doc-src/HOL/HOL.tex
changeset 6580 ff2c3ffd38ee
child 6588 6e6ca099f68f
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/doc-src/HOL/HOL.tex	Tue May 04 18:03:56 1999 +0200
     1.3 @@ -0,0 +1,2981 @@
     1.4 +%% $Id$
     1.5 +\chapter{Higher-Order Logic}
     1.6 +\index{higher-order logic|(}
     1.7 +\index{HOL system@{\sc hol} system}
     1.8 +
     1.9 +The theory~\thydx{HOL} implements higher-order logic.  It is based on
    1.10 +Gordon's~{\sc hol} system~\cite{mgordon-hol}, which itself is based on
    1.11 +Church's original paper~\cite{church40}.  Andrews's
    1.12 +book~\cite{andrews86} is a full description of the original
    1.13 +Church-style higher-order logic.  Experience with the {\sc hol} system
    1.14 +has demonstrated that higher-order logic is widely applicable in many
    1.15 +areas of mathematics and computer science, not just hardware
    1.16 +verification, {\sc hol}'s original \textit{raison d'\^etre\/}.  It is
    1.17 +weaker than {\ZF} set theory but for most applications this does not
    1.18 +matter.  If you prefer {\ML} to Lisp, you will probably prefer \HOL\ 
    1.19 +to~{\ZF}.
    1.20 +
    1.21 +The syntax of \HOL\footnote{Earlier versions of Isabelle's \HOL\ used a
    1.22 +different syntax.  Ancient releases of Isabelle included still another version
    1.23 +of~\HOL, with explicit type inference rules~\cite{paulson-COLOG}.  This
    1.24 +version no longer exists, but \thydx{ZF} supports a similar style of
    1.25 +reasoning.} follows $\lambda$-calculus and functional programming.  Function
    1.26 +application is curried.  To apply the function~$f$ of type
    1.27 +$\tau@1\To\tau@2\To\tau@3$ to the arguments~$a$ and~$b$ in \HOL, you simply
    1.28 +write $f\,a\,b$.  There is no `apply' operator as in \thydx{ZF}.  Note that
    1.29 +$f(a,b)$ means ``$f$ applied to the pair $(a,b)$'' in \HOL.  We write ordered
    1.30 +pairs as $(a,b)$, not $\langle a,b\rangle$ as in {\ZF}.
    1.31 +
    1.32 +\HOL\ has a distinct feel, compared with {\ZF} and {\CTT}.  It
    1.33 +identifies object-level types with meta-level types, taking advantage of
    1.34 +Isabelle's built-in type-checker.  It identifies object-level functions
    1.35 +with meta-level functions, so it uses Isabelle's operations for abstraction
    1.36 +and application.
    1.37 +
    1.38 +These identifications allow Isabelle to support \HOL\ particularly
    1.39 +nicely, but they also mean that \HOL\ requires more sophistication
    1.40 +from the user --- in particular, an understanding of Isabelle's type
    1.41 +system.  Beginners should work with \texttt{show_types} (or even
    1.42 +\texttt{show_sorts}) set to \texttt{true}.
    1.43 +%  Gain experience by
    1.44 +%working in first-order logic before attempting to use higher-order logic.
    1.45 +%This chapter assumes familiarity with~{\FOL{}}.
