   320
paulson@3485
   321
Therefore, Isabelle's theorems carry around sort hypotheses.  The {\tt
paulson@2044
   322
shyps} field is a list of sorts occurring in type variables in the current
paulson@2044
   323
{\tt prop} and {\tt hyps} fields.  It may also includes sorts used in the
paulson@2044
   324
theorem's proof that no longer appear in the {\tt prop} or {\tt hyps}
paulson@3485
   325
fields --- so-called {\em dangling\/} sort constraints.  These are the
paulson@2044
   326
critical ones, asserting non-emptiness of the corresponding sorts.
paulson@2044
   327
 
wenzelm@7644
   328
Isabelle automatically removes extraneous sorts from the {\tt shyps} field at
wenzelm@7644
   329
the end of a proof, provided that non-emptiness can be established by looking
wenzelm@7644
   330
at the theorem's signature: from the {\tt classes} and {\tt arities}
wenzelm@7644
   331
information.  This operation is performed by \texttt{strip_shyps} and
wenzelm@7644
   332
\texttt{strip_shyps_warning}.
wenzelm@7644
   333
wenzelm@7644
   334
\begin{ttdescription}
wenzelm@7644
   335
  
wenzelm@7644
   336
\item[\ttindexbold{strip_shyps} $thm$] removes any extraneous sort hypotheses
wenzelm@7644
   337
  that can be witnessed from the type signature.
wenzelm@7644
   338
  
wenzelm@7644
   339
\item[\ttindexbold{strip_shyps_warning}] is like \texttt{strip_shyps}, but
wenzelm@7644
   340
  issues a warning message of any pending sort hypotheses that do not have a
wenzelm@7644
   341
  (syntactic) witness.
wenzelm@7644
   342
wenzelm@7644
   343
\end{ttdescription}
paulson@2040
   344
paulson@2040
   345
lcp@104
   346
\subsection{Tracing flags for unification}
lcp@326
   347
\index{tracing!of unification}
lcp@104
   348
\begin{ttbox} 
paulson@8136
   349
Unify.trace_simp   : bool ref \hfill\textbf{initially false}
paulson@8136
   350
Unify.trace_types  : bool ref \hfill\textbf{initially false}
paulson@8136
   351
Unify.trace_bound  : int ref \hfill\textbf{initially 10}
paulson@8136
   352
Unify.search_bound : int ref \hfill\textbf{initially 20}
lcp@104
   353
\end{ttbox}
lcp@104
   354
Tracing the search may be useful when higher-order unification behaves
lcp@104
   355
unexpectedly.  Letting {\tt res_inst_tac} circumvent the problem is easier,
lcp@104
   356
though.
lcp@326
   357
\begin{ttdescription}
wenzelm@4317
   358
\item[set Unify.trace_simp;] 
lcp@104
   359
causes tracing of the simplification phase.
lcp@104
   360
wenzelm@4317
   361
\item[set Unify.trace_types;] 
lcp@104
   362
generates warnings of incompleteness, when unification is not considering
lcp@104
   363
all possible instantiations of type unknowns.
lcp@104
   364
lcp@326
   365
\item[Unify.trace_bound := $n$;] 
lcp@104
   366
causes unification to print tracing information once it reaches depth~$n$.
lcp@104
   367
Use $n=0$ for full tracing.  At the default value of~10, tracing
lcp@104
   368
information is almost never printed.
lcp@104
   369
paulson@8136
   370
\item[Unify.search_bound := $n$;] prevents unification from
paulson@8136
   371
  searching past the depth~$n$.  Because of this bound, higher-order
wenzelm@4317
   372
  unification cannot return an infinite sequence, though it can return
paulson@8136
   373
  an exponentially long one.  The search rarely approaches the default value
wenzelm@4317
   374
  of~20.  If the search is cut off, unification prints a warning
wenzelm@4317
   375
  \texttt{Unification bound exceeded}.
lcp@326
   376
\end{ttdescription}
lcp@104
   377
lcp@104
   378
wenzelm@4317
   379
\section{*Primitive meta-level inference rules}
lcp@104
   380
\index{meta-rules|(}
wenzelm@4317
   381
These implement the meta-logic in the style of the {\sc lcf} system,
wenzelm@4317
   382
as functions from theorems to theorems.  They are, rarely, useful for
wenzelm@4317
   383
deriving results in the pure theory.  Mainly, they are included for
wenzelm@4317
   384
completeness, and most users should not bother with them.  The
wenzelm@4317
   385
meta-rules raise exception \xdx{THM} to signal malformed premises,
wenzelm@4317
   386
incompatible signatures and similar errors.
lcp@104
   387
lcp@326
   388
\index{meta-assumptions}
lcp@104
   389
The meta-logic uses natural deduction.  Each theorem may depend on
lcp@332
   390
meta-level assumptions.  Certain rules, such as $({\Imp}I)$,
lcp@104
   391
discharge assumptions; in most other rules, the conclusion depends on all
lcp@104
   392
of the assumptions of the premises.  Formally, the system works with
lcp@104
   393
assertions of the form
lcp@104
   394
\[ \phi \quad [\phi@1,\ldots,\phi@n], \]
wenzelm@3108
   395
where $\phi@1$,~\ldots,~$\phi@n$ are the assumptions.  This can be
wenzelm@3108
   396
also read as a single conclusion sequent $\phi@1,\ldots,\phi@n \vdash
paulson@3485
   397
\phi$.  Do not confuse meta-level assumptions with the object-level
wenzelm@3108
   398
assumptions in a subgoal, which are represented in the meta-logic
wenzelm@3108
   399
using~$\Imp$.
lcp@104
   400
lcp@104
   401
Each theorem has a signature.  Certified terms have a signature.  When a
lcp@104
   402
rule takes several premises and certified terms, it merges the signatures
lcp@104
   403
to make a signature for the conclusion.  This fails if the signatures are
lcp@104
   404
incompatible. 
lcp@104
   405
wenzelm@5777
   406
\medskip
wenzelm@5777
   407
wenzelm@5777
   408
The following presentation of primitive rules ignores sort
wenzelm@5777
   409
hypotheses\index{sort hypotheses} (see also \S\ref{sec:sort-hyps}).  These are
wenzelm@5777
   410
handled transparently by the logic implementation.
wenzelm@5777
   411
wenzelm@5777
   412
\bigskip
wenzelm@5777
   413
lcp@326
   414
\index{meta-implication}
paulson@8136
   415
The \textbf{implication} rules are $({\Imp}I)$
lcp@104
   416
and $({\Imp}E)$:
lcp@104
   417
\[ \infer[({\Imp}I)]{\phi\Imp \psi}{\infer*{\psi}{[\phi]}}  \qquad
lcp@104
   418
   \infer[({\Imp}E)]{\psi}{\phi\Imp \psi & \phi}  \]
lcp@104
   419
lcp@326
   420
\index{meta-equality}
lcp@104
   421
Equality of truth values means logical equivalence:
wenzelm@3524
   422
\[ \infer[({\equiv}I)]{\phi\equiv\psi}{\phi\Imp\psi &
wenzelm@3524
   423
                                       \psi\Imp\phi}
lcp@104
   424
   \qquad
lcp@104
   425
   \infer[({\equiv}E)]{\psi}{\phi\equiv \psi & \phi}   \]
lcp@104
   426
paulson@8136
   427
The \textbf{equality} rules are reflexivity, symmetry, and transitivity:
lcp@104
   428
\[ {a\equiv a}\,(refl)  \qquad
lcp@104
   429
   \infer[(sym)]{b\equiv a}{a\equiv b}  \qquad
lcp@104
   430
   \infer[(trans)]{a\equiv c}{a\equiv b & b\equiv c}   \]
lcp@104
   431
lcp@326
   432
\index{lambda calc@$\lambda$-calculus}
lcp@104
   433
The $\lambda$-conversions are $\alpha$-conversion, $\beta$-conversion, and
lcp@104
   434
extensionality:\footnote{$\alpha$-conversion holds if $y$ is not free
lcp@104
   435
in~$a$; $(ext)$ holds if $x$ is not free in the assumptions, $f$, or~$g$.}
lcp@104
   436
\[ {(\lambda x.a) \equiv (\lambda y.a[y/x])}    \qquad
lcp@104
   437
   {((\lambda x.a)(b)) \equiv a[b/x]}           \qquad
lcp@104
   438
   \infer[(ext)]{f\equiv g}{f(x) \equiv g(x)}   \]
lcp@104
   439
paulson@8136
   440
The \textbf{abstraction} and \textbf{combination} rules let conversions be
lcp@332
   441
applied to subterms:\footnote{Abstraction holds if $x$ is not free in the
lcp@104
   442
assumptions.}
lcp@104
   443
\[  \infer[(abs)]{(\lambda x.a) \equiv (\lambda x.b)}{a\equiv b}   \qquad
lcp@104
   444
    \infer[(comb)]{f(a)\equiv g(b)}{f\equiv g & a\equiv b}   \]
lcp@104
   445
lcp@326
   446
\index{meta-quantifiers}
paulson@8136
   447
The \textbf{universal quantification} rules are $(\Forall I)$ and $(\Forall
lcp@104
   448
E)$:\footnote{$(\Forall I)$ holds if $x$ is not free in the assumptions.}
lcp@104
   449
\[ \infer[(\Forall I)]{\Forall x.\phi}{\phi}        \qquad
lcp@286
   450
   \infer[(\Forall E)]{\phi[b/x]}{\Forall x.\phi}   \]
lcp@104
   451
lcp@104
   452
lcp@326
   453
\subsection{Assumption rule}
lcp@326
   454
\index{meta-assumptions}
lcp@104
   455
\begin{ttbox} 
wenzelm@3108
   456
assume: cterm -> thm
lcp@104
   457
\end{ttbox}
lcp@326
   458
\begin{ttdescription}
lcp@104
   459
\item[\ttindexbold{assume} $ct$] 
lcp@332
   460
makes the theorem \(\phi \;[\phi]\), where $\phi$ is the value of~$ct$.
lcp@104
   461
The rule checks that $ct$ has type $prop$ and contains no unknowns, which
lcp@332
   462
are not allowed in assumptions.
lcp@326
   463
\end{ttdescription}
lcp@104
   464
lcp@326
   465
\subsection{Implication rules}
lcp@326
   466
\index{meta-implication}
lcp@104
   467
\begin{ttbox} 
wenzelm@3108
   468
implies_intr      : cterm -> thm -> thm
wenzelm@3108
   469
implies_intr_list : cterm list -> thm -> thm
lcp@104
   470
implies_intr_hyps : thm -> thm
lcp@104
   471
implies_elim      : thm -> thm -> thm
lcp@104
   472
implies_elim_list : thm -> thm list -> thm
lcp@104
   473
\end{ttbox}
lcp@326
   474
\begin{ttdescription}
lcp@104
   475
\item[\ttindexbold{implies_intr} $ct$ $thm$] 
lcp@104
   476
is $({\Imp}I)$, where $ct$ is the assumption to discharge, say~$\phi$.  It
lcp@332
   477
maps the premise~$\psi$ to the conclusion $\phi\Imp\psi$, removing all
lcp@332
   478
occurrences of~$\phi$ from the assumptions.  The rule checks that $ct$ has
lcp@332
   479
type $prop$. 
lcp@104
   480
lcp@104
   481
\item[\ttindexbold{implies_intr_list} $cts$ $thm$] 
lcp@104
   482
applies $({\Imp}I)$ repeatedly, on every element of the list~$cts$.
lcp@104
   483
lcp@104
   484
\item[\ttindexbold{implies_intr_hyps} $thm$] 
lcp@332
   485
applies $({\Imp}I)$ to discharge all the hypotheses (assumptions) of~$thm$.
lcp@332
   486
It maps the premise $\phi \; [\phi@1,\ldots,\phi@n]$ to the conclusion
lcp@104
   487
$\List{\phi@1,\ldots,\phi@n}\Imp\phi$.
lcp@104
   488
lcp@104
   489
\item[\ttindexbold{implies_elim} $thm@1$ $thm@2$] 
lcp@104
   490
applies $({\Imp}E)$ to $thm@1$ and~$thm@2$.  It maps the premises $\phi\Imp
lcp@104
   491
\psi$ and $\phi$ to the conclusion~$\psi$.
lcp@104
   492
lcp@104
   493
\item[\ttindexbold{implies_elim_list} $thm$ $thms$] 
lcp@104
   494
applies $({\Imp}E)$ repeatedly to $thm$, using each element of~$thms$ in
wenzelm@151
   495
turn.  It maps the premises $\List{\phi@1,\ldots,\phi@n}\Imp\psi$ and
lcp@104
   496
$\phi@1$,\ldots,$\phi@n$ to the conclusion~$\psi$.
lcp@326
   497
\end{ttdescription}
lcp@104
   498
lcp@326
   499
\subsection{Logical equivalence rules}
lcp@326
   500
\index{meta-equality}
lcp@104
   501
\begin{ttbox} 
lcp@326
   502
equal_intr : thm -> thm -> thm 
lcp@326
   503
equal_elim : thm -> thm -> thm
lcp@104
   504
\end{ttbox}
lcp@326
   505
\begin{ttdescription}
lcp@104
   506
\item[\ttindexbold{equal_intr} $thm@1$ $thm@2$] 
lcp@332
   507
applies $({\equiv}I)$ to $thm@1$ and~$thm@2$.  It maps the premises~$\psi$
lcp@332
   508
and~$\phi$ to the conclusion~$\phi\equiv\psi$; the assumptions are those of
lcp@332
   509
the first premise with~$\phi$ removed, plus those of
lcp@332
   510
the second premise with~$\psi$ removed.
lcp@104
   511
lcp@104
   512
\item[\ttindexbold{equal_elim} $thm@1$ $thm@2$] 
lcp@104
   513
applies $({\equiv}E)$ to $thm@1$ and~$thm@2$.  It maps the premises
lcp@104
   514
$\phi\equiv\psi$ and $\phi$ to the conclusion~$\psi$.
lcp@326
   515
\end{ttdescription}
lcp@104
   516
lcp@104
   517
lcp@104
   518
\subsection{Equality rules}
lcp@326
   519
\index{meta-equality}
lcp@104
   520
\begin{ttbox} 
wenzelm@3108
   521
reflexive  : cterm -> thm
lcp@104
   522
symmetric  : thm -> thm
lcp@104
   523
transitive : thm -> thm -> thm
lcp@104
   524
\end{ttbox}
lcp@326
   525
\begin{ttdescription}
lcp@104
   526
\item[\ttindexbold{reflexive} $ct$] 
wenzelm@151
   527
makes the theorem \(ct\equiv ct\). 
lcp@104
   528
lcp@104
   529
\item[\ttindexbold{symmetric} $thm$] 
lcp@104
   530
maps the premise $a\equiv b$ to the conclusion $b\equiv a$.
lcp@104
   531
lcp@104
   532
\item[\ttindexbold{transitive} $thm@1$ $thm@2$] 
lcp@104
   533
maps the premises $a\equiv b$ and $b\equiv c$ to the conclusion~${a\equiv c}$.
lcp@326
   534
\end{ttdescription}
lcp@104
   535
lcp@104
   536
lcp@104
   537
\subsection{The $\lambda$-conversion rules}
lcp@326
   538
\index{lambda calc@$\lambda$-calculus}
lcp@104
   539
\begin{ttbox} 
wenzelm@3108
   540
beta_conversion : cterm -> thm
lcp@104
   541
extensional     : thm -> thm
wenzelm@3108
   542
abstract_rule   : string -> cterm -> thm -> thm
lcp@104
   543
combination     : thm -> thm -> thm
lcp@104
   544
\end{ttbox} 
lcp@326
   545
There is no rule for $\alpha$-conversion because Isabelle regards
lcp@326
   546
$\alpha$-convertible theorems as equal.
lcp@326
   547
\begin{ttdescription}
lcp@104
   548
\item[\ttindexbold{beta_conversion} $ct$] 
lcp@104
   549
makes the theorem $((\lambda x.a)(b)) \equiv a[b/x]$, where $ct$ is the
lcp@104
   550
term $(\lambda x.a)(b)$.
lcp@104
   551
lcp@104
   552
\item[\ttindexbold{extensional} $thm$] 
lcp@104
   553
maps the premise $f(x) \equiv g(x)$ to the conclusion $f\equiv g$.
lcp@104
   554
Parameter~$x$ is taken from the premise.  It may be an unknown or a free
lcp@332
   555
variable (provided it does not occur in the assumptions); it must not occur
lcp@104
   556
in $f$ or~$g$.
lcp@104
   557
lcp@104
   558
\item[\ttindexbold{abstract_rule} $v$ $x$ $thm$] 
lcp@104
   559
maps the premise $a\equiv b$ to the conclusion $(\lambda x.a) \equiv
lcp@104
   560
(\lambda x.b)$, abstracting over all occurrences (if any!) of~$x$.
lcp@104
   561
Parameter~$x$ is supplied as a cterm.  It may be an unknown or a free
lcp@332
   562
variable (provided it does not occur in the assumptions).  In the
lcp@104
   563
conclusion, the bound variable is named~$v$.
lcp@104
   564
lcp@104
   565
\item[\ttindexbold{combination} $thm@1$ $thm@2$] 
lcp@104
   566
maps the premises $f\equiv g$ and $a\equiv b$ to the conclusion~$f(a)\equiv
lcp@104
   567
g(b)$.
lcp@326
   568
\end{ttdescription}
lcp@104
   569
lcp@104
   570
lcp@326
   571
\subsection{Forall introduction rules}
lcp@326
   572
\index{meta-quantifiers}
lcp@104
   573
\begin{ttbox} 
wenzelm@3108
   574
forall_intr       : cterm      -> thm -> thm
wenzelm@3108
   575
forall_intr_list  : cterm list -> thm -> thm
wenzelm@3108
   576
forall_intr_frees :               thm -> thm
lcp@104
   577
\end{ttbox}
lcp@104
   578
lcp@326
   579
\begin{ttdescription}
lcp@104
   580
\item[\ttindexbold{forall_intr} $x$ $thm$] 
lcp@104
   581
applies $({\Forall}I)$, abstracting over all occurrences (if any!) of~$x$.
lcp@104
   582
The rule maps the premise $\phi$ to the conclusion $\Forall x.\phi$.
lcp@104
   583
Parameter~$x$ is supplied as a cterm.  It may be an unknown or a free
lcp@332
   584
variable (provided it does not occur in the assumptions).
lcp@104
   585
lcp@104
   586
\item[\ttindexbold{forall_intr_list} $xs$ $thm$] 
lcp@104
   587
applies $({\Forall}I)$ repeatedly, on every element of the list~$xs$.
lcp@104
   588
lcp@104
   589
\item[\ttindexbold{forall_intr_frees} $thm$] 
lcp@104
   590
applies $({\Forall}I)$ repeatedly, generalizing over all the free variables
lcp@104
   591
of the premise.
lcp@326
   592
\end{ttdescription}
lcp@104
   593
lcp@104
   594
lcp@326
   595
\subsection{Forall elimination rules}
lcp@104
   596
\begin{ttbox} 
wenzelm@3108
   597
forall_elim       : cterm      -> thm -> thm
wenzelm@3108
   598
forall_elim_list  : cterm list -> thm -> thm
wenzelm@3108
   599
forall_elim_var   :        int -> thm -> thm
wenzelm@3108
   600
forall_elim_vars  :        int -> thm -> thm
lcp@104
   601
\end{ttbox}
lcp@104
   602
lcp@326
   603
\begin{ttdescription}
lcp@104
   604
\item[\ttindexbold{forall_elim} $ct$ $thm$] 
lcp@104
   605
applies $({\Forall}E)$, mapping the premise $\Forall x.\phi$ to the conclusion
lcp@104
   606
$\phi[ct/x]$.  The rule checks that $ct$ and $x$ have the same type.
lcp@104
   607
lcp@104
   608
\item[\ttindexbold{forall_elim_list} $cts$ $thm$] 
lcp@104
   609
applies $({\Forall}E)$ repeatedly, on every element of the list~$cts$.
lcp@104
   610
lcp@104
   611
\item[\ttindexbold{forall_elim_var} $k$ $thm$] 
lcp@104
   612
applies $({\Forall}E)$, mapping the premise $\Forall x.\phi$ to the conclusion
lcp@104
   613
$\phi[\Var{x@k}/x]$.  Thus, it replaces the outermost $\Forall$-bound
lcp@104
   614
variable by an unknown having subscript~$k$.
lcp@104
   615
paulson@9258
   616
\item[\ttindexbold{forall_elim_vars} $k$ $thm$] 
paulson@9258
   617
applies {\tt forall_elim_var}~$k$ repeatedly until the theorem no longer has
paulson@9258
   618
the form $\Forall x.\phi$.
lcp@326
   619
\end{ttdescription}
lcp@104
   620
paulson@8135
   621
lcp@326
   622
\subsection{Instantiation of unknowns}
lcp@326
   623
\index{instantiation}
paulson@8136
   624
\begin{alltt}\footnotesize
wenzelm@3135
   625
instantiate: (indexname * ctyp){\thinspace}list * (cterm * cterm){\thinspace}list -> thm -> thm
paulson@8136
   626
\end{alltt}
paulson@8135
   627
There are two versions of this rule.  The primitive one is
paulson@8135
   628
\ttindexbold{Thm.instantiate}, which merely performs the instantiation and can
paulson@8135
   629
produce a conclusion not in normal form.  A derived version is  
paulson@8135
   630
\ttindexbold{Drule.instantiate}, which normalizes its conclusion.
paulson@8135
   631
lcp@326
   632
\begin{ttdescription}
paulson@8136
   633
\item[\ttindexbold{instantiate} ($tyinsts$,$insts$) $thm$] 
lcp@326
   634
simultaneously substitutes types for type unknowns (the
lcp@104
   635
$tyinsts$) and terms for term unknowns (the $insts$).  Instantiations are
lcp@104
   636
given as $(v,t)$ pairs, where $v$ is an unknown and $t$ is a term (of the
lcp@104
   637
same type as $v$) or a type (of the same sort as~$v$).  All the unknowns
paulson@8135
   638
must be distinct.  
wenzelm@4376
   639
paulson@8135
   640
In some cases, \ttindex{instantiate'} (see \S\ref{sec:instantiate})
wenzelm@4376
   641
provides a more convenient interface to this rule.
lcp@326
   642
\end{ttdescription}
lcp@104
   643
lcp@104
   644
paulson@8135
   645
paulson@8135
   646
lcp@326
   647
\subsection{Freezing/thawing type unknowns}
lcp@326
   648
\index{type unknowns!freezing/thawing of}
lcp@104
   649
\begin{ttbox} 
lcp@104
   650
freezeT: thm -> thm
lcp@104
   651
varifyT: thm -> thm
lcp@104
   652
\end{ttbox}
lcp@326
   653
\begin{ttdescription}
lcp@104
   654
\item[\ttindexbold{freezeT} $thm$] 
lcp@104
   655
converts all the type unknowns in $thm$ to free type variables.
lcp@104
   656
lcp@104
   657
\item[\ttindexbold{varifyT} $thm$] 
lcp@104
   658
converts all the free type variables in $thm$ to type unknowns.
lcp@326
   659
\end{ttdescription}
lcp@104
   660
lcp@104
   661
lcp@104
   662
\section{Derived rules for goal-directed proof}
lcp@104
   663
Most of these rules have the sole purpose of implementing particular
lcp@104
   664
tactics.  There are few occasions for applying them directly to a theorem.
lcp@104
   665
lcp@104
   666
\subsection{Proof by assumption}
lcp@326
   667
\index{meta-assumptions}
lcp@104
   668
\begin{ttbox} 
wenzelm@4276
   669
assumption    : int -> thm -> thm Seq.seq
lcp@104
   670
eq_assumption : int -> thm -> thm
lcp@104
   671
\end{ttbox}
lcp@326
   672
\begin{ttdescription}
lcp@104
   673
\item[\ttindexbold{assumption} {\it i} $thm$] 
lcp@104
   674
attempts to solve premise~$i$ of~$thm$ by assumption.
lcp@104
   675
lcp@104
   676
\item[\ttindexbold{eq_assumption}] 
lcp@104
   677
is like {\tt assumption} but does not use unification.
lcp@326
   678
\end{ttdescription}
lcp@104
   679
lcp@104
   680
lcp@104
   681
\subsection{Resolution}
lcp@326
   682
\index{resolution}
lcp@104
   683
\begin{ttbox} 
lcp@104
   684
biresolution : bool -> (bool*thm)list -> int -> thm
wenzelm@4276
   685
               -> thm Seq.seq
lcp@104
   686
\end{ttbox}
lcp@326
   687
\begin{ttdescription}
lcp@104
   688
\item[\ttindexbold{biresolution} $match$ $rules$ $i$ $state$] 
lcp@326
   689
performs bi-resolution on subgoal~$i$ of $state$, using the list of $\it
lcp@104
   690
(flag,rule)$ pairs.  For each pair, it applies resolution if the flag
lcp@104
   691
is~{\tt false} and elim-resolution if the flag is~{\tt true}.  If $match$
lcp@104
   692
is~{\tt true}, the $state$ is not instantiated.
lcp@326
   693
\end{ttdescription}
lcp@104
   694
lcp@104
   695
lcp@104
   696
\subsection{Composition: resolution without lifting}
lcp@326
   697
\index{resolution!without lifting}
lcp@104
   698
\begin{ttbox}
lcp@104
   699
compose   : thm * int * thm -> thm list
lcp@104
   700
COMP      : thm * thm -> thm
lcp@104
   701
bicompose : bool -> bool * thm * int -> int -> thm
wenzelm@4276
   702
            -> thm Seq.seq
lcp@104
   703
\end{ttbox}
lcp@104
   704
In forward proof, a typical use of composition is to regard an assertion of
lcp@104
   705
the form $\phi\Imp\psi$ as atomic.  Schematic variables are not renamed, so
lcp@104
   706
beware of clashes!
lcp@326
   707
\begin{ttdescription}
lcp@104
   708
\item[\ttindexbold{compose} ($thm@1$, $i$, $thm@2$)] 
lcp@104
   709
uses $thm@1$, regarded as an atomic formula, to solve premise~$i$
lcp@104
   710
of~$thm@2$.  Let $thm@1$ and $thm@2$ be $\psi$ and $\List{\phi@1; \ldots;
lcp@104
   711
\phi@n} \Imp \phi$.  For each $s$ that unifies~$\psi$ and $\phi@i$, the
lcp@104
   712
result list contains the theorem
lcp@104
   713
\[ (\List{\phi@1; \ldots; \phi@{i-1}; \phi@{i+1}; \ldots; \phi@n} \Imp \phi)s.
lcp@104
   714
\]
lcp@104
   715
lcp@1119
   716
\item[$thm@1$ \ttindexbold{COMP} $thm@2$] 
lcp@104
   717
calls \hbox{\tt compose ($thm@1$, 1, $thm@2$)} and returns the result, if
lcp@326
   718
unique; otherwise, it raises exception~\xdx{THM}\@.  It is
lcp@104
   719
analogous to {\tt RS}\@.  
lcp@104
   720
lcp@104
   721
For example, suppose that $thm@1$ is $a=b\Imp b=a$, a symmetry rule, and
lcp@332
   722
that $thm@2$ is $\List{P\Imp Q; \neg Q} \Imp\neg P$, which is the
lcp@104
   723
principle of contrapositives.  Then the result would be the
lcp@104
   724
derived rule $\neg(b=a)\Imp\neg(a=b)$.
lcp@104
   725
lcp@104
   726
\item[\ttindexbold{bicompose} $match$ ($flag$, $rule$, $m$) $i$ $state$]
lcp@104
   727
refines subgoal~$i$ of $state$ using $rule$, without lifting.  The $rule$
lcp@104
   728
is taken to have the form $\List{\psi@1; \ldots; \psi@m} \Imp \psi$, where
lcp@326
   729
$\psi$ need not be atomic; thus $m$ determines the number of new
lcp@104
   730
subgoals.  If $flag$ is {\tt true} then it performs elim-resolution --- it
lcp@104
   731
solves the first premise of~$rule$ by assumption and deletes that
lcp@104
   732
assumption.  If $match$ is~{\tt true}, the $state$ is not instantiated.
lcp@326
   733
\end{ttdescription}
lcp@104
   734
lcp@104
   735
lcp@104
   736
\subsection{Other meta-rules}
lcp@104
   737
\begin{ttbox} 
wenzelm@3108
   738
trivial            : cterm -> thm
lcp@104
   739
lift_rule          : (thm * int) -> thm -> thm
lcp@104
   740
rename_params_rule : string list * int -> thm -> thm
wenzelm@4276
   741
flexflex_rule      : thm -> thm Seq.seq
lcp@104
   742
\end{ttbox}
lcp@326
   743
\begin{ttdescription}
lcp@104
   744
\item[\ttindexbold{trivial} $ct$] 
lcp@104
   745
makes the theorem \(\phi\Imp\phi\), where $\phi$ is the value of~$ct$.
lcp@104
   746
This is the initial state for a goal-directed proof of~$\phi$.  The rule
lcp@104
   747
checks that $ct$ has type~$prop$.
lcp@104
   748
lcp@104
   749
\item[\ttindexbold{lift_rule} ($state$, $i$) $rule$] \index{lifting}
lcp@104
   750
prepares $rule$ for resolution by lifting it over the parameters and
lcp@104
   751
assumptions of subgoal~$i$ of~$state$.
lcp@104
   752
lcp@104
   753
\item[\ttindexbold{rename_params_rule} ({\it names}, {\it i}) $thm$] 
lcp@104
   754
uses the $names$ to rename the parameters of premise~$i$ of $thm$.  The
lcp@104
   755
names must be distinct.  If there are fewer names than parameters, then the
lcp@104
   756
rule renames the innermost parameters and may modify the remaining ones to
lcp@104
   757
ensure that all the parameters are distinct.
lcp@104
   758
\index{parameters!renaming}
lcp@104
   759
lcp@104
   760
\item[\ttindexbold{flexflex_rule} $thm$]  \index{flex-flex constraints}
lcp@104
   761
removes all flex-flex pairs from $thm$ using the trivial unifier.
lcp@326
   762
\end{ttdescription}
paulson@1590
   763
\index{meta-rules|)}
paulson@1590
   764
paulson@1590
   765
paulson@1846
   766
\section{Proof objects}\label{sec:proofObjects}
paulson@1590
   767
\index{proof objects|(} Isabelle can record the full meta-level proof of each
paulson@1590
   768
theorem.  The proof object contains all logical inferences in detail, while
paulson@1590
   769
omitting bookkeeping steps that have no logical meaning to an outside
paulson@1590
   770
observer.  Rewriting steps are recorded in similar detail as the output of
paulson@1590
   771
simplifier tracing.  The proof object can be inspected by a separate
wenzelm@4317
   772
proof-checker, for example.
paulson@1590
   773
paulson@1590
   774
Full proof objects are large.  They multiply storage requirements by about
paulson@1590
   775
seven; attempts to build large logics (such as {\sc zf} and {\sc hol}) may
paulson@1590
   776
fail.  Isabelle normally builds minimal proof objects, which include only uses
paulson@1590
   777
of oracles.  You can also request an intermediate level of detail, containing
paulson@1590
   778
uses of oracles, axioms and theorems.  These smaller proof objects indicate a
wenzelm@6924
   779
theorem's dependencies.  Theorems involving oracles will be printed with a
wenzelm@6924
   780
suffixed \verb|[!]| to point out the different quality of confidence achieved.
paulson@1590
   781
paulson@1590
   782
Isabelle provides proof objects for the sake of transparency.  Their aim is to
paulson@1590
   783
increase your confidence in Isabelle.  They let you inspect proofs constructed
paulson@1590
   784
by the classical reasoner or simplifier, and inform you of all uses of
paulson@1590
   785
oracles.  Seldom will proof objects be given whole to an automatic
paulson@1590
   786
proof-checker: none has been written.  It is up to you to examine and
paulson@1590
   787
interpret them sensibly.  For example, when scrutinizing a theorem's
paulson@1590
   788
derivation for dependence upon some oracle or axiom, remember to scrutinize
paulson@1590
   789
all of its lemmas.  Their proofs are included in the main derivation, through
paulson@1590
   790
the {\tt Theorem} constructor.
paulson@1590
   791
paulson@1590
   792
Proof objects are expressed using a polymorphic type of variable-branching
paulson@1590
   793
trees.  Proof objects (formally known as {\em derivations\/}) are trees
paulson@1590
   794
labelled by rules, where {\tt rule} is a complicated datatype declared in the
paulson@1590
   795
file {\tt Pure/thm.ML}.
paulson@1590
   796
\begin{ttbox} 
paulson@1590
   797
datatype 'a mtree = Join of 'a * 'a mtree list;
paulson@1590
   798
datatype rule     = \(\ldots\);
paulson@1590
   799
type deriv        = rule mtree;
paulson@1590
   800
\end{ttbox}
paulson@1590
   801
%
paulson@1590
   802
Each theorem's derivation is stored as the {\tt der} field of its internal
paulson@1590
   803
record: 
paulson@1590
   804
\begin{ttbox} 
paulson@1590
   805
#der (rep_thm conjI);
wenzelm@6097
   806
{\out Join (Theorem ("HOL.conjI", []), [Join (MinProof,[])]) : deriv}
paulson@1590
   807
\end{ttbox}
wenzelm@4317
   808
This proof object identifies a labelled theorem, {\tt conjI} of theory
wenzelm@4317
   809
\texttt{HOL}, whose underlying proof has not been recorded; all we
wenzelm@4317
   810
have is {\tt MinProof}.
paulson@1590
   811
paulson@1590
   812
Nontrivial proof objects are unreadably large and complex.  Isabelle provides
paulson@1590
   813
several functions to help you inspect them informally.  These functions omit
paulson@1590
   814
the more obscure inferences and attempt to restructure the others into natural
paulson@1590
   815
formats, linear or tree-structured.
paulson@1590
   816
paulson@1590
   817
\begin{ttbox} 
paulson@1590
   818
keep_derivs  : deriv_kind ref
paulson@1590
   819
Deriv.size   : deriv -> int
paulson@1590
   820
Deriv.drop   : 'a mtree * int -> 'a mtree
paulson@1590
   821
Deriv.linear : deriv -> deriv list
paulson@1876
   822
Deriv.tree   : deriv -> Deriv.orule mtree
paulson@1590
   823
\end{ttbox}
paulson@1590
   824
paulson@1590
   825
\begin{ttdescription}
paulson@1590
   826
\item[\ttindexbold{keep_derivs} := MinDeriv $|$ ThmDeriv $|$ FullDeriv;] 
paulson@4597
   827
specifies one of the options for keeping derivations.  They can be
paulson@1590
   828
minimal (oracles only), include theorems and axioms, or be full.
paulson@1590
   829
paulson@1590
   830
\item[\ttindexbold{Deriv.size} $der$] yields the size of a derivation,
paulson@1590
   831
  excluding lemmas.
paulson@1590
   832
paulson@1590
   833
\item[\ttindexbold{Deriv.drop} ($tree$,$n$)] returns the subtree $n$ levels
paulson@1590
   834
  down, always following the first child.  It is good for stripping off
paulson@1590
   835
  outer level inferences that are used to put a theorem into standard form.
paulson@1590
   836
paulson@1590
   837
\item[\ttindexbold{Deriv.linear} $der$] converts a derivation into a linear
paulson@1590
   838
  format, replacing the deep nesting by a list of rules.  Intuitively, this
paulson@1590
   839
  reveals the single-step Isabelle proof that is constructed internally by
paulson@1590
   840
  tactics.  
paulson@1590
   841
paulson@1590
   842
\item[\ttindexbold{Deriv.tree} $der$] converts a derivation into an
paulson@1590
   843
  object-level proof tree.  A resolution by an object-rule is converted to a
paulson@1590
   844
  tree node labelled by that rule.  Complications arise if the object-rule is
paulson@1590
   845
  itself derived in some way.  Nested resolutions are unravelled, but other
paulson@1590
   846
  operations on rules (such as rewriting) are left as-is.  
paulson@1590
   847
\end{ttdescription}
paulson@1590
   848
paulson@2040
   849
Functions {\tt Deriv.linear} and {\tt Deriv.tree} omit the proof of any named
paulson@2040
   850
theorems (constructor {\tt Theorem}) they encounter in a derivation.  Applying
paulson@2040
   851
them directly to the derivation of a named theorem is therefore pointless.
paulson@2040
   852
Use {\tt Deriv.drop} with argument~1 to skip over the initial {\tt Theorem}
paulson@2040
   853
constructor.
paulson@2040
   854
paulson@1590
   855
\index{proof objects|)}
lcp@104
   856
\index{theorems|)}
wenzelm@5371
   857
berghofe@7871
   858
\medskip
berghofe@7871
   859
berghofe@7871
   860
The dependencies of theorems can be viewed using the function \ttindexbold{thm_deps}:
berghofe@7871
   861
\begin{ttbox}
berghofe@7871
   862
thm_deps [\(thm@1\), \(\ldots\), \(thm@n\)];
berghofe@7871
   863
\end{ttbox}
berghofe@7871
   864
generates the dependency graph of the theorems $thm@1$, $\ldots$, $thm@n$ and
berghofe@7871
   865
displays it using Isabelle's graph browser. This function expects derivations
berghofe@7871
   866
to be enabled. The structure \texttt{ThmDeps} contains the two functions
berghofe@7871
   867
\begin{ttbox}
berghofe@7871
   868
enable : unit -> unit
berghofe@7871
   869
disable : unit -> unit
berghofe@7871
   870
\end{ttbox}
berghofe@7871
   871
which set \texttt{keep_derivs} appropriately.
berghofe@7871
   872
wenzelm@5371
   873
wenzelm@5371
   874
%%% Local Variables: 
wenzelm@5371
   875
%%% mode: latex
wenzelm@5371
   876
%%% TeX-master: "ref"
wenzelm@5371
   877
%%% End: