used to be part of 'logics' manual;
authorwenzelm
Tue, 04 May 1999 18:03:56 +0200
changeset 6580ff2c3ffd38ee
parent 6579 d0c6bb2577b1
child 6581 27d6e5d6a4a6
used to be part of 'logics' manual;
doc-src/HOL/HOL-eg.txt
doc-src/HOL/HOL-rules.txt
doc-src/HOL/HOL.tex
doc-src/HOL/Makefile
doc-src/HOL/logics-HOL.ind
doc-src/HOL/logics-HOL.rao
doc-src/HOL/logics-HOL.tex
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/doc-src/HOL/HOL-eg.txt	Tue May 04 18:03:56 1999 +0200
     1.3 @@ -0,0 +1,151 @@
     1.4 +(**** HOL examples -- process using Doc/tout HOL-eg.txt  ****)
     1.5 +
     1.6 +Pretty.setmargin 72;  (*existing macros just allow this margin*)
     1.7 +print_depth 0;
     1.8 +
     1.9 +
    1.10 +(*** Conjunction rules ***)
    1.11 +
    1.12 +val prems = goal HOL_Rule.thy "[| P; Q |] ==> P&Q";
    1.13 +by (resolve_tac [and_def RS ssubst] 1);
    1.14 +by (resolve_tac [allI] 1);
    1.15 +by (resolve_tac [impI] 1);
    1.16 +by (eresolve_tac [mp RS mp] 1);
    1.17 +by (REPEAT (resolve_tac prems 1));
    1.18 +val conjI = result();
    1.19 +
    1.20 +val prems = goal HOL_Rule.thy "[| P & Q |] ==> P";
    1.21 +prths (prems RL [and_def RS subst]);
    1.22 +prths (prems RL [and_def RS subst] RL [spec] RL [mp]);
    1.23 +by (resolve_tac it 1);
    1.24 +by (REPEAT (ares_tac [impI] 1));
    1.25 +val conjunct1 = result();
    1.26 +
    1.27 +
    1.28 +(*** Cantor's Theorem: There is no surjection from a set to its powerset. ***)
    1.29 +
    1.30 +goal Set.thy "~ ?S : range(f :: 'a=>'a set)";
    1.31 +by (resolve_tac [notI] 1);
    1.32 +by (eresolve_tac [rangeE] 1);
    1.33 +by (eresolve_tac [equalityCE] 1);
    1.34 +by (dresolve_tac [CollectD] 1);
    1.35 +by (contr_tac 1);
    1.36 +by (swap_res_tac [CollectI] 1);
    1.37 +by (assume_tac 1);
    1.38 +
    1.39 +choplev 0;
    1.40 +by (best_tac (set_cs addSEs [equalityCE]) 1);
    1.41 +
    1.42 +
    1.43 +goal Set.thy "! f:: 'a=>'a set. ! x. ~ f(x) = ?S(f)";
    1.44 +by (REPEAT (resolve_tac [allI,notI] 1));
    1.45 +by (eresolve_tac [equalityCE] 1);
    1.46 +by (dresolve_tac [CollectD] 1);
    1.47 +by (contr_tac 1);
    1.48 +by (swap_res_tac [CollectI] 1);
    1.49 +by (assume_tac 1);
    1.50 +
    1.51 +choplev 0;
    1.52 +by (best_tac (set_cs addSEs [equalityCE]) 1);
    1.53 +
    1.54 +
    1.55 +goal Set.thy "~ (? f:: 'a=>'a set. ! S. ? a. f(a) = S)";
    1.56 +by (best_tac (set_cs addSEs [equalityCE]) 1);
    1.57 +
    1.58 +
    1.59 +
    1.60 +
    1.61 +> val prems = goal HOL_Rule.thy "[| P; Q |] ==> P&Q";
    1.62 +Level 0
    1.63 +P & Q
    1.64 + 1. P & Q
    1.65 +> by (resolve_tac [and_def RS ssubst] 1);
    1.66 +Level 1
    1.67 +P & Q
    1.68 + 1. ! R. (P --> Q --> R) --> R
    1.69 +> by (resolve_tac [allI] 1);
    1.70 +Level 2
    1.71 +P & Q
    1.72 + 1. !!R. (P --> Q --> R) --> R
    1.73 +> by (resolve_tac [impI] 1);
    1.74 +Level 3
    1.75 +P & Q
    1.76 + 1. !!R. P --> Q --> R ==> R
    1.77 +> by (eresolve_tac [mp RS mp] 1);
    1.78 +Level 4
    1.79 +P & Q
    1.80 + 1. !!R. P
    1.81 + 2. !!R. Q
    1.82 +> by (REPEAT (resolve_tac prems 1));
    1.83 +Level 5
    1.84 +P & Q
    1.85 +No subgoals!
    1.86 +
    1.87 +
    1.88 +
    1.89 +> val prems = goal HOL_Rule.thy "[| P & Q |] ==> P";
    1.90 +Level 0
    1.91 +P
    1.92 + 1. P
    1.93 +> prths (prems RL [and_def RS subst]);
    1.94 +! R. (P --> Q --> R) --> R  [P & Q]
    1.95 +P & Q  [P & Q]
    1.96 +
    1.97 +> prths (prems RL [and_def RS subst] RL [spec] RL [mp]);
    1.98 +P --> Q --> ?Q ==> ?Q  [P & Q]
    1.99 +
   1.100 +> by (resolve_tac it 1);
   1.101 +Level 1
   1.102 +P
   1.103 + 1. P --> Q --> P
   1.104 +> by (REPEAT (ares_tac [impI] 1));
   1.105 +Level 2
   1.106 +P
   1.107 +No subgoals!
   1.108 +
   1.109 +
   1.110 +
   1.111 +
   1.112 +> goal Set.thy "~ ?S : range(f :: 'a=>'a set)";
   1.113 +Level 0
   1.114 +~?S : range(f)
   1.115 + 1. ~?S : range(f)
   1.116 +> by (resolve_tac [notI] 1);
   1.117 +Level 1
   1.118 +~?S : range(f)
   1.119 + 1. ?S : range(f) ==> False
   1.120 +> by (eresolve_tac [rangeE] 1);
   1.121 +Level 2
   1.122 +~?S : range(f)
   1.123 + 1. !!x. ?S = f(x) ==> False
   1.124 +> by (eresolve_tac [equalityCE] 1);
   1.125 +Level 3
   1.126 +~?S : range(f)
   1.127 + 1. !!x. [| ?c3(x) : ?S; ?c3(x) : f(x) |] ==> False
   1.128 + 2. !!x. [| ~?c3(x) : ?S; ~?c3(x) : f(x) |] ==> False
   1.129 +> by (dresolve_tac [CollectD] 1);
   1.130 +Level 4
   1.131 +~{x. ?P7(x)} : range(f)
   1.132 + 1. !!x. [| ?c3(x) : f(x); ?P7(?c3(x)) |] ==> False
   1.133 + 2. !!x. [| ~?c3(x) : {x. ?P7(x)}; ~?c3(x) : f(x) |] ==> False
   1.134 +> by (contr_tac 1);
   1.135 +Level 5
   1.136 +~{x. ~x : f(x)} : range(f)
   1.137 + 1. !!x. [| ~x : {x. ~x : f(x)}; ~x : f(x) |] ==> False
   1.138 +> by (swap_res_tac [CollectI] 1);
   1.139 +Level 6
   1.140 +~{x. ~x : f(x)} : range(f)
   1.141 + 1. !!x. [| ~x : f(x); ~False |] ==> ~x : f(x)
   1.142 +> by (assume_tac 1);
   1.143 +Level 7
   1.144 +~{x. ~x : f(x)} : range(f)
   1.145 +No subgoals!
   1.146 +
   1.147 +> choplev 0;
   1.148 +Level 0
   1.149 +~?S : range(f)
   1.150 + 1. ~?S : range(f)
   1.151 +> by (best_tac (set_cs addSEs [equalityCE]) 1);
   1.152 +Level 1
   1.153 +~{x. ~x : f(x)} : range(f)
   1.154 +No subgoals!
     2.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.2 +++ b/doc-src/HOL/HOL-rules.txt	Tue May 04 18:03:56 1999 +0200
     2.3 @@ -0,0 +1,403 @@
     2.4 +ruleshell.ML lemmas.ML set.ML fun.ML subset.ML equalities.ML prod.ML sum.ML wf.ML mono.ML fixedpt.ML nat.ML list.ML
     2.5 +----------------------------------------------------------------
     2.6 +ruleshell.ML
     2.7 +
     2.8 +\idx{refl}      t = t::'a
     2.9 +\idx{subst}     [| s = t; P(s) |] ==> P(t::'a)
    2.10 +\idx{abs},!!x::'a. f(x)::'b = g(x)) ==> (%x.f(x)) = (%x.g(x)))
    2.11 +\idx{disch}     (P ==> Q) ==> P-->Q
    2.12 +\idx{mp}        [| P-->Q;  P |] ==> Q
    2.13 +
    2.14 +\idx{True_def}  True = ((%x.x)=(%x.x))
    2.15 +\idx{All_def}   All  = (%P. P = (%x.True))
    2.16 +\idx{Ex_def}    Ex   = (%P. P(Eps(P)))
    2.17 +\idx{False_def} False = (!P.P)
    2.18 +\idx{not_def}   not  = (%P. P-->False)
    2.19 +\idx{and_def}   op & = (%P Q. !R. (P-->Q-->R) --> R)
    2.20 +\idx{or_def}    op | = (%P Q. !R. (P-->R) --> (Q-->R) --> R)
    2.21 +\idx{Ex1_def}   Ex1 == (%P. ? x. P(x) & (! y. P(y) --> y=x))
    2.22 +
    2.23 +\idx{iff}       (P-->Q) --> (Q-->P) --> (P=Q)
    2.24 +\idx{True_or_False}     (P=True) | (P=False)
    2.25 +\idx{select}    P(x::'a) --> P(Eps(P))
    2.26 +
    2.27 +\idx{Inv_def}   Inv = (%(f::'a=>'b) y. @x. f(x)=y)
    2.28 +\idx{o_def}     op o = (%(f::'b=>'c) g (x::'a). f(g(x)))
    2.29 +\idx{Cond_def}  Cond = (%P x y.@z::'a. (P=True --> z=x) & (P=False --> z=y))
    2.30 +
    2.31 +----------------------------------------------------------------
    2.32 +lemmas.ML
    2.33 +
    2.34 +\idx{sym}    s=t ==> t=s
    2.35 +\idx{trans}    [| r=s; s=t |] ==> r=t
    2.36 +\idx{box_equals}    
    2.37 +    [| a=b;  a=c;  b=d |] ==> c=d  
    2.38 +\idx{ap_term}    s=t ==> f(s)=f(t)
    2.39 +\idx{ap_thm}    s::'a=>'b = t ==> s(x)=t(x)
    2.40 +\idx{cong}    
    2.41 +   [| f = g; x::'a = y |] ==> f(x) = g(y)
    2.42 +\idx{iffI}    
    2.43 +   [| P ==> Q;  Q ==> P |] ==> P=Q
    2.44 +\idx{iffD1}    [| P=Q; Q |] ==> P
    2.45 +\idx{iffE}    
    2.46 +    [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R
    2.47 +\idx{eqTrueI}    P ==> P=True 
    2.48 +\idx{eqTrueE}    P=True ==> P 
    2.49 +\idx{allI}    (!!x::'a. P(x)) ==> !x. P(x)
    2.50 +\idx{spec}    !x::'a.P(x) ==> P(x)
    2.51 +\idx{allE}    [| !x.P(x);  P(x) ==> R |] ==> R
    2.52 +\idx{all_dupE}    
    2.53 +    [| ! x.P(x);  [| P(x); ! x.P(x) |] ==> R 
    2.54 +    |] ==> R
    2.55 +\idx{FalseE}    False ==> P
    2.56 +\idx{False_neq_True}    False=True ==> P
    2.57 +\idx{notI}    (P ==> False) ==> ~P
    2.58 +\idx{notE}    [| ~P;  P |] ==> R
    2.59 +\idx{impE}    [| P-->Q;  P;  Q ==> R |] ==> R
    2.60 +\idx{rev_mp}    [| P;  P --> Q |] ==> Q
    2.61 +\idx{contrapos}    [| ~Q;  P==>Q |] ==> ~P
    2.62 +\idx{exI}    P(x) ==> ? x::'a.P(x)
    2.63 +\idx{exE}    [| ? x::'a.P(x); !!x. P(x) ==> Q |] ==> Q
    2.64 +
    2.65 +\idx{conjI}    [| P; Q |] ==> P&Q
    2.66 +\idx{conjunct1}    [| P & Q |] ==> P
    2.67 +\idx{conjunct2}    [| P & Q |] ==> Q 
    2.68 +\idx{conjE}    [| P&Q;  [| P; Q |] ==> R |] ==> R
    2.69 +\idx{disjI1}    P ==> P|Q
    2.70 +\idx{disjI2}    Q ==> P|Q
    2.71 +\idx{disjE}    [| P | Q; P ==> R; Q ==> R |] ==> R
    2.72 +\idx{ccontr}    (~P ==> False) ==> P
    2.73 +\idx{classical}    (~P ==> P) ==> P
    2.74 +\idx{notnotD}    ~~P ==> P
    2.75 +\idx{ex1I}    
    2.76 +    [| P(a);  !!x. P(x) ==> x=a |] ==> ?! x. P(x)
    2.77 +\idx{ex1E}    
    2.78 +    [| ?! x.P(x);  !!x. [| P(x);  ! y. P(y) --> y=x |] ==> R |] ==> R
    2.79 +\idx{select_equality}    
    2.80 +    [| P(a);  !!x. P(x) ==> x=a |] ==> (@x.P(x)) = a
    2.81 +\idx{disjCI}    (~Q ==> P) ==> P|Q
    2.82 +\idx{excluded_middle}    ~P | P
    2.83 +\idx{impCE}    [| P-->Q; ~P ==> R; Q ==> R |] ==> R 
    2.84 +\idx{iffCE}    
    2.85 +    [| P=Q;  [| P; Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R
    2.86 +\idx{exCI}    (! x. ~P(x) ==> P(a)) ==> ? x.P(x)
    2.87 +\idx{swap}    ~P ==> (~Q ==> P) ==> Q
    2.88 +
    2.89 +----------------------------------------------------------------
    2.90 +simpdata.ML
    2.91 +
    2.92 +\idx{if_True}    Cond(True,x,y) = x
    2.93 +\idx{if_False}    Cond(False,x,y) = y
    2.94 +\idx{if_P}    P ==> Cond(P,x,y) = x
    2.95 +\idx{if_not_P}    ~P ==> Cond(P,x,y) = y
    2.96 +\idx{expand_if}    
    2.97 +    P(Cond(Q,x,y)) = ((Q --> P(x)) & (~Q --> P(y)))
    2.98 +
    2.99 +----------------------------------------------------------------
   2.100 +\idx{set.ML}
   2.101 +
   2.102 +\idx{CollectI}          [| P(a) |] ==> a : \{x.P(x)\}
   2.103 +\idx{CollectD}          [| a : \{x.P(x)\} |] ==> P(a)
   2.104 +\idx{set_ext}           [| !!x. (x:A) = (x:B) |] ==> A = B
   2.105 +
   2.106 +\idx{Ball_def}          Ball(A,P)  == ! x. x:A --> P(x)
   2.107 +\idx{Bex_def}           Bex(A,P)   == ? x. x:A & P(x)
   2.108 +\idx{subset_def}        A <= B     == ! x:A. x:B
   2.109 +\idx{Un_def}            A Un B     == \{x.x:A | x:B\}
   2.110 +\idx{Int_def}           A Int B    == \{x.x:A & x:B\}
   2.111 +\idx{Compl_def}         Compl(A)   == \{x. ~x:A\}
   2.112 +\idx{Inter_def}         Inter(S)   == \{x. ! A:S. x:A\}
   2.113 +\idx{Union_def}         Union(S)   == \{x. ? A:S. x:A\}
   2.114 +\idx{INTER_def}         INTER(A,B) == \{y. ! x:A. y: B(x)\}
   2.115 +\idx{UNION_def}         UNION(A,B) == \{y. ? x:A. y: B(x)\}
   2.116 +\idx{mono_def}          mono(f)    == (!A B. A <= B --> f(A) <= f(B))
   2.117 +\idx{image_def}         f``A       == \{y. ? x:A. y=f(x)\}
   2.118 +\idx{singleton_def}     \{a\}      == \{x.x=a\}
   2.119 +\idx{range_def}         range(f)   == \{y. ? x. y=f(x)\}
   2.120 +\idx{One_One_def}       One_One(f) == ! x y. f(x)=f(y) --> x=y
   2.121 +\idx{One_One_on_def}    One_One_on(f,A) == !x y. x:A --> y:A --> f(x)=f(y) --> x=y
   2.122 +\idx{Onto_def}          Onto(f) == ! y. ? x. y=f(x)
   2.123 +
   2.124 +
   2.125 +\idx{Collect_cong}    [| !!x. P(x)=Q(x) |] ==> \{x. P(x)\} = \{x. Q(x)\}
   2.126 +
   2.127 +\idx{ballI}    [| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)
   2.128 +\idx{bspec}    [| ! x:A. P(x);  x:A |] ==> P(x)
   2.129 +\idx{ballE}    [| ! x:A. P(x);  P(x) ==> Q;  ~ x:A ==> Q |] ==> Q
   2.130 +
   2.131 +\idx{bexI}     [| P(x);  x:A |] ==> ? x:A. P(x)
   2.132 +\idx{bexCI}    [| ! x:A. ~P(x) ==> P(a);  a:A |] ==> ? x:A.P(x)
   2.133 +\idx{bexE}     [| ? x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q  |] ==> Q
   2.134 +
   2.135 +\idx{ball_cong}
   2.136 +    [| A=A';  !!x. x:A' ==> P(x) = P'(x) |] ==> 
   2.137 +    (! x:A. P(x)) = (! x:A'. P'(x))
   2.138 +
   2.139 +\idx{bex_cong}
   2.140 +    [| A=A';  !!x. x:A' ==> P(x) = P'(x) |] ==> 
   2.141 +    (? x:A. P(x)) = (? x:A'. P'(x))
   2.142 +
   2.143 +\idx{subsetI}         (!!x.x:A ==> x:B) ==> A <= B
   2.144 +\idx{subsetD}         [| A <= B;  c:A |] ==> c:B
   2.145 +\idx{subsetCE}        [| A <= B;  ~(c:A) ==> P;  c:B ==> P |] ==> P
   2.146 +
   2.147 +\idx{subset_refl}     A <= A
   2.148 +\idx{subset_antisym}  [| A <= B;  B <= A |] ==> A = B
   2.149 +\idx{subset_trans}    [| A<=B;  B<=C |] ==> A<=C
   2.150 +
   2.151 +\idx{equalityD1}      A = B ==> A<=B
   2.152 +\idx{equalityD2}      A = B ==> B<=A
   2.153 +\idx{equalityE}       [| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P
   2.154 +
   2.155 +\idx{singletonI}      a : \{a\}
   2.156 +\idx{singletonD}      b : \{a\} ==> b=a
   2.157 +
   2.158 +\idx{imageI}    [| x:A |] ==> f(x) : f``A
   2.159 +\idx{imageE}    [| b : f``A;  !!x.[| b=f(x);  x:A |] ==> P |] ==> P
   2.160 +
   2.161 +\idx{rangeI}    f(x) : range(f)
   2.162 +\idx{rangeE}    [| b : range(f);  !!x.[| b=f(x) |] ==> P |] ==> P
   2.163 +
   2.164 +\idx{UnionI}    [| X:C;  A:X |] ==> A : Union(C)
   2.165 +\idx{UnionE}    [| A : Union(C);  !!X.[| A:X;  X:C |] ==> R |] ==> R
   2.166 +
   2.167 +\idx{InterI}    [| !!X. X:C ==> A:X |] ==> A : Inter(C)
   2.168 +\idx{InterD}    [| A : Inter(C);  X:C |] ==> A:X
   2.169 +\idx{InterE}    [| A : Inter(C);  A:X ==> R;  ~ X:C ==> R |] ==> R
   2.170 +
   2.171 +\idx{UN_I}    [| a:A;  b: B(a) |] ==> b: (UN x:A. B(x))
   2.172 +\idx{UN_E}    [| b : (UN x:A. B(x));  !!x.[| x:A;  b: B(x) |] ==> R |] ==> R
   2.173 +
   2.174 +\idx{INT_I}    (!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))
   2.175 +\idx{INT_D}    [| b : (INT x:A. B(x));  a:A |] ==> b: B(a)
   2.176 +\idx{INT_E}    [| b : (INT x:A. B(x));  b: B(a) ==> R;  ~ a:A ==> R |] ==> R
   2.177 +
   2.178 +\idx{UnI1}    c:A ==> c : A Un B
   2.179 +\idx{UnI2}    c:B ==> c : A Un B
   2.180 +\idx{UnCI}    (~c:B ==> c:A) ==> c : A Un B
   2.181 +\idx{UnE}    [| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P
   2.182 +
   2.183 +\idx{IntI}    [| c:A;  c:B |] ==> c : A Int B
   2.184 +\idx{IntD1}    c : A Int B ==> c:A
   2.185 +\idx{IntD2}    c : A Int B ==> c:B
   2.186 +\idx{IntE}    [| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P
   2.187 +
   2.188 +\idx{ComplI}    [| c:A ==> False |] ==> c : Compl(A)
   2.189 +\idx{ComplD}    [| c : Compl(A) |] ==> ~c:A
   2.190 +
   2.191 +\idx{monoI}    [| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)
   2.192 +\idx{monoD}    [| mono(f);  A <= B |] ==> f(A) <= f(B)
   2.193 +
   2.194 +
   2.195 +----------------------------------------------------------------
   2.196 +\idx{fun.ML}
   2.197 +
   2.198 +\idx{One_OneI}            [| !! x y. f(x) = f(y) ==> x=y |] ==> One_One(f)
   2.199 +\idx{One_One_inverseI}    (!!x. g(f(x)) = x) ==> One_One(f)
   2.200 +\idx{One_OneD}            [| One_One(f); f(x) = f(y) |] ==> x=y
   2.201 +
   2.202 +\idx{Inv_f_f}             One_One(f)   ==> Inv(f,f(x)) = x
   2.203 +\idx{f_Inv_f}             y : range(f) ==> f(Inv(f,y)) = y
   2.204 +
   2.205 +\idx{Inv_injective}
   2.206 +    [| Inv(f,x)=Inv(f,y); x: range(f);  y: range(f) |] ==> x=y
   2.207 +
   2.208 +\idx{One_One_onI}
   2.209 +    (!! x y. [| f(x) = f(y); x:A; y:A |] ==> x=y) ==> One_One_on(f,A)
   2.210 +
   2.211 +\idx{One_One_on_inverseI}
   2.212 +    (!!x. x:A ==> g(f(x)) = x) ==> One_One_on(f,A)
   2.213 +
   2.214 +\idx{One_One_onD}
   2.215 +    [| One_One_on(f,A);  f(x)=f(y);  x:A;  y:A |] ==> x=y
   2.216 +
   2.217 +\idx{One_One_on_contraD}
   2.218 +    [| One_One_on(f,A);  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)
   2.219 +
   2.220 +
   2.221 +----------------------------------------------------------------
   2.222 +\idx{subset.ML}
   2.223 +
   2.224 +\idx{Union_upper}     B:A ==> B <= Union(A)
   2.225 +\idx{Union_least}     [| !!X. X:A ==> X<=C |] ==> Union(A) <= C
   2.226 +
   2.227 +\idx{Inter_lower}     B:A ==> Inter(A) <= B
   2.228 +\idx{Inter_greatest}  [| !!X. X:A ==> C<=X |] ==> C <= Inter(A)
   2.229 +
   2.230 +\idx{Un_upper1}       A <= A Un B
   2.231 +\idx{Un_upper2}       B <= A Un B
   2.232 +\idx{Un_least}        [| A<=C;  B<=C |] ==> A Un B <= C
   2.233 +
   2.234 +\idx{Int_lower1}      A Int B <= A
   2.235 +\idx{Int_lower2}      A Int B <= B
   2.236 +\idx{Int_greatest}    [| C<=A;  C<=B |] ==> C <= A Int B
   2.237 +
   2.238 +
   2.239 +----------------------------------------------------------------
   2.240 +\idx{equalities.ML}
   2.241 +
   2.242 +\idx{Int_absorb}        A Int A = A
   2.243 +\idx{Int_commute}       A Int B  =  B Int A
   2.244 +\idx{Int_assoc}         (A Int B) Int C  =  A Int (B Int C)
   2.245 +\idx{Int_Un_distrib}    (A Un B) Int C  =  (A Int C) Un (B Int C)
   2.246 +
   2.247 +\idx{Un_absorb}         A Un A = A
   2.248 +\idx{Un_commute}        A Un B  =  B Un A
   2.249 +\idx{Un_assoc}          (A Un B) Un C  =  A Un (B Un C)
   2.250 +\idx{Un_Int_distrib}    (A Int B) Un C  =  (A Un C) Int (B Un C)
   2.251 +
   2.252 +\idx{Compl_disjoint}    A Int Compl(A) = \{x.False\}
   2.253 +\idx{Compl_partition    A Un Compl(A) = \{x.True\}
   2.254 +\idx{double_complement} Compl(Compl(A)) = A
   2.255 +
   2.256 +
   2.257 +\idx{Compl_Un}          Compl(A Un B) = Compl(A) Int Compl(B)
   2.258 +\idx{Compl_Int}         Compl(A Int B) = Compl(A) Un Compl(B)
   2.259 +
   2.260 +\idx{Union_Un_distrib}  Union(A Un B) = Union(A) Un Union(B)
   2.261 +\idx{Int_Union_image}   A Int Union(B) = (UN C:B. A Int C)
   2.262 +\idx{Un_Union_image}    (UN x:C. A(x) Un B(x)) = Union(A``C)  Un  Union(B``C)
   2.263 +
   2.264 +\idx{Inter_Un_distrib}  Inter(A Un B) = Inter(A) Int Inter(B)
   2.265 +\idx{Un_Inter_image}    A Un Inter(B) = (INT C:B. A Un C)
   2.266 +\idx{Int_Inter_image}   (INT x:C. A(x) Int B(x)) = Inter(A``C) Int Inter(B``C)
   2.267 +
   2.268 +
   2.269 +----------------------------------------------------------------
   2.270 +prod.ML
   2.271 +
   2.272 +      mixfix = [ Delimfix((1<_,/_>), ['a,'b] => ('a,'b)prod, Pair),
   2.273 +                 TInfixl(*, prod, 20) ],
   2.274 +thy = extend_theory Set.thy Prod
   2.275 +  [([prod],([[term],[term]],term))],
   2.276 +   ([fst],              'a * 'b => 'a),
   2.277 +   ([snd],              'a * 'b => 'b),
   2.278 +   ([split],            ['a * 'b, ['a,'b]=>'c] => 'c)],
   2.279 +\idx{fst_def}             fst(p) == @a. ? b. p = <a,b>),
   2.280 +\idx{snd_def}             snd(p) == @b. ? a. p = <a,b>),
   2.281 +\idx{split_def}           split(p,c) == c(fst(p),snd(p)))
   2.282 +
   2.283 +\idx{Pair_inject}  [| <a, b> = <a',b'>;  [| a=a';  b=b' |] ==> R |] ==> R
   2.284 +
   2.285 +\idx{fst_conv}     fst(<a,b>) = a
   2.286 +\idx{snd_conv}     snd(<a,b>) = b
   2.287 +\idx{split_conv}   split(<a,b>, c) = c(a,b)
   2.288 +
   2.289 +\idx{surjective_pairing}    p = <fst(p),snd(p)>
   2.290 +
   2.291 +----------------------------------------------------------------
   2.292 +sum.ML
   2.293 +
   2.294 +      mixfix = [TInfixl(+, sum, 10)],
   2.295 +thy = extend_theory Prod.thy sum
   2.296 +  [([sum], ([[term],[term]],term))],
   2.297 + [Inl],              'a => 'a+'b),
   2.298 + [Inr],              'b => 'a+'b),
   2.299 + [when],             ['a+'b, 'a=>'c, 'b=>'c] =>'c)],
   2.300 +\idx{when_def}    when == (%p f g. @z.  (!x. p=Inl(x) --> z=f(x))
   2.301 +                                    & (!y. p=Inr(y) --> z=g(y))))
   2.302 +
   2.303 +\idx{Inl_not_Inr}    ~ (Inl(a) = Inr(b))
   2.304 +
   2.305 +\idx{One_One_Inl}    One_One(Inl)
   2.306 +
   2.307 +\idx{One_One_Inr}    One_One(Inr)
   2.308 +
   2.309 +\idx{when_Inl_conv}    when(Inl(x), f, g) = f(x)
   2.310 +
   2.311 +\idx{when_Inr_conv}    when(Inr(x), f, g) = g(x)
   2.312 +
   2.313 +\idx{sumE}
   2.314 +    [| !!x::'a. P(Inl(x));  !!y::'b. P(Inr(y)) 
   2.315 +    |] ==> P(s)
   2.316 +
   2.317 +\idx{surjective_sum}    when(s, %x::'a. f(Inl(x)), %y::'b. f(Inr(y))) = f(s)
   2.318 +
   2.319 +
   2.320 +????????????????????????????????????????????????????????????????
   2.321 +trancl?