    1.46 +
    1.47 +
    1.48 +\begin{figure}
    1.49 +\begin{constants}
    1.50 +  \it name      &\it meta-type  & \it description \\
    1.51 +  \cdx{Trueprop}& $bool\To prop$                & coercion to $prop$\\
    1.52 +  \cdx{Not}     & $bool\To bool$                & negation ($\neg$) \\
    1.53 +  \cdx{True}    & $bool$                        & tautology ($\top$) \\
    1.54 +  \cdx{False}   & $bool$                        & absurdity ($\bot$) \\
    1.55 +  \cdx{If}      & $[bool,\alpha,\alpha]\To\alpha$ & conditional \\
    1.56 +  \cdx{Let}     & $[\alpha,\alpha\To\beta]\To\beta$ & let binder
    1.57 +\end{constants}
    1.58 +\subcaption{Constants}
    1.59 +
    1.60 +\begin{constants}
    1.61 +\index{"@@{\tt\at} symbol}
    1.62 +\index{*"! symbol}\index{*"? symbol}
    1.63 +\index{*"?"! symbol}\index{*"E"X"! symbol}
    1.64 +  \it symbol &\it name     &\it meta-type & \it description \\
    1.65 +  \tt\at & \cdx{Eps}  & $(\alpha\To bool)\To\alpha$ & 
    1.66 +        Hilbert description ($\varepsilon$) \\
    1.67 +  {\tt!~} or \sdx{ALL}  & \cdx{All}  & $(\alpha\To bool)\To bool$ & 
    1.68 +        universal quantifier ($\forall$) \\
    1.69 +  {\tt?~} or \sdx{EX}   & \cdx{Ex}   & $(\alpha\To bool)\To bool$ & 
    1.70 +        existential quantifier ($\exists$) \\
    1.71 +  {\tt?!} or \texttt{EX!}  & \cdx{Ex1}  & $(\alpha\To bool)\To bool$ & 
    1.72 +        unique existence ($\exists!$)\\
    1.73 +  \texttt{LEAST}  & \cdx{Least}  & $(\alpha::ord \To bool)\To\alpha$ & 
    1.74 +        least element
    1.75 +\end{constants}
    1.76 +\subcaption{Binders} 
    1.77 +
    1.78 +\begin{constants}
    1.79 +\index{*"= symbol}
    1.80 +\index{&@{\tt\&} symbol}
    1.81 +\index{*"| symbol}
    1.82 +\index{*"-"-"> symbol}
    1.83 +  \it symbol    & \it meta-type & \it priority & \it description \\ 
    1.84 +  \sdx{o}       & $[\beta\To\gamma,\alpha\To\beta]\To (\alpha\To\gamma)$ & 
    1.85 +        Left 55 & composition ($\circ$) \\
    1.86 +  \tt =         & $[\alpha,\alpha]\To bool$ & Left 50 & equality ($=$) \\
    1.87 +  \tt <         & $[\alpha::ord,\alpha]\To bool$ & Left 50 & less than ($<$) \\
    1.88 +  \tt <=        & $[\alpha::ord,\alpha]\To bool$ & Left 50 & 
    1.89 +                less than or equals ($\leq$)\\
    1.90 +  \tt \&        & $[bool,bool]\To bool$ & Right 35 & conjunction ($\conj$) \\
    1.91 +  \tt |         & $[bool,bool]\To bool$ & Right 30 & disjunction ($\disj$) \\
    1.92 +  \tt -->       & $[bool,bool]\To bool$ & Right 25 & implication ($\imp$)
    1.93 +\end{constants}
    1.94 +\subcaption{Infixes}
    1.95 +\caption{Syntax of \texttt{HOL}} \label{hol-constants}
    1.96 +\end{figure}
    1.97 +
    1.98 +
    1.99 +\begin{figure}
   1.100 +\index{*let symbol}
   1.101 +\index{*in symbol}
   1.102 +\dquotes
   1.103 +\[\begin{array}{rclcl}
   1.104 +    term & = & \hbox{expression of class~$term$} \\
   1.105 +         & | & "\at~" id " . " formula \\
   1.106 +         & | & 
   1.107 +    \multicolumn{3}{l}{"let"~id~"="~term";"\dots";"~id~"="~term~"in"~term} \\
   1.108 +         & | & 
   1.109 +    \multicolumn{3}{l}{"if"~formula~"then"~term~"else"~term} \\
   1.110 +         & | & "LEAST"~ id " . " formula \\[2ex]
   1.111 + formula & = & \hbox{expression of type~$bool$} \\
   1.112 +         & | & term " = " term \\
   1.113 +         & | & term " \ttilde= " term \\
   1.114 +         & | & term " < " term \\
   1.115 +         & | & term " <= " term \\
   1.116 +         & | & "\ttilde\ " formula \\
   1.117 +         & | & formula " \& " formula \\
   1.118 +         & | & formula " | " formula \\
   1.119 +         & | & formula " --> " formula \\
   1.120 +         & | & "!~~~" id~id^* " . " formula 
   1.121 +         & | & "ALL~" id~id^* " . " formula \\
   1.122 +         & | & "?~~~" id~id^* " . " formula 
   1.123 +         & | & "EX~~" id~id^* " . " formula \\
   1.124 +         & | & "?!~~" id~id^* " . " formula 
   1.125 +         & | & "EX!~" id~id^* " . " formula
   1.126 +  \end{array}
   1.127 +\]
   1.128 +\caption{Full grammar for \HOL} \label{hol-grammar}
   1.129 +\end{figure} 
   1.130 +
   1.131 +
   1.132 +\section{Syntax}
   1.133 +
   1.134 +Figure~\ref{hol-constants} lists the constants (including infixes and
   1.135 +binders), while Fig.\ts\ref{hol-grammar} presents the grammar of
   1.136 +higher-order logic.  Note that $a$\verb|~=|$b$ is translated to
   1.137 +$\neg(a=b)$.
   1.138 +
   1.139 +\begin{warn}
   1.140 +  \HOL\ has no if-and-only-if connective; logical equivalence is expressed
   1.141 +  using equality.  But equality has a high priority, as befitting a
   1.142 +  relation, while if-and-only-if typically has the lowest priority.  Thus,
   1.143 +  $\neg\neg P=P$ abbreviates $\neg\neg (P=P)$ and not $(\neg\neg P)=P$.
   1.144 +  When using $=$ to mean logical equivalence, enclose both operands in
   1.145 +  parentheses.
   1.146 +\end{warn}
   1.147 +
   1.148 +\subsection{Types and classes}
   1.149 +The universal type class of higher-order terms is called~\cldx{term}.
   1.150 +By default, explicit type variables have class \cldx{term}.  In
   1.151 +particular the equality symbol and quantifiers are polymorphic over
   1.152 +class \texttt{term}.
   1.153 +
   1.154 +The type of formulae, \tydx{bool}, belongs to class \cldx{term}; thus,
   1.155 +formulae are terms.  The built-in type~\tydx{fun}, which constructs
   1.156 +function types, is overloaded with arity {\tt(term,\thinspace
   1.157 +  term)\thinspace term}.  Thus, $\sigma\To\tau$ belongs to class~{\tt
   1.158 +  term} if $\sigma$ and~$\tau$ do, allowing quantification over
   1.159 +functions.
   1.160 +
   1.161 +\HOL\ offers various methods for introducing new types.
   1.162 +See~\S\ref{sec:HOL:Types} and~\S\ref{sec:HOL:datatype}.
   1.163 +
   1.164 +Theory \thydx{Ord} defines the syntactic class \cldx{ord} of order
   1.165 +signatures; the relations $<$ and $\leq$ are polymorphic over this
   1.166 +class, as are the functions \cdx{mono}, \cdx{min} and \cdx{max}, and
   1.167 +the \cdx{LEAST} operator. \thydx{Ord} also defines a subclass
   1.168 +\cldx{order} of \cldx{ord} which axiomatizes partially ordered types
   1.169 +(w.r.t.\ $\le$).
   1.170 +
   1.171 +Three other syntactic type classes --- \cldx{plus}, \cldx{minus} and
   1.172 +\cldx{times} --- permit overloading of the operators {\tt+},\index{*"+
   1.173 +  symbol} {\tt-}\index{*"- symbol} and {\tt*}.\index{*"* symbol} In
   1.174 +particular, {\tt-} is instantiated for set difference and subtraction
   1.175 +on natural numbers.
   1.176 +
   1.177 +If you state a goal containing overloaded functions, you may need to include
   1.178 +type constraints.  Type inference may otherwise make the goal more
   1.179 +polymorphic than you intended, with confusing results.  For example, the
   1.180 +variables $i$, $j$ and $k$ in the goal $i \le j \Imp i \le j+k$ have type
   1.181 +$\alpha::\{ord,plus\}$, although you may have expected them to have some
   1.182 +numeric type, e.g. $nat$.  Instead you should have stated the goal as
   1.183 +$(i::nat) \le j \Imp i \le j+k$, which causes all three variables to have
   1.184 +type $nat$.
   1.185 +
   1.186 +\begin{warn}
   1.187 +  If resolution fails for no obvious reason, try setting
   1.188 +  \ttindex{show_types} to \texttt{true}, causing Isabelle to display
   1.189 +  types of terms.  Possibly set \ttindex{show_sorts} to \texttt{true} as
   1.190 +  well, causing Isabelle to display type classes and sorts.
   1.191 +
   1.192 +  \index{unification!incompleteness of}
   1.193 +  Where function types are involved, Isabelle's unification code does not
   1.194 +  guarantee to find instantiations for type variables automatically.  Be
   1.195 +  prepared to use \ttindex{res_inst_tac} instead of \texttt{resolve_tac},
   1.196 +  possibly instantiating type variables.  Setting
   1.197 +  \ttindex{Unify.trace_types} to \texttt{true} causes Isabelle to report
   1.198 +  omitted search paths during unification.\index{tracing!of unification}
   1.199 +\end{warn}
   1.200 +
   1.201 +
   1.202 +\subsection{Binders}
   1.203 +
   1.204 +Hilbert's {\bf description} operator~$\varepsilon x. P[x]$ stands for
   1.205 +some~$x$ satisfying~$P$, if such exists.  Since all terms in \HOL\ 
   1.206 +denote something, a description is always meaningful, but we do not
   1.207 +know its value unless $P$ defines it uniquely.  We may write
   1.208 +descriptions as \cdx{Eps}($\lambda x. P[x]$) or use the syntax
   1.209 +\hbox{\tt \at $x$.\ $P[x]$}.
   1.210 +
   1.211 +Existential quantification is defined by
   1.212 +\[ \exists x. P~x \;\equiv\; P(\varepsilon x. P~x). \]
   1.213 +The unique existence quantifier, $\exists!x. P$, is defined in terms
   1.214 +of~$\exists$ and~$\forall$.  An Isabelle binder, it admits nested
   1.215 +quantifications.  For instance, $\exists!x\,y. P\,x\,y$ abbreviates
   1.216 +$\exists!x. \exists!y. P\,x\,y$; note that this does not mean that there
   1.217 +exists a unique pair $(x,y)$ satisfying~$P\,x\,y$.
   1.218 +
   1.219 +\index{*"! symbol}\index{*"? symbol}\index{HOL system@{\sc hol} system}
   1.220 +Quantifiers have two notations.  As in Gordon's {\sc hol} system, \HOL\
   1.221 +uses~{\tt!}\ and~{\tt?}\ to stand for $\forall$ and $\exists$.  The
   1.222 +existential quantifier must be followed by a space; thus {\tt?x} is an
   1.223 +unknown, while \verb'? x. f x=y' is a quantification.  Isabelle's usual
   1.224 +notation for quantifiers, \sdx{ALL} and \sdx{EX}, is also
   1.225 +available.  Both notations are accepted for input.  The {\ML} reference
   1.226 +\ttindexbold{HOL_quantifiers} governs the output notation.  If set to {\tt
   1.227 +true}, then~{\tt!}\ and~{\tt?}\ are displayed; this is the default.  If set
   1.228 +to \texttt{false}, then~\texttt{ALL} and~\texttt{EX} are displayed.
   1.229 +
   1.230 +If $\tau$ is a type of class \cldx{ord}, $P$ a formula and $x$ a
   1.231 +variable of type $\tau$, then the term \cdx{LEAST}~$x. P[x]$ is defined
   1.232 +to be the least (w.r.t.\ $\le$) $x$ such that $P~x$ holds (see
   1.233 +Fig.~\ref{hol-defs}).  The definition uses Hilbert's $\varepsilon$
   1.234 +choice operator, so \texttt{Least} is always meaningful, but may yield
   1.235 +nothing useful in case there is not a unique least element satisfying
   1.236 +$P$.\footnote{Class $ord$ does not require much of its instances, so
   1.237 +  $\le$ need not be a well-ordering, not even an order at all!}
   1.238 +
   1.239 +\medskip All these binders have priority 10.
   1.240 +
   1.241 +\begin{warn}
   1.242 +The low priority of binders means that they need to be enclosed in
   1.243 +parenthesis when they occur in the context of other operations.  For example,
   1.244 +instead of $P \land \forall x. Q$ you need to write $P \land (\forall x. Q)$.
   1.245 +\end{warn}
   1.246 +
   1.247 +
   1.248 +\subsection{The \sdx{let} and \sdx{case} constructions}
   1.249 +Local abbreviations can be introduced by a \texttt{let} construct whose
   1.250 +syntax appears in Fig.\ts\ref{hol-grammar}.  Internally it is translated into
   1.251 +the constant~\cdx{Let}.  It can be expanded by rewriting with its
   1.252 +definition, \tdx{Let_def}.
   1.253 +
   1.254 +\HOL\ also defines the basic syntax
   1.255 +\[\dquotes"case"~e~"of"~c@1~"=>"~e@1~"|" \dots "|"~c@n~"=>"~e@n\] 
   1.256 +as a uniform means of expressing \texttt{case} constructs.  Therefore \texttt{case}
   1.257 +and \sdx{of} are reserved words.  Initially, this is mere syntax and has no
   1.258 +logical meaning.  By declaring translations, you can cause instances of the
   1.259 +\texttt{case} construct to denote applications of particular case operators.
   1.260 +This is what happens automatically for each \texttt{datatype} definition
   1.261 +(see~\S\ref{sec:HOL:datatype}).
   1.262 +
   1.263 +\begin{warn}
   1.264 +Both \texttt{if} and \texttt{case} constructs have as low a priority as
   1.265 +quantifiers, which requires additional enclosing parentheses in the context
   1.266 +of most other operations.  For example, instead of $f~x = {\tt if\dots
   1.267 +then\dots else}\dots$ you need to write $f~x = ({\tt if\dots then\dots
   1.268 +else\dots})$.
   1.269 +\end{warn}
   1.270 +
   1.271 +\section{Rules of inference}
   1.272 +
   1.273 +\begin{figure}
   1.274 +\begin{ttbox}\makeatother
   1.275 +\tdx{refl}           t = (t::'a)
   1.276 +\tdx{subst}          [| s = t; P s |] ==> P (t::'a)
   1.277 +\tdx{ext}            (!!x::'a. (f x :: 'b) = g x) ==> (\%x. f x) = (\%x. g x)
   1.278 +\tdx{impI}           (P ==> Q) ==> P-->Q
   1.279 +\tdx{mp}             [| P-->Q;  P |] ==> Q
   1.280 +\tdx{iff}            (P-->Q) --> (Q-->P) --> (P=Q)
   1.281 +\tdx{selectI}        P(x::'a) ==> P(@x. P x)
   1.282 +\tdx{True_or_False}  (P=True) | (P=False)
   1.283 +\end{ttbox}
   1.284 +\caption{The \texttt{HOL} rules} \label{hol-rules}
   1.285 +\end{figure}
   1.286 +
   1.287 +Figure~\ref{hol-rules} shows the primitive inference rules of~\HOL{},
   1.288 +with their~{\ML} names.  Some of the rules deserve additional
   1.289 +comments:
   1.290 +\begin{ttdescription}
   1.291 +\item[\tdx{ext}] expresses extensionality of functions.
   1.292 +\item[\tdx{iff}] asserts that logically equivalent formulae are
   1.293 +  equal.
   1.294 +\item[\tdx{selectI}] gives the defining property of the Hilbert
   1.295 +  $\varepsilon$-operator.  It is a form of the Axiom of Choice.  The derived rule
   1.296 +  \tdx{select_equality} (see below) is often easier to use.
   1.297 +\item[\tdx{True_or_False}] makes the logic classical.\footnote{In
   1.298 +    fact, the $\varepsilon$-operator already makes the logic classical, as
   1.299 +    shown by Diaconescu; see Paulson~\cite{paulson-COLOG} for details.}
   1.300 +\end{ttdescription}
   1.301 +
   1.302 +
   1.303 +\begin{figure}\hfuzz=4pt%suppress "Overfull \hbox" message
   1.304 +\begin{ttbox}\makeatother
   1.305 +\tdx{True_def}   True     == ((\%x::bool. x)=(\%x. x))
   1.306 +\tdx{All_def}    All      == (\%P. P = (\%x. True))
   1.307 +\tdx{Ex_def}     Ex       == (\%P. P(@x. P x))
   1.308 +\tdx{False_def}  False    == (!P. P)
   1.309 +\tdx{not_def}    not      == (\%P. P-->False)
   1.310 +\tdx{and_def}    op &     == (\%P Q. !R. (P-->Q-->R) --> R)
   1.311 +\tdx{or_def}     op |     == (\%P Q. !R. (P-->R) --> (Q-->R) --> R)
   1.312 +\tdx{Ex1_def}    Ex1      == (\%P. ? x. P x & (! y. P y --> y=x))
   1.313 +
   1.314 +\tdx{o_def}      op o     == (\%(f::'b=>'c) g x::'a. f(g x))
   1.315 +\tdx{if_def}     If P x y ==
   1.316 +              (\%P x y. @z::'a.(P=True --> z=x) & (P=False --> z=y))
   1.317 +\tdx{Let_def}    Let s f  == f s
   1.318 +\tdx{Least_def}  Least P  == @x. P(x) & (ALL y. P(y) --> x <= y)"
   1.319 +\end{ttbox}
   1.320 +\caption{The \texttt{HOL} definitions} \label{hol-defs}
   1.321 +\end{figure}
   1.322 +
   1.323 +
   1.324 +\HOL{} follows standard practice in higher-order logic: only a few
   1.325 +connectives are taken as primitive, with the remainder defined obscurely
   1.326 +(Fig.\ts\ref{hol-defs}).  Gordon's {\sc hol} system expresses the
   1.327 +corresponding definitions \cite[page~270]{mgordon-hol} using
   1.328 +object-equality~({\tt=}), which is possible because equality in
   1.329 +higher-order logic may equate formulae and even functions over formulae.
   1.330 +But theory~\HOL{}, like all other Isabelle theories, uses
   1.331 +meta-equality~({\tt==}) for definitions.
   1.332 +\begin{warn}
   1.333 +The definitions above should never be expanded and are shown for completeness
   1.334 +only.  Instead users should reason in terms of the derived rules shown below
   1.335 +or, better still, using high-level tactics
   1.336 +(see~\S\ref{sec:HOL:generic-packages}).
   1.337 +\end{warn}
   1.338 +
   1.339 +Some of the rules mention type variables; for example, \texttt{refl}
   1.340 +mentions the type variable~{\tt'a}.  This allows you to instantiate
   1.341 +type variables explicitly by calling \texttt{res_inst_tac}.
   1.342 +
   1.343 +
   1.344 +\begin{figure}
   1.345 +\begin{ttbox}
   1.346 +\tdx{sym}         s=t ==> t=s
   1.347 +\tdx{trans}       [| r=s; s=t |] ==> r=t
   1.348 +\tdx{ssubst}      [| t=s; P s |] ==> P t
   1.349 +\tdx{box_equals}  [| a=b;  a=c;  b=d |] ==> c=d  
   1.350 +\tdx{arg_cong}    x = y ==> f x = f y
   1.351 +\tdx{fun_cong}    f = g ==> f x = g x
   1.352 +\tdx{cong}        [| f = g; x = y |] ==> f x = g y
   1.353 +\tdx{not_sym}     t ~= s ==> s ~= t
   1.354 +\subcaption{Equality}
   1.355 +
   1.356 +\tdx{TrueI}       True 
   1.357 +\tdx{FalseE}      False ==> P
   1.358 +
   1.359 +\tdx{conjI}       [| P; Q |] ==> P&Q
   1.360 +\tdx{conjunct1}   [| P&Q |] ==> P
   1.361 +\tdx{conjunct2}   [| P&Q |] ==> Q 
   1.362 +\tdx{conjE}       [| P&Q;  [| P; Q |] ==> R |] ==> R
   1.363 +
   1.364 +\tdx{disjI1}      P ==