   2.322 +
   2.323 +----------------------------------------------------------------
   2.324 +nat.ML
   2.325 +
   2.326 +  Sext\{mixfix=[Delimfix(0, nat, 0),
   2.327 +               Infixl(<,[nat,nat] => bool,50)],
   2.328 +thy = extend_theory Trancl.thy Nat
   2.329 +[nat], ([],term))
   2.330 +[nat_case],          [nat, 'a, nat=>'a] =>'a),
   2.331 +[pred_nat],nat*nat) set),
   2.332 +[nat_rec],           [nat, 'a, [nat, 'a]=>'a] => 'a)
   2.333 +
   2.334 +\idx{nat_case_def}        nat_case == (%n a f. @z.  (n=0 --> z=a)  
   2.335 +                                          & (!x. n=Suc(x) --> z=f(x)))),
   2.336 +\idx{pred_nat_def}        pred_nat == \{p. ? n. p = <n, Suc(n)>\} ),
   2.337 +\idx{less_def} m<n == <m,n>:trancl(pred_nat)),
   2.338 +\idx{nat_rec_def} 
   2.339 +   nat_rec(n,c,d) == wfrec(trancl(pred_nat), 
   2.340 +                        %rec l. nat_case(l, c, %m. d(m,rec(m))), 
   2.341 +                        n) )
   2.342 +
   2.343 +\idx{nat_induct}    [| P(0); !!k. [| P(k) |] ==> P(Suc(k)) |]  ==> P(n)
   2.344 +
   2.345 +
   2.346 +\idx{Suc_not_Zero}    ~ (Suc(m) = 0)
   2.347 +\idx{One_One_Suc}    One_One(Suc)
   2.348 +\idx{n_not_Suc_n}    ~(n=Suc(n))
   2.349 +
   2.350 +\idx{nat_case_0_conv}    nat_case(0, a, f) = a
   2.351 +
   2.352 +\idx{nat_case_Suc_conv}    nat_case(Suc(k), a, f) = f(k)
   2.353 +
   2.354 +\idx{pred_natI}    <n, Suc(n)> : pred_nat
   2.355 +\idx{pred_natE}
   2.356 +    [| p : pred_nat;  !!x n. [| p = <n, Suc(n)> |] ==> R 
   2.357 +    |] ==> R
   2.358 +
   2.359 +\idx{wf_pred_nat}    wf(pred_nat)
   2.360 +
   2.361 +\idx{nat_rec_0_conv}    nat_rec(0,c,h) = c
   2.362 +
   2.363 +\idx{nat_rec_Suc_conv}    nat_rec(Suc(n), c, h) = h(n, nat_rec(n,c,h))
   2.364 +
   2.365 +
   2.366 +(*** Basic properties of less than ***)
   2.367 +\idx{less_trans}     [| i<j;  j<k |] ==> i<k
   2.368 +\idx{lessI}          n < Suc(n)
   2.369 +\idx{zero_less_Suc}  0 < Suc(n)
   2.370 +
   2.371 +\idx{less_not_sym}   n<m --> ~m<n 
   2.372 +\idx{less_not_refl}  ~ (n<n)
   2.373 +\idx{not_less0}      ~ (n<0)
   2.374 +
   2.375 +\idx{Suc_less_eq}    (Suc(m) < Suc(n)) = (m<n)
   2.376 +\idx{less_induct}    [| !!n. [| ! m. m<n --> P(m) |] ==> P(n) |]  ==>  P(n)
   2.377 +
   2.378 +\idx{less_linear}    m<n | m=n | n<m
   2.379 +
   2.380 +
   2.381 +----------------------------------------------------------------
   2.382 +list.ML
   2.383 +
   2.384 + [([list], ([[term]],term))],
   2.385 +  ([Nil],       'a list),
   2.386 +  ([Cons],      ['a, 'a list] => 'a list),
   2.387 +  ([list_rec],        ['a list, 'b, ['a ,'a list, 'b]=>'b] => 'b),
   2.388 +  ([list_all],        ('a => bool) => ('a list => bool)),
   2.389 +  ([map],               ('a=>'b) => ('a list => 'b list))
   2.390 +
   2.391 +\idx{map_def}     map(f,xs) == list_rec(xs, Nil, %x l r. Cons(f(x), r)) )
   2.392 +
   2.393 +\idx{list_induct}
   2.394 +    [| P(Nil);   
   2.395 +       !!x xs. [| P(xs) |] ==> P(Cons(x,xs)) |]  ==> P(l)
   2.396 +
   2.397 +\idx{Cons_not_Nil}   ~ Cons(x,xs) = Nil
   2.398 +\idx{Cons_Cons_eq}   (Cons(x,xs)=Cons(y,ys)) = (x=y & xs=ys)
   2.399 +
   2.400 +\idx{list_rec_Nil_conv}    list_rec(Nil,c,h) = c
   2.401 +\idx{list_rec_Cons_conv}   list_rec(Cons(a,l), c, h) = 
   2.402 +                               h(a, l, list_rec(l,c,h))
   2.403 +
   2.404 +\idx{map_Nil_conv}   map(f,Nil) = Nil
   2.405 +\idx{map_Cons_conv}  map(f, Cons(x,xs)) = Cons(f(x), map(f,xs))
   2.406 +
     3.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.2 +++ b/doc-src/HOL/HOL.tex	Tue May 04 18:03:56 1999 +0200
     3.3 @@ -0,0 +1,2981 @@
     3.4 +%% $Id$
     3.5 +\chapter{Higher-Order Logic}
     3.6 +\index{higher-order logic|(}
     3.7 +\index{HOL system@{\sc hol} system}
     3.8 +
     3.9 +The theory~\thydx{HOL} implements higher-order logic.  It is based on
    3.10 +Gordon's~{\sc hol} system~\cite{mgordon-hol}, which itself is based on
    3.11 +Church's original paper~\cite{church40}.  Andrews's
    3.12 +book~\cite{andrews86} is a full description of the original
    3.13 +Church-style higher-order logic.  Experience with the {\sc hol} system
    3.14 +has demonstrated that higher-order logic is widely applicable in many
    3.15 +areas of mathematics and computer science, not just hardware
    3.16 +verification, {\sc hol}'s original \textit{raison d'\^etre\/}.  It is
    3.17 +weaker than {\ZF} set theory but for most applications this does not
    3.18 +matter.  If you prefer {\ML} to Lisp, you will probably prefer \HOL\ 
    3.19 +to~{\ZF}.
    3.20 +
    3.21 +The syntax of \HOL\footnote{Earlier versions of Isabelle's \HOL\ used a
    3.22 +different syntax.  Ancient releases of Isabelle included still another version
    3.23 +of~\HOL, with explicit type inference rules~\cite{paulson-COLOG}.  This
    3.24 +version no longer exists, but \thydx{ZF} supports a similar style of
    3.25 +reasoning.} follows $\lambda$-calculus and functional programming.  Function
    3.26 +application is curried.  To apply the function~$f$ of type
    3.27 +$\tau@1\To\tau@2\To\tau@3$ to the arguments~$a$ and~$b$ in \HOL, you simply
    3.28 +write $f\,a\,b$.  There is no `apply' operator as in \thydx{ZF}.  Note that
    3.29 +$f(a,b)$ means ``$f$ applied to the pair $(a,b)$'' in \HOL.  We write ordered
    3.30 +pairs as $(a,b)$, not $\langle a,b\rangle$ as in {\ZF}.
    3.31 +
    3.32 +\HOL\ has a distinct feel, compared with {\ZF} and {\CTT}.  It
    3.33 +identifies object-level types with meta-level types, taking advantage of
    3.34 +Isabelle's built-in type-checker.  It identifies object-level functions
    3.35 +with meta-level functions, so it uses Isabelle's operations for abstraction
    3.36 +and application.
    3.37 +
    3.38 +These identifications allow Isabelle to support \HOL\ particularly
    3.39 +nicely, but they also mean that \HOL\ requires more sophistication
    3.40 +from the user --- in particular, an understanding of Isabelle's type
    3.41 +system.  Beginners should work with \texttt{show_types} (or even
    3.42 +\texttt{show_sorts}) set to \texttt{true}.
    3.43 +%  Gain experience by
    3.44 +%working in first-order logic before attempting to use higher-order logic.
    3.45 +%This chapter assumes familiarity with~{\FOL{}}.
    3.46 +
    3.47 +
    3.48 +\begin{figure}
    3.49 +\begin{constants}
    3.50 +  \it name      &\it meta-type  & \it description \\
    3.51 +  \cdx{Trueprop}& $bool\To prop$                & coercion to $prop$\\
    3.52 +  \cdx{Not}     & $bool\To bool$                & negation ($\neg$) \\
    3.53 +  \cdx{True}    & $bool$                        & tautology ($\top$) \\
    3.54 +  \cdx{False}   & $bool$                        & absurdity ($\bot$) \\
    3.55 +  \cdx{If}      & $[bool,\alpha,\alpha]\To\alpha$ & conditional \\
    3.56 +  \cdx{Let}     & $[\alpha,\alpha\To\beta]\To\beta$ & let binder
    3.57 +\end{constants}
    3.58 +\subcaption{Constants}
    3.59 +
    3.60 +\begin{constants}
    3.61 +\index{"@@{\tt\at} symbol}
    3.62 +\index{*"! symbol}\index{*"? symbol}
    3.63 +\index{*"?"! symbol}\index{*"E"X"! symbol}
    3.64 +  \it symbol &\it name     &\it meta-type & \it description \\
    3.65 +  \tt\at & \cdx{Eps}  & $(\alpha\To bool)\To\alpha$ & 
    3.66 +        Hilbert description ($\varepsilon$) \\
    3.67 +  {\tt!~} or \sdx{ALL}  & \cdx{All}  & $(\alpha\To bool)\To bool$ & 
    3.68 +        universal quantifier ($\forall$) \\
    3.69 +  {\tt?~} or \sdx{EX}   & \cdx{Ex}   & $(\alpha\To bool)\To bool$ & 
    3.70 +        existential quantifier ($\exists$) \\
    3.71 +  {\tt?!} or \texttt{EX!}  & \cdx{Ex1}  & $(\alpha\To bool)\To bool$ & 
    3.72 +        unique existence ($\exists!$)\\
    3.73 +  \texttt{LEAST}  & \cdx{Least}  & $(\alpha::ord \To bool)\To\alpha$ & 
    3.74 +        least element
    3.75 +\end{constants}
    3.76 +\subcaption{Binders} 
    3.77 +
    3.78 +\begin{constants}
    3.79 +\index{*"= symbol}
    3.80 +\index{&@{\tt\&} symbol}
    3.81 +\index{*"| symbol}
    3.82 +\index{*"-"-"> symbol}
    3.83 +  \it symbol    & \it meta-type & \it priority & \it description \\ 
    3.84 +  \sdx{o}       & $[\beta\To\gamma,\alpha\To\beta]\To (\alpha\To\gamma)$ & 
    3.85 +        Left 55 & composition ($\circ$) \\
    3.86 +  \tt =         & $[\alpha,\alpha]\To bool$ & Left 50 & equality ($=$) \\
    3.87 +  \tt <         & $[\alpha::ord,\alpha]\To bool$ & Left 50 & less than ($<$) \\
    3.88 +  \tt <=        & $[\alpha::ord,\alpha]\To bool$ & Left 50 & 
    3.89 +                less than or equals ($\leq$)\\
    3.90 +  \tt \&        & $[bool,bool]\To bool$ & Right 35 & conjunction ($\conj$) \\
    3.91 +  \tt |         & $[bool,bool]\To bool$ & Right 30 & disjunction ($\disj$) \\
    3.92 +  \tt -->       & $[bool,bool]\To bool$ & Right 25 & implication ($\imp$)
    3.93 +\end{constants}
    3.94 +\subcaption{Infixes}
    3.95 +\caption{Syntax of \texttt{HOL}} \label{hol-constants}
    3.96 +\end{figure}
    3.97 +
    3.98 +
    3.99 +\begin{figure}
   3.100 +\index{*let symbol}
   3.101 +\index{*in symbol}
   3.102 +\dquotes
   3.103 +\[\begin{array}{rclcl}
   3.104 +    term & = & \hbox{expression of class~$term$} \\
   3.105 +         & | & "\at~" id " . " formula \\
   3.106 +         & | & 
   3.107 +    \multicolumn{3}{l}{"let"~id~"="~term";"\dots";"~id~"="~term~"in"~term} \\
   3.108 +         & | & 
   3.109 +    \multicolumn{3}{l}{"if"~formula~"then"~term~"else"~term} \\
   3.110 +         & | & "LEAST"~ id " . " formula \\[2ex]
   3.111 + formula & = & \hbox{expression of type~$bool$} \\
   3.112 +         & | & term " = " term \\
   3.113 +         & | & term " \ttilde= " term \\
   3.114 +         & | & term " < " term \\
   3.115 +         & | & term " <= " term \\
   3.116 +         & | & "\ttilde\ " formula \\
   3.117 +         & | & formula " \& " formula \\
   3.118 +         & | & formula " | " formula \\
   3.119 +         & | & formula " --> " formula \\
   3.120 +         & | & "!~~~" id~id^* " . " formula 
   3.121 +         & | & "ALL~" id~id^* " . " formula \\
   3.122 +         & | & "?~~~" id~id^* " . " formula 
   3.123 +         & | & "EX~~" id~id^* " . " formula \\
   3.124 +         & | & "?!~~" id~id^* " . " formula 
   3.125 +         & | & "EX!~" id~id^* " . " formula
   3.126 +  \end{array}
   3.127 +\]
   3.128 +\caption{Full grammar for \HOL} \label{hol-grammar}
   3.129 +\end{figure} 
   3.130 +
   3.131 +
   3.132 +\section{Syntax}
   3.133 +
   3.134 +Figure~\ref{hol-constants} lists the constants (including infixes and
   3.135 +binders), while Fig.\ts\ref{hol-grammar} presents the grammar of
   3.136 +higher-order logic.  Note that $a$\verb|~=|$b$ is translated to
   3.137 +$\neg(a=b)$.
   3.138 +
   3.139 +\begin{warn}
   3.140 +  \HOL\ has no if-and-only-if connective; logical equivalence is expressed
   3.141 +  using equality.  But equality has a high priority, as befitting a
   3.142 +  relation, while if-and-only-if typically has the lowest priority.  Thus,
   3.143 +  $\neg\neg P=P$ abbreviates $\neg\neg (P=P)$ and not $(\neg\neg P)=P$.
   3.144 +  When using $=$ to mean logical equivalence, enclose both operands in
   3.145 +  parentheses.
   3.146 +\end{warn}
   3.147 +
   3.148 +\subsection{Types and classes}
   3.149 +The universal type class of higher-order terms is called~\cldx{term}.
   3.150 +By default, explicit type variables have class \cldx{term}.  In
   3.151 +particular the equality symbol and quantifiers are polymorphic over
   3.152 +class \texttt{term}.
   3.153 +
   3.154 +The type of formulae, \tydx{bool}, belongs to class \cldx{term}; thus,
   3.155 +formulae are terms.  The built-in type~\tydx{fun}, which constructs
   3.156 +function types, is overloaded with arity {\tt(term,\thinspace
   3.157 +  term)\thinspace term}.  Thus, $\sigma\To\tau$ belongs to class~{\tt
   3.158 +  term} if $\sigma$ and~$\tau$ do, allowing quantification over
   3.159 +functions.
   3.160 +
   3.161 +\HOL\ offers various methods for introducing new types.
   3.162 +See~\S\ref{sec:HOL:Types} and~\S\ref{sec:HOL:datatype}.
   3.163 +
   3.164 +Theory \thydx{Ord} defines the syntactic class \cldx{ord} of order
   3.165 +signatures; the relations $<$ and $\leq$ are polymorphic over this
   3.166 +class, as are the functions \cdx{mono}, \cdx{min} and \cdx{max}, and
   3.167 +the \cdx{LEAST} operator. \thydx{Ord} also defines a subclass
   3.168 +\cldx{order} of \cldx{ord} which axiomatizes partially ordered types
   3.169 +(w.r.t.\ $\le$).
   3.170 +
   3.171 +Three other syntactic type classes --- \cldx{plus}, \cldx{minus} and
   3.172 +\cldx{times} --- permit overloading of the operators {\tt+},\index{*"+
   3.173 +  symbol} {\tt-}\index{*"- symbol} and {\tt*}.\index{*"* symbol} In
   3.174 +particular, {\tt-} is instantiated for set difference and subtraction
   3.175 +on natural numbers.
   3.176 +
   3.177 +If you state a goal containing overloaded functions, you may need to include
   3.178 +type constraints.  Type inference may otherwise make the goal more
   3.179 +polymorphic than you intended, with confusing results.  For example, the
   3.180 +variables $i$, $j$ and $k$ in the goal $i \le j \Imp i \le j+k$ have type
   3.181 +$\alpha::\{ord,plus\}$, although you may have expected them to have some
   3.182 +numeric type, e.g. $nat$.  Instead you should have stated the goal as
   3.183 +$(i::nat) \le j \Imp i \le j+k$, which causes all three variables to have
   3.184 +type $nat$.
   3.185 +
   3.186 +\begin{warn}
   3.187 +  If resolution fails for no obvious reason, try setting
   3.188 +  \ttindex{show_types} to \texttt{true}, causing Isabelle to display
   3.189 +  types of terms.  Possibly set \ttindex{show_sorts} to \texttt{true} as
   3.190 +  well, causing Isabelle to display type classes and sorts.
   3.191 +
   3.192 +  \index{unification!incompleteness of}
   3.193 +  Where function types are involved, Isabelle's unification code does not
   3.194 +  guarantee to find instantiations for type variables automatically.  Be
   3.195 +  prepared to use \ttindex{res_inst_tac} instead of \texttt{resolve_tac},
   3.196 +  possibly instantiating type variables.  Setting
   3.197 +  \ttindex{Unify.trace_types} to \texttt{true} causes Isabelle to report
   3.198 +  omitted search paths during unification.\index{tracing!of unification}
   3.199 +\end{warn}
   3.200 +
   3.201 +
   3.202 +\subsection{Binders}
   3.203 +
   3.204 +Hilbert's {\bf description} operator~$\varepsilon x. P[x]$ stands for
   3.205 +some~$x$ satisfying~$P$, if such exists.  Since all terms in \HOL\ 
   3.206 +denote something, a description is always meaningful, but we do not
   3.207 +know its value unless $P$ defines it uniquely.  We may write
   3.208 +descriptions as \cdx{Eps}($\lambda x. P[x]$) or use the syntax
   3.209 +\hbox{\tt \at $x$.\ $P[x]$}.
   3.210 +
   3.211 +Existential quantification is defined by
   3.212 +\[ \exists x. P~x \;\equiv\; P(\varepsilon x. P~x). \]
   3.213 +The unique existence quantifier, $\exists!x. P$, is defined in terms
   3.214 +of~$\exists$ and~$\forall$.  An Isabelle binder, it admits nested
   3.215 +quantifications.  For instance, $\exists!x\,y. P\,x\,y$ abbreviates
   3.216 +$\exists!x. \exists!y. P\,x\,y$; note that this does not mean that there
   3.217 +exists a unique pair $(x,y)$ satisfying~$P\,x\,y$.
   3.218 +
   3.219 +\index{*"! symbol}\index{*"? symbol}\index{HOL system@{\sc hol} system}
   3.220 +Quantifiers have two notations.  As in Gordon's {\sc hol} system, \HOL\
   3.221 +uses~{\tt!}\ and~{\tt?}\ to stand for $\forall$ and $\exists$.  The
   3.222 +existential quantifier must be followed by a space; thus {\tt?x} is an
   3.223 +unknown, while \verb'? x. f x=y' is a quantification.  Isabelle's usual
   3.224 +notation for quantifiers, \sdx{ALL} and \sdx{EX}, is also
   3.225 +available.  Both notations are accepted for input.  The {\ML} reference
   3.226 +\ttindexbold{HOL_quantifiers} governs the output notation.  If set to {\tt
   3.227 +true}, then~{\tt!}\ and~{\tt?}\ are displayed; this is the default.  If set
   3.228 +to \texttt{false}, then~\texttt{ALL} and~\texttt{EX} are displayed.
   3.229 +
   3.230 +If $\tau$ is a type of class \cldx{ord}, $P$ a formula and $x$ a
   3.231 +variable of type $\tau$, then the term \cdx{LEAST}~$x. P[x]$ is defined
   3.232 +to be the least (w.r.t.\ $\le$) $x$ such that $P~x$ holds (see
   3.233 +Fig.~\ref{hol-defs}).  The definition uses Hilbert's $\varepsilon$
   3.234 +choice operator, so \texttt{Least} is always meaningful, but may yield
   3.235 +nothing useful in case there is not a unique least element satisfying
   3.236 +$P$.\footnote{Class $ord$ does not require much of its instances, so
   3.237 +  $\le$ need not be a well-ordering, not even an order at all!}
   3.238 +
   3.239 +\medskip All these binders have priority 10.
   3.240 +
   3.241 +\begin{warn}
   3.242 +The low priority of binders means that they need to be enclosed in
   3.243 +parenthesis when they occur in the context of other operations.  For example,
   3.244 +instead of $P \land \forall x. Q$ you need to write $P \land (\forall x. Q)$.
   3.245 +\end{warn}
   3.246 +
   3.247 +
   3.248 +\subsection{The \sdx{let} and \sdx{case} constructions}
   3.249 +Local abbreviations can be introduced by a \texttt{let} construct whose
   3.250 +syntax appears in Fig.\ts\ref{hol-grammar}.  Internally it is translated into
   3.251 +the constant~\cdx{Let}.  It can be expanded by rewriting with its
   3.252 +definition, \tdx{Let_def}.
   3.253 +
   3.254 +\HOL\ also defines the basic syntax
   3.255 +\[\dquotes"case"~e~"of"~c@1~"=>"~e@1~"|" \dots "|"~c@n~"=>"~e@n\] 
   3.256 +as a uniform means of expressing \texttt{case} constructs.  Therefore \texttt{case}
   3.257 +and \sdx{of} are reserved words.  Initially, this is mere syntax and has no
   3.258 +logical meaning.  By declaring translations, you can cause instances of the
   3.259 +\texttt{case} construct to denote applications of particular case operators.
   3.260 +This is what happens automatically for each \texttt{datatype} definition
   3.261 +(see~\S\ref{sec:HOL:datatype}).
   3.262 +
   3.263 +\begin{warn}
   3.264 +Both \texttt{if} and \texttt{case} constructs have as low a priority as
   3.265 +quantifiers, which requires additional enclosing parentheses in the context
   3.266 +of most other operations.  For example, instead of $f~x = {\tt if\dots
   3.267 +then\dots else}\dots$ you need to write $f~x = ({\tt if\dots then\dots
   3.268 +else\dots})$.
   3.269 +\end{warn}
   3.270 +
   3.271 +\section{Rules of inference}
   3.272 +
   3.273 +\begin{figure}
   3.274 +\begin{ttbox}\makeatother
   3.275 +\tdx{refl}           t = (t::'a)
   3.276 +\tdx{subst}          [| s = t; P s |] ==> P (t::'a)
   3.277 +\tdx{ext}            (!!x::'a. (f x :: 'b) = g x) ==> (\%x. f x) = (\%x. g x)
   3.278 +\tdx{impI}           (P ==> Q) ==> P-->Q
   3.279 +\tdx{mp}             [| P-->Q;  P |] ==> Q
   3.280 +\tdx{iff}            (P-->Q) --> (Q-->P) --> (P=Q)
   3.281 +\tdx{selectI}        P(x::'a) ==> P(@x. P x)
   3.282 +\tdx{True_or_False}  (P=True) | (P=False)
   3.283 +\end{ttbox}
   3.284 +\caption{The \texttt{HOL} rules} \label{hol-rules}
   3.285 +\end{figure}
   3.286 +
   3.287 +Figure~\ref{hol-rules} shows the primitive inference rules of~\HOL{},
   3.288 +with their~{\ML} names.  Some of the rules deserve additional
   3.289 +comments:
   3.290 +\begin{ttdescription}
   3.291 +\item[\tdx{ext}] expresses extensionality of functions.
   3.292 +\item[\tdx{iff}] asserts that logically equivalent formulae are
   3.293 +  equal.
   3.294 +\item[\tdx{selectI}] gives the defining property of the Hilbert
   3.295 +  $\varepsilon$-operator.  It is a form of the Axiom of Choice.  The derived rule
   3.296 +  \tdx{select_equality} (see below) is often easier to use.
   3.297 +\item[\tdx{True_or_False}] makes the logic classical.\footnote{In
   3.298 +    fact, the $\varepsilon$-operator already makes the logic classical, as
   3.299 +    shown by Diaconescu; see Paulson~\cite{paulson-COLOG} for details.}
   3.300 +\end{ttdescription}
   3.301 +
   3.302 +
   3.303 +\begin{figure}\hfuzz=4pt%suppress "Overfull \hbox" message
   3.304 +\begin{ttbox}\makeatother
   3.305 +\tdx{True_def}   True     == ((\%x::bool. x)=(\%x. x))
   3.306 +\tdx{All_def}    All      == (\%P. P = (\%x. True))
   3.307 +\tdx{Ex_def}     Ex       == (\%P. P(@x. P x))
   3.308 +\tdx{False_def}  False    == (!P. P)
   3.309 +\tdx{not_def}    not      == (\%P. P-->False)
   3.310 +\tdx{and_def}    op &     == (\%P Q. !R. (P-->Q-->R) --> R)
   3.311 +\tdx{or_def}     op |     == (\%P Q. !R. (P-->R) --> (Q-->R) --> R)
   3.312 +\tdx{Ex1_def}    Ex1      == (\%P. ? x. P x & (! y. P y --> y=x))
   3.313 +
   3.314 +\tdx{o_def}      op o     == (\%(f::'b=>'c) g x::'a. f(g x))
   3.315 +\tdx{if_def}     If P x y ==
   3.316 +              (\%P x y. @z::'a.(P=True --> z=x) & (P=False --> z=y))
   3.317 +\tdx{Let_def}    Let s f  == f s
   3.318 +\tdx{Least_def}  Least P  == @x. P(x) & (ALL y. P(y) --> x <= y)"
   3.319 +\end{ttbox}
   3.320 +\caption{The \texttt{HOL} definitions} \label{hol-defs}
   3.321 +\end{figure}
   3.322 +
   3.323 +
   3.324 +\HOL{} follows standard practice in higher-order logic: only a few
   3.325 +connectives are taken as primitive, with the remainder defined obscurely
   3.326 +(Fig.\ts\ref{hol-defs}).  Gordon's {\sc hol} system expresses the
   3.327 +corresponding definitions \cite[page~270]{mgordon-hol} using
   3.328 +object-equality~({\tt=}), which is possible because equality in
   3.329 +higher-order logic may equate formulae and even functions over formulae.
   3.330 +But theory~\HOL{}, like all other Isabelle theories, uses
   3.331 +meta-equality~({\tt==}) for definitions.
   3.332 +\begin{warn}
   3.333 +The definitions above should never be expanded and are shown for completeness
   3.334 +only.  Instead users should reason in terms of the derived rules shown below
   3.335 +or, better still, using high-level tactics
   3.336 +(see~\S\ref{sec:HOL:generic-packages}).
   3.337 +\end{warn}
   3.338 +
   3.339 +Some of the rules mention type variables; for example, \texttt{refl}
   3.340 +mentions the type variable~{\tt'a}.  This allows you to instantiate
   3.341 +type variables explicitly by calling \texttt{res_inst_tac}.
   3.342 +
   3.343 +
   3.344 +\begin{figure}
   3.345 +\begin{ttbox}
   3.346 +\tdx{sym}         s=t ==> t=s
   3.347 +\tdx{trans}       [| r=s; s=t |] ==> r=t
   3.348 +\tdx{ssubst}      [| t=s; P s |] ==> P t
   3.349 +\tdx{box_equals}  [| a=b;  a=c;  b=d |] ==> c=d  
   3.350 +\tdx{arg_cong}    x = y ==> f x = f y
   3.351 +\tdx{fun_cong}    f = g ==> f x = g x
   3.352 +\tdx{cong}        [| f = g; x = y |] ==> f x = g y
   3.353 +\tdx{not_sym}     t ~= s ==> s ~= t
   3.354 +\subcaption{Equality}
   3.355 +
   3.356 +\tdx{TrueI}       True 
   3.357 +\tdx{FalseE}      False ==> P
   3.358 +
   3.359 +\tdx{conjI}       [| P; Q |] ==> P&Q
   3.360 +\tdx{conjunct1}   [| P&Q |] ==> P
   3.361 +\tdx{conjunct2}   [| P&Q |] ==> Q 
   3.362 +\tdx{conjE}       [| P&Q;  [| P; Q |] ==> R |] ==> R
   3.363 +
   3.364 +\tdx{disjI1}      P ==> P|Q
   3.365 +\tdx{disjI2}      Q ==> P|Q
   3.366 +\tdx{disjE}       [| P | Q; P ==> R; Q ==> R |] ==> R
   3.367 +
   3.368 +\tdx{notI}        (P ==> False) ==> ~ P
   3.369 +\tdx{notE}        [| ~ P;  P |] ==> R
   3.370 +\tdx{impE}        [| P-->Q;  P;  Q ==> R |] ==> R
   3.371 +\subcaption{Propositional logic}
   3.372 +
   3.373 +\tdx{iffI}        [| P ==> Q;  Q ==> P |] ==> P=Q
   3.374 +\tdx{iffD1}       [| P=Q; P |] ==> Q
   3.375 +\tdx{iffD2}       [| P=Q; Q |] ==> P
   3.376 +\tdx{iffE}        [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R
   3.377 +%
   3.378 +%\tdx{eqTrueI}     P ==> P=True 
   3.379 +%\tdx{eqTrueE}     P=True ==> P 
   3.380 +\subcaption{Logical equivalence}
   3.381 +
   3.382 +\end{ttbox}
   3.383 +\caption{Derived rules for \HOL} \label{hol-lemmas1}
   3.384 +\end{figure}
   3.385 +
   3.386 +
   3.387 +\begin{figure}
   3.388 +\begin{ttbox}\makeatother
   3.389 +\tdx{allI}      (!!x. P x) ==> !x. P x
   3.390 +\tdx{spec}      !x. P x ==> P x
   3.391 +\tdx{allE}      [| !x. P x;  P x ==> R |] ==> R
   3.392 +\tdx{all_dupE}  [| !x. P x;  [| P x; !x. P x |] ==> R |] ==> R
   3.393 +
   3.394 +\tdx{exI}       P x ==> ? x. P x
   3.395 +\tdx{exE}       [| ? x. P x; !!x. P x ==> Q |] ==> Q
   3.396 +
   3.397 +\tdx{ex1I}      [| P a;  !!x. P x ==> x=a |] ==> ?! x. P x
   3.398 +\tdx{ex1E}      [| ?! x. P x;  !!x. [| P x;  ! y. P y --> y=x |] ==> R 
   3.399 +          |] ==> R
   3.400 +
   3.401 +\tdx{select_equality} [| P a;  !!x. P x ==> x=a |] ==> (@x. P x) = a
   3.402 +\subcaption{Quantifiers and descriptions}
   3.403 +
   3.404 +\tdx{ccontr}          (~P ==> False) ==> P
   3.405 +\tdx{classical}       (~P ==> P) ==> P
   3.406 +\tdx{excluded_middle} ~P | P
   3.407 +
   3.408 +\tdx{disjCI}          (~Q ==> P) ==> P|Q
   3.409 +\tdx{exCI}            (! x. ~ P x ==> P a) ==> ? x. P x
   3.410 +\tdx{impCE}           [| P-->Q; ~ P ==> R; Q ==> R |] ==> R
   3.411 +\tdx{iffCE}           [| P=Q;  [| P;Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R
   3.412 +\tdx{notnotD}         ~~P ==> P
   3.413 +\tdx{swap}            ~P ==> (~Q ==> P) ==> Q
   3.414 +\subcaption{Classical logic}
   3.415 +
   3.416 +%\tdx{if_True}         (if True then x else y) = x
   3.417 +%\tdx{if_False}        (if False then x else y) = y
   3.418 +\tdx{if_P}            P ==> (if P then x else y) = x
   3.419 +\tdx{if_not_P}        ~ P ==> (if P then x else y) = y
   3.420 +\tdx{split_if}        P(if Q then x else y) = ((Q --> P x) & (~Q --> P y))
   3.421 +\subcaption{Conditionals}
   3.422 +\end{ttbox}
   3.423 +\caption{More derived rules} \label{hol-lemmas2}
   3.424 +\end{figure}
   3.425 +
   3.426 +Some derived rules are shown in Figures~\ref{hol-lemmas1}
   3.427 +and~\ref{hol-lemmas2}, with their {\ML} names.  These include natural rules
   3.428 +for the logical connectives, as well as sequent-style elimination rules for
   3.429 +conjunctions, implications, and universal quantifiers.  
   3.430 +
   3.431 +Note the equality rules: \tdx{ssubst} performs substitution in
   3.432 +backward proofs, while \tdx{box_equals} supports reasoning by
   3.433 +simplifying both sides of an equation.
   3.434 +
   3.435 +The following simple tactics are occasionally useful:
   3.436 +\begin{ttdescription}
   3.437 +\item[\ttindexbold{strip_tac} $i$] applies \texttt{allI} and \texttt{impI}
   3.438 +  repeatedly to remove all outermost universal quantifiers and implications
   3.439 +  from subgoal $i$.
   3.440 +\item[\ttindexbold{case_tac} {\tt"}$P${\tt"} $i$] performs case distinction
   3.441 +  on $P$ for subgoal $i$: the latter is replaced by two identical subgoals
   3.442 +  with the added assumptions $P$ and $\neg P$, respectively.
   3.443 +\end{ttdescription}
   3.444 +
   3.445 +
   3.446 +\begin{figure} 
   3.447 +\begin{center}
   3.448 +\begin{tabular}{rrr}
   3.449 +  \it name      &\it meta-type  & \it description \\ 
   3.450 +\index{{}@\verb'{}' symbol}
   3.451 +  \verb|{}|     & $\alpha\,set$         & the empty set \\
   3.452 +  \cdx{insert}  & $[\alpha,\alpha\,set]\To \alpha\,set$
   3.453 +        & insertion of element \\
   3.454 +  \cdx{Collect} & $(\alpha\To bool)\To\alpha\,set$
   3.455 +        & comprehension \\
   3.456 +  \cdx{Compl}   & $\alpha\,set\To\alpha\,set$
   3.457 +        & complement \\
   3.458 +  \cdx{INTER} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
   3.459 +        & intersection over a set\\
   3.460 +  \cdx{UNION} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
   3.461 +        & union over a set\\
   3.462 +  \cdx{Inter} & $(\alpha\,set)set\To\alpha\,set$
   3.463 +        &set of sets intersection \\
   3.464 +  \cdx{Union} & $(\alpha\,set)set\To\alpha\,set$
   3.465 +        &set of sets union \\
   3.466 +  \cdx{Pow}   & $\alpha\,set \To (\alpha\,set)set$
   3.467 +        & powerset \\[1ex]
   3.468 +  \cdx{range}   & $(\alpha\To\beta )\To\beta\,set$
   3.469 +        & range of a function \\[1ex]
   3.470 +  \cdx{Ball}~~\cdx{Bex} & $[\alpha\,set,\alpha\To bool]\To bool$
   3.471 +        & bounded quantifiers
   3.472 +\end{tabular}
   3.473 +\end{center}
   3.474 +\subcaption{Constants}
   3.475 +
   3.476 +\begin{center}
   3.477 +\begin{tabular}{llrrr} 
   3.478 +  \it symbol &\it name     &\it meta-type & \it priority & \it description \\
   3.479 +  \sdx{INT}  & \cdx{INTER1}  & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & 
   3.480 +        intersection over a type\\
   3.481 +  \sdx{UN}  & \cdx{UNION1}  & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & 
   3.482 +        union over a type
   3.483 +\end{tabular}
   3.484 +\end{center}
   3.485 +\subcaption{Binders} 
   3.486 +
   3.487 +\begin{center}
   3.488 +\index{*"`"` symbol}
   3.489 +\index{*": symbol}
   3.490 +\index{*"<"= symbol}
   3.491 +\begin{tabular}{rrrr} 
   3.492 +  \it symbol    & \it meta-type & \it priority & \it description \\ 
   3.493 +  \tt ``        & $[\alpha\To\beta ,\alpha\,set]\To  \beta\,set$
   3.494 +        & Left 90 & image \\
   3.495 +  \sdx{Int}     & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
   3.496 +        & Left 70 & intersection ($\int$) \\
   3.497 +  \sdx{Un}      & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
   3.498 +        & Left 65 & union ($\un$) \\
   3.499 +  \tt:          & $[\alpha ,\alpha\,set]\To bool$       
   3.500 +        & Left 50 & membership ($\in$) \\
   3.501 +  \tt <=        & $[\alpha\,set,\alpha\,set]\To bool$
   3.502 +        & Left 50 & subset ($\subseteq$) 
   3.503 +\end{tabular}
   3.504 +\end{center}
   3.505 +\subcaption{Infixes}
   3.506 +\caption{Syntax of the theory \texttt{Set}} \label{hol-set-syntax}
   3.507 +\end{figure} 
   3.508 +
   3.509 +
   3.510 +\begin{figure} 
   3.511 +\begin{center} \tt\frenchspacing
   3.512 +\index{*"! symbol}
   3.513 +\begin{tabular}{rrr} 
   3.514 +  \it external          & \it internal  & \it description \\ 
   3.515 +  $a$ \ttilde: $b$      & \ttilde($a$ : $b$)    & \rm non-membership\\
   3.516 +  {\ttlbrace}$a@1$, $\ldots${\ttrbrace}  &  insert $a@1$ $\ldots$ {\ttlbrace}{\ttrbrace} & \rm finite set \\
   3.517 +  {\ttlbrace}$x$. $P[x]${\ttrbrace}        &  Collect($\lambda x. P[x]$) &
   3.518 +        \rm comprehension \\
   3.519 +  \sdx{INT} $x$:$A$. $B[x]$      & INTER $A$ $\lambda x. B[x]$ &
   3.520 +        \rm intersection \\
   3.521 +  \sdx{UN}{\tt\ }  $x$:$A$. $B[x]$      & UNION $A$ $\lambda x. B[x]$ &
   3.522 +        \rm union \\
   3.523 +  \tt ! $x$:$A$. $P[x]$ or \sdx{ALL} $x$:$A$. $P[x]$ & 
   3.524 +        Ball $A$ $\lambda x. P[x]$ & 
   3.525 +        \rm bounded $\forall$ \\
   3.526 +  \sdx{?} $x$:$A$. $P[x]$ or \sdx{EX}{\tt\ } $x$:$A$. $P[x]$ & 
   3.527 +        Bex $A$ $\lambda x. P[x]$ & \rm bounded $\exists$
   3.528 +\end{tabular}
   3.529 +\end{center}
   3.530 +\subcaption{Translations}
   3.531 +
   3.532 +\dquotes
   3.533 +\[\begin{array}{rclcl}
   3.534 +    term & = & \hbox{other terms\ldots} \\
   3.535 +         & | & "{\ttlbrace}{\ttrbrace}" \\
   3.536 +         & | & "{\ttlbrace} " term\; ("," term)^* " {\ttrbrace}" \\
   3.537 +         & | & "{\ttlbrace} " id " . " formula " {\ttrbrace}" \\
   3.538 +         & | & term " `` " term \\
   3.539 +         & | & term " Int " term \\
   3.540 +         & | & term " Un " term \\
   3.541 +         & | & "INT~~"  id ":" term " . " term \\
   3.542 +         & | & "UN~~~"  id ":" term " . " term \\
   3.543 +         & | & "INT~~"  id~id^* " . " term \\
   3.544 +         & | & "UN~~~"  id~id^* " . " term \\[2ex]
   3.545 + formula & = & \hbox{other formulae\ldots} \\
   3.546 +         & | & term " : " term \\
   3.547 +         & | & term " \ttilde: " term \\
   3.548 +         & | & term " <= " term \\
   3.549 +         & | & "!~" id ":" term " . " formula 
   3.550 +         & | & "ALL " id ":" term " . " formula \\
   3.551 +         & | & "?~" id ":" term " . " formula 
   3.552 +         & | & "EX~~" id ":" term " . " formula
   3.553 +  \end{array}
   3.554 +\]
   3.555 +\subcaption{Full Grammar}
   3.556 +\caption{Syntax of the theory \texttt{Set} (continued)} \label{hol-set-syntax2}
   3.557 +\end{figure} 
   3.558 +
   3.559 +
   3.560 +\section{A formulation of set theory}
   3.561 +Historically, higher-order logic gives a foundation for Russell and
   3.562 +Whitehead's theory of classes.  Let us use modern terminology and call them
   3.563 +{\bf sets}, but note that these sets are distinct from those of {\ZF} set
   3.564 +theory, and behave more like {\ZF} classes.
   3.565 +\begin{itemize}
   3.566 +\item
   3.567 +Sets are given by predicates over some type~$\sigma$.  Types serve to
   3.568 +define universes for sets, but type-checking is still significant.
   3.569 +\item
   3.570 +There is a universal set (for each type).  Thus, sets have complements, and
   3.571 +may be defined by absolute comprehension.
   3.572 +\item
   3.573 +Although sets may contain other sets as elements, the containing set must
   3.574 +have a more complex type.
   3.575 +\end{itemize}
   3.576 +Finite unions and intersections have the same behaviour in \HOL\ as they
   3.577 +do in~{\ZF}.  In \HOL\ the intersection of the empty set is well-defined,
   3.578 +denoting the universal set for the given type.
   3.579 +
   3.580 +\subsection{Syntax of set theory}\index{*set type}
   3.581 +\HOL's set theory is called \thydx{Set}.  The type $\alpha\,set$ is
   3.582 +essentially the same as $\alpha\To bool$.  The new type is defined for
   3.583 +clarity and to avoid complications involving function types in unification.
   3.584 +The isomorphisms between the two types are declared explicitly.  They are
   3.585 +very natural: \texttt{Collect} maps $\alpha\To bool$ to $\alpha\,set$, while
   3.586 +\hbox{\tt op :} maps in the other direction (ignoring argument order).
   3.587 +
   3.588 +Figure~\ref{hol-set-syntax} lists the constants, infixes, and syntax
   3.589 +translations.  Figure~\ref{hol-set-syntax2} presents the grammar of the new
   3.590 +constructs.  Infix operators include union and intersection ($A\un B$
   3.591 +and $A\int B$), the subset and membership relations, and the image
   3.592 +operator~{\tt``}\@.  Note that $a$\verb|~:|$b$ is translated to
   3.593 +$\neg(a\in b)$.  
   3.594 +
   3.595 +The $\{a@1,\ldots\}$ notation abbreviates finite sets constructed in
   3.596 +the obvious manner using~\texttt{insert} and~$\{\}$:
   3.597 +\begin{eqnarray*}
   3.598 +  \{a, b, c\} & \equiv &
   3.599 +  \texttt{insert} \, a \, ({\tt insert} \, b \, ({\tt insert} \, c \, \{\}))
   3.600 +\end{eqnarray*}
   3.601 +
   3.602 +The set \hbox{\tt{\ttlbrace}$x$.\ $P[x]${\ttrbrace}} consists of all $x$ (of suitable type)
   3.603 +that satisfy~$P[x]$, where $P[x]$ is a formula that may contain free
   3.604 +occurrences of~$x$.  This syntax expands to \cdx{Collect}$(\lambda
   3.605 +x. P[x])$.  It defines sets by absolute comprehension, which is impossible
   3.606 +in~{\ZF}; the type of~$x$ implicitly restricts the comprehension.
   3.607 +
   3.608 +The set theory defines two {\bf bounded quantifiers}:
   3.609 +\begin{eqnarray*}
   3.610 +   \forall x\in A. P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\
   3.611 +   \exists x\in A. P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x]
   3.612 +\end{eqnarray*}
   3.613 +The constants~\cdx{Ball} and~\cdx{Bex} are defined
   3.614 +accordingly.  Instead of \texttt{Ball $A$ $P$} and \texttt{Bex $A$ $P$} we may
   3.615 +write\index{*"! symbol}\index{*"? symbol}
   3.616 +\index{*ALL symbol}\index{*EX symbol} 
   3.617 +%
   3.618 +\hbox{\tt !~$x$:$A$.\ $P[x]$} and \hbox{\tt ?~$x$:$A$.\ $P[x]$}.  Isabelle's
   3.619 +usual quantifier symbols, \sdx{ALL} and \sdx{EX}, are also accepted
   3.620 +for input.  As with the primitive quantifiers, the {\ML} reference
   3.621 +\ttindex{HOL_quantifiers} specifies which notation to use for output.
   3.622 +
   3.623 +Unions and intersections over sets, namely $\bigcup@{x\in A}B[x]$ and
   3.624 +$\bigcap@{x\in A}B[x]$, are written 
   3.625 +\sdx{UN}~\hbox{\tt$x$:$A$.\ $B[x]$} and
   3.626 +\sdx{INT}~\hbox{\tt$x$:$A$.\ $B[x]$}.  
   3.627 +
   3.628 +Unions and intersections over types, namely $\bigcup@x B[x]$ and $\bigcap@x
   3.629 +B[x]$, are written \sdx{UN}~\hbox{\tt$x$.\ $B[x]$} and
   3.630 +\sdx{INT}~\hbox{\tt$x$.\ $B[x]$}.  They are equivalent to the previous
   3.631 +union and intersection operators when $A$ is the universal set.
   3.632 +
   3.633 +The operators $\bigcup A$ and $\bigcap A$ act upon sets of sets.  They are
   3.634 +not binders, but are equal to $\bigcup@{x\in A}x$ and $\bigcap@{x\in A}x$,
   3.635 +respectively.
   3.636 +
   3.637 +
   3.638 +
   3.639 +\begin{figure} \underscoreon
   3.640 +\begin{ttbox}
   3.641 +\tdx{mem_Collect_eq}    (a : {\ttlbrace}x. P x{\ttrbrace}) = P a
   3.642 +\tdx{Collect_mem_eq}    {\ttlbrace}x. x:A{\ttrbrace} = A
   3.643 +
   3.644 +\tdx{empty_def}         {\ttlbrace}{\ttrbrace}          == {\ttlbrace}x. False{\ttrbrace}
   3.645 +\tdx{insert_def}        insert a B  == {\ttlbrace}x. x=a{\ttrbrace} Un B
   3.646 +\tdx{Ball_def}          Ball A P    == ! x. x:A --> P x
   3.647 +\tdx{Bex_def}           Bex A P     == ? x. x:A & P x
   3.648 +\tdx{subset_def}        A <= B      == ! x:A. x:B
   3.649 +\tdx{Un_def}            A Un B      == {\ttlbrace}x. x:A | x:B{\ttrbrace}
   3.650 +\tdx{Int_def}           A Int B     == {\ttlbrace}x. x:A & x:B{\ttrbrace}
   3.651 +\tdx{set_diff_def}      A - B       == {\ttlbrace}x. x:A & x~:B{\ttrbrace}
   3.652 +\tdx{Compl_def}         Compl A     == {\ttlbrace}x. ~ x:A{\ttrbrace}
   3.653 +\tdx{INTER_def}         INTER A B   == {\ttlbrace}y. ! x:A. y: B x{\ttrbrace}
   3.654 +\tdx{UNION_def}         UNION A B   == {\ttlbrace}y. ? x:A. y: B x{\ttrbrace}
   3.655 +\tdx{INTER1_def}        INTER1 B    == INTER {\ttlbrace}x. True{\ttrbrace} B 
   3.656 +\tdx{UNION1_def}        UNION1 B    == UNION {\ttlbrace}x. True{\ttrbrace} B 
   3.657 +\tdx{Inter_def}         Inter S     == (INT x:S. x)
   3.658 +\tdx{Union_def}         Union S     == (UN  x:S. x)
   3.659 +\tdx{Pow_def}           Pow A       == {\ttlbrace}B. B <= A{\ttrbrace}
   3.660 +\tdx{image_def}         f``A        == {\ttlbrace}y. ? x:A. y=f x{\ttrbrace}
   3.661 +\tdx{range_def}         range f     == {\ttlbrace}y. ? x. y=f x{\ttrbrace}
   3.662 +\end{ttbox}
   3.663 +\caption{Rules of the theory \texttt{Set}} \label{hol-set-rules}
   3.664 +\end{figure}
   3.665 +
   3.666 +
   3.667 +\begin{figure} \underscoreon
   3.668 +\begin{ttbox}
   3.669 +\tdx{CollectI}        [| P a |] ==> a : {\ttlbrace}x. P x{\ttrbrace}
   3.670 +\tdx{CollectD}        [| a : {\ttlbrace}x. P x{\ttrbrace} |] ==> P a
   3.671 +\tdx{CollectE}        [| a : {\ttlbrace}x. P x{\ttrbrace};  P a ==> W |] ==> W
   3.672 +
   3.673 +\tdx{ballI}           [| !!x. x:A ==> P x |] ==> ! x:A. P x
   3.674 +\tdx{bspec}           [| ! x:A. P x;  x:A |] ==> P x
   3.675 +\tdx{ballE}           [| ! x:A. P x;  P x ==> Q;  ~ x:A ==> Q |] ==> Q
   3.676 +
   3.677 +\tdx{bexI}            [| P x;  x:A |] ==> ? x:A. P x
   3.678 +\tdx{bexCI}           [| ! x:A. ~ P x ==> P a;  a:A |] ==> ? x:A. P x
   3.679 +\tdx{bexE}            [| ? x:A. P x;  !!x. [| x:A; P x |] ==> Q  |] ==> Q
   3.680 +\subcaption{Comprehension and Bounded quantifiers}
   3.681 +
   3.682 +\tdx{subsetI}         (!!x. x:A ==> x:B) ==> A <= B
   3.683 +\tdx{subsetD}         [| A <= B;  c:A |] ==> c:B
   3.684 +\tdx{subsetCE}        [| A <= B;  ~ (c:A) ==> P;  c:B ==> P |] ==> P
   3.685 +
   3.686 +\tdx{subset_refl}     A <= A
   3.687 +\tdx{subset_trans}    [| A<=B;  B<=C |] ==> A<=C
   3.688 +
   3.689 +\tdx{equalityI}       [| A <= B;  B <= A |] ==> A = B
   3.690 +\tdx{equalityD1}      A = B ==> A<=B
   3.691 +\tdx{equalityD2}      A = B ==> B<=A
   3.692 +\tdx{equalityE}       [| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P
   3.693 +
   3.694 +\tdx{equalityCE}      [| A = B;  [| c:A; c:B |] ==> P;  
   3.695 +                           [| ~ c:A; ~ c:B |] ==> P 
   3.696 +                |]  ==>  P
   3.697 +\subcaption{The subset and equality relations}
   3.698 +\end{ttbox}
   3.699 +\caption{Derived rules for set theory} \label{hol-set1}
   3.700 +\end{figure}
   3.701 +
   3.702 +
   3.703 +\begin{figure} \underscoreon
   3.704 +\begin{ttbox}
   3.705 +\tdx{emptyE}   a : {\ttlbrace}{\ttrbrace} ==> P
   3.706 +
   3.707 +\tdx{insertI1} a : insert a B
   3.708 +\tdx{insertI2} a : B ==> a : insert b B
   3.709 +\tdx{insertE}  [| a : insert b A;  a=b ==> P;  a:A ==> P |] ==> P
   3.710 +
   3.711 +\tdx{ComplI}   [| c:A ==> False |] ==> c : Compl A
   3.712 +\tdx{ComplD}   [| c : Compl A |] ==> ~ c:A
   3.713 +
   3.714 +\tdx{UnI1}     c:A ==> c : A Un B
   3.715 +\tdx{UnI2}     c:B ==> c : A Un B
   3.716 +\tdx{UnCI}     (~c:B ==> c:A) ==> c : A Un B
   3.717 +\tdx{UnE}      [| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P
   3.718 +
   3.719 +\tdx{IntI}     [| c:A;  c:B |] ==> c : A Int B
   3.720 +\tdx{IntD1}    c : A Int B ==> c:A
   3.721 +\tdx{IntD2}    c : A Int B ==> c:B
   3.722 +\tdx{IntE}     [| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P
   3.723 +
   3.724 +\tdx{UN_I}     [| a:A;  b: B a |] ==> b: (UN x:A. B x)
   3.725 +\tdx{UN_E}     [| b: (UN x:A. B x);  !!x.[| x:A;  b:B x |] ==> R |] ==> R
   3.726 +
   3.727 +\tdx{INT_I}    (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)
   3.728 +\tdx{INT_D}    [| b: (INT x:A. B x);  a:A |] ==> b: B a
   3.729 +\tdx{INT_E}    [| b: (INT x:A. B x);  b: B a ==> R;  ~ a:A ==> R |] ==> R
   3.730 +
   3.731 +\tdx{UnionI}   [| X:C;  A:X |] ==> A : Union C
   3.732 +\tdx{UnionE}   [| A : Union C;  !!X.[| A:X;  X:C |] ==> R |] ==> R
   3.733 +
   3.734 +\tdx{InterI}   [| !!X. X:C ==> A:X |] ==> A : Inter C
   3.735 +\tdx{InterD}   [| A : Inter C;  X:C |] ==> A:X
   3.736 +\tdx{InterE}   [| A : Inter C;  A:X ==> R;  ~ X:C ==> R |] ==> R
   3.737 +
   3.738 +\tdx{PowI}     A<=B ==> A: Pow B
   3.739 +\tdx{PowD}     A: Pow B ==> A<=B
   3.740 +
   3.741 +\tdx{imageI}   [| x:A |] ==> f x : f``A
   3.742 +\tdx{imageE}   [| b : f``A;  !!x.[| b=f x;  x:A |] ==> P |] ==> P
   3.743 +
   3.744 +\tdx{rangeI}   f x : range f
   3.745 +\tdx{rangeE}   [| b : range f;  !!x.[| b=f x |] ==> P |] ==> P
   3.746 +\end{ttbox}
   3.747 +\caption{Further derived rules for set theory} \label{hol-set2}
   3.748 +\end{figure}
   3.749 +
   3.750 +
   3.751 +\subsection{Axioms and rules of set theory}
   3.752 +Figure~\ref{hol-set-rules} presents the rules of theory \thydx{Set}.  The
   3.753 +axioms \tdx{mem_Collect_eq} and \tdx{Collect_mem_eq} assert
   3.754 +that the functions \texttt{Collect} and \hbox{\tt op :} are isomorphisms.  Of
   3.755 +course, \hbox{\tt op :} also serves as the membership relation.
   3.756 +
   3.757 +All the other axioms are definitions.  They include the empty set, bounded
   3.758 +quantifiers, unions, intersections, complements and the subset relation.
   3.759 +They also include straightforward constructions on functions: image~({\tt``})
   3.760 +and \texttt{range}.
   3.761 +
   3.762 +%The predicate \cdx{inj_on} is used for simulating type definitions.
   3.763 +%The statement ${\tt inj_on}~f~A$ asserts that $f$ is injective on the
   3.764 +%set~$A$, which specifies a subset of its domain type.  In a type
   3.765 +%definition, $f$ is the abstraction function and $A$ is the set of valid
   3.766 +%representations; we should not expect $f$ to be injective outside of~$A$.
   3.767 +
   3.768 +%\begin{figure} \underscoreon
   3.769 +%\begin{ttbox}
   3.770 +%\tdx{Inv_f_f}    inj f ==> Inv f (f x) = x
   3.771 +%\tdx{f_Inv_f}    y : range f ==> f(Inv f y) = y
   3.772 +%
   3.773 +%\tdx{Inv_injective}
   3.774 +%    [| Inv f x=Inv f y; x: range f;  y: range f |] ==> x=y
   3.775 +%
   3.776 +%
   3.777 +%\tdx{monoI}      [| !!A B. A <= B ==> f A <= f B |] ==> mono f
   3.778 +%\tdx{monoD}      [| mono f;  A <= B |] ==> f A <= f B
   3.779 +%
   3.780 +%\tdx{injI}       [| !! x y. f x = f y ==> x=y |] ==> inj f
   3.781 +%\tdx{inj_inverseI}              (!!x. g(f x) = x) ==> inj f
   3.782 +%\tdx{injD}       [| inj f; f x = f y |] ==> x=y
   3.783 +%
   3.784 +%\tdx{inj_onI}  (!!x y. [| f x=f y; x:A; y:A |] ==> x=y) ==> inj_on f A
   3.785 +%\tdx{inj_onD}  [| inj_on f A;  f x=f y;  x:A;  y:A |] ==> x=y
   3.786 +%
   3.787 +%\tdx{inj_on_inverseI}
   3.788 +%    (!!x. x:A ==> g(f x) = x) ==> inj_on f A
   3.789 +%\tdx{inj_on_contraD}
   3.790 +%    [| inj_on f A;  x~=y;  x:A;  y:A |] ==> ~ f x=f y
   3.791 +%\end{ttbox}
   3.792 +%\caption{Derived rules involving functions} \label{hol-fun}
   3.793 +%\end{figure}
   3.794 +
   3.795 +
   3.796 +\begin{figure} \underscoreon
   3.797 +\begin{ttbox}
   3.798 +\tdx{Union_upper}     B:A ==> B <= Union A
   3.799 +\tdx{Union_least}     [| !!X. X:A ==> X<=C |] ==> Union A <= C
   3.800 +
   3.801 +\tdx{Inter_lower}     B:A ==> Inter A <= B
   3.802 +\tdx{Inter_greatest}  [| !!X. X:A ==> C<=X |] ==> C <= Inter A
   3.803 +
   3.804 +\tdx{Un_upper1}       A <= A Un B
   3.805 +\tdx{Un_upper2}       B <= A Un B
   3.806 +\tdx{Un_least}        [| A<=C;  B<=C |] ==> A Un B <= C
   3.807 +
   3.808 +\tdx{Int_lower1}      A Int B <= A
   3.809 +\tdx{Int_lower2}      A Int B <= B
   3.810 +\tdx{Int_greatest}    [| C<=A;  C<=B |] ==> C <= A Int B
   3.811 +\end{ttbox}
   3.812 +\caption{Derived rules involving subsets} \label{hol-subset}
   3.813 +\end{figure}
   3.814 +
   3.815 +
   3.816 +\begin{figure} \underscoreon   \hfuzz=4pt%suppress "Overfull \hbox" message
   3.817 +\begin{ttbox}
   3.818 +\tdx{Int_absorb}        A Int A = A
   3.819 +\tdx{Int_commute}       A Int B = B Int A
   3.820 +\tdx{Int_assoc}         (A Int B) Int C  =  A Int (B Int C)
   3.821 +\tdx{Int_Un_distrib}    (A Un B)  Int C  =  (A Int C) Un (B Int C)
   3.822 +
   3.823 +\tdx{Un_absorb}         A Un A = A
   3.824 +\tdx{Un_commute}        A Un B = B Un A
   3.825 +\tdx{Un_assoc}          (A Un B)  Un C  =  A Un (B Un C)
   3.826 +\tdx{Un_Int_distrib}    (A Int B) Un C  =  (A Un C) Int (B Un C)
   3.827 +
   3.828 +\tdx{Compl_disjoint}    A Int (Compl A) = {\ttlbrace}x. False{\ttrbrace}
   3.829 +\tdx{Compl_partition}   A Un  (Compl A) = {\ttlbrace}x. True{\ttrbrace}
   3.830 +\tdx{double_complement} Compl(Compl A) = A
   3.831 +\tdx{Compl_Un}          Compl(A Un B)  = (Compl A) Int (Compl B)
   3.832 +\tdx{Compl_Int}         Compl(A Int B) = (Compl A) Un (Compl B)
   3.833 +
   3.834 +\tdx{Union_Un_distrib}  Union(A Un B) = (Union A) Un (Union B)
   3.835 +\tdx{Int_Union}         A Int (Union B) = (UN C:B. A Int C)
   3.836 +\tdx{Un_Union_image}    (UN x:C.(A x) Un (B x)) = Union(A``C) Un Union(B``C)
   3.837 +
   3.838 +\tdx{Inter_Un_distrib}  Inter(A Un B) = (Inter A) Int (Inter B)
   3.839 +\tdx{Un_Inter}          A Un (Inter B) = (INT C:B. A Un C)
   3.840 +\tdx{Int_Inter_image}   (INT x:C.(A x) Int (B x)) = Inter(A``C) Int Inter(B``C)
   3.841 +\end{ttbox}
   3.842 +\caption{Set equalities} \label{hol-equalities}
   3.843 +\end{figure}
   3.844 +
   3.845 +
   3.846 +Figures~\ref{hol-set1} and~\ref{hol-set2} present derived rules.  Most are
   3.847 +obvious and resemble rules of Isabelle's {\ZF} set theory.  Certain rules,
   3.848 +such as \tdx{subsetCE}, \tdx{bexCI} and \tdx{UnCI},
   3.849 +are designed for classical reasoning; the rules \tdx{subsetD},
   3.850 +\tdx{bexI}, \tdx{Un1} and~\tdx{Un2} are not
   3.851 +strictly necessary but yield more natural proofs.  Similarly,
   3.852 +\tdx{equalityCE} supports classical reasoning about extensionality,
   3.853 +after the fashion of \tdx{iffCE}.  See the file \texttt{HOL/Set.ML} for
   3.854 +proofs pertaining to set theory.
   3.855 +
   3.856 +Figure~\ref{hol-subset} presents lattice properties of the subset relation.
   3.857 +Unions form least upper bounds; non-empty intersections form greatest lower
   3.858 +bounds.  Reasoning directly about subsets often yields clearer proofs than
   3.859 +reasoning about the membership relation.  See the file \texttt{HOL/subset.ML}.
   3.860 +
   3.861 +Figure~\ref{hol-equalities} presents many common set equalities.  They
   3.862 +include commutative, associative and distributive laws involving unions,
   3.863 +intersections and complements.  For a complete listing see the file {\tt
   3.864 +HOL/equalities.ML}.
   3.865 +
   3.866 +\begin{warn}
   3.867 +\texttt{Blast_tac} proves many set-theoretic theorems automatically.
   3.868 +Hence you seldom need to refer to the theorems above.
   3.869 +\end{warn}
   3.870 +
   3.871 +\begin{figure}
   3.872 +\begin{center}
   3.873 +\begin{tabular}{rrr}
   3.874 +  \it name      &\it meta-type  & \it description \\ 
   3.875 +  \cdx{inj}~~\cdx{surj}& $(\alpha\To\beta )\To bool$
   3.876 +        & injective/surjective \\
   3.877 +  \cdx{inj_on}        & $[\alpha\To\beta ,\alpha\,set]\To bool$
   3.878 +        & injective over subset\\
   3.879 +  \cdx{inv} & $(\alpha\To\beta)\To(\beta\To\alpha)$ & inverse function
   3.880 +\end{tabular}
   3.881 +\end{center}
   3.882 +
   3.883 +\underscoreon
   3.884 +\begin{ttbox}
   3.885 +\tdx{inj_def}         inj f      == ! x y. f x=f y --> x=y
   3.886 +\tdx{surj_def}        surj f     == ! y. ? x. y=f x
   3.887 +\tdx{inj_on_def}      inj_on f A == !x:A. !y:A. f x=f y --> x=y
   3.888 +\tdx{inv_def}         inv f      == (\%y. @x. f(x)=y)
   3.889 +\end{ttbox}
   3.890 +\caption{Theory \thydx{Fun}} \label{fig:HOL:Fun}
   3.891 +\end{figure}
   3.892 +
   3.893 +\subsection{Properties of functions}\nopagebreak
   3.894 +Figure~\ref{fig:HOL:Fun} presents a theory of simple properties of functions.
   3.895 +Note that ${\tt inv}~f$ uses Hilbert's $\varepsilon$ to yield an inverse
   3.896 +of~$f$.  See the file \texttt{HOL/Fun.ML} for a complete listing of the derived
   3.897 +rules.  Reasoning about function composition (the operator~\sdx{o}) and the
   3.898 +predicate~\cdx{surj} is done simply by expanding the definitions.
   3.899 +
   3.900 +There is also a large collection of monotonicity theorems for constructions
   3.901 +on sets in the file \texttt{HOL/mono.ML}.
   3.902 +
   3.903 +\section{Generic packages}
   3.904 +\label{sec:HOL:generic-packages}
   3.905 +
   3.906 +\HOL\ instantiates most of Isabelle's generic packages, making available the
   3.907 +simplifier and the classical reasoner.
   3.908 +
   3.909 +\subsection{Simplification and substitution}
   3.910 +
   3.911 +Simplification tactics tactics such as \texttt{Asm_simp_tac} and \texttt{Full_simp_tac} use the default simpset
   3.912 +(\texttt{simpset()}), which works for most purposes.  A quite minimal
   3.913 +simplification set for higher-order logic is~\ttindexbold{HOL_ss};
   3.914 +even more frugal is \ttindexbold{HOL_basic_ss}.  Equality~($=$), which
   3.915 +also expresses logical equivalence, may be used for rewriting.  See
   3.916 +the file \texttt{HOL/simpdata.ML} for a complete listing of the basic
   3.917 +simplification rules.
   3.918 +
   3.919 +See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
   3.920 +{Chaps.\ts\ref{substitution} and~\ref{simp-chap}} for details of substitution
   3.921 +and simplification.
   3.922 +
   3.923 +\begin{warn}\index{simplification!of conjunctions}%
   3.924 +  Reducing $a=b\conj P(a)$ to $a=b\conj P(b)$ is sometimes advantageous.  The
   3.925 +  left part of a conjunction helps in simplifying the right part.  This effect
   3.926 +  is not available by default: it can be slow.  It can be obtained by
   3.927 +  including \ttindex{conj_cong} in a simpset, \verb$addcongs [conj_cong]$.
   3.928 +\end{warn}
   3.929 +
   3.930 +If the simplifier cannot use a certain rewrite rule --- either because
   3.931 +of nontermination or because its left-hand side is too flexible ---
   3.932 +then you might try \texttt{stac}:
   3.933 +\begin{ttdescription}
   3.934 +\item[\ttindexbold{stac} $thm$ $i,$] where $thm$ is of the form $lhs = rhs$,
   3.935 +  replaces in subgoal $i$ instances of $lhs$ by corresponding instances of
   3.936 +  $rhs$.  In case of multiple instances of $lhs$ in subgoal $i$, backtracking
   3.937 +  may be necessary to select the desired ones.
   3.938 +
   3.939 +If $thm$ is a conditional equality, the instantiated condition becomes an
   3.940 +additional (first) subgoal.
   3.941 +\end{ttdescription}
   3.942 +
   3.943 + \HOL{} provides the tactic \ttindex{hyp_subst_tac}, which substitutes
   3.944 +  for an equality throughout a subgoal and its hypotheses.  This tactic uses
   3.945 +  \HOL's general substitution rule.
   3.946 +
   3.947 +\subsubsection{Case splitting}
   3.948 +\label{subsec:HOL:case:splitting}
   3.949 +
   3.950 +\HOL{} also provides convenient means for case splitting during
   3.951 +rewriting. Goals containing a subterm of the form \texttt{if}~$b$~{\tt
   3.952 +then\dots else\dots} often require a case distinction on $b$. This is
   3.953 +expressed by the theorem \tdx{split_if}:
   3.954 +$$
   3.955 +\Var{P}(\mbox{\tt if}~\Var{b}~{\tt then}~\Var{x}~\mbox{\tt else}~\Var{y})~=~
   3.956 +((\Var{b} \to \Var{P}(\Var{x})) \land (\neg \Var{b} \to \Var{P}(\Var{y})))
   3.957 +\eqno{(*)}
   3.958 +$$
   3.959 +For example, a simple instance of $(*)$ is
   3.960 +\[
   3.961 +x \in (\mbox{\tt if}~x \in A~{\tt then}~A~\mbox{\tt else}~\{x\})~=~
   3.962 +((x \in A \to x \in A) \land (x \notin A \to x \in \{x\}))
   3.963 +\]
   3.964 +Because $(*)$ is too general as a rewrite rule for the simplifier (the
   3.965 +left-hand side is not a higher-order pattern in the sense of
   3.966 +\iflabelundefined{chap:simplification}{the {\em Reference Manual\/}}%
   3.967 +{Chap.\ts\ref{chap:simplification}}), there is a special infix function 
   3.968 +\ttindexbold{addsplits} of type \texttt{simpset * thm list -> simpset}
   3.969 +(analogous to \texttt{addsimps}) that adds rules such as $(*)$ to a
   3.970 +simpset, as in
   3.971 +\begin{ttbox}
   3.972 +by(simp_tac (simpset() addsplits [split_if]) 1);
   3.973 +\end{ttbox}
   3.974 +The effect is that after each round of simplification, one occurrence of
   3.975 +\texttt{if} is split acording to \texttt{split_if}, until all occurences of
   3.976 +\texttt{if} have been eliminated.
   3.977 +
   3.978 +It turns out that using \texttt{split_if} is almost always the right thing to
   3.979 +do. Hence \texttt{split_if} is already included in the default simpset. If
   3.980 +you want to delete it from a simpset, use \ttindexbold{delsplits}, which is
   3.981 +the inverse of \texttt{addsplits}:
   3.982 +\begin{ttbox}
   3.983 +by(simp_tac (simpset() delsplits [split_if]) 1);
   3.984 +\end{ttbox}
   3.985 +
   3.986 +In general, \texttt{addsplits} accepts rules of the form
   3.987 +\[
   3.988 +\Var{P}(c~\Var{x@1}~\dots~\Var{x@n})~=~ rhs
   3.989 +\]
   3.990 +where $c$ is a constant and $rhs$ is arbitrary. Note that $(*)$ is of the
   3.991 +right form because internally the left-hand side is
   3.992 +$\Var{P}(\mathtt{If}~\Var{b}~\Var{x}~~\Var{y})$. Important further examples
   3.993 +are splitting rules for \texttt{case} expressions (see~\S\ref{subsec:list}
   3.994 +and~\S\ref{subsec:datatype:basics}).
   3.995 +
   3.996 +Analogous to \texttt{Addsimps} and \texttt{Delsimps}, there are also
   3.997 +imperative versions of \texttt{addsplits} and \texttt{delsplits}
   3.998 +\begin{ttbox}
   3.999 +\ttindexbold{Addsplits}: thm list -> unit
  3.1000 +\ttindexbold{Delsplits}: thm list -> unit
  3.1001 +\end{ttbox}
  3.1002 +for adding splitting rules to, and deleting them from the current simpset.
  3.1003 +
  3.1004 +\subsection{Classical reasoning}
  3.1005 +
  3.1006 +\HOL\ derives classical introduction rules for $\disj$ and~$\exists$, as
  3.1007 +well as classical elimination rules for~$\imp$ and~$\bimp$, and the swap
  3.1008 +rule; recall Fig.\ts\ref{hol-lemmas2} above.
  3.1009 +
  3.1010 +The classical reasoner is installed.  Tactics such as \texttt{Blast_tac} and {\tt
  3.1011 +Best_tac} refer to the default claset (\texttt{claset()}), which works for most
  3.1012 +purposes.  Named clasets include \ttindexbold{prop_cs}, which includes the
  3.1013 +propositional rules, and \ttindexbold{HOL_cs}, which also includes quantifier
  3.1014 +rules.  See the file \texttt{HOL/cladata.ML} for lists of the classical rules,
  3.1015 +and \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
  3.1016 +{Chap.\ts\ref{chap:classical}} for more discussion of classical proof methods.
  3.1017 +
  3.1018 +
  3.1019 +\section{Types}\label{sec:HOL:Types}
  3.1020 +This section describes \HOL's basic predefined types ($\alpha \times
  3.1021 +\beta$, $\alpha + \beta$, $nat$ and $\alpha \; list$) and ways for
  3.1022 +introducing new types in general.  The most important type
  3.1023 +construction, the \texttt{datatype}, is treated separately in
  3.1024 +\S\ref{sec:HOL:datatype}.
  3.1025 +
  3.1026 +
  3.1027 +\subsection{Product and sum types}\index{*"* type}\index{*"+ type}
  3.1028 +\label{subsec:prod-sum}
  3.1029 +
  3.1030 +\begin{figure}[htbp]
  3.1031 +\begin{constants}
  3.1032 +  \it symbol    & \it meta-type &           & \it description \\ 
  3.1033 +  \cdx{Pair}    & $[\alpha,\beta]\To \alpha\times\beta$
  3.1034 +        & & ordered pairs $(a,b)$ \\
  3.1035 +  \cdx{fst}     & $\alpha\times\beta \To \alpha$        & & first projection\\
  3.1036 +  \cdx{snd}     & $\alpha\times\beta \To \beta$         & & second projection\\
  3.1037 +  \cdx{split}   & $[[\alpha,\beta]\To\gamma, \alpha\times\beta] \To \gamma$ 
  3.1038 +        & & generalized projection\\
  3.1039 +  \cdx{Sigma}  & 
  3.1040 +        $[\alpha\,set, \alpha\To\beta\,set]\To(\alpha\times\beta)set$ &
  3.1041 +        & general sum of sets
  3.1042 +\end{constants}
  3.1043 +\begin{ttbox}\makeatletter
  3.1044 +%\tdx{fst_def}      fst p     == @a. ? b. p = (a,b)
  3.1045 +%\tdx{snd_def}      snd p     == @b. ? a. p = (a,b)
  3.1046 +%\tdx{split_def}    split c p == c (fst p) (snd p)
  3.1047 +\tdx{Sigma_def}    Sigma A B == UN x:A. UN y:B x. {\ttlbrace}(x,y){\ttrbrace}
  3.1048 +
  3.1049 +\tdx{Pair_eq}      ((a,b) = (a',b')) = (a=a' & b=b')
  3.1050 +\tdx{Pair_inject}  [| (a, b) = (a',b');  [| a=a';  b=b' |] ==> R |] ==> R
  3.1051 +\tdx{PairE}        [| !!x y. p = (x,y) ==> Q |] ==> Q
  3.1052 +
  3.1053 +\tdx{fst_conv}     fst (a,b) = a
  3.1054 +\tdx{snd_conv}     snd (a,b) = b
  3.1055 +\tdx{surjective_pairing}  p = (fst p,snd p)
  3.1056 +
  3.1057 +\tdx{split}        split c (a,b) = c a b
  3.1058 +\tdx{split_split}  R(split c p) = (! x y. p = (x,y) --> R(c x y))
  3.1059 +
  3.1060 +\tdx{SigmaI}    [| a:A;  b:B a |] ==> (a,b) : Sigma A B
  3.1061 +\tdx{SigmaE}    [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P |] ==> P
  3.1062 +\end{ttbox}
  3.1063 +\caption{Type $\alpha\times\beta$}\label{hol-prod}
  3.1064 +\end{figure} 
  3.1065 +
  3.1066 +Theory \thydx{Prod} (Fig.\ts\ref{hol-prod}) defines the product type
  3.1067 +$\alpha\times\beta$, with the ordered pair syntax $(a, b)$.  General
  3.1068 +tuples are simulated by pairs nested to the right:
  3.1069 +\begin{center}
  3.1070 +\begin{tabular}{c|c}
  3.1071 +external & internal \\
  3.1072 +\hline
  3.1073 +$\tau@1 \times \dots \times \tau@n$ & $\tau@1 \times (\dots (\tau@{n-1} \times \tau@n)\dots)$ \\
  3.1074 +\hline
  3.1075 +$(t@1,\dots,t@n)$ & $(t@1,(\dots,(t@{n-1},t@n)\dots)$ \\
  3.1076 +\end{tabular}
  3.1077 +\end{center}
  3.1078 +In addition, it is possible to use tuples
  3.1079 +as patterns in abstractions:
  3.1080 +\begin{center}
  3.1081 +{\tt\%($x$,$y$). $t$} \quad stands for\quad \texttt{split(\%$x$\thinspace$y$.\ $t$)} 
  3.1082 +\end{center}
  3.1083 +Nested patterns are also supported.  They are translated stepwise:
  3.1084 +{\tt\%($x$,$y$,$z$). $t$} $\leadsto$ {\tt\%($x$,($y$,$z$)). $t$} $\leadsto$
  3.1085 +{\tt split(\%$x$.\%($y$,$z$). $t$)} $\leadsto$ \texttt{split(\%$x$. split(\%$y$
  3.1086 +  $z$.\ $t$))}.  The reverse translation is performed upon printing.
  3.1087 +\begin{warn}
  3.1088 +  The translation between patterns and \texttt{split} is performed automatically
  3.1089 +  by the parser and printer.  Thus the internal and external form of a term
  3.1090 +  may differ, which can affects proofs.  For example the term {\tt
  3.1091 +  (\%(x,y).(y,x))(a,b)} requires the theorem \texttt{split} (which is in the
  3.1092 +  default simpset) to rewrite to {\tt(b,a)}.
  3.1093 +\end{warn}
  3.1094 +In addition to explicit $\lambda$-abstractions, patterns can be used in any
  3.1095 +variable binding construct which is internally described by a
  3.1096 +$\lambda$-abstraction.  Some important examples are
  3.1097 +\begin{description}
  3.1098 +\item[Let:] \texttt{let {\it pattern} = $t$ in $u$}
  3.1099 +\item[Quantifiers:] \texttt{!~{\it pattern}:$A$.~$P$}
  3.1100 +\item[Choice:] {\underscoreon \tt @~{\it pattern}~.~$P$}
  3.1101 +\item[Set operations:] \texttt{UN~{\it pattern}:$A$.~$B$}
  3.1102 +\item[Sets:] \texttt{{\ttlbrace}~{\it pattern}~.~$P$~{\ttrbrace}}
  3.1103 +\end{description}
  3.1104 +
  3.1105 +There is a simple tactic which supports reasoning about patterns:
  3.1106 +\begin{ttdescription}
  3.1107 +\item[\ttindexbold{split_all_tac} $i$] replaces in subgoal $i$ all
  3.1108 +  {\tt!!}-quantified variables of product type by individual variables for
  3.1109 +  each component.  A simple example:
  3.1110 +\begin{ttbox}
  3.1111 +{\out 1. !!p. (\%(x,y,z). (x, y, z)) p = p}
  3.1112 +by(split_all_tac 1);
  3.1113 +{\out 1. !!x xa ya. (\%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)}
  3.1114 +\end{ttbox}
  3.1115 +\end{ttdescription}
  3.1116 +
  3.1117 +Theory \texttt{Prod} also introduces the degenerate product type \texttt{unit}
  3.1118 +which contains only a single element named {\tt()} with the property
  3.1119 +\begin{ttbox}
  3.1120 +\tdx{unit_eq}       u = ()
  3.1121 +\end{ttbox}
  3.1122 +\bigskip
  3.1123 +
  3.1124 +Theory \thydx{Sum} (Fig.~\ref{hol-sum}) defines the sum type $\alpha+\beta$
  3.1125 +which associates to the right and has a lower priority than $*$: $\tau@1 +
  3.1126 +\tau@2 + \tau@3*\tau@4$ means $\tau@1 + (\tau@2 + (\tau@3*\tau@4))$.
  3.1127 +
  3.1128 +The definition of products and sums in terms of existing types is not
  3.1129 +shown.  The constructions are fairly standard and can be found in the
  3.1130 +respective theory files.
  3.1131 +
  3.1132 +\begin{figure}
  3.1133 +\begin{constants}
  3.1134 +  \it symbol    & \it meta-type &           & \it description \\ 
  3.1135 +  \cdx{Inl}     & $\alpha \To \alpha+\beta$    & & first injection\\
  3.1136 +  \cdx{Inr}     & $\beta \To \alpha+\beta$     & & second injection\\
  3.1137 +  \cdx{sum_case} & $[\alpha\To\gamma, \beta\To\gamma, \alpha+\beta] \To\gamma$
  3.1138 +        & & conditional
  3.1139 +\end{constants}
  3.1140 +\begin{ttbox}\makeatletter
  3.1141 +%\tdx{sum_case_def}   sum_case == (\%f g p. @z. (!x. p=Inl x --> z=f x) &
  3.1142 +%                                        (!y. p=Inr y --> z=g y))
  3.1143 +%
  3.1144 +\tdx{Inl_not_Inr}    Inl a ~= Inr b
  3.1145 +
  3.1146 +\tdx{inj_Inl}        inj Inl
  3.1147 +\tdx{inj_Inr}        inj Inr
  3.1148 +
  3.1149 +\tdx{sumE}           [| !!x. P(Inl x);  !!y. P(Inr y) |] ==> P s
  3.1150 +
  3.1151 +\tdx{sum_case_Inl}   sum_case f g (Inl x) = f x
  3.1152 +\tdx{sum_case_Inr}   sum_case f g (Inr x) = g x
  3.1153 +
  3.1154 +\tdx{surjective_sum} sum_case (\%x. f(Inl x)) (\%y. f(Inr y)) s = f s
  3.1155 +\tdx{split_sum_case} R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) &
  3.1156 +                                     (! y. s = Inr(y) --> R(g(y))))
  3.1157 +\end{ttbox}
  3.1158 +\caption{Type $\alpha+\beta$}\label{hol-sum}
  3.1159 +\end{figure}
  3.1160 +
  3.1161 +\begin{figure}
  3.1162 +\index{*"< symbol}
  3.1163 +\index{*"* symbol}
  3.1164 +\index{*div symbol}
  3.1165 +\index{*mod symbol}
  3.1166 +\index{*"+ symbol}
  3.1167 +\index{*"- symbol}
  3.1168 +\begin{constants}
  3.1169 +  \it symbol    & \it meta-type & \it priority & \it description \\ 
  3.1170 +  \cdx{0}       & $nat$         & & zero \\
  3.1171 +  \cdx{Suc}     & $nat \To nat$ & & successor function\\
  3.1172 +% \cdx{nat_case} & $[\alpha, nat\To\alpha, nat] \To\alpha$ & & conditional\\
  3.1173 +% \cdx{nat_rec} & $[nat, \alpha, [nat, \alpha]\To\alpha] \To \alpha$
  3.1174 +%        & & primitive recursor\\
  3.1175 +  \tt *         & $[nat,nat]\To nat$    &  Left 70      & multiplication \\
  3.1176 +  \tt div       & $[nat,nat]\To nat$    &  Left 70      & division\\
  3.1177 +  \tt mod       & $[nat,nat]\To nat$    &  Left 70      & modulus\\
  3.1178 +  \tt +         & $[nat,nat]\To nat$    &  Left 65      & addition\\
  3.1179 +  \tt -         & $[nat,nat]\To nat$    &  Left 65      & subtraction
  3.1180 +\end{constants}
  3.1181 +\subcaption{Constants and infixes}
  3.1182 +
  3.1183 +\begin{ttbox}\makeatother
  3.1184 +\tdx{nat_induct}     [| P 0; !!n. P n ==> P(Suc n) |]  ==> P n
  3.1185 +
  3.1186 +\tdx{Suc_not_Zero}   Suc m ~= 0
  3.1187 +\tdx{inj_Suc}        inj Suc
  3.1188 +\tdx{n_not_Suc_n}    n~=Suc n
  3.1189 +\subcaption{Basic properties}
  3.1190 +\end{ttbox}
  3.1191 +\caption{The type of natural numbers, \tydx{nat}} \label{hol-nat1}
  3.1192 +\end{figure}
  3.1193 +
  3.1194 +
  3.1195 +\begin{figure}
  3.1196 +\begin{ttbox}\makeatother
  3.1197 +              0+n           = n
  3.1198 +              (Suc m)+n     = Suc(m+n)
  3.1199 +
  3.1200 +              m-0           = m
  3.1201 +              0-n           = n
  3.1202 +              Suc(m)-Suc(n) = m-n
  3.1203 +
  3.1204 +              0*n           = 0
  3.1205 +              Suc(m)*n      = n + m*n
  3.1206 +
  3.1207 +\tdx{mod_less}      m<n ==> m mod n = m
  3.1208 +\tdx{mod_geq}       [| 0<n;  ~m<n |] ==> m mod n = (m-n) mod n
  3.1209 +
  3.1210 +\tdx{div_less}      m<n ==> m div n = 0
  3.1211 +\tdx{div_geq}       [| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)
  3.1212 +\end{ttbox}
  3.1213 +\caption{Recursion equations for the arithmetic operators} \label{hol-nat2}
  3.1214 +\end{figure}
  3.1215 +
  3.1216 +\subsection{The type of natural numbers, \textit{nat}}
  3.1217 +\index{nat@{\textit{nat}} type|(}
  3.1218 +
  3.1219 +The theory \thydx{NatDef} defines the natural numbers in a roundabout but
  3.1220 +traditional way.  The axiom of infinity postulates a type~\tydx{ind} of
  3.1221 +individuals, which is non-empty and closed under an injective operation.  The
  3.1222 +natural numbers are inductively generated by choosing an arbitrary individual
  3.1223 +for~0 and using the injective operation to take successors.  This is a least
  3.1224 +fixedpoint construction.  For details see the file \texttt{NatDef.thy}.
  3.1225 +
  3.1226 +Type~\tydx{nat} is an instance of class~\cldx{ord}, which makes the
  3.1227 +overloaded functions of this class (esp.\ \cdx{<} and \cdx{<=}, but also
  3.1228 +\cdx{min}, \cdx{max} and \cdx{LEAST}) available on \tydx{nat}.  Theory
  3.1229 +\thydx{Nat} builds on \texttt{NatDef} and shows that {\tt<=} is a partial order,
  3.1230 +so \tydx{nat} is also an instance of class \cldx{order}.
  3.1231 +
  3.1232 +Theory \thydx{Arith} develops arithmetic on the natural numbers.  It defines
  3.1233 +addition, multiplication and subtraction.  Theory \thydx{Divides} defines
  3.1234 +division, remainder and the ``divides'' relation.  The numerous theorems
  3.1235 +proved include commutative, associative, distributive, identity and
  3.1236 +cancellation laws.  See Figs.\ts\ref{hol-nat1} and~\ref{hol-nat2}.  The
  3.1237 +recursion equations for the operators \texttt{+}, \texttt{-} and \texttt{*} on
  3.1238 +\texttt{nat} are part of the default simpset.
  3.1239 +
  3.1240 +Functions on \tydx{nat} can be defined by primitive or well-founded recursion;
  3.1241 +see \S\ref{sec:HOL:recursive}.  A simple example is addition.
  3.1242 +Here, \texttt{op +} is the name of the infix operator~\texttt{+}, following
  3.1243 +the standard convention.
  3.1244 +\begin{ttbox}
  3.1245 +\sdx{primrec}
  3.1246 +      "0 + n = n"
  3.1247 +  "Suc m + n = Suc (m + n)"
  3.1248 +\end{ttbox}
  3.1249 +There is also a \sdx{case}-construct
  3.1250 +of the form
  3.1251 +\begin{ttbox}
  3.1252 +case \(e\) of 0 => \(a\) | Suc \(m\) => \(b\)
  3.1253 +\end{ttbox}
  3.1254 +Note that Isabelle insists on precisely this format; you may not even change
  3.1255 +the order of the two cases.
  3.1256 +Both \texttt{primrec} and \texttt{case} are realized by a recursion operator
  3.1257 +\cdx{nat_rec}, the details of which can be found in theory \texttt{NatDef}.
  3.1258 +
  3.1259 +%The predecessor relation, \cdx{pred_nat}, is shown to be well-founded.
  3.1260 +%Recursion along this relation resembles primitive recursion, but is
  3.1261 +%stronger because we are in higher-order logic; using primitive recursion to
  3.1262 +%define a higher-order function, we can easily Ackermann's function, which
  3.1263 +%is not primitive recursive \cite[page~104]{thompson91}.
  3.1264 +%The transitive closure of \cdx{pred_nat} is~$<$.  Many functions on the
  3.1265 +%natural numbers are most easily expressed using recursion along~$<$.
  3.1266 +
  3.1267 +Tactic {\tt\ttindex{induct_tac} "$n$" $i$} performs induction on variable~$n$
  3.1268 +in subgoal~$i$ using theorem \texttt{nat_induct}.  There is also the derived
  3.1269 +theorem \tdx{less_induct}:
  3.1270 +\begin{ttbox}
  3.1271 +[| !!n. [| ! m. m<n --> P m |] ==> P n |]  ==>  P n
  3.1272 +\end{ttbox}
  3.1273 +
  3.1274 +
  3.1275 +Reasoning about arithmetic inequalities can be tedious.  Fortunately HOL
  3.1276 +provides a decision procedure for quantifier-free linear arithmetic (i.e.\ 
  3.1277 +only addition and subtraction). The simplifier invokes a weak version of this
  3.1278 +decision procedure automatically. If this is not sufficent, you can invoke
  3.1279 +the full procedure \ttindex{arith_tac} explicitly.  It copes with arbitrary
  3.1280 +formulae involving {\tt=}, {\tt<}, {\tt<=}, {\tt+}, {\tt-}, {\tt Suc}, {\tt
  3.1281 +  min}, {\tt max} and numerical constants; other subterms are treated as
  3.1282 +atomic; subformulae not involving type $nat$ are ignored; quantified
  3.1283 +subformulae are ignored unless they are positive universal or negative
  3.1284 +existential. Note that the running time is exponential in the number of
  3.1285 +occurrences of {\tt min}, {\tt max}, and {\tt-} because they require case
  3.1286 +distinctions. Note also that \texttt{arith_tac} is not complete: if
  3.1287 +divisibility plays a role, it may fail to prove a valid formula, for example
  3.1288 +$m+m \neq n+n+1$. Fortunately such examples are rare in practice.
  3.1289 +
  3.1290 +If \texttt{arith_tac} fails you, try to find relevant arithmetic results in
  3.1291 +the library.  The theory \texttt{NatDef} contains theorems about {\tt<} and
  3.1292 +{\tt<=}, the theory \texttt{Arith} contains theorems about \texttt{+},
  3.1293 +\texttt{-} and \texttt{*}, and theory \texttt{Divides} contains theorems about
  3.1294 +\texttt{div} and \texttt{mod}.  Use the \texttt{find}-functions to locate them
  3.1295 +(see the {\em Reference Manual\/}).
  3.1296 +
  3.1297 +\begin{figure}
  3.1298 +\index{#@{\tt[]} symbol}
  3.1299 +\index{#@{\tt\#} symbol}
  3.1300 +\index{"@@{\tt\at} symbol}
  3.1301 +\index{*"! symbol}
  3.1302 +\begin{constants}
  3.1303 +  \it symbol & \it meta-type & \it priority & \it description \\
  3.1304 +  \tt[]    & $\alpha\,list$ & & empty list\\
  3.1305 +  \tt \#   & $[\alpha,\alpha\,list]\To \alpha\,list$ & Right 65 & 
  3.1306 +        list constructor \\
  3.1307 +  \cdx{null}    & $\alpha\,list \To bool$ & & emptiness test\\
  3.1308 +  \cdx{hd}      & $\alpha\,list \To \alpha$ & & head \\
  3.1309 +  \cdx{tl}      & $\alpha\,list \To \alpha\,list$ & & tail \\
  3.1310 +  \cdx{last}    & $\alpha\,list \To \alpha$ & & last element \\
  3.1311 +  \cdx{butlast} & $\alpha\,list \To \alpha\,list$ & & drop last element \\
  3.1312 +  \tt\at  & $[\alpha\,list,\alpha\,list]\To \alpha\,list$ & Left 65 & append \\
  3.1313 +  \cdx{map}     & $(\alpha\To\beta) \To (\alpha\,list \To \beta\,list)$
  3.1314 +        & & apply to all\\
  3.1315 +  \cdx{filter}  & $(\alpha \To bool) \To (\alpha\,list \To \alpha\,list)$
  3.1316 +        & & filter functional\\
  3.1317 +  \cdx{set}& $\alpha\,list \To \alpha\,set$ & & elements\\
  3.1318 +  \sdx{mem}  & $\alpha \To \alpha\,list \To bool$  &  Left 55   & membership\\
  3.1319 +  \cdx{foldl}   & $(\beta\To\alpha\To\beta) \To \beta \To \alpha\,list \To \beta$ &
  3.1320 +  & iteration \\
  3.1321 +  \cdx{concat}   & $(\alpha\,list)list\To \alpha\,list$ & & concatenation \\
  3.1322 +  \cdx{rev}     & $\alpha\,list \To \alpha\,list$ & & reverse \\
  3.1323 +  \cdx{length}  & $\alpha\,list \To nat$ & & length \\
  3.1324 +  \tt! & $\alpha\,list \To nat \To \alpha$ & Left 100 & indexing \\
  3.1325 +  \cdx{take}, \cdx{drop} & $nat \To \alpha\,list \To \alpha\,list$ &&
  3.1326 +    take or drop a prefix \\
  3.1327 +  \cdx{takeWhile},\\
  3.1328 +  \cdx{dropWhile} &
  3.1329 +    $(\alpha \To bool) \To \alpha\,list \To \alpha\,list$ &&
  3.1330 +    take or drop a prefix
  3.1331 +\end{constants}
  3.1332 +\subcaption{Constants and infixes}
  3.1333 +
  3.1334 +\begin{center} \tt\frenchspacing
  3.1335 +\begin{tabular}{rrr} 
  3.1336 +  \it external        & \it internal  & \it description \\{}
  3.1337 +  [$x@1$, $\dots$, $x@n$]  &  $x@1$ \# $\cdots$ \# $x@n$ \# [] &
  3.1338 +        \rm finite list \\{}
  3.1339 +  [$x$:$l$. $P$]  & filter ($\lambda x{.}P$) $l$ & 
  3.1340 +        \rm list comprehension
  3.1341 +\end{tabular}
  3.1342 +\end{center}
  3.1343 +\subcaption{Translations}
  3.1344 +\caption{The theory \thydx{List}} \label{hol-list}
  3.1345 +\end{figure}
  3.1346 +
  3.1347 +
  3.1348 +\begin{figure}
  3.1349 +\begin{ttbox}\makeatother
  3.1350 +null [] = True
  3.1351 +null (x#xs) = False
  3.1352 +
  3.1353 +hd (x#xs) = x
  3.1354 +tl (x#xs) = xs
  3.1355 +tl [] = []
  3.1356 +
  3.1357 +[] @ ys = ys
  3.1358 +(x#xs) @ ys = x # xs @ ys
  3.1359 +
  3.1360 +map f [] = []
  3.1361 +map f (x#xs) = f x # map f xs
  3.1362 +
  3.1363 +filter P [] = []
  3.1364 +filter P (x#xs) = (if P x then x#filter P xs else filter P xs)
  3.1365 +
  3.1366 +set [] = \ttlbrace\ttrbrace
  3.1367 +set (x#xs) = insert x (set xs)
  3.1368 +
  3.1369 +x mem [] = False
  3.1370 +x mem (y#ys) = (if y=x then True else x mem ys)
  3.1371 +
  3.1372 +foldl f a [] = a
  3.1373 +foldl f a (x#xs) = foldl f (f a x) xs
  3.1374 +
  3.1375 +concat([]) = []
  3.1376 +concat(x#xs) = x @ concat(xs)
  3.1377 +
  3.1378 +rev([]) = []
  3.1379 +rev(x#xs) = rev(xs) @ [x]
  3.1380 +
  3.1381 +length([]) = 0
  3.1382 +length(x#xs) = Suc(length(xs))
  3.1383 +
  3.1384 +xs!0 = hd xs
  3.1385 +xs!(Suc n) = (tl xs)!n
  3.1386 +
  3.1387 +take n [] = []
  3.1388 +take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)
  3.1389 +
  3.1390 +drop n [] = []
  3.1391 +drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)
  3.1392 +
  3.1393 +takeWhile P [] = []
  3.1394 +takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])
  3.1395 +
  3.1396 +dropWhile P [] = []
  3.1397 +dropWhile P (x#xs) = (if P x then dropWhile P xs else xs)
  3.1398 +\end{ttbox}
  3.1399 +\caption{Recursions equations for list processing functions}
  3.1400 +\label{fig:HOL:list-simps}
  3.1401 +\end{figure}
  3.1402 +\index{nat@{\textit{nat}} type|)}
  3.1403 +
  3.1404 +
  3.1405 +\subsection{The type constructor for lists, \textit{list}}
  3.1406 +\label{subsec:list}
  3.1407 +\index{list@{\textit{list}} type|(}
  3.1408 +
  3.1409 +Figure~\ref{hol-list} presents the theory \thydx{List}: the basic list
  3.1410 +operations with their types and syntax.  Type $\alpha \; list$ is
  3.1411 +defined as a \texttt{datatype} with the constructors {\tt[]} and {\tt\#}.
  3.1412 +As a result the generic structural induction and case analysis tactics
  3.1413 +\texttt{induct\_tac} and \texttt{exhaust\_tac} also become available for
  3.1414 +lists.  A \sdx{case} construct of the form
  3.1415 +\begin{center}\tt
  3.1416 +case $e$ of [] => $a$  |  \(x\)\#\(xs\) => b
  3.1417 +\end{center}
  3.1418 +is defined by translation.  For details see~\S\ref{sec:HOL:datatype}. There
  3.1419 +is also a case splitting rule \tdx{split_list_case}
  3.1420 +\[
  3.1421 +\begin{array}{l}
  3.1422 +P(\mathtt{case}~e~\mathtt{of}~\texttt{[] =>}~a ~\texttt{|}~
  3.1423 +               x\texttt{\#}xs~\texttt{=>}~f~x~xs) ~= \\
  3.1424 +((e = \texttt{[]} \to P(a)) \land
  3.1425 + (\forall x~ xs. e = x\texttt{\#}xs \to P(f~x~xs)))
  3.1426 +\end{array}
  3.1427 +\]
  3.1428 +which can be fed to \ttindex{addsplits} just like
  3.1429 +\texttt{split_if} (see~\S\ref{subsec:HOL:case:splitting}).
  3.1430 +
  3.1431 +\texttt{List} provides a basic library of list processing functions defined by
  3.1432 +primitive recursion (see~\S\ref{sec:HOL:primrec}).  The recursion equations
  3.1433 +are shown in Fig.\ts\ref{fig:HOL:list-simps}.
  3.1434 +
  3.1435 +\index{list@{\textit{list}} type|)}
  3.1436 +
  3.1437 +
  3.1438 +\subsection{Introducing new types} \label{sec:typedef}
  3.1439 +
  3.1440 +The \HOL-methodology dictates that all extensions to a theory should
  3.1441 +be \textbf{definitional}.  The type definition mechanism that
  3.1442 +meets this criterion is \ttindex{typedef}.  Note that \emph{type synonyms},
  3.1443 +which are inherited from {\Pure} and described elsewhere, are just
  3.1444 +syntactic abbreviations that have no logical meaning.
  3.1445 +
  3.1446 +\begin{warn}
  3.1447 +  Types in \HOL\ must be non-empty; otherwise the quantifier rules would be
  3.1448 +  unsound, because $\exists x. x=x$ is a theorem \cite[\S7]{paulson-COLOG}.
  3.1449 +\end{warn}
  3.1450 +A \bfindex{type definition} identifies the new type with a subset of
  3.1451 +an existing type.  More precisely, the new type is defined by
  3.1452 +exhibiting an existing type~$\tau$, a set~$A::\tau\,set$, and a
  3.1453 +theorem of the form $x:A$.  Thus~$A$ is a non-empty subset of~$\tau$,
  3.1454 +and the new type denotes this subset.  New functions are defined that
  3.1455 +establish an isomorphism between the new type and the subset.  If
  3.1456 +type~$\tau$ involves type variables $\alpha@1$, \ldots, $\alpha@n$,
  3.1457 +then the type definition creates a type constructor
  3.1458 +$(\alpha@1,\ldots,\alpha@n)ty$ rather than a particular type.
  3.1459 +
  3.1460 +\begin{figure}[htbp]
  3.1461 +\begin{rail}
  3.1462 +typedef  : 'typedef' ( () | '(' name ')') type '=' set witness;
  3.1463 +
  3.1464 +type    : typevarlist name ( () | '(' infix ')' );
  3.1465 +set     : string;
  3.1466 +witness : () | '(' id ')';
  3.1467 +\end{rail}
  3.1468 +\caption{Syntax of type definitions}
  3.1469 +\label{fig:HOL:typedef}
  3.1470 +\end{figure}
  3.1471 +
  3.1472 +The syntax for type definitions is shown in Fig.~\ref{fig:HOL:typedef}.  For
  3.1473 +the definition of `typevarlist' and `infix' see
  3.1474 +\iflabelundefined{chap:classical}
  3.1475 +{the appendix of the {\em Reference Manual\/}}%
  3.1476 +{Appendix~\ref{app:TheorySyntax}}.  The remaining nonterminals have the
  3.1477 +following meaning:
  3.1478 +\begin{description}
  3.1479 +\item[\it type:] the new type constructor $(\alpha@1,\dots,\alpha@n)ty$ with
  3.1480 +  optional infix annotation.
  3.1481 +\item[\it name:] an alphanumeric name $T$ for the type constructor
  3.1482 +  $ty$, in case $ty$ is a symbolic name.  Defaults to $ty$.
  3.1483 +\item[\it set:] the representing subset $A$.
  3.1484 +\item[\it witness:] name of a theorem of the form $a:A$ proving
  3.1485 +  non-emptiness.  It can be omitted in case Isabelle manages to prove
  3.1486 +  non-emptiness automatically.
  3.1487 +\end{description}
  3.1488 +If all context conditions are met (no duplicate type variables in
  3.1489 +`typevarlist', no extra type variables in `set', and no free term variables
  3.1490 +in `set'), the following components are added to the theory:
  3.1491 +\begin{itemize}
  3.1492 +\item a type $ty :: (term,\dots,term)term$
  3.1493 +\item constants
  3.1494 +\begin{eqnarray*}
  3.1495 +T &::& \tau\;set \\
  3.1496 +Rep_T &::& (\alpha@1,\dots,\alpha@n)ty \To \tau \\
  3.1497 +Abs_T &::& \tau \To (\alpha@1,\dots,\alpha@n)ty
  3.1498 +\end{eqnarray*}
  3.1499 +\item a definition and three axioms
  3.1500 +\[
  3.1501 +\begin{array}{ll}
  3.1502 +T{\tt_def} & T \equiv A \\
  3.1503 +{\tt Rep_}T & Rep_T\,x \in T \\
  3.1504 +{\tt Rep_}T{\tt_inverse} & Abs_T\,(Rep_T\,x) = x \\
  3.1505 +{\tt Abs_}T{\tt_inverse} & y \in T \Imp Rep_T\,(Abs_T\,y) = y
  3.1506 +\end{array}
  3.1507 +\]
  3.1508 +stating that $(\alpha@1,\dots,\alpha@n)ty$ is isomorphic to $A$ by $Rep_T$
  3.1509 +and its inverse $Abs_T$.
  3.1510 +\end{itemize}
  3.1511 +Below are two simple examples of \HOL\ type definitions.  Non-emptiness
  3.1512 +is proved automatically here.
  3.1513 +\begin{ttbox}
  3.1514 +typedef unit = "{\ttlbrace}True{\ttrbrace}"
  3.1515 +
  3.1516 +typedef (prod)
  3.1517 +  ('a, 'b) "*"    (infixr 20)
  3.1518 +      = "{\ttlbrace}f . EX (a::'a) (b::'b). f = (\%x y. x = a & y = b){\ttrbrace}"
  3.1519 +\end{ttbox}
  3.1520 +
  3.1521 +Type definitions permit the introduction of abstract data types in a safe
  3.1522 +way, namely by providing models based on already existing types.  Given some
  3.1523 +abstract axiomatic description $P$ of a type, this involves two steps:
  3.1524 +\begin{enumerate}
  3.1525 +\item Find an appropriate type $\tau$ and subset $A$ which has the desired
  3.1526 +  properties $P$, and make a type definition based on this representation.
  3.1527 +\item Prove that $P$ holds for $ty$ by lifting $P$ from the representation.
  3.1528 +\end{enumerate}
  3.1529 +You can now forget about the representation and work solely in terms of the
  3.1530 +abstract properties $P$.
  3.1531 +
  3.1532 +\begin{warn}
  3.1533 +If you introduce a new type (constructor) $ty$ axiomatically, i.e.\ by
  3.1534 +declaring the type and its operations and by stating the desired axioms, you
  3.1535 +should make sure the type has a non-empty model.  You must also have a clause
  3.1536 +\par
  3.1537 +\begin{ttbox}
  3.1538 +arities \(ty\) :: (term,\thinspace\(\dots\),{\thinspace}term){\thinspace}term
  3.1539 +\end{ttbox}
  3.1540 +in your theory file to tell Isabelle that $ty$ is in class \texttt{term}, the
  3.1541 +class of all \HOL\ types.
  3.1542 +\end{warn}
  3.1543 +
  3.1544 +
  3.1545 +\section{Records}
  3.1546 +
  3.1547 +At a first approximation, records are just a minor generalisation of tuples,
  3.1548 +where components may be addressed by labels instead of just position (think of
  3.1549 +{\ML}, for example).  The version of records offered by Isabelle/HOL is
  3.1550 +slightly more advanced, though, supporting \emph{extensible record schemes}.
  3.1551 +This admits operations that are polymorphic with respect to record extension,
  3.1552 +yielding ``object-oriented'' effects like (single) inheritance.  See also
  3.1553 +\cite{Naraschewski-Wenzel:1998:TPHOL} for more details on object-oriented
  3.1554 +verification and record subtyping in HOL.
  3.1555 +
  3.1556 +
  3.1557 +\subsection{Basics}
  3.1558 +
  3.1559 +Isabelle/HOL supports fixed and schematic records both at the level of terms
  3.1560 +and types.  The concrete syntax is as follows:
  3.1561 +
  3.1562 +\begin{center}
  3.1563 +\begin{tabular}{l|l|l}
  3.1564 +  & record terms & record types \\ \hline
  3.1565 +  fixed & $\record{x = a\fs y = b}$ & $\record{x \ty A\fs y \ty B}$ \\
  3.1566 +  schematic & $\record{x = a\fs y = b\fs \more = m}$ &
  3.1567 +    $\record{x \ty A\fs y \ty B\fs \more \ty M}$ \\
  3.1568 +\end{tabular}
  3.1569 +\end{center}
  3.1570 +
  3.1571 +\noindent The \textsc{ascii} representation of $\record{x = a}$ is \texttt{(| x = a |)}.
  3.1572 +
  3.1573 +A fixed record $\record{x = a\fs y = b}$ has field $x$ of value $a$ and field
  3.1574 +$y$ of value $b$.  The corresponding type is $\record{x \ty A\fs y \ty B}$,
  3.1575 +assuming that $a \ty A$ and $b \ty B$.
  3.1576 +
  3.1577 +A record scheme like $\record{x = a\fs y = b\fs \more = m}$ contains fields
  3.1578 +$x$ and $y$ as before, but also possibly further fields as indicated by the
  3.1579 +``$\more$'' notation (which is actually part of the syntax).  The improper
  3.1580 +field ``$\more$'' of a record scheme is called the \emph{more part}.
  3.1581 +Logically it is just a free variable, which is occasionally referred to as
  3.1582 +\emph{row variable} in the literature.  The more part of a record scheme may
  3.1583 +be instantiated by zero or more further components.  For example, above scheme
  3.1584 +might get instantiated to $\record{x = a\fs y = b\fs z = c\fs \more = m'}$,
  3.1585 +where $m'$ refers to a different more part.  Fixed records are special
  3.1586 +instances of record schemes, where ``$\more$'' is properly terminated by the
  3.1587 +$() :: unit$ element.  Actually, $\record{x = a\fs y = b}$ is just an
  3.1588 +abbreviation for $\record{x = a\fs y = b\fs \more = ()}$.
  3.1589 +
  3.1590 +\medskip
  3.1591 +
  3.1592 +There are two key features that make extensible records in a simply typed
  3.1593 +language like HOL feasible:
  3.1594 +\begin{enumerate}
  3.1595 +\item the more part is internalised, as a free term or type variable,
  3.1596 +\item field names are externalised, they cannot be accessed within the logic
  3.1597 +  as first-class values.
  3.1598 +\end{enumerate}
  3.1599 +
  3.1600 +\medskip
  3.1601 +
  3.1602 +In Isabelle/HOL record types have to be defined explicitly, fixing their field
  3.1603 +names and types, and their (optional) parent record (see
  3.1604 +\S\ref{sec:HOL:record-def}).  Afterwards, records may be formed using above
  3.1605 +syntax, while obeying the canonical order of fields as given by their
  3.1606 +declaration.  The record package also provides several operations like
  3.1607 +selectors and updates (see \S\ref{sec:HOL:record-ops}), together with
  3.1608 +characteristic properties (see \S\ref{sec:HOL:record-thms}).
  3.1609 +
  3.1610 +There is an example theory demonstrating most basic aspects of extensible
  3.1611 +records (see theory \texttt{HOL/ex/Points} in the Isabelle sources).
  3.1612 +
  3.1613 +
  3.1614 +\subsection{Defining records}\label{sec:HOL:record-def}
  3.1615 +
  3.1616 +The theory syntax for record type definitions is shown in
  3.1617 +Fig.~\ref{fig:HOL:record}.  For the definition of `typevarlist' and `type' see
  3.1618 +\iflabelundefined{chap:classical}
  3.1619 +{the appendix of the {\em Reference Manual\/}}%
  3.1620 +{Appendix~\ref{app:TheorySyntax}}.
  3.1621 +
  3.1622 +\begin{figure}[htbp]
  3.1623 +\begin{rail}
  3.1624 +record  : 'record' typevarlist name '=' parent (field +);
  3.1625 +
  3.1626 +parent  : ( () | type '+');
  3.1627 +field   : name '::' type;
  3.1628 +\end{rail}
  3.1629 +\caption{Syntax of record type definitions}
  3.1630 +\label{fig:HOL:record}
  3.1631 +\end{figure}
  3.1632 +
  3.1633 +A general \ttindex{record} specification is of the following form:
  3.1634 +\[
  3.1635 +\mathtt{record}~(\alpha@1, \dots, \alpha@n) \, t ~=~
  3.1636 +  (\tau@1, \dots, \tau@m) \, s ~+~ c@1 :: \sigma@1 ~ \dots ~ c@l :: \sigma@l
  3.1637 +\]
  3.1638 +where $\vec\alpha@n$ are distinct type variables, and $\vec\tau@m$,
  3.1639 +$\vec\sigma@l$ are types containing at most variables from $\vec\alpha@n$.
  3.1640 +Type constructor $t$ has to be new, while $s$ has to specify an existing
  3.1641 +record type.  Furthermore, the $\vec c@l$ have to be distinct field names.
  3.1642 +There has to be at least one field.
  3.1643 +
  3.1644 +In principle, field names may never be shared with other records.  This is no
  3.1645 +actual restriction in practice, since $\vec c@l$ are internally declared
  3.1646 +within a separate name space qualified by the name $t$ of the record.
  3.1647 +
  3.1648 +\medskip
  3.1649 +
  3.1650 +Above definition introduces a new record type $(\vec\alpha@n) \, t$ by
  3.1651 +extending an existing one $(\vec\tau@m) \, s$ by new fields $\vec c@l \ty
  3.1652 +\vec\sigma@l$.  The parent record specification is optional, by omitting it
  3.1653 +$t$ becomes a \emph{root record}.  The hierarchy of all records declared
  3.1654 +within a theory forms a forest structure, i.e.\ a set of trees, where any of
  3.1655 +these is rooted by some root record.
  3.1656 +
  3.1657 +For convenience, $(\vec\alpha@n) \, t$ is made a type abbreviation for the
  3.1658 +fixed record type $\record{\vec c@l \ty \vec\sigma@l}$, and $(\vec\alpha@n,
  3.1659 +\zeta) \, t_scheme$ is made an abbreviation for $\record{\vec c@l \ty
  3.1660 +  \vec\sigma@l\fs \more \ty \zeta}$.
  3.1661 +
  3.1662 +\medskip
  3.1663 +
  3.1664 +The following simple example defines a root record type $point$ with fields $x
  3.1665 +\ty nat$ and $y \ty nat$, and record type $cpoint$ by extending $point$ with
  3.1666 +an additional $colour$ component.
  3.1667 +
  3.1668 +\begin{ttbox}
  3.1669 +  record point =
  3.1670 +    x :: nat
  3.1671 +    y :: nat
  3.1672 +
  3.1673 +  record cpoint = point +
  3.1674 +    colour :: string
  3.1675 +\end{ttbox}
  3.1676 +
  3.1677 +
  3.1678 +\subsection{Record operations}\label{sec:HOL:record-ops}
  3.1679 +
  3.1680 +Any record definition of the form presented above produces certain standard
  3.1681 +operations.  Selectors and updates are provided for any field, including the
  3.1682 +improper one ``$more$''.  There are also cumulative record constructor
  3.1683 +functions.
  3.1684 +
  3.1685 +To simplify the presentation below, we first assume that $(\vec\alpha@n) \, t$
  3.1686 +is a root record with fields $\vec c@l \ty \vec\sigma@l$.
  3.1687 +
  3.1688 +\medskip
  3.1689 +
  3.1690 +\textbf{Selectors} and \textbf{updates} are available for any field (including
  3.1691 +``$more$'') as follows:
  3.1692 +\begin{matharray}{lll}
  3.1693 +  c@i & \ty & \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \To \sigma@i \\
  3.1694 +  c@i_update & \ty & \sigma@i \To \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \To
  3.1695 +    \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta}
  3.1696 +\end{matharray}
  3.1697 +
  3.1698 +There is some special syntax for updates: $r \, \record{x \asn a}$ abbreviates
  3.1699 +term $x_update \, a \, r$.  Repeated updates are also supported: $r \,
  3.1700 +\record{x \asn a} \, \record{y \asn b} \, \record{z \asn c}$ may be written as
  3.1701 +$r \, \record{x \asn a\fs y \asn b\fs z \asn c}$.  Note that because of
  3.1702 +postfix notation the order of fields shown here is reverse than in the actual
  3.1703 +term.  This might lead to confusion in conjunction with proof tools like
  3.1704 +ordered rewriting.
  3.1705 +
  3.1706 +Since repeated updates are just function applications, fields may be freely
  3.1707 +permuted in $\record{x \asn a\fs y \asn b\fs z \asn c}$, as far as the logic
  3.1708 +is concerned.  Thus commutativity of updates can be proven within the logic
  3.1709 +for any two fields, but not as a general theorem: fields are not first-class
  3.1710 +values.
  3.1711 +
  3.1712 +\medskip
  3.1713 +
  3.1714 +\textbf{Make} operations provide cumulative record constructor functions:
  3.1715 +\begin{matharray}{lll}
  3.1716 +  make & \ty & \vec\sigma@l \To \record{\vec c@l \ty \vec \sigma@l} \\
  3.1717 +  make_scheme & \ty & \vec\sigma@l \To
  3.1718 +    \zeta \To \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \\
  3.1719 +\end{matharray}
  3.1720 +\noindent
  3.1721 +These functions are curried.  The corresponding definitions in terms of actual
  3.1722 +record terms are part of the standard simpset.  Thus $point\dtt make\,a\,b$
  3.1723 +rewrites to $\record{x = a\fs y = b}$.
  3.1724 +
  3.1725 +\medskip
  3.1726 +
  3.1727 +Any of above selector, update and make operations are declared within a local
  3.1728 +name space prefixed by the name $t$ of the record.  In case that different
  3.1729 +records share base names of fields, one has to qualify names explicitly (e.g.\ 
  3.1730 +$t\dtt c@i_update$).  This is recommended especially for operations like
  3.1731 +$make$ or $update_more$ that always have the same base name.  Just use $t\dtt
  3.1732 +make$ etc.\ to avoid confusion.
  3.1733 +
  3.1734 +\bigskip
  3.1735 +
  3.1736 +We reconsider the case of non-root records, which are derived of some parent
  3.1737 +record.  In general, the latter may depend on another parent as well,
  3.1738 +resulting in a list of \emph{ancestor records}.  Appending the lists of fields
  3.1739 +of all ancestors results in a certain field prefix.  The record package
  3.1740 +automatically takes care of this by lifting operations over this context of
  3.1741 +ancestor fields.  Assuming that $(\vec\alpha@n) \, t$ has ancestor fields
  3.1742 +$\vec d@k \ty \vec\rho@k$, selectors will get the following types:
  3.1743 +\begin{matharray}{lll}
  3.1744 +  c@i & \ty & \record{\vec d@k \ty \vec\rho@k, \vec c@l \ty \vec \sigma@l, \more \ty \zeta}
  3.1745 +    \To \sigma@i
  3.1746 +\end{matharray}
  3.1747 +\noindent
  3.1748 +Update and make operations are analogous.
  3.1749 +
  3.1750 +
  3.1751 +\subsection{Proof tools}\label{sec:HOL:record-thms}
  3.1752 +
  3.1753 +The record package provides the following proof rules for any record type $t$.
  3.1754 +\begin{enumerate}
  3.1755 +  
  3.1756 +\item Standard conversions (selectors or updates applied to record constructor
  3.1757 +  terms, make function definitions) are part of the standard simpset (via
  3.1758 +  \texttt{addsimps}).
  3.1759 +  
  3.1760 +\item Inject equations of a form analogous to $((x, y) = (x', y')) \equiv x=x'
  3.1761 +  \conj y=y'$ are made part of the standard simpset and claset (via
  3.1762 +  \texttt{addIffs}).
  3.1763 +  
  3.1764 +\item A tactic for record field splitting (\ttindex{record_split_tac}) is made
  3.1765 +  part of the standard claset (via \texttt{addSWrapper}).  This tactic is
  3.1766 +  based on rules analogous to $(\All x PROP~P~x) \equiv (\All{a~b} PROP~P(a,
  3.1767 +  b))$ for any field.
  3.1768 +\end{enumerate}
  3.1769 +
  3.1770 +The first two kinds of rules are stored within the theory as $t\dtt simps$ and
  3.1771 +$t\dtt iffs$, respectively.  In some situations it might be appropriate to
  3.1772 +expand the definitions of updates: $t\dtt updates$.  Following a new trend in
  3.1773 +Isabelle system architecture, these names are \emph{not} bound at the {\ML}
  3.1774 +level, though.
  3.1775 +
  3.1776 +\medskip
  3.1777 +
  3.1778 +The example theory \texttt{HOL/ex/Points} demonstrates typical proofs
  3.1779 +concerning records.  The basic idea is to make \ttindex{record_split_tac}
  3.1780 +expand quantified record variables and then simplify by the conversion rules.
  3.1781 +By using a combination of the simplifier and classical prover together with
  3.1782 +the default simpset and claset, record problems should be solved with a single
  3.1783 +stroke of \texttt{Auto_tac} or \texttt{Force_tac}.
  3.1784 +
  3.1785 +
  3.1786 +\section{Datatype definitions}
  3.1787 +\label{sec:HOL:datatype}
  3.1788 +\index{*datatype|(}
  3.1789 +
  3.1790 +Inductive datatypes, similar to those of \ML, frequently appear in 
  3.1791 +applications of Isabelle/HOL.  In principle, such types could be defined by
  3.1792 +hand via \texttt{typedef} (see \S\ref{sec:typedef}), but this would be far too
  3.1793 +tedious.  The \ttindex{datatype} definition package of \HOL\ automates such
  3.1794 +chores.  It generates an appropriate \texttt{typedef} based on a least
  3.1795 +fixed-point construction, and proves freeness theorems and induction rules, as
  3.1796 +well as theorems for recursion and case combinators.  The user just has to
  3.1797 +give a simple specification of new inductive types using a notation similar to
  3.1798 +{\ML} or Haskell.
  3.1799 +
  3.1800 +The current datatype package can handle both mutual and indirect recursion.
  3.1801 +It also offers to represent existing types as datatypes giving the advantage
  3.1802 +of a more uniform view on standard theories.
  3.1803 +
  3.1804 +
  3.1805 +\subsection{Basics}
  3.1806 +\label{subsec:datatype:basics}
  3.1807 +
  3.1808 +A general \texttt{datatype} definition is of the following form:
  3.1809 +\[
  3.1810 +\begin{array}{llcl}
  3.1811 +\mathtt{datatype} & (\alpha@1,\ldots,\alpha@h)t@1 & = &
  3.1812 +  C^1@1~\tau^1@{1,1}~\ldots~\tau^1@{1,m^1@1} ~\mid~ \ldots ~\mid~
  3.1813 +    C^1@{k@1}~\tau^1@{k@1,1}~\ldots~\tau^1@{k@1,m^1@{k@1}} \\
  3.1814 + & & \vdots \\
  3.1815 +\mathtt{and} & (\alpha@1,\ldots,\alpha@h)t@n & = &
  3.1816 +  C^n@1~\tau^n@{1,1}~\ldots~\tau^n@{1,m^n@1} ~\mid~ \ldots ~\mid~
  3.1817 +    C^n@{k@n}~\tau^n@{k@n,1}~\ldots~\tau^n@{k@n,m^n@{k@n}}
  3.1818 +\end{array}
  3.1819 +\]
  3.1820 +where $\alpha@i$ are type variables, $C^j@i$ are distinct constructor
  3.1821 +names and $\tau^j@{i,i'}$ are {\em admissible} types containing at
  3.1822 +most the type variables $\alpha@1, \ldots, \alpha@h$. A type $\tau$
  3.1823 +occurring in a \texttt{datatype} definition is {\em admissible} iff
  3.1824 +\begin{itemize}
  3.1825 +\item $\tau$ is non-recursive, i.e.\ $\tau$ does not contain any of the
  3.1826 +newly defined type constructors $t@1,\ldots,t@n$, or
  3.1827 +\item $\tau = (\alpha@1,\ldots,\alpha@h)t@{j'}$ where $1 \leq j' \leq n$, or
  3.1828 +\item $\tau = (\tau'@1,\ldots,\tau'@{h'})t'$, where $t'$ is
  3.1829 +the type constructor of an already existing datatype and $\tau'@1,\ldots,\tau'@{h'}$
  3.1830 +are admissible types.
  3.1831 +\end{itemize}
  3.1832 +If some $(\alpha@1,\ldots,\alpha@h)t@{j'}$ occurs in a type $\tau^j@{i,i'}$
  3.1833 +of the form
  3.1834 +\[
  3.1835 +(\ldots,\ldots ~ (\alpha@1,\ldots,\alpha@h)t@{j'} ~ \ldots,\ldots)t'
  3.1836 +\]
  3.1837 +this is called a {\em nested} (or \emph{indirect}) occurrence. A very simple
  3.1838 +example of a datatype is the type \texttt{list}, which can be defined by
  3.1839 +\begin{ttbox}
  3.1840 +datatype 'a list = Nil
  3.1841 +                 | Cons 'a ('a list)
  3.1842 +\end{ttbox}
  3.1843 +Arithmetic expressions \texttt{aexp} and boolean expressions \texttt{bexp} can be modelled
  3.1844 +by the mutually recursive datatype definition
  3.1845 +\begin{ttbox}
  3.1846 +datatype 'a aexp = If_then_else ('a bexp) ('a aexp) ('a aexp)
  3.1847 +                 | Sum ('a aexp) ('a aexp)
  3.1848 +                 | Diff ('a aexp) ('a aexp)
  3.1849 +                 | Var 'a
  3.1850 +                 | Num nat
  3.1851 +and      'a bexp = Less ('a aexp) ('a aexp)
  3.1852 +                 | And ('a bexp) ('a bexp)
  3.1853 +                 | Or ('a bexp) ('a bexp)
  3.1854 +\end{ttbox}
  3.1855 +The datatype \texttt{term}, which is defined by
  3.1856 +\begin{ttbox}
  3.1857 +datatype ('a, 'b) term = Var 'a
  3.1858 +                       | App 'b ((('a, 'b) term) list)
  3.1859 +\end{ttbox}
  3.1860 +is an example for a datatype with nested recursion.
  3.1861 +
  3.1862 +\medskip
  3.1863 +
  3.1864 +Types in HOL must be non-empty. Each of the new datatypes
  3.1865 +$(\alpha@1,\ldots,\alpha@h)t@j$ with $1 \le j \le n$ is non-empty iff it has a
  3.1866 +constructor $C^j@i$ with the following property: for all argument types
  3.1867 +$\tau^j@{i,i'}$ of the form $(\alpha@1,\ldots,\alpha@h)t@{j'}$ the datatype
  3.1868 +$(\alpha@1,\ldots,\alpha@h)t@{j'}$ is non-empty.
  3.1869 +
  3.1870 +If there are no nested occurrences of the newly defined datatypes, obviously
  3.1871 +at least one of the newly defined datatypes $(\alpha@1,\ldots,\alpha@h)t@j$
  3.1872 +must have a constructor $C^j@i$ without recursive arguments, a \emph{base
  3.1873 +  case}, to ensure that the new types are non-empty. If there are nested
  3.1874 +occurrences, a datatype can even be non-empty without having a base case
  3.1875 +itself. Since \texttt{list} is a non-empty datatype, \texttt{datatype t = C (t
  3.1876 +  list)} is non-empty as well.
  3.1877 +
  3.1878 +
  3.1879 +\subsubsection{Freeness of the constructors}
  3.1880 +
  3.1881 +The datatype constructors are automatically defined as functions of their
  3.1882 +respective type:
  3.1883 +\[ C^j@i :: [\tau^j@{i,1},\dots,\tau^j@{i,m^j@i}] \To (\alpha@1,\dots,\alpha@h)t@j \]
  3.1884 +These functions have certain {\em freeness} properties.  They construct
  3.1885 +distinct values:
  3.1886 +\[
  3.1887 +C^j@i~x@1~\dots~x@{m^j@i} \neq C^j@{i'}~y@1~\dots~y@{m^j@{i'}} \qquad
  3.1888 +\mbox{for all}~ i \neq i'.
  3.1889 +\]
  3.1890 +The constructor functions are injective:
  3.1891 +\[
  3.1892 +(C^j@i~x@1~\dots~x@{m^j@i} = C^j@i~y@1~\dots~y@{m^j@i}) =
  3.1893 +(x@1 = y@1 \land \dots \land x@{m^j@i} = y@{m^j@i})
  3.1894 +\]
  3.1895 +Because the number of distinctness inequalities is quadratic in the number of
  3.1896 +constructors, a different representation is used if there are $7$ or more of
  3.1897 +them.  In that case every constructor term is mapped to a natural number:
  3.1898 +\[
  3.1899 +t@j_ord \, (C^j@i \, x@1 \, \dots \, x@{m^j@i}) = i - 1
  3.1900 +\]
  3.1901 +Then distinctness of constructor terms is expressed by:
  3.1902 +\[
  3.1903 +t@j_ord \, x \neq t@j_ord \, y \Imp x \neq y.
  3.1904 +\]
  3.1905 +
  3.1906 +\subsubsection{Structural induction}
  3.1907 +
  3.1908 +The datatype package also provides structural induction rules.  For
  3.1909 +datatypes without nested recursion, this is of the following form:
  3.1910 +\[
  3.1911 +\infer{P@1~x@1 \wedge \dots \wedge P@n~x@n}
  3.1912 +  {\begin{array}{lcl}
  3.1913 +     \Forall x@1 \dots x@{m^1@1}.
  3.1914 +       \List{P@{s^1@{1,1}}~x@{r^1@{1,1}}; \dots;
  3.1915 +         P@{s^1@{1,l^1@1}}~x@{r^1@{1,l^1@1}}} & \Imp &
  3.1916 +           P@1~\left(C^1@1~x@1~\dots~x@{m^1@1}\right) \\
  3.1917 +     & \vdots \\
  3.1918 +     \Forall x@1 \dots x@{m^1@{k@1}}.
  3.1919 +       \List{P@{s^1@{k@1,1}}~x@{r^1@{k@1,1}}; \dots;
  3.1920 +         P@{s^1@{k@1,l^1@{k@1}}}~x@{r^1@{k@1,l^1@{k@1}}}} & \Imp &
  3.1921 +           P@1~\left(C^1@{k@1}~x@1~\ldots~x@{m^1@{k@1}}\right) \\
  3.1922 +     & \vdots \\
  3.1923 +     \Forall x@1 \dots x@{m^n@1}.
  3.1924 +       \List{P@{s^n@{1,1}}~x@{r^n@{1,1}}; \dots;
  3.1925 +         P@{s^n@{1,l^n@1}}~x@{r^n@{1,l^n@1}}} & \Imp &
  3.1926 +           P@n~\left(C^n@1~x@1~\ldots~x@{m^n@1}\right) \\
  3.1927 +     & \vdots \\
  3.1928 +     \Forall x@1 \dots x@{m^n@{k@n}}.
  3.1929 +       \List{P@{s^n@{k@n,1}}~x@{r^n@{k@n,1}}; \dots
  3.1930 +         P@{s^n@{k@n,l^n@{k@n}}}~x@{r^n@{k@n,l^n@{k@n}}}} & \Imp &
  3.1931 +           P@n~\left(C^n@{k@n}~x@1~\ldots~x@{m^n@{k@n}}\right)
  3.1932 +   \end{array}}
  3.1933 +\]
  3.1934 +where
  3.1935 +\[
  3.1936 +\begin{array}{rcl}
  3.1937 +Rec^j@i & := &
  3.1938 +   \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots,
  3.1939 +     \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\} = \\[2ex]
  3.1940 +&& \left\{(i',i'')~\left|~
  3.1941 +     1\leq i' \leq m^j@i \wedge 1 \leq i'' \leq n \wedge
  3.1942 +       \tau^j@{i,i'} = (\alpha@1,\ldots,\alpha@h)t@{i''}\right.\right\}
  3.1943 +\end{array}
  3.1944 +\]
  3.1945 +i.e.\ the properties $P@j$ can be assumed for all recursive arguments.
  3.1946 +
  3.1947 +For datatypes with nested recursion, such as the \texttt{term} example from
  3.1948 +above, things are a bit more complicated.  Conceptually, Isabelle/HOL unfolds
  3.1949 +a definition like
  3.1950 +\begin{ttbox}
  3.1951 +datatype ('a, 'b) term = Var 'a
  3.1952 +                       | App 'b ((('a, 'b) term) list)
  3.1953 +\end{ttbox}
  3.1954 +to an equivalent definition without nesting:
  3.1955 +\begin{ttbox}
  3.1956 +datatype ('a, 'b) term      = Var
  3.1957 +                            | App 'b (('a, 'b) term_list)
  3.1958 +and      ('a, 'b) term_list = Nil'
  3.1959 +                            | Cons' (('a,'b) term) (('a,'b) term_list)
  3.1960 +\end{ttbox}
  3.1961 +Note however, that the type \texttt{('a,'b) term_list} and the constructors {\tt
  3.1962 +  Nil'} and \texttt{Cons'} are not really introduced.  One can directly work with
  3.1963 +the original (isomorphic) type \texttt{(('a, 'b) term) list} and its existing
  3.1964 +constructors \texttt{Nil} and \texttt{Cons}. Thus, the structural induction rule for
  3.1965 +\texttt{term} gets the form
  3.1966 +\[
  3.1967 +\infer{P@1~x@1 \wedge P@2~x@2}
  3.1968 +  {\begin{array}{l}
  3.1969 +     \Forall x.~P@1~(\mathtt{Var}~x) \\
  3.1970 +     \Forall x@1~x@2.~P@2~x@2 \Imp P@1~(\mathtt{App}~x@1~x@2) \\
  3.1971 +     P@2~\mathtt{Nil} \\
  3.1972 +     \Forall x@1~x@2. \List{P@1~x@1; P@2~x@2} \Imp P@2~(\mathtt{Cons}~x@1~x@2)
  3.1973 +   \end{array}}
  3.1974 +\]
  3.1975 +Note that there are two predicates $P@1$ and $P@2$, one for the type \texttt{('a,'b) term}
  3.1976 +and one for the type \texttt{(('a, 'b) term) list}.
  3.1977 +
  3.1978 +\medskip In principle, inductive types are already fully determined by
  3.1979 +freeness and structural induction.  For convenience in applications,
  3.1980 +the following derived constructions are automatically provided for any
  3.1981 +datatype.
  3.1982 +
  3.1983 +\subsubsection{The \sdx{case} construct}
  3.1984 +
  3.1985 +The type comes with an \ML-like \texttt{case}-construct:
  3.1986 +\[
  3.1987 +\begin{array}{rrcl}
  3.1988 +\mbox{\tt case}~e~\mbox{\tt of} & C^j@1~x@{1,1}~\dots~x@{1,m^j@1} & \To & e@1 \\
  3.1989 +                           \vdots \\
  3.1990 +                           \mid & C^j@{k@j}~x@{k@j,1}~\dots~x@{k@j,m^j@{k@j}} & \To & e@{k@j}
  3.1991 +\end{array}
  3.1992 +\]
  3.1993 +where the $x@{i,j}$ are either identifiers or nested tuple patterns as in
  3.1994 +\S\ref{subsec:prod-sum}.
  3.1995 +\begin{warn}
  3.1996 +  All constructors must be present, their order is fixed, and nested patterns
  3.1997 +  are not supported (with the exception of tuples).  Violating this
  3.1998 +  restriction results in strange error messages.
  3.1999 +\end{warn}
  3.2000 +
  3.2001 +To perform case distinction on a goal containing a \texttt{case}-construct,
  3.2002 +the theorem $t@j.$\texttt{split} is provided:
  3.2003 +\[
  3.2004 +\begin{array}{@{}rcl@{}}
  3.2005 +P(t@j_\mathtt{case}~f@1~\dots~f@{k@j}~e) &\!\!\!=&
  3.2006 +\!\!\! ((\forall x@1 \dots x@{m^j@1}. e = C^j@1~x@1\dots x@{m^j@1} \to
  3.2007 +                             P(f@1~x@1\dots x@{m^j@1})) \\
  3.2008 +&&\!\!\! ~\land~ \dots ~\land \\
  3.2009 +&&~\!\!\! (\forall x@1 \dots x@{m^j@{k@j}}. e = C^j@{k@j}~x@1\dots x@{m^j@{k@j}} \to
  3.2010 +                             P(f@{k@j}~x@1\dots x@{m^j@{k@j}})))
  3.2011 +\end{array}
  3.2012 +\]
  3.2013 +where $t@j$\texttt{_case} is the internal name of the \texttt{case}-construct.
  3.2014 +This theorem can be added to a simpset via \ttindex{addsplits}
  3.2015 +(see~\S\ref{subsec:HOL:case:splitting}).
  3.2016 +
  3.2017 +\subsubsection{The function \cdx{size}}\label{sec:HOL:size}
  3.2018 +
  3.2019 +Theory \texttt{Arith} declares a generic function \texttt{size} of type
  3.2020 +$\alpha\To nat$.  Each datatype defines a particular instance of \texttt{size}
  3.2021 +by overloading according to the following scheme:
  3.2022 +%%% FIXME: This formula is too big and is completely unreadable
  3.2023 +\[
  3.2024 +size(C^j@i~x@1~\dots~x@{m^j@i}) = \!
  3.2025 +\left\{
  3.2026 +\begin{array}{ll}
  3.2027 +0 & \!\mbox{if $Rec^j@i = \emptyset$} \\
  3.2028 +\!\!\begin{array}{l}
  3.2029 +size~x@{r^j@{i,1}} + \cdots \\
  3.2030 +\cdots + size~x@{r^j@{i,l^j@i}} + 1
  3.2031 +\end{array} &
  3.2032 + \!\mbox{if $Rec^j@i = \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots,
  3.2033 +  \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\}$}
  3.2034 +\end{array}
  3.2035 +\right.
  3.2036 +\]
  3.2037 +where $Rec^j@i$ is defined above.  Viewing datatypes as generalised trees, the
  3.2038 +size of a leaf is 0 and the size of a node is the sum of the sizes of its
  3.2039 +subtrees ${}+1$.
  3.2040 +
  3.2041 +\subsection{Defining datatypes}
  3.2042 +
  3.2043 +The theory syntax for datatype definitions is shown in
  3.2044 +Fig.~\ref{datatype-grammar}.  In order to be well-formed, a datatype
  3.2045 +definition has to obey the rules stated in the previous section.  As a result
  3.2046 +the theory is extended with the new types, the constructors, and the theorems
  3.2047 +listed in the previous section.
  3.2048 +
  3.2049 +\begin{figure}
  3.2050 +\begin{rail}
  3.2051 +datatype : 'datatype' typedecls;
  3.2052 +
  3.2053 +typedecls: ( newtype '=' (cons + '|') ) + 'and'
  3.2054 +         ;
  3.2055 +newtype  : typevarlist id ( () | '(' infix ')' )
  3.2056 +         ;
  3.2057 +cons     : name (argtype *) ( () | ( '(' mixfix ')' ) )
  3.2058 +         ;
  3.2059 +argtype  : id | tid | ('(' typevarlist id ')')
  3.2060 +         ;
  3.2061 +\end{rail}
  3.2062 +\caption{Syntax of datatype declarations}
  3.2063 +\label{datatype-grammar}
  3.2064 +\end{figure}
  3.2065 +
  3.2066 +Most of the theorems about datatypes become part of the default simpset and
  3.2067 +you never need to see them again because the simplifier applies them
  3.2068 +automatically.  Only induction or exhaustion are usually invoked by hand.
  3.2069 +\begin{ttdescription}
  3.2070 +\item[\ttindexbold{induct_tac} {\tt"}$x${\tt"} $i$]
  3.2071 + applies structural induction on variable $x$ to subgoal $i$, provided the
  3.2072 + type of $x$ is a datatype.
  3.2073 +\item[\ttindexbold{mutual_induct_tac}
  3.2074 +  {\tt["}$x@1${\tt",}$\ldots${\tt,"}$x@n${\tt"]} $i$] applies simultaneous
  3.2075 +  structural induction on the variables $x@1,\ldots,x@n$ to subgoal $i$.  This
  3.2076 +  is the canonical way to prove properties of mutually recursive datatypes
  3.2077 +  such as \texttt{aexp} and \texttt{bexp}, or datatypes with nested recursion such as
  3.2078 +  \texttt{term}.
  3.2079 +\end{ttdescription}
  3.2080 +In some cases, induction is overkill and a case distinction over all
  3.2081 +constructors of the datatype suffices.
  3.2082 +\begin{ttdescription}
  3.2083 +\item[\ttindexbold{exhaust_tac} {\tt"}$u${\tt"} $i$]
  3.2084 + performs an exhaustive case analysis for the term $u$ whose type
  3.2085 + must be a datatype.  If the datatype has $k@j$ constructors
  3.2086 + $C^j@1$, \dots $C^j@{k@j}$, subgoal $i$ is replaced by $k@j$ new subgoals which
  3.2087 + contain the additional assumption $u = C^j@{i'}~x@1~\dots~x@{m^j@{i'}}$ for
  3.2088 + $i'=1$, $\dots$,~$k@j$.
  3.2089 +\end{ttdescription}
  3.2090 +
  3.2091 +Note that induction is only allowed on free variables that should not occur
  3.2092 +among the premises of the subgoal.  Exhaustion applies to arbitrary terms.
  3.2093 +
  3.2094 +\bigskip
  3.2095 +
  3.2096 +
  3.2097 +For the technically minded, we exhibit some more details.  Processing the
  3.2098 +theory file produces an \ML\ structure which, in addition to the usual
  3.2099 +components, contains a structure named $t$ for each datatype $t$ defined in
  3.2100 +the file.  Each structure $t$ contains the following elements:
  3.2101 +\begin{ttbox}
  3.2102 +val distinct : thm list
  3.2103 +val inject : thm list
  3.2104 +val induct : thm
  3.2105 +val exhaust : thm
  3.2106 +val cases : thm list
  3.2107 +val split : thm
  3.2108 +val split_asm : thm
  3.2109 +val recs : thm list
  3.2110 +val size : thm list
  3.2111 +val simps : thm list
  3.2112 +\end{ttbox}
  3.2113 +\texttt{distinct}, \texttt{inject}, \texttt{induct}, \texttt{size}
  3.2114 +and \texttt{split} contain the theorems
  3.2115 +described above.  For user convenience, \texttt{distinct} contains
  3.2116 +inequalities in both directions.  The reduction rules of the {\tt
  3.2117 +  case}-construct are in \texttt{cases}.  All theorems from {\tt
  3.2118 +  distinct}, \texttt{inject} and \texttt{cases} are combined in \texttt{simps}.
  3.2119 +In case of mutually recursive datatypes, \texttt{recs}, \texttt{size}, \texttt{induct}
  3.2120 +and \texttt{simps} are contained in a separate structure named $t@1_\ldots_t@n$.
  3.2121 +
  3.2122 +
  3.2123 +\subsection{Representing existing types as datatypes}
  3.2124 +
  3.2125 +For foundational reasons, some basic types such as \texttt{nat}, \texttt{*}, {\tt
  3.2126 +  +}, \texttt{bool} and \texttt{unit} are not defined in a \texttt{datatype} section,
  3.2127 +but by more primitive means using \texttt{typedef}. To be able to use the
  3.2128 +tactics \texttt{induct_tac} and \texttt{exhaust_tac} and to define functions by
  3.2129 +primitive recursion on these types, such types may be represented as actual
  3.2130 +datatypes.  This is done by specifying an induction rule, as well as theorems
  3.2131 +stating the distinctness and injectivity of constructors in a {\tt
  3.2132 +  rep_datatype} section.  For type \texttt{nat} this works as follows:
  3.2133 +\begin{ttbox}
  3.2134 +rep_datatype nat
  3.2135 +  distinct Suc_not_Zero, Zero_not_Suc
  3.2136 +  inject   Suc_Suc_eq
  3.2137 +  induct   nat_induct
  3.2138 +\end{ttbox}
  3.2139 +The datatype package automatically derives additional theorems for recursion
  3.2140 +and case combinators from these rules.  Any of the basic HOL types mentioned
  3.2141 +above are represented as datatypes.  Try an induction on \texttt{bool}
  3.2142 +today.
  3.2143 +
  3.2144 +
  3.2145 +\subsection{Examples}
  3.2146 +
  3.2147 +\subsubsection{The datatype $\alpha~mylist$}
  3.2148 +
  3.2149 +We want to define a type $\alpha~mylist$. To do this we have to build a new
  3.2150 +theory that contains the type definition.  We start from the theory
  3.2151 +\texttt{Datatype} instead of \texttt{Main} in order to avoid clashes with the
  3.2152 +\texttt{List} theory of Isabelle/HOL.
  3.2153 +\begin{ttbox}
  3.2154 +MyList = Datatype +
  3.2155 +  datatype 'a mylist = Nil | Cons 'a ('a mylist)
  3.2156 +end
  3.2157 +\end{ttbox}
  3.2158 +After loading the theory, we can prove $Cons~x~xs\neq xs$, for example.  To
  3.2159 +ease the induction applied below, we state the goal with $x$ quantified at the
  3.2160 +object-level.  This will be stripped later using \ttindex{qed_spec_mp}.
  3.2161 +\begin{ttbox}
  3.2162 +Goal "!x. Cons x xs ~= xs";
  3.2163 +{\out Level 0}
  3.2164 +{\out ! x. Cons x xs ~= xs}
  3.2165 +{\out  1. ! x. Cons x xs ~= xs}
  3.2166 +\end{ttbox}
  3.2167 +This can be proved by the structural induction tactic:
  3.2168 +\begin{ttbox}
  3.2169 +by (induct_tac "xs" 1);
  3.2170 +{\out Level 1}
  3.2171 +{\out ! x. Cons x xs ~= xs}
  3.2172 +{\out  1. ! x. Cons x Nil ~= Nil}
  3.2173 +{\out  2. !!a mylist.}
  3.2174 +{\out        ! x. Cons x mylist ~= mylist ==>}
  3.2175 +{\out        ! x. Cons x (Cons a mylist) ~= Cons a mylist}
  3.2176 +\end{ttbox}
  3.2177 +The first subgoal can be proved using the simplifier.  Isabelle/HOL has
  3.2178 +already added the freeness properties of lists to the default simplification
  3.2179 +set.
  3.2180 +\begin{ttbox}
  3.2181 +by (Simp_tac 1);
  3.2182 +{\out Level 2}
  3.2183 +{\out ! x. Cons x xs ~= xs}
  3.2184 +{\out  1. !!a mylist.}
  3.2185 +{\out        ! x. Cons x mylist ~= mylist ==>}
  3.2186 +{\out        ! x. Cons x (Cons a mylist) ~= Cons a mylist}
  3.2187 +\end{ttbox}
  3.2188 +Similarly, we prove the remaining goal.
  3.2189 +\begin{ttbox}
  3.2190 +by (Asm_simp_tac 1);
  3.2191 +{\out Level 3}
  3.2192 +{\out ! x. Cons x xs ~= xs}
  3.2193 +{\out No subgoals!}
  3.2194 +\ttbreak
  3.2195 +qed_spec_mp "not_Cons_self";
  3.2196 +{\out val not_Cons_self = "Cons x xs ~= xs" : thm}
  3.2197 +\end{ttbox}
  3.2198 +Because both subgoals could have been proved by \texttt{Asm_simp_tac}
  3.2199 +we could have done that in one step:
  3.2200 +\begin{ttbox}
  3.2201 +by (ALLGOALS Asm_simp_tac);
  3.2202 +\end{ttbox}
  3.2203 +
  3.2204 +
  3.2205 +\subsubsection{The datatype $\alpha~mylist$ with mixfix syntax}
  3.2206 +
  3.2207 +In this example we define the type $\alpha~mylist$ again but this time
  3.2208 +we want to write \texttt{[]} for \texttt{Nil} and we want to use infix
  3.2209 +notation \verb|#| for \texttt{Cons}.  To do this we simply add mixfix
  3.2210 +annotations after the constructor declarations as follows:
  3.2211 +\begin{ttbox}
  3.2212 +MyList = Datatype +
  3.2213 +  datatype 'a mylist =
  3.2214 +    Nil ("[]")  |
  3.2215 +    Cons 'a ('a mylist)  (infixr "#" 70)
  3.2216 +end
  3.2217 +\end{ttbox}
  3.2218 +Now the theorem in the previous example can be written \verb|x#xs ~= xs|.
  3.2219 +
  3.2220 +
  3.2221 +\subsubsection{A datatype for weekdays}
  3.2222 +
  3.2223 +This example shows a datatype that consists of 7 constructors:
  3.2224 +\begin{ttbox}
  3.2225 +Days = Main +
  3.2226 +  datatype days = Mon | Tue | Wed | Thu | Fri | Sat | Sun
  3.2227 +end
  3.2228 +\end{ttbox}
  3.2229 +Because there are more than 6 constructors, inequality is expressed via a function
  3.2230 +\verb|days_ord|.  The theorem \verb|Mon ~= Tue| is not directly
  3.2231 +contained among the distinctness theorems, but the simplifier can
  3.2232 +prove it thanks to rewrite rules inherited from theory \texttt{Arith}:
  3.2233 +\begin{ttbox}
  3.2234 +Goal "Mon ~= Tue";
  3.2235 +by (Simp_tac 1);
  3.2236 +\end{ttbox}
  3.2237 +You need not derive such inequalities explicitly: the simplifier will dispose
  3.2238 +of them automatically.
  3.2239 +\index{*datatype|)}
  3.2240 +
  3.2241 +
  3.2242 +\section{Recursive function definitions}\label{sec:HOL:recursive}
  3.2243 +\index{recursive functions|see{recursion}}
  3.2244 +
  3.2245 +Isabelle/HOL provides two main mechanisms of defining recursive functions.
  3.2246 +\begin{enumerate}
  3.2247 +\item \textbf{Primitive recursion} is available only for datatypes, and it is
  3.2248 +  somewhat restrictive.  Recursive calls are only allowed on the argument's
  3.2249 +  immediate constituents.  On the other hand, it is the form of recursion most
  3.2250 +  often wanted, and it is easy to use.
  3.2251 +  
  3.2252 +\item \textbf{Well-founded recursion} requires that you supply a well-founded
  3.2253 +  relation that governs the recursion.  Recursive calls are only allowed if
  3.2254 +  they make the argument decrease under the relation.  Complicated recursion
  3.2255 +  forms, such as nested recursion, can be dealt with.  Termination can even be
  3.2256 +  proved at a later time, though having unsolved termination conditions around
  3.2257 +  can make work difficult.%
  3.2258 +  \footnote{This facility is based on Konrad Slind's TFL
  3.2259 +    package~\cite{slind-tfl}.  Thanks are due to Konrad for implementing TFL
  3.2260 +    and assisting with its installation.}
  3.2261 +\end{enumerate}
  3.2262 +
  3.2263 +Following good HOL tradition, these declarations do not assert arbitrary
  3.2264 +axioms.  Instead, they define the function using a recursion operator.  Both
  3.2265 +HOL and ZF derive the theory of well-founded recursion from first
  3.2266 +principles~\cite{paulson-set-II}.  Primitive recursion over some datatype
  3.2267 +relies on the recursion operator provided by the datatype package.  With
  3.2268 +either form of function definition, Isabelle proves the desired recursion
  3.2269 +equations as theorems.
  3.2270 +
  3.2271 +
  3.2272 +\subsection{Primitive recursive functions}
  3.2273 +\label{sec:HOL:primrec}
  3.2274 +\index{recursion!primitive|(}
  3.2275 +\index{*primrec|(}
  3.2276 +
  3.2277 +Datatypes come with a uniform way of defining functions, {\bf primitive
  3.2278 +  recursion}.  In principle, one could introduce primitive recursive functions
  3.2279 +by asserting their reduction rules as new axioms, but this is not recommended:
  3.2280 +\begin{ttbox}\slshape
  3.2281 +Append = Main +
  3.2282 +consts app :: ['a list, 'a list] => 'a list
  3.2283 +rules 
  3.2284 +   app_Nil   "app [] ys = ys"
  3.2285 +   app_Cons  "app (x#xs) ys = x#app xs ys"
  3.2286 +end
  3.2287 +\end{ttbox}
  3.2288 +Asserting axioms brings the danger of accidentally asserting nonsense, as
  3.2289 +in \verb$app [] ys = us$.
  3.2290 +
  3.2291 +The \ttindex{primrec} declaration is a safe means of defining primitive
  3.2292 +recursive functions on datatypes:
  3.2293 +\begin{ttbox}
  3.2294 +Append = Main +
  3.2295 +consts app :: ['a list, 'a list] => 'a list
  3.2296 +primrec
  3.2297 +   "app [] ys = ys"
  3.2298 +   "app (x#xs) ys = x#app xs ys"
  3.2299 +end
  3.2300 +\end{ttbox}
  3.2301 +Isabelle will now check that the two rules do indeed form a primitive
  3.2302 +recursive definition.  For example
  3.2303 +\begin{ttbox}
  3.2304 +primrec
  3.2305 +    "app [] ys = us"
  3.2306 +\end{ttbox}
  3.2307 +is rejected with an error message ``\texttt{Extra variables on rhs}''.
  3.2308 +
  3.2309 +\bigskip
  3.2310 +
  3.2311 +The general form of a primitive recursive definition is
  3.2312 +\begin{ttbox}
  3.2313 +primrec
  3.2314 +    {\it reduction rules}
  3.2315 +\end{ttbox}
  3.2316 +where \textit{reduction rules} specify one or more equations of the form
  3.2317 +\[ f \, x@1 \, \dots \, x@m \, (C \, y@1 \, \dots \, y@k) \, z@1 \,
  3.2318 +\dots \, z@n = r \] such that $C$ is a constructor of the datatype, $r$
  3.2319 +contains only the free variables on the left-hand side, and all recursive
  3.2320 +calls in $r$ are of the form $f \, \dots \, y@i \, \dots$ for some $i$.  There
  3.2321 +must be at most one reduction rule for each constructor.  The order is
  3.2322 +immaterial.  For missing constructors, the function is defined to return a
  3.2323 +default value.  
  3.2324 +
  3.2325 +If you would like to refer to some rule by name, then you must prefix
  3.2326 +the rule with an identifier.  These identifiers, like those in the
  3.2327 +\texttt{rules} section of a theory, will be visible at the \ML\ level.
  3.2328 +
  3.2329 +The primitive recursive function can have infix or mixfix syntax:
  3.2330 +\begin{ttbox}\underscoreon
  3.2331 +consts "@"  :: ['a list, 'a list] => 'a list  (infixr 60)
  3.2332 +primrec
  3.2333 +   "[] @ ys = ys"
  3.2334 +   "(x#xs) @ ys = x#(xs @ ys)"
  3.2335 +\end{ttbox}
  3.2336 +
  3.2337 +The reduction rules become part of the default simpset, which
  3.2338 +leads to short proof scripts:
  3.2339 +\begin{ttbox}\underscoreon
  3.2340 +Goal "(xs @ ys) @ zs = xs @ (ys @ zs)";
  3.2341 +by (induct\_tac "xs" 1);
  3.2342 +by (ALLGOALS Asm\_simp\_tac);
  3.2343 +\end{ttbox}
  3.2344 +
  3.2345 +\subsubsection{Example: Evaluation of expressions}
  3.2346 +Using mutual primitive recursion, we can define evaluation functions \texttt{eval_aexp}
  3.2347 +and \texttt{eval_bexp} for the datatypes of arithmetic and boolean expressions mentioned in
  3.2348 +\S\ref{subsec:datatype:basics}:
  3.2349 +\begin{ttbox}
  3.2350 +consts
  3.2351 +  eval_aexp :: "['a => nat, 'a aexp] => nat"
  3.2352 +  eval_bexp :: "['a => nat, 'a bexp] => bool"
  3.2353 +
  3.2354 +primrec
  3.2355 +  "eval_aexp env (If_then_else b a1 a2) =
  3.2356 +     (if eval_bexp env b then eval_aexp env a1 else eval_aexp env a2)"
  3.2357 +  "eval_aexp env (Sum a1 a2) = eval_aexp env a1 + eval_aexp env a2"
  3.2358 +  "eval_aexp env (Diff a1 a2) = eval_aexp env a1 - eval_aexp env a2"
  3.2359 +  "eval_aexp env (Var v) = env v"
  3.2360 +  "eval_aexp env (Num n) = n"
  3.2361 +
  3.2362 +  "eval_bexp env (Less a1 a2) = (eval_aexp env a1 < eval_aexp env a2)"
  3.2363 +  "eval_bexp env (And b1 b2) = (eval_bexp env b1 & eval_bexp env b2)"
  3.2364 +  "eval_bexp env (Or b1 b2) = (eval_bexp env b1 & eval_bexp env b2)"
  3.2365 +\end{ttbox}
  3.2366 +Since the value of an expression depends on the value of its variables,
  3.2367 +the functions \texttt{eval_aexp} and \texttt{eval_bexp} take an additional
  3.2368 +parameter, an {\em environment} of type \texttt{'a => nat}, which maps
  3.2369 +variables to their values.
  3.2370 +
  3.2371 +Similarly, we may define substitution functions \texttt{subst_aexp}
  3.2372 +and \texttt{subst_bexp} for expressions: The mapping \texttt{f} of type
  3.2373 +\texttt{'a => 'a aexp} given as a parameter is lifted canonically
  3.2374 +on the types {'a aexp} and {'a bexp}:
  3.2375 +\begin{ttbox}
  3.2376 +consts
  3.2377 +  subst_aexp :: "['a => 'b aexp, 'a aexp] => 'b aexp"
  3.2378 +  subst_bexp :: "['a => 'b aexp, 'a bexp] => 'b bexp"
  3.2379 +
  3.2380 +primrec
  3.2381 +  "subst_aexp f (If_then_else b a1 a2) =
  3.2382 +     If_then_else (subst_bexp f b) (subst_aexp f a1) (subst_aexp f a2)"
  3.2383 +  "subst_aexp f (Sum a1 a2) = Sum (subst_aexp f a1) (subst_aexp f a2)"
  3.2384 +  "subst_aexp f (Diff a1 a2) = Diff (subst_aexp f a1) (subst_aexp f a2)"
  3.2385 +  "subst_aexp f (Var v) = f v"
  3.2386 +  "subst_aexp f (Num n) = Num n"
  3.2387 +
  3.2388 +  "subst_bexp f (Less a1 a2) = Less (subst_aexp f a1) (subst_aexp f a2)"
  3.2389 +  "subst_bexp f (And b1 b2) = And (subst_bexp f b1) (subst_bexp f b2)"
  3.2390 +  "subst_bexp f (Or b1 b2) = Or (subst_bexp f b1) (subst_bexp f b2)"
  3.2391 +\end{ttbox}
  3.2392 +In textbooks about semantics one often finds {\em substitution theorems},
  3.2393 +which express the relationship between substitution and evaluation. For
  3.2394 +\texttt{'a aexp} and \texttt{'a bexp}, we can prove such a theorem by mutual
  3.2395 +induction, followed by simplification:
  3.2396 +\begin{ttbox}
  3.2397 +Goal
  3.2398 +  "eval_aexp env (subst_aexp (Var(v := a')) a) =
  3.2399 +     eval_aexp (env(v := eval_aexp env a')) a &
  3.2400 +   eval_bexp env (subst_bexp (Var(v := a')) b) =
  3.2401 +     eval_bexp (env(v := eval_aexp env a')) b";
  3.2402 +by (mutual_induct_tac ["a","b"] 1);
  3.2403 +by (ALLGOALS Asm_full_simp_tac);
  3.2404 +\end{ttbox}
  3.2405 +
  3.2406 +\subsubsection{Example: A substitution function for terms}
  3.2407 +Functions on datatypes with nested recursion, such as the type
  3.2408 +\texttt{term} mentioned in \S\ref{subsec:datatype:basics}, are
  3.2409 +also defined by mutual primitive recursion. A substitution
  3.2410 +function \texttt{subst_term} on type \texttt{term}, similar to the functions
  3.2411 +\texttt{subst_aexp} and \texttt{subst_bexp} described above, can
  3.2412 +be defined as follows:
  3.2413 +\begin{ttbox}
  3.2414 +consts
  3.2415 +  subst_term :: "['a => ('a, 'b) term, ('a, 'b) term] => ('a, 'b) term"
  3.2416 +  subst_term_list ::
  3.2417 +    "['a => ('a, 'b) term, ('a, 'b) term list] => ('a, 'b) term list"
  3.2418 +
  3.2419 +primrec
  3.2420 +  "subst_term f (Var a) = f a"
  3.2421 +  "subst_term f (App b ts) = App b (subst_term_list f ts)"
  3.2422 +
  3.2423 +  "subst_term_list f [] = []"
  3.2424 +  "subst_term_list f (t # ts) =
  3.2425 +     subst_term f t # subst_term_list f ts"
  3.2426 +\end{ttbox}
  3.2427 +The recursion scheme follows the structure of the unfolded definition of type
  3.2428 +\texttt{term} shown in \S\ref{subsec:datatype:basics}. To prove properties of
  3.2429 +this substitution function, mutual induction is needed:
  3.2430 +\begin{ttbox}
  3.2431 +Goal
  3.2432 +  "(subst_term ((subst_term f1) o f2) t) =
  3.2433 +     (subst_term f1 (subst_term f2 t)) &
  3.2434 +   (subst_term_list ((subst_term f1) o f2) ts) =
  3.2435 +     (subst_term_list f1 (subst_term_list f2 ts))";
  3.2436 +by (mutual_induct_tac ["t", "ts"] 1);
  3.2437 +by (ALLGOALS Asm_full_simp_tac);
  3.2438 +\end{ttbox}
  3.2439 +
  3.2440 +\index{recursion!primitive|)}
  3.2441 +\index{*primrec|)}
  3.2442 +
  3.2443 +
  3.2444 +\subsection{General recursive functions}
  3.2445 +\label{sec:HOL:recdef}
  3.2446 +\index{recursion!general|(}
  3.2447 +\index{*recdef|(}
  3.2448 +
  3.2449 +Using \texttt{recdef}, you can declare functions involving nested recursion
  3.2450 +and pattern-matching.  Recursion need not involve datatypes and there are few
  3.2451 +syntactic restrictions.  Termination is proved by showing that each recursive
  3.2452 +call makes the argument smaller in a suitable sense, which you specify by
  3.2453 +supplying a well-founded relation.
  3.2454 +
  3.2455 +Here is a simple example, the Fibonacci function.  The first line declares
  3.2456 +\texttt{fib} to be a constant.  The well-founded relation is simply~$<$ (on
  3.2457 +the natural numbers).  Pattern-matching is used here: \texttt{1} is a
  3.2458 +macro for \texttt{Suc~0}.
  3.2459 +\begin{ttbox}
  3.2460 +consts fib  :: "nat => nat"
  3.2461 +recdef fib "less_than"
  3.2462 +    "fib 0 = 0"
  3.2463 +    "fib 1 = 1"
  3.2464 +    "fib (Suc(Suc x)) = (fib x + fib (Suc x))"
  3.2465 +\end{ttbox}
  3.2466 +
  3.2467 +With \texttt{recdef}, function definitions may be incomplete, and patterns may
  3.2468 +overlap, as in functional programming.  The \texttt{recdef} package
  3.2469 +disambiguates overlapping patterns by taking the order of rules into account.
  3.2470 +For missing patterns, the function is defined to return a default value.
  3.2471 +
  3.2472 +%For example, here is a declaration of the list function \cdx{hd}:
  3.2473 +%\begin{ttbox}
  3.2474 +%consts hd :: 'a list => 'a
  3.2475 +%recdef hd "\{\}"
  3.2476 +%    "hd (x#l) = x"
  3.2477 +%\end{ttbox}
  3.2478 +%Because this function is not recursive, we may supply the empty well-founded
  3.2479 +%relation, $\{\}$.
  3.2480 +
  3.2481 +The well-founded relation defines a notion of ``smaller'' for the function's
  3.2482 +argument type.  The relation $\prec$ is \textbf{well-founded} provided it
  3.2483 +admits no infinitely decreasing chains
  3.2484 +\[ \cdots\prec x@n\prec\cdots\prec x@1. \]
  3.2485 +If the function's argument has type~$\tau$, then $\prec$ has to be a relation
  3.2486 +over~$\tau$: it must have type $(\tau\times\tau)set$.
  3.2487 +
  3.2488 +Proving well-foundedness can be tricky, so Isabelle/HOL provides a collection
  3.2489 +of operators for building well-founded relations.  The package recognises
  3.2490 +these operators and automatically proves that the constructed relation is
  3.2491 +well-founded.  Here are those operators, in order of importance:
  3.2492 +\begin{itemize}
  3.2493 +\item \texttt{less_than} is ``less than'' on the natural numbers.
  3.2494 +  (It has type $(nat\times nat)set$, while $<$ has type $[nat,nat]\To bool$.
  3.2495 +  
  3.2496 +\item $\mathop{\mathtt{measure}} f$, where $f$ has type $\tau\To nat$, is the
  3.2497 +  relation~$\prec$ on type~$\tau$ such that $x\prec y$ iff $f(x)<f(y)$.
  3.2498 +  Typically, $f$ takes the recursive function's arguments (as a tuple) and
  3.2499 +  returns a result expressed in terms of the function \texttt{size}.  It is
  3.2500 +  called a \textbf{measure function}.  Recall that \texttt{size} is overloaded
  3.2501 +  and is defined on all datatypes (see \S\ref{sec:HOL:size}).
  3.2502 +                                                    
  3.2503 +\item $\mathop{\mathtt{inv_image}} f\;R$ is a generalisation of
  3.2504 +  \texttt{measure}.  It specifies a relation such that $x\prec y$ iff $f(x)$
  3.2505 +  is less than $f(y)$ according to~$R$, which must itself be a well-founded
  3.2506 +  relation.
  3.2507 +
  3.2508 +\item $R@1\texttt{**}R@2$ is the lexicographic product of two relations.  It
  3.2509 +  is a relation on pairs and satisfies $(x@1,x@2)\prec(y@1,y@2)$ iff $x@1$
  3.2510 +  is less than $y@1$ according to~$R@1$ or $x@1=y@1$ and $x@2$
  3.2511 +  is less than $y@2$ according to~$R@2$.
  3.2512 +
  3.2513 +\item \texttt{finite_psubset} is the proper subset relation on finite sets.
  3.2514 +\end{itemize}
  3.2515 +
  3.2516 +We can use \texttt{measure} to declare Euclid's algorithm for the greatest
  3.2517 +common divisor.  The measure function, $\lambda(m,n). n$, specifies that the
  3.2518 +recursion terminates because argument~$n$ decreases.
  3.2519 +\begin{ttbox}
  3.2520 +recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)"
  3.2521 +    "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
  3.2522 +\end{ttbox}
  3.2523 +
  3.2524 +The general form of a well-founded recursive definition is
  3.2525 +\begin{ttbox}
  3.2526 +recdef {\it function} {\it rel}
  3.2527 +    congs   {\it congruence rules}      {\bf(optional)}
  3.2528 +    simpset {\it simplification set}      {\bf(optional)}
  3.2529 +   {\it reduction rules}
  3.2530 +\end{ttbox}
  3.2531 +where
  3.2532 +\begin{itemize}
  3.2533 +\item \textit{function} is the name of the function, either as an \textit{id}
  3.2534 +  or a \textit{string}.  
  3.2535 +  
  3.2536 +\item \textit{rel} is a {\HOL} expression for the well-founded termination
  3.2537 +  relation.
  3.2538 +  
  3.2539 +\item \textit{congruence rules} are required only in highly exceptional
  3.2540 +  circumstances.
  3.2541 +  
  3.2542 +\item The \textit{simplification set} is used to prove that the supplied
  3.2543 +  relation is well-founded.  It is also used to prove the \textbf{termination
  3.2544 +    conditions}: assertions that arguments of recursive calls decrease under
  3.2545 +  \textit{rel}.  By default, simplification uses \texttt{simpset()}, which
  3.2546 +  is sufficient to prove well-foundedness for the built-in relations listed
  3.2547 +  above. 
  3.2548 +  
  3.2549 +\item \textit{reduction rules} specify one or more recursion equations.  Each
  3.2550 +  left-hand side must have the form $f\,t$, where $f$ is the function and $t$
  3.2551 +  is a tuple of distinct variables.  If more than one equation is present then
  3.2552 +  $f$ is defined by pattern-matching on components of its argument whose type
  3.2553 +  is a \texttt{datatype}.  
  3.2554 +
  3.2555 +  Unlike with \texttt{primrec}, the reduction rules are not added to the
  3.2556 +  default simpset, and individual rules may not be labelled with identifiers.
  3.2557 +  However, the identifier $f$\texttt{.rules} is visible at the \ML\ level
  3.2558 +  as a list of theorems.
  3.2559 +\end{itemize}
  3.2560 +
  3.2561 +With the definition of \texttt{gcd} shown above, Isabelle/HOL is unable to
  3.2562 +prove one termination condition.  It remains as a precondition of the
  3.2563 +recursion theorems.
  3.2564 +\begin{ttbox}
  3.2565 +gcd.rules;
  3.2566 +{\out ["! m n. n ~= 0 --> m mod n < n}
  3.2567 +{\out   ==> gcd (?m, ?n) = (if ?n = 0 then ?m else gcd (?n, ?m mod ?n))"] }
  3.2568 +{\out : thm list}
  3.2569 +\end{ttbox}
  3.2570 +The theory \texttt{HOL/ex/Primes} illustrates how to prove termination
  3.2571 +conditions afterwards.  The function \texttt{Tfl.tgoalw} is like the standard
  3.2572 +function \texttt{goalw}, which sets up a goal to prove, but its argument
  3.2573 +should be the identifier $f$\texttt{.rules} and its effect is to set up a
  3.2574 +proof of the termination conditions:
  3.2575 +\begin{ttbox}
  3.2576 +Tfl.tgoalw thy [] gcd.rules;
  3.2577 +{\out Level 0}
  3.2578 +{\out ! m n. n ~= 0 --> m mod n < n}
  3.2579 +{\out  1. ! m n. n ~= 0 --> m mod n < n}
  3.2580 +\end{ttbox}
  3.2581 +This subgoal has a one-step proof using \texttt{simp_tac}.  Once the theorem
  3.2582 +is proved, it can be used to eliminate the termination conditions from
  3.2583 +elements of \texttt{gcd.rules}.  Theory \texttt{HOL/Subst/Unify} is a much
  3.2584 +more complicated example of this process, where the termination conditions can
  3.2585 +only be proved by complicated reasoning involving the recursive function
  3.2586 +itself.
  3.2587 +
  3.2588 +Isabelle/HOL can prove the \texttt{gcd} function's termination condition
  3.2589 +automatically if supplied with the right simpset.
  3.2590 +\begin{ttbox}
  3.2591 +recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)"
  3.2592 +  simpset "simpset() addsimps [mod_less_divisor, zero_less_eq]"
  3.2593 +    "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
  3.2594 +\end{ttbox}
  3.2595 +
  3.2596 +A \texttt{recdef} definition also returns an induction rule specialised for
  3.2597 +the recursive function.  For the \texttt{gcd} function above, the induction
  3.2598 +rule is
  3.2599 +\begin{ttbox}
  3.2600 +gcd.induct;
  3.2601 +{\out "(!!m n. n ~= 0 --> ?P n (m mod n) ==> ?P m n) ==> ?P ?u ?v" : thm}
  3.2602 +\end{ttbox}
  3.2603 +This rule should be used to reason inductively about the \texttt{gcd}
  3.2604 +function.  It usually makes the induction hypothesis available at all
  3.2605 +recursive calls, leading to very direct proofs.  If any termination conditions
  3.2606 +remain unproved, they will become additional premises of this rule.
  3.2607 +
  3.2608 +\index{recursion!general|)}
  3.2609 +\index{*recdef|)}
  3.2610 +
  3.2611 +
  3.2612 +\section{Inductive and coinductive definitions}
  3.2613 +\index{*inductive|(}
  3.2614 +\index{*coinductive|(}
  3.2615 +
  3.2616 +An {\bf inductive definition} specifies the least set~$R$ closed under given
  3.2617 +rules.  (Applying a rule to elements of~$R$ yields a result within~$R$.)  For
  3.2618 +example, a structural operational semantics is an inductive definition of an
  3.2619 +evaluation relation.  Dually, a {\bf coinductive definition} specifies the
  3.2620 +greatest set~$R$ consistent with given rules.  (Every element of~$R$ can be
  3.2621 +seen as arising by applying a rule to elements of~$R$.)  An important example
  3.2622 +is using bisimulation relations to formalise equivalence of processes and
  3.2623 +infinite data structures.
  3.2624 +
  3.2625 +A theory file may contain any number of inductive and coinductive
  3.2626 +definitions.  They may be intermixed with other declarations; in
  3.2627 +particular, the (co)inductive sets {\bf must} be declared separately as
  3.2628 +constants, and may have mixfix syntax or be subject to syntax translations.
  3.2629 +
  3.2630 +Each (co)inductive definition adds definitions to the theory and also
  3.2631 +proves some theorems.  Each definition creates an \ML\ structure, which is a
  3.2632 +substructure of the main theory structure.
  3.2633 +
  3.2634 +This package is related to the \ZF\ one, described in a separate
  3.2635 +paper,%
  3.2636 +\footnote{It appeared in CADE~\cite{paulson-CADE}; a longer version is
  3.2637 +  distributed with Isabelle.}  %
  3.2638 +which you should refer to in case of difficulties.  The package is simpler
  3.2639 +than \ZF's thanks to \HOL's extra-logical automatic type-checking.  The types
  3.2640 +of the (co)inductive sets determine the domain of the fixedpoint definition,
  3.2641 +and the package does not have to use inference rules for type-checking.
  3.2642 +
  3.2643 +
  3.2644 +\subsection{The result structure}
  3.2645 +Many of the result structure's components have been discussed in the paper;
  3.2646 +others are self-explanatory.
  3.2647 +\begin{description}
  3.2648 +\item[\tt defs] is the list of definitions of the recursive sets.
  3.2649 +
  3.2650 +\item[\tt mono] is a monotonicity theorem for the fixedpoint operator.
  3.2651 +
  3.2652 +\item[\tt unfold] is a fixedpoint equation for the recursive set (the union of
  3.2653 +the recursive sets, in the case of mutual recursion).
  3.2654 +
  3.2655 +\item[\tt intrs] is the list of introduction rules, now proved as theorems, for
  3.2656 +the recursive sets.  The rules are also available individually, using the
  3.2657 +names given them in the theory file. 
  3.2658 +
  3.2659 +\item[\tt elims] is the list of elimination rule.
  3.2660 +
  3.2661 +\item[\tt elim] is the head of the list \texttt{elims}.
  3.2662 +  
  3.2663 +\item[\tt mk_cases] is a function to create simplified instances of {\tt
  3.2664 +elim} using freeness reasoning on underlying datatypes.
  3.2665 +\end{description}
  3.2666 +
  3.2667 +For an inductive definition, the result structure contains the
  3.2668 +rule \texttt{induct}.  For a
  3.2669 +coinductive definition, it contains the rule \verb|coinduct|.
  3.2670 +
  3.2671 +Figure~\ref{def-result-fig} summarises the two result signatures,
  3.2672 +specifying the types of all these components.
  3.2673 +
  3.2674 +\begin{figure}
  3.2675 +\begin{ttbox}
  3.2676 +sig
  3.2677 +val defs         : thm list
  3.2678 +val mono         : thm
  3.2679 +val unfold       : thm
  3.2680 +val intrs        : thm list
  3.2681 +val elims        : thm list
  3.2682 +val elim         : thm
  3.2683 +val mk_cases     : string -> thm
  3.2684 +{\it(Inductive definitions only)} 
  3.2685 +val induct       : thm
  3.2686 +{\it(coinductive definitions only)}
  3.2687 +val coinduct     : thm
  3.2688 +end
  3.2689 +\end{ttbox}
  3.2690 +\hrule
  3.2691 +\caption{The {\ML} result of a (co)inductive definition} \label{def-result-fig}
  3.2692 +\end{figure}
  3.2693 +
  3.2694 +\subsection{The syntax of a (co)inductive definition}
  3.2695 +An inductive definition has the form
  3.2696 +\begin{ttbox}
  3.2697 +inductive    {\it inductive sets}
  3.2698 +  intrs      {\it introduction rules}
  3.2699 +  monos      {\it monotonicity theorems}
  3.2700 +  con_defs   {\it constructor definitions}
  3.2701 +\end{ttbox}
  3.2702 +A coinductive definition is identical, except that it starts with the keyword
  3.2703 +\texttt{coinductive}.  
  3.2704 +
  3.2705 +The \texttt{monos} and \texttt{con_defs} sections are optional.  If present,
  3.2706 +each is specified by a list of identifiers.
  3.2707 +
  3.2708 +\begin{itemize}
  3.2709 +\item The \textit{inductive sets} are specified by one or more strings.
  3.2710 +
  3.2711 +\item The \textit{introduction rules} specify one or more introduction rules in
  3.2712 +  the form \textit{ident\/}~\textit{string}, where the identifier gives the name of
  3.2713 +  the rule in the result structure.
  3.2714 +
  3.2715 +\item The \textit{monotonicity theorems} are required for each operator
  3.2716 +  applied to a recursive set in the introduction rules.  There {\bf must}
  3.2717 +  be a theorem of the form $A\subseteq B\Imp M(A)\subseteq M(B)$, for each
  3.2718 +  premise $t\in M(R@i)$ in an introduction rule!
  3.2719 +
  3.2720 +\item The \textit{constructor definitions} contain definitions of constants
  3.2721 +  appearing in the introduction rules.  In most cases it can be omitted.
  3.2722 +\end{itemize}
  3.2723 +
  3.2724 +
  3.2725 +\subsection{Example of an inductive definition}
  3.2726 +Two declarations, included in a theory file, define the finite powerset
  3.2727 +operator.  First we declare the constant~\texttt{Fin}.  Then we declare it
  3.2728 +inductively, with two introduction rules:
  3.2729 +\begin{ttbox}
  3.2730 +consts Fin :: 'a set => 'a set set
  3.2731 +inductive "Fin A"
  3.2732 +  intrs
  3.2733 +    emptyI  "{\ttlbrace}{\ttrbrace} : Fin A"
  3.2734 +    insertI "[| a: A;  b: Fin A |] ==> insert a b : Fin A"
  3.2735 +\end{ttbox}
  3.2736 +The resulting theory structure contains a substructure, called~\texttt{Fin}.
  3.2737 +It contains the \texttt{Fin}$~A$ introduction rules as the list \texttt{Fin.intrs},
  3.2738 +and also individually as \texttt{Fin.emptyI} and \texttt{Fin.consI}.  The induction
  3.2739 +rule is \texttt{Fin.induct}.
  3.2740 +
  3.2741 +For another example, here is a theory file defining the accessible
  3.2742 +part of a relation.  The main thing to note is the use of~\texttt{Pow} in
  3.2743 +the sole introduction rule, and the corresponding mention of the rule
  3.2744 +\verb|Pow_mono| in the \texttt{monos} list.  The paper
  3.2745 +\cite{paulson-CADE} discusses a \ZF\ version of this example in more
  3.2746 +detail.
  3.2747 +\begin{ttbox}
  3.2748 +Acc = WF + 
  3.2749 +consts pred :: "['b, ('a * 'b)set] => 'a set"   (*Set of predecessors*)
  3.2750 +       acc  :: "('a * 'a)set => 'a set"         (*Accessible part*)
  3.2751 +defs   pred_def  "pred x r == {y. (y,x):r}"
  3.2752 +inductive "acc r"
  3.2753 +  intrs
  3.2754 +     pred "pred a r: Pow(acc r) ==> a: acc r"
  3.2755 +  monos   Pow_mono
  3.2756 +end
  3.2757 +\end{ttbox}
  3.2758 +The Isabelle distribution contains many other inductive definitions.  Simple
  3.2759 +examples are collected on subdirectory \texttt{HOL/Induct}.  The theory
  3.2760 +\texttt{HOL/Induct/LList} contains coinductive definitions.  Larger examples
  3.2761 +may be found on other subdirectories of \texttt{HOL}, such as \texttt{IMP},
  3.2762 +\texttt{Lambda} and \texttt{Auth}.
  3.2763 +
  3.2764 +\index{*coinductive|)} \index{*inductive|)}
  3.2765 +
  3.2766 +
  3.2767 +\section{The examples directories}
  3.2768 +
  3.2769 +Directory \texttt{HOL/Auth} contains theories for proving the correctness of 
  3.2770 +cryptographic protocols.  The approach is based upon operational 
  3.2771 +semantics~\cite{paulson-security} rather than the more usual belief logics.
  3.2772 +On the same directory are proofs for some standard examples, such as the 
  3.2773 +Needham-Schroeder public-key authentication protocol~\cite{paulson-ns} 
  3.2774 +and the Otway-Rees protocol.
  3.2775 +
  3.2776 +Directory \texttt{HOL/IMP} contains a formalization of various denotational,
  3.2777 +operational and axiomatic semantics of a simple while-language, the necessary
  3.2778 +equivalence proofs, soundness and completeness of the Hoare rules with respect
  3.2779 +to the 
  3.2780 +denotational semantics, and soundness and completeness of a verification
  3.2781 +condition generator.  Much of development is taken from
  3.2782 +Winskel~\cite{winskel93}.  For details see~\cite{nipkow-IMP}.
  3.2783 +
  3.2784 +Directory \texttt{HOL/Hoare} contains a user friendly surface syntax for Hoare
  3.2785 +logic, including a tactic for generating verification-conditions.
  3.2786 +
  3.2787 +Directory \texttt{HOL/MiniML} contains a formalization of the type system of the
  3.2788 +core functional language Mini-ML and a correctness proof for its type
  3.2789 +inference algorithm $\cal W$~\cite{milner78,nazareth-nipkow}.
  3.2790 +
  3.2791 +Directory \texttt{HOL/Lambda} contains a formalization of untyped
  3.2792 +$\lambda$-calculus in de~Bruijn notation and Church-Rosser proofs for $\beta$
  3.2793 +and $\eta$ reduction~\cite{Nipkow-CR}.
  3.2794 +
  3.2795 +Directory \texttt{HOL/Subst} contains Martin Coen's mechanization of a theory of
  3.2796 +substitutions and unifiers.  It is based on Paulson's previous
  3.2797 +mechanisation in {\LCF}~\cite{paulson85} of Manna and Waldinger's
  3.2798 +theory~\cite{mw81}.  It demonstrates a complicated use of \texttt{recdef},
  3.2799 +with nested recursion.
  3.2800 +
  3.2801 +Directory \texttt{HOL/Induct} presents simple examples of (co)inductive
  3.2802 +definitions and datatypes.
  3.2803 +\begin{itemize}
  3.2804 +\item Theory \texttt{PropLog} proves the soundness and completeness of
  3.2805 +  classical propositional logic, given a truth table semantics.  The only
  3.2806 +  connective is $\imp$.  A Hilbert-style axiom system is specified, and its
  3.2807 +  set of theorems defined inductively.  A similar proof in \ZF{} is
  3.2808 +  described elsewhere~\cite{paulson-set-II}.
  3.2809 +
  3.2810 +\item Theory \texttt{Term} defines the datatype \texttt{term}.
  3.2811 +
  3.2812 +\item Theory \texttt{ABexp} defines arithmetic and boolean expressions
  3.2813 + as mutually recursive datatypes.
  3.2814 +
  3.2815 +\item The definition of lazy lists demonstrates methods for handling
  3.2816 +  infinite data structures and coinduction in higher-order
  3.2817 +  logic~\cite{paulson-coind}.%
  3.2818 +\footnote{To be precise, these lists are \emph{potentially infinite} rather
  3.2819 +  than lazy.  Lazy implies a particular operational semantics.}
  3.2820 +  Theory \thydx{LList} defines an operator for
  3.2821 +  corecursion on lazy lists, which is used to define a few simple functions
  3.2822 +  such as map and append.   A coinduction principle is defined
  3.2823 +  for proving equations on lazy lists.
  3.2824 +  
  3.2825 +\item Theory \thydx{LFilter} defines the filter functional for lazy lists.
  3.2826 +  This functional is notoriously difficult to define because finding the next
  3.2827 +  element meeting the predicate requires possibly unlimited search.  It is not
  3.2828 +  computable, but can be expressed using a combination of induction and
  3.2829 +  corecursion.  
  3.2830 +
  3.2831 +\item Theory \thydx{Exp} illustrates the use of iterated inductive definitions
  3.2832 +  to express a programming language semantics that appears to require mutual
  3.2833 +  induction.  Iterated induction allows greater modularity.
  3.2834 +\end{itemize}
  3.2835 +
  3.2836 +Directory \texttt{HOL/ex} contains other examples and experimental proofs in
  3.2837 +{\HOL}.  
  3.2838 +\begin{itemize}
  3.2839 +\item Theory \texttt{Recdef} presents many examples of using \texttt{recdef}
  3.2840 +  to define recursive functions.  Another example is \texttt{Fib}, which
  3.2841 +  defines the Fibonacci function.
  3.2842 +
  3.2843 +\item Theory \texttt{Primes} defines the Greatest Common Divisor of two
  3.2844 +  natural numbers and proves a key lemma of the Fundamental Theorem of
  3.2845 +  Arithmetic: if $p$ is prime and $p$ divides $m\times n$ then $p$ divides~$m$
  3.2846 +  or $p$ divides~$n$.
  3.2847 +
  3.2848 +\item Theory \texttt{Primrec} develops some computation theory.  It
  3.2849 +  inductively defines the set of primitive recursive functions and presents a
  3.2850 +  proof that Ackermann's function is not primitive recursive.
  3.2851 +
  3.2852 +\item File \texttt{cla.ML} demonstrates the classical reasoner on over sixty
  3.2853 +  predicate calculus theorems, ranging from simple tautologies to
  3.2854 +  moderately difficult problems involving equality and quantifiers.
  3.2855 +
  3.2856 +\item File \texttt{meson.ML} contains an experimental implementation of the {\sc
  3.2857 +    meson} proof procedure, inspired by Plaisted~\cite{plaisted90}.  It is
  3.2858 +  much more powerful than Isabelle's classical reasoner.  But it is less
  3.2859 +  useful in practice because it works only for pure logic; it does not
  3.2860 +  accept derived rules for the set theory primitives, for example.
  3.2861 +
  3.2862 +\item File \texttt{mesontest.ML} contains test data for the {\sc meson} proof
  3.2863 +  procedure.  These are mostly taken from Pelletier \cite{pelletier86}.
  3.2864 +
  3.2865 +\item File \texttt{set.ML} proves Cantor's Theorem, which is presented in
  3.2866 +  \S\ref{sec:hol-cantor} below, and the Schr\"oder-Bernstein Theorem.
  3.2867 +
  3.2868 +\item Theory \texttt{MT} contains Jacob Frost's formalization~\cite{frost93} of
  3.2869 +  Milner and Tofte's coinduction example~\cite{milner-coind}.  This
  3.2870 +  substantial proof concerns the soundness of a type system for a simple
  3.2871 +  functional language.  The semantics of recursion is given by a cyclic
  3.2872 +  environment, which makes a coinductive argument appropriate.
  3.2873 +\end{itemize}
  3.2874 +
  3.2875 +
  3.2876 +\goodbreak
  3.2877 +\section{Example: Cantor's Theorem}\label{sec:hol-cantor}
  3.2878 +Cantor's Theorem states that every set has more subsets than it has
  3.2879 +elements.  It has become a favourite example in higher-order logic since
  3.2880 +it is so easily expressed:
  3.2881 +\[  \forall f::\alpha \To \alpha \To bool. \exists S::\alpha\To bool.
  3.2882 +    \forall x::\alpha. f~x \not= S 
  3.2883 +\] 
  3.2884 +%
  3.2885 +Viewing types as sets, $\alpha\To bool$ represents the powerset
  3.2886 +of~$\alpha$.  This version states that for every function from $\alpha$ to
  3.2887 +its powerset, some subset is outside its range.  
  3.2888 +
  3.2889 +The Isabelle proof uses \HOL's set theory, with the type $\alpha\,set$ and
  3.2890 +the operator \cdx{range}.
  3.2891 +\begin{ttbox}
  3.2892 +context Set.thy;
  3.2893 +\end{ttbox}
  3.2894 +The set~$S$ is given as an unknown instead of a
  3.2895 +quantified variable so that we may inspect the subset found by the proof.
  3.2896 +\begin{ttbox}
  3.2897 +Goal "?S ~: range\thinspace(f :: 'a=>'a set)";
  3.2898 +{\out Level 0}
  3.2899 +{\out ?S ~: range f}
  3.2900 +{\out  1. ?S ~: range f}
  3.2901 +\end{ttbox}
  3.2902 +The first two steps are routine.  The rule \tdx{rangeE} replaces
  3.2903 +$\Var{S}\in \texttt{range} \, f$ by $\Var{S}=f~x$ for some~$x$.
  3.2904 +\begin{ttbox}
  3.2905 +by (resolve_tac [notI] 1);
  3.2906 +{\out Level 1}
  3.2907 +{\out ?S ~: range f}
  3.2908 +{\out  1. ?S : range f ==> False}
  3.2909 +\ttbreak
  3.2910 +by (eresolve_tac [rangeE] 1);
  3.2911 +{\out Level 2}
  3.2912 +{\out ?S ~: range f}
  3.2913 +{\out  1. !!x. ?S = f x ==> False}
  3.2914 +\end{ttbox}
  3.2915 +Next, we apply \tdx{equalityCE}, reasoning that since $\Var{S}=f~x$,
  3.2916 +we have $\Var{c}\in \Var{S}$ if and only if $\Var{c}\in f~x$ for
  3.2917 +any~$\Var{c}$.
  3.2918 +\begin{ttbox}
  3.2919 +by (eresolve_tac [equalityCE] 1);
  3.2920 +{\out Level 3}
  3.2921 +{\out ?S ~: range f}
  3.2922 +{\out  1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False}
  3.2923 +{\out  2. !!x. [| ?c3 x ~: ?S; ?c3 x ~: f x |] ==> False}
  3.2924 +\end{ttbox}
  3.2925 +Now we use a bit of creativity.  Suppose that~$\Var{S}$ has the form of a
  3.2926 +comprehension.  Then $\Var{c}\in\{x.\Var{P}~x\}$ implies
  3.2927 +$\Var{P}~\Var{c}$.   Destruct-resolution using \tdx{CollectD}
  3.2928 +instantiates~$\Var{S}$ and creates the new assumption.
  3.2929 +\begin{ttbox}
  3.2930 +by (dresolve_tac [CollectD] 1);
  3.2931 +{\out Level 4}
  3.2932 +{\out {\ttlbrace}x. ?P7 x{\ttrbrace} ~: range f}
  3.2933 +{\out  1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False}
  3.2934 +{\out  2. !!x. [| ?c3 x ~: {\ttlbrace}x. ?P7 x{\ttrbrace}; ?c3 x ~: f x |] ==> False}
  3.2935 +\end{ttbox}
  3.2936 +Forcing a contradiction between the two assumptions of subgoal~1
  3.2937 +completes the instantiation of~$S$.  It is now the set $\{x. x\not\in
  3.2938 +f~x\}$, which is the standard diagonal construction.
  3.2939 +\begin{ttbox}
  3.2940 +by (contr_tac 1);
  3.2941 +{\out Level 5}
  3.2942 +{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  3.2943 +{\out  1. !!x. [| x ~: {\ttlbrace}x. x ~: f x{\ttrbrace}; x ~: f x |] ==> False}
  3.2944 +\end{ttbox}
  3.2945 +The rest should be easy.  To apply \tdx{CollectI} to the negated
  3.2946 +assumption, we employ \ttindex{swap_res_tac}:
  3.2947 +\begin{ttbox}
  3.2948 +by (swap_res_tac [CollectI] 1);
  3.2949 +{\out Level 6}
  3.2950 +{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  3.2951 +{\out  1. !!x. [| x ~: f x; ~ False |] ==> x ~: f x}
  3.2952 +\ttbreak
  3.2953 +by (assume_tac 1);
  3.2954 +{\out Level 7}
  3.2955 +{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  3.2956 +{\out No subgoals!}
  3.2957 +\end{ttbox}
  3.2958 +How much creativity is required?  As it happens, Isabelle can prove this
  3.2959 +theorem automatically.  The default classical set \texttt{claset()} contains rules
  3.2960 +for most of the constructs of \HOL's set theory.  We must augment it with
  3.2961 +\tdx{equalityCE} to break up set equalities, and then apply best-first
  3.2962 +search.  Depth-first search would diverge, but best-first search
  3.2963 +successfully navigates through the large search space.
  3.2964 +\index{search!best-first}
  3.2965 +\begin{ttbox}
  3.2966 +choplev 0;
  3.2967 +{\out Level 0}
  3.2968 +{\out ?S ~: range f}
  3.2969 +{\out  1. ?S ~: range f}
  3.2970 +\ttbreak
  3.2971 +by (best_tac (claset() addSEs [equalityCE]) 1);
  3.2972 +{\out Level 1}
  3.2973 +{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  3.2974 +{\out No subgoals!}
  3.2975 +\end{ttbox}
  3.2976 +If you run this example interactively, make sure your current theory contains
  3.2977 +theory \texttt{Set}, for example by executing \ttindex{context}~{\tt Set.thy}.
  3.2978 +Otherwise the default claset may not contain the rules for set theory.
  3.2979 +\index{higher-order logic|)}
  3.2980 +
  3.2981 +%%% Local Variables: 
  3.2982 +%%% mode: latex
  3.2983 +%%% TeX-master: "logics"
  3.2984 +%%% End: 
     4.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     4.2 +++ b/doc-src/HOL/Makefile	Tue May 04 18:03:56 1999 +0200
     4.3 @@ -0,0 +1,34 @@
     4.4 +#  $Id$
     4.5 +#########################################################################
     4.6 +#									#
     4.7 +#	Makefile for the report "Isabelle's Logics: HOL"		#
     4.8 +#									#
     4.9 +#########################################################################
    4.10 +
    4.11 +
    4.12 +FILES =  logics-HOL.tex ../Logics/syntax.tex FOL.tex HOL.tex\
    4.13 +	 ../rail.sty ../proof.sty ../iman.sty ../extra.sty
    4.14 +
    4.15 +logics-HOL.dvi.gz:   $(FILES) 
    4.16 +	test -r isabelle_hol.eps || ln -s ../gfx/isabelle_hol.eps .
    4.17 +	-rm logics-HOL.dvi*
    4.18 +	latex logics-HOL
    4.19 +	rail logics-HOL
    4.20 +	bibtex logics-HOL
    4.21 +	latex logics-HOL
    4.22 +	latex logics-HOL
    4.23 +	../sedindex logics-HOL
    4.24 +	latex logics-HOL
    4.25 +	gzip -f logics-HOL.dvi
    4.26 +
    4.27 +dist:   $(FILES) 
    4.28 +	test -r isabelle_hol.eps || ln -s ../gfx/isabelle_hol.eps .
    4.29 +	-rm logics-HOL.dvi*
    4.30 +	latex logics-HOL
    4.31 +	latex logics-HOL
    4.32 +	../sedindex logics-HOL
    4.33 +	latex logics-HOL
    4.34 +
    4.35 +clean:
    4.36 +	@rm *.aux *.log *.toc *.idx *.rai
    4.37 +
     5.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     5.2 +++ b/doc-src/HOL/logics-HOL.ind	Tue May 04 18:03:56 1999 +0200
     5.3 @@ -0,0 +1,439 @@
     5.4 +\begin{theindex}
     5.5 +
     5.6 +  \item {\tt !} symbol, 4, 6, 13, 14, 26
     5.7 +  \item {\tt[]} symbol, 26
     5.8 +  \item {\tt\#} symbol, 26
     5.9 +  \item {\tt\&} symbol, 4
    5.10 +  \item {\tt *} symbol, 5, 23
    5.11 +  \item {\tt *} type, 21
    5.12 +  \item {\tt +} symbol, 5, 23
    5.13 +  \item {\tt +} type, 21
    5.14 +  \item {\tt -} symbol, 5, 23
    5.15 +  \item {\tt -->} symbol, 4
    5.16 +  \item {\tt :} symbol, 12
    5.17 +  \item {\tt <} constant, 24
    5.18 +  \item {\tt <} symbol, 23
    5.19 +  \item {\tt <=} constant, 24
    5.20 +  \item {\tt <=} symbol, 12
    5.21 +  \item {\tt =} symbol, 4
    5.22 +  \item {\tt ?} symbol, 4, 6, 13, 14
    5.23 +  \item {\tt ?!} symbol, 4
    5.24 +  \item {\tt\at} symbol, 4, 26
    5.25 +  \item {\tt ``} symbol, 12
    5.26 +  \item \verb'{}' symbol, 12
    5.27 +  \item {\tt |} symbol, 4
    5.28 +
    5.29 +  \indexspace
    5.30 +
    5.31 +  \item {\tt 0} constant, 23
    5.32 +
    5.33 +  \indexspace
    5.34 +
    5.35 +  \item {\tt Addsplits}, \bold{20}
    5.36 +  \item {\tt addsplits}, \bold{20}, 25, 37
    5.37 +  \item {\tt ALL} symbol, 4, 6, 13, 14
    5.38 +  \item {\tt All} constant, 4
    5.39 +  \item {\tt All_def} theorem, 8
    5.40 +  \item {\tt all_dupE} theorem, 10
    5.41 +  \item {\tt allE} theorem, 10
    5.42 +  \item {\tt allI} theorem, 10
    5.43 +  \item {\tt and_def} theorem, 8
    5.44 +  \item {\tt arg_cong} theorem, 9
    5.45 +  \item {\tt Arith} theory, 24
    5.46 +  \item {\tt arith_tac}, 25
    5.47 +
    5.48 +  \indexspace
    5.49 +
    5.50 +  \item {\tt Ball} constant, 12, 14
    5.51 +  \item {\tt Ball_def} theorem, 15
    5.52 +  \item {\tt ballE} theorem, 16
    5.53 +  \item {\tt ballI} theorem, 16
    5.54 +  \item {\tt Bex} constant, 12, 14
    5.55 +  \item {\tt Bex_def} theorem, 15
    5.56 +  \item {\tt bexCI} theorem, 14, 16
    5.57 +  \item {\tt bexE} theorem, 16
    5.58 +  \item {\tt bexI} theorem, 14, 16
    5.59 +  \item {\textit {bool}} type, 5
    5.60 +  \item {\tt box_equals} theorem, 9, 11
    5.61 +  \item {\tt bspec} theorem, 16
    5.62 +  \item {\tt butlast} constant, 26
    5.63 +
    5.64 +  \indexspace
    5.65 +
    5.66 +  \item {\tt case} symbol, 7, 24, 25, 37
    5.67 +  \item {\tt case_tac}, \bold{11}
    5.68 +  \item {\tt ccontr} theorem, 10
    5.69 +  \item {\tt classical} theorem, 10
    5.70 +  \item {\tt coinductive}, 49--51
    5.71 +  \item {\tt Collect} constant, 12, 14
    5.72 +  \item {\tt Collect_mem_eq} theorem, 14, 15
    5.73 +  \item {\tt CollectD} theorem, 16, 54
    5.74 +  \item {\tt CollectE} theorem, 16
    5.75 +  \item {\tt CollectI} theorem, 16, 55
    5.76 +  \item {\tt Compl} constant, 12
    5.77 +  \item {\tt Compl_def} theorem, 15
    5.78 +  \item {\tt Compl_disjoint} theorem, 18
    5.79 +  \item {\tt Compl_Int} theorem, 18
    5.80 +  \item {\tt Compl_partition} theorem, 18
    5.81 +  \item {\tt Compl_Un} theorem, 18
    5.82 +  \item {\tt ComplD} theorem, 17
    5.83 +  \item {\tt ComplI} theorem, 17
    5.84 +  \item {\tt concat} constant, 26
    5.85 +  \item {\tt cong} theorem, 9
    5.86 +  \item {\tt conj_cong}, 19
    5.87 +  \item {\tt conjE} theorem, 9
    5.88 +  \item {\tt conjI} theorem, 9
    5.89 +  \item {\tt conjunct1} theorem, 9
    5.90 +  \item {\tt conjunct2} theorem, 9
    5.91 +  \item {\tt context}, 55
    5.92 +
    5.93 +  \indexspace
    5.94 +
    5.95 +  \item {\tt datatype}, 34--42
    5.96 +  \item {\tt Delsplits}, \bold{20}
    5.97 +  \item {\tt delsplits}, \bold{20}
    5.98 +  \item {\tt disjCI} theorem, 10
    5.99 +  \item {\tt disjE} theorem, 9
   5.100 +  \item {\tt disjI1} theorem, 9
   5.101 +  \item {\tt disjI2} theorem, 9
   5.102 +  \item {\tt div} symbol, 23
   5.103 +  \item {\tt div_geq} theorem, 24
   5.104 +  \item {\tt div_less} theorem, 24
   5.105 +  \item {\tt Divides} theory, 24
   5.106 +  \item {\tt double_complement} theorem, 18
   5.107 +  \item {\tt drop} constant, 26
   5.108 +  \item {\tt dropWhile} constant, 26
   5.109 +
   5.110 +  \indexspace
   5.111 +
   5.112 +  \item {\tt empty_def} theorem, 15
   5.113 +  \item {\tt emptyE} theorem, 17
   5.114 +  \item {\tt Eps} constant, 4, 6
   5.115 +  \item {\tt equalityCE} theorem, 14, 16, 54, 55
   5.116 +  \item {\tt equalityD1} theorem, 16
   5.117 +  \item {\tt equalityD2} theorem, 16
   5.118 +  \item {\tt equalityE} theorem, 16
   5.119 +  \item {\tt equalityI} theorem, 16
   5.120 +  \item {\tt EX} symbol, 4, 6, 13, 14
   5.121 +  \item {\tt Ex} constant, 4
   5.122 +  \item {\tt EX!} symbol, 4
   5.123 +  \item {\tt Ex1} constant, 4
   5.124 +  \item {\tt Ex1_def} theorem, 8
   5.125 +  \item {\tt ex1E} theorem, 10
   5.126 +  \item {\tt ex1I} theorem, 10
   5.127 +  \item {\tt Ex_def} theorem, 8
   5.128 +  \item {\tt exCI} theorem, 10
   5.129 +  \item {\tt excluded_middle} theorem, 10
   5.130 +  \item {\tt exE} theorem, 10
   5.131 +  \item {\tt exhaust_tac}, \bold{38}
   5.132 +  \item {\tt exI} theorem, 10
   5.133 +  \item {\tt Exp} theory, 53
   5.134 +  \item {\tt ext} theorem, 7, 8
   5.135 +
   5.136 +  \indexspace
   5.137 +
   5.138 +  \item {\tt False} constant, 4
   5.139 +  \item {\tt False_def} theorem, 8
   5.140 +  \item {\tt FalseE} theorem, 9
   5.141 +  \item {\tt filter} constant, 26
   5.142 +  \item {\tt foldl} constant, 26
   5.143 +  \item {\tt fst} constant, 21
   5.144 +  \item {\tt fst_conv} theorem, 21
   5.145 +  \item {\tt Fun} theory, 19
   5.146 +  \item {\textit {fun}} type, 5
   5.147 +  \item {\tt fun_cong} theorem, 9
   5.148 +
   5.149 +  \indexspace
   5.150 +
   5.151 +  \item {\tt hd} constant, 26
   5.152 +  \item higher-order logic, 3--55
   5.153 +  \item {\tt HOL} theory, 3
   5.154 +  \item {\sc hol} system, 3, 6
   5.155 +  \item {\tt HOL_basic_ss}, \bold{19}
   5.156 +  \item {\tt HOL_cs}, \bold{20}
   5.157 +  \item {\tt HOL_quantifiers}, \bold{6}, 14
   5.158 +  \item {\tt HOL_ss}, \bold{19}
   5.159 +  \item {\tt hyp_subst_tac}, 19
   5.160 +
   5.161 +  \indexspace
   5.162 +
   5.163 +  \item {\tt If} constant, 4
   5.164 +  \item {\tt if_def} theorem, 8
   5.165 +  \item {\tt if_not_P} theorem, 10
   5.166 +  \item {\tt if_P} theorem, 10
   5.167 +  \item {\tt iff} theorem, 7, 8
   5.168 +  \item {\tt iffCE} theorem, 10, 14
   5.169 +  \item {\tt iffD1} theorem, 9
   5.170 +  \item {\tt iffD2} theorem, 9
   5.171 +  \item {\tt iffE} theorem, 9
   5.172 +  \item {\tt iffI} theorem, 9
   5.173 +  \item {\tt image_def} theorem, 15
   5.174 +  \item {\tt imageE} theorem, 17
   5.175 +  \item {\tt imageI} theorem, 17
   5.176 +  \item {\tt impCE} theorem, 10
   5.177 +  \item {\tt impE} theorem, 9
   5.178 +  \item {\tt impI} theorem, 7
   5.179 +  \item {\tt in} symbol, 5
   5.180 +  \item {\textit {ind}} type, 22
   5.181 +  \item {\tt induct_tac}, 24, \bold{38}
   5.182 +  \item {\tt inductive}, 49--51
   5.183 +  \item {\tt inj} constant, 19
   5.184 +  \item {\tt inj_def} theorem, 19
   5.185 +  \item {\tt inj_Inl} theorem, 23
   5.186 +  \item {\tt inj_Inr} theorem, 23
   5.187 +  \item {\tt inj_on} constant, 19
   5.188 +  \item {\tt inj_on_def} theorem, 19
   5.189 +  \item {\tt inj_Suc} theorem, 23
   5.190 +  \item {\tt Inl} constant, 23
   5.191 +  \item {\tt Inl_not_Inr} theorem, 23
   5.192 +  \item {\tt Inr} constant, 23
   5.193 +  \item {\tt insert} constant, 12
   5.194 +  \item {\tt insert_def} theorem, 15
   5.195 +  \item {\tt insertE} theorem, 17
   5.196 +  \item {\tt insertI1} theorem, 17
   5.197 +  \item {\tt insertI2} theorem, 17
   5.198 +  \item {\tt INT} symbol, 12--14
   5.199 +  \item {\tt Int} symbol, 12
   5.200 +  \item {\tt Int_absorb} theorem, 18
   5.201 +  \item {\tt Int_assoc} theorem, 18
   5.202 +  \item {\tt Int_commute} theorem, 18
   5.203 +  \item {\tt INT_D} theorem, 17
   5.204 +  \item {\tt Int_def} theorem, 15
   5.205 +  \item {\tt INT_E} theorem, 17
   5.206 +  \item {\tt Int_greatest} theorem, 18
   5.207 +  \item {\tt INT_I} theorem, 17
   5.208 +  \item {\tt Int_Inter_image} theorem, 18
   5.209 +  \item {\tt Int_lower1} theorem, 18
   5.210 +  \item {\tt Int_lower2} theorem, 18
   5.211 +  \item {\tt Int_Un_distrib} theorem, 18
   5.212 +  \item {\tt Int_Union} theorem, 18
   5.213 +  \item {\tt IntD1} theorem, 17
   5.214 +  \item {\tt IntD2} theorem, 17
   5.215 +  \item {\tt IntE} theorem, 17
   5.216 +  \item {\tt INTER} constant, 12
   5.217 +  \item {\tt Inter} constant, 12
   5.218 +  \item {\tt INTER1} constant, 12
   5.219 +  \item {\tt INTER1_def} theorem, 15
   5.220 +  \item {\tt INTER_def} theorem, 15
   5.221 +  \item {\tt Inter_def} theorem, 15
   5.222 +  \item {\tt Inter_greatest} theorem, 18
   5.223 +  \item {\tt Inter_lower} theorem, 18
   5.224 +  \item {\tt Inter_Un_distrib} theorem, 18
   5.225 +  \item {\tt InterD} theorem, 17
   5.226 +  \item {\tt InterE} theorem, 17
   5.227 +  \item {\tt InterI} theorem, 17
   5.228 +  \item {\tt IntI} theorem, 17
   5.229 +  \item {\tt inv} constant, 19
   5.230 +  \item {\tt inv_def} theorem, 19
   5.231 +
   5.232 +  \indexspace
   5.233 +
   5.234 +  \item {\tt last} constant, 26
   5.235 +  \item {\tt LEAST} constant, 5, 6, 24
   5.236 +  \item {\tt Least} constant, 4
   5.237 +  \item {\tt Least_def} theorem, 8
   5.238 +  \item {\tt length} constant, 26
   5.239 +  \item {\tt less_induct} theorem, 25
   5.240 +  \item {\tt Let} constant, 4, 7
   5.241 +  \item {\tt let} symbol, 5, 7
   5.242 +  \item {\tt Let_def} theorem, 7, 8
   5.243 +  \item {\tt LFilter} theory, 53
   5.244 +  \item {\tt List} theory, 25, 26
   5.245 +  \item {\textit{list}} type, 25
   5.246 +  \item {\tt LList} theory, 52
   5.247 +
   5.248 +  \indexspace
   5.249 +
   5.250 +  \item {\tt map} constant, 26
   5.251 +  \item {\tt max} constant, 5, 24
   5.252 +  \item {\tt mem} symbol, 26
   5.253 +  \item {\tt mem_Collect_eq} theorem, 14, 15
   5.254 +  \item {\tt min} constant, 5, 24
   5.255 +  \item {\tt minus} class, 5
   5.256 +  \item {\tt mod} symbol, 23
   5.257 +  \item {\tt mod_geq} theorem, 24
   5.258 +  \item {\tt mod_less} theorem, 24
   5.259 +  \item {\tt mono} constant, 5
   5.260 +  \item {\tt mp} theorem, 7
   5.261 +  \item {\tt mutual_induct_tac}, \bold{38}
   5.262 +
   5.263 +  \indexspace
   5.264 +
   5.265 +  \item {\tt n_not_Suc_n} theorem, 23
   5.266 +  \item {\tt Nat} theory, 24
   5.267 +  \item {\textit {nat}} type, 23, 24
   5.268 +  \item {\textit{nat}} type, 22--25
   5.269 +  \item {\tt nat_induct} theorem, 23
   5.270 +  \item {\tt nat_rec} constant, 24
   5.271 +  \item {\tt NatDef} theory, 22
   5.272 +  \item {\tt Not} constant, 4
   5.273 +  \item {\tt not_def} theorem, 8
   5.274 +  \item {\tt not_sym} theorem, 9
   5.275 +  \item {\tt notE} theorem, 9
   5.276 +  \item {\tt notI} theorem, 9
   5.277 +  \item {\tt notnotD} theorem, 10
   5.278 +  \item {\tt null} constant, 26
   5.279 +
   5.280 +  \indexspace
   5.281 +
   5.282 +  \item {\tt o} symbol, 4, 15
   5.283 +  \item {\tt o_def} theorem, 8
   5.284 +  \item {\tt of} symbol, 7
   5.285 +  \item {\tt or_def} theorem, 8
   5.286 +  \item {\tt Ord} theory, 5
   5.287 +  \item {\tt ord} class, 5, 6, 24
   5.288 +  \item {\tt order} class, 5, 24
   5.289 +
   5.290 +  \indexspace
   5.291 +
   5.292 +  \item {\tt Pair} constant, 21
   5.293 +  \item {\tt Pair_eq} theorem, 21
   5.294 +  \item {\tt Pair_inject} theorem, 21
   5.295 +  \item {\tt PairE} theorem, 21
   5.296 +  \item {\tt plus} class, 5
   5.297 +  \item {\tt Pow} constant, 12
   5.298 +  \item {\tt Pow_def} theorem, 15
   5.299 +  \item {\tt PowD} theorem, 17
   5.300 +  \item {\tt PowI} theorem, 17
   5.301 +  \item {\tt primrec}, 43--46
   5.302 +  \item {\tt primrec} symbol, 24
   5.303 +  \item priorities, 1
   5.304 +  \item {\tt Prod} theory, 21
   5.305 +  \item {\tt prop_cs}, \bold{20}
   5.306 +
   5.307 +  \indexspace
   5.308 +
   5.309 +  \item {\tt qed_spec_mp}, 41
   5.310 +
   5.311 +  \indexspace
   5.312 +
   5.313 +  \item {\tt range} constant, 12, 54
   5.314 +  \item {\tt range_def} theorem, 15
   5.315 +  \item {\tt rangeE} theorem, 17, 54
   5.316 +  \item {\tt rangeI} theorem, 17
   5.317 +  \item {\tt recdef}, 46--49
   5.318 +  \item {\tt record}, 31
   5.319 +  \item {\tt record_split_tac}, 33, 34
   5.320 +  \item recursion
   5.321 +    \subitem general, 46--49
   5.322 +    \subitem primitive, 43--46
   5.323 +  \item recursive functions, \see{recursion}{42}
   5.324 +  \item {\tt refl} theorem, 7
   5.325 +  \item {\tt res_inst_tac}, 6
   5.326 +  \item {\tt rev} constant, 26
   5.327 +
   5.328 +  \indexspace
   5.329 +
   5.330 +  \item search
   5.331 +    \subitem best-first, 55
   5.332 +  \item {\tt select_equality} theorem, 8, 10
   5.333 +  \item {\tt selectI} theorem, 7, 8
   5.334 +  \item {\tt Set} theory, 11, 14
   5.335 +  \item {\tt set} constant, 26
   5.336 +  \item {\tt set} type, 11
   5.337 +  \item {\tt set_diff_def} theorem, 15
   5.338 +  \item {\tt show_sorts}, 6
   5.339 +  \item {\tt show_types}, 6
   5.340 +  \item {\tt Sigma} constant, 21
   5.341 +  \item {\tt Sigma_def} theorem, 21
   5.342 +  \item {\tt SigmaE} theorem, 21
   5.343 +  \item {\tt SigmaI} theorem, 21
   5.344 +  \item simplification
   5.345 +    \subitem of conjunctions, 19
   5.346 +  \item {\tt size} constant, 38
   5.347 +  \item {\tt snd} constant, 21
   5.348 +  \item {\tt snd_conv} theorem, 21
   5.349 +  \item {\tt spec} theorem, 10
   5.350 +  \item {\tt split} constant, 21
   5.351 +  \item {\tt split} theorem, 21
   5.352 +  \item {\tt split_all_tac}, \bold{22}
   5.353 +  \item {\tt split_if} theorem, 10, 20
   5.354 +  \item {\tt split_list_case} theorem, 25
   5.355 +  \item {\tt split_split} theorem, 21
   5.356 +  \item {\tt split_sum_case} theorem, 23
   5.357 +  \item {\tt ssubst} theorem, 9, 11
   5.358 +  \item {\tt stac}, \bold{19}
   5.359 +  \item {\tt strip_tac}, \bold{11}
   5.360 +  \item {\tt subset_def} theorem, 15
   5.361 +  \item {\tt subset_refl} theorem, 16
   5.362 +  \item {\tt subset_trans} theorem, 16
   5.363 +  \item {\tt subsetCE} theorem, 14, 16
   5.364 +  \item {\tt subsetD} theorem, 14, 16
   5.365 +  \item {\tt subsetI} theorem, 16
   5.366 +  \item {\tt subst} theorem, 7
   5.367 +  \item {\tt Suc} constant, 23
   5.368 +  \item {\tt Suc_not_Zero} theorem, 23
   5.369 +  \item {\tt Sum} theory, 22
   5.370 +  \item {\tt sum_case} constant, 23
   5.371 +  \item {\tt sum_case_Inl} theorem, 23
   5.372 +  \item {\tt sum_case_Inr} theorem, 23
   5.373 +  \item {\tt sumE} theorem, 23
   5.374 +  \item {\tt surj} constant, 15, 19
   5.375 +  \item {\tt surj_def} theorem, 19
   5.376 +  \item {\tt surjective_pairing} theorem, 21
   5.377 +  \item {\tt surjective_sum} theorem, 23
   5.378 +  \item {\tt swap} theorem, 10
   5.379 +  \item {\tt swap_res_tac}, 55
   5.380 +  \item {\tt sym} theorem, 9
   5.381 +
   5.382 +  \indexspace
   5.383 +
   5.384 +  \item {\tt take} constant, 26
   5.385 +  \item {\tt takeWhile} constant, 26
   5.386 +  \item {\tt term} class, 5
   5.387 +  \item {\tt times} class, 5
   5.388 +  \item {\tt tl} constant, 26
   5.389 +  \item tracing
   5.390 +    \subitem of unification, 6
   5.391 +  \item {\tt trans} theorem, 9
   5.392 +  \item {\tt True} constant, 4
   5.393 +  \item {\tt True_def} theorem, 8
   5.394 +  \item {\tt True_or_False} theorem, 7, 8
   5.395 +  \item {\tt TrueI} theorem, 9
   5.396 +  \item {\tt Trueprop} constant, 4
   5.397 +  \item type definition, \bold{28}
   5.398 +  \item {\tt typedef}, 25
   5.399 +
   5.400 +  \indexspace
   5.401 +
   5.402 +  \item {\tt UN} symbol, 12--14
   5.403 +  \item {\tt Un} symbol, 12
   5.404 +  \item {\tt Un1} theorem, 14
   5.405 +  \item {\tt Un2} theorem, 14
   5.406 +  \item {\tt Un_absorb} theorem, 18
   5.407 +  \item {\tt Un_assoc} theorem, 18
   5.408 +  \item {\tt Un_commute} theorem, 18
   5.409 +  \item {\tt Un_def} theorem, 15
   5.410 +  \item {\tt UN_E} theorem, 17
   5.411 +  \item {\tt UN_I} theorem, 17
   5.412 +  \item {\tt Un_Int_distrib} theorem, 18
   5.413 +  \item {\tt Un_Inter} theorem, 18
   5.414 +  \item {\tt Un_least} theorem, 18
   5.415 +  \item {\tt Un_Union_image} theorem, 18
   5.416 +  \item {\tt Un_upper1} theorem, 18
   5.417 +  \item {\tt Un_upper2} theorem, 18
   5.418 +  \item {\tt UnCI} theorem, 14, 17
   5.419 +  \item {\tt UnE} theorem, 17
   5.420 +  \item {\tt UnI1} theorem, 17
   5.421 +  \item {\tt UnI2} theorem, 17
   5.422 +  \item unification
   5.423 +    \subitem incompleteness of, 6
   5.424 +  \item {\tt Unify.trace_types}, 6
   5.425 +  \item {\tt UNION} constant, 12
   5.426 +  \item {\tt Union} constant, 12
   5.427 +  \item {\tt UNION1} constant, 12
   5.428 +  \item {\tt UNION1_def} theorem, 15
   5.429 +  \item {\tt UNION_def} theorem, 15
   5.430 +  \item {\tt Union_def} theorem, 15
   5.431 +  \item {\tt Union_least} theorem, 18
   5.432 +  \item {\tt Union_Un_distrib} theorem, 18
   5.433 +  \item {\tt Union_upper} theorem, 18
   5.434 +  \item {\tt UnionE} theorem, 17
   5.435 +  \item {\tt UnionI} theorem, 17
   5.436 +  \item {\tt unit_eq} theorem, 22
   5.437 +
   5.438 +  \indexspace
   5.439 +
   5.440 +  \item {\tt ZF} theory, 3
   5.441 +
   5.442 +\end{theindex}
     6.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     6.2 +++ b/doc-src/HOL/logics-HOL.rao	Tue May 04 18:03:56 1999 +0200
     6.3 @@ -0,0 +1,122 @@
     6.4 +% This file was generated by 'rail' from 'logics-HOL.rai'
     6.5 +\rail@i {1}{ typedef : 'typedef' ( () | '(' name ')') type '=' set witness; \par type : typevarlist name ( () | '(' infix ')' ); set : string; witness : () | '(' id ')'; }
     6.6 +\rail@o {1}{
     6.7 +\rail@begin{2}{typedef}
     6.8 +\rail@term{typedef}[]
     6.9 +\rail@bar
    6.10 +\rail@nextbar{1}
    6.11 +\rail@term{(}[]
    6.12 +\rail@nont{name}[]
    6.13 +\rail@term{)}[]
    6.14 +\rail@endbar
    6.15 +\rail@nont{type}[]
    6.16 +\rail@term{=}[]
    6.17 +\rail@nont{set}[]
    6.18 +\rail@nont{witness}[]
    6.19 +\rail@end
    6.20 +\rail@begin{2}{type}
    6.21 +\rail@nont{typevarlist}[]
    6.22 +\rail@nont{name}[]
    6.23 +\rail@bar
    6.24 +\rail@nextbar{1}
    6.25 +\rail@term{(}[]
    6.26 +\rail@nont{infix}[]
    6.27 +\rail@term{)}[]
    6.28 +\rail@endbar
    6.29 +\rail@end
    6.30 +\rail@begin{1}{set}
    6.31 +\rail@nont{string}[]
    6.32 +\rail@end
    6.33 +\rail@begin{2}{witness}
    6.34 +\rail@bar
    6.35 +\rail@nextbar{1}
    6.36 +\rail@term{(}[]
    6.37 +\rail@nont{id}[]
    6.38 +\rail@term{)}[]
    6.39 +\rail@endbar
    6.40 +\rail@end
    6.41 +}
    6.42 +\rail@i {2}{ record : 'record' typevarlist name '=' parent (field +); \par parent : ( () | type '+'); field : name '::' type; }
    6.43 +\rail@o {2}{
    6.44 +\rail@begin{2}{record}
    6.45 +\rail@term{record}[]
    6.46 +\rail@nont{typevarlist}[]
    6.47 +\rail@nont{name}[]
    6.48 +\rail@term{=}[]
    6.49 +\rail@nont{parent}[]
    6.50 +\rail@plus
    6.51 +\rail@nont{field}[]
    6.52 +\rail@nextplus{1}
    6.53 +\rail@endplus
    6.54 +\rail@end
    6.55 +\rail@begin{2}{parent}
    6.56 +\rail@bar
    6.57 +\rail@nextbar{1}
    6.58 +\rail@nont{type}[]
    6.59 +\rail@term{+}[]
    6.60 +\rail@endbar
    6.61 +\rail@end
    6.62 +\rail@begin{1}{field}
    6.63 +\rail@nont{name}[]
    6.64 +\rail@term{::}[]
    6.65 +\rail@nont{type}[]
    6.66 +\rail@end
    6.67 +}
    6.68 +\rail@i {3}{ datatype : 'datatype' typedecls; \par typedecls: ( newtype '=' (cons + '|') ) + 'and' ; newtype : typevarlist id ( () | '(' infix ')' ) ; cons : name (argtype *) ( () | ( '(' mixfix ')' ) ) ; argtype : id | tid | ('(' typevarlist id ')') ; }
    6.69 +\rail@o {3}{
    6.70 +\rail@begin{1}{datatype}
    6.71 +\rail@term{datatype}[]
    6.72 +\rail@nont{typedecls}[]
    6.73 +\rail@end
    6.74 +\rail@begin{3}{typedecls}
    6.75 +\rail@plus
    6.76 +\rail@nont{newtype}[]
    6.77 +\rail@term{=}[]
    6.78 +\rail@plus
    6.79 +\rail@nont{cons}[]
    6.80 +\rail@nextplus{1}
    6.81 +\rail@cterm{|}[]
    6.82 +\rail@endplus
    6.83 +\rail@nextplus{2}
    6.84 +\rail@cterm{and}[]
    6.85 +\rail@endplus
    6.86 +\rail@end
    6.87 +\rail@begin{2}{newtype}
    6.88 +\rail@nont{typevarlist}[]
    6.89 +\rail@nont{id}[]
    6.90 +\rail@bar
    6.91 +\rail@nextbar{1}
    6.92 +\rail@term{(}[]
    6.93 +\rail@nont{infix}[]
    6.94 +\rail@term{)}[]
    6.95 +\rail@endbar
    6.96 +\rail@end
    6.97 +\rail@begin{3}{cons}
    6.98 +\rail@nont{name}[]
    6.99 +\rail@bar
   6.100 +\rail@nextbar{1}
   6.101 +\rail@plus
   6.102 +\rail@nont{argtype}[]
   6.103 +\rail@nextplus{2}
   6.104 +\rail@endplus
   6.105 +\rail@endbar
   6.106 +\rail@bar
   6.107 +\rail@nextbar{1}
   6.108 +\rail@term{(}[]
   6.109 +\rail@nont{mixfix}[]
   6.110 +\rail@term{)}[]
   6.111 +\rail@endbar
   6.112 +\rail@end
   6.113 +\rail@begin{3}{argtype}
   6.114 +\rail@bar
   6.115 +\rail@nont{id}[]
   6.116 +\rail@nextbar{1}
   6.117 +\rail@nont{tid}[]
   6.118 +\rail@nextbar{2}
   6.119 +\rail@term{(}[]
   6.120 +\rail@nont{typevarlist}[]
   6.121 +\rail@nont{id}[]
   6.122 +\rail@term{)}[]
   6.123 +\rail@endbar
   6.124 +\rail@end
   6.125 +}
     7.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     7.2 +++ b/doc-src/HOL/logics-HOL.tex	Tue May 04 18:03:56 1999 +0200
     7.3 @@ -0,0 +1,61 @@
     7.4 +%% $Id$
     7.5 +\documentclass[12pt]{report}
     7.6 +\usepackage{graphicx,a4,latexsym,../pdfsetup}
     7.7 +
     7.8 +\makeatletter
     7.9 +\input{../proof.sty}
    7.10 +\input{../rail.sty}
    7.11 +\input{../iman.sty}
    7.12 +\input{../extra.sty}
    7.13 +\makeatother
    7.14 +
    7.15 +%%% to index derived rls:  ^\([a-zA-Z0-9][a-zA-Z0-9_]*\)        \\tdx{\1}  
    7.16 +%%% to index rulenames:   ^ *(\([a-zA-Z0-9][a-zA-Z0-9_]*\),     \\tdx{\1}  
    7.17 +%%% to index constants:   \\tt \([a-zA-Z0-9][a-zA-Z0-9_]*\)     \\cdx{\1}  
    7.18 +%%% to deverbify:         \\verb|\([^|]*\)|     \\ttindex{\1}  
    7.19 +
    7.20 +\title{\includegraphics[scale=0.5]{isabelle_hol.eps} \\[4ex] 
    7.21 +       Isabelle's Logics: HOL}
    7.22 +
    7.23 +\author{{\em Lawrence C. Paulson}\\
    7.24 +        Computer Laboratory \\ University of Cambridge \\
    7.25 +        \texttt{lcp@cl.cam.ac.uk}\\[3ex] 
    7.26 +        With Contributions by Tobias Nipkow and Markus Wenzel%
    7.27 +        \thanks{Tobias Nipkow developed~\HOL{}.  Markus Wenzel made numerous
    7.28 +          improvements.  The research has been funded by the EPSRC (grants
    7.29 +          GR/G53279, GR/H40570, GR/K57381, GR/K77051) and by ESPRIT project
    7.30 +          6453: Types.}}
    7.31 +
    7.32 +\newcommand\subcaption[1]{\par {\centering\normalsize\sc#1\par}\bigskip
    7.33 +  \hrule\bigskip}
    7.34 +\newenvironment{constants}{\begin{center}\small\begin{tabular}{rrrr}}{\end{tabular}\end{center}}
    7.35 +
    7.36 +\makeindex
    7.37 +
    7.38 +\underscoreoff
    7.39 +
    7.40 +\setcounter{secnumdepth}{2} \setcounter{tocdepth}{2}  %% {secnumdepth}{2}???
    7.41 +
    7.42 +\pagestyle{headings}
    7.43 +\sloppy
    7.44 +\binperiod     %%%treat . like a binary operator
    7.45 +
    7.46 +\begin{document}
    7.47 +\maketitle 
    7.48 +
    7.49 +\begin{abstract}
    7.50 +  This manual describes Isabelle's formalization of Higher-Order Logic, a
    7.51 +  polymorphic version of Church's Simple Theory of Types.  HOL can be best
    7.52 +  understood as a simply-typed version of classical set theory.  See also
    7.53 +  \emph{Isabelle/HOL --- The Tutorial} for a gentle introduction on using
    7.54 +  Isabelle/HOL, and the \emph{Isabelle Reference Manual} for general Isabelle
    7.55 +  commands.
    7.56 +\end{abstract}
    7.57 +
    7.58 +\pagenumbering{roman} \tableofcontents \clearfirst
    7.59 +\include{../Logics/syntax}
    7.60 +\include{HOL}
    7.61 +\bibliographystyle{plain}
    7.62 +\bibliography{string,general,atp,theory,funprog,logicprog,isabelle,crossref}
    7.63 +\input{logics-HOL.ind}
    7.64 +\end{document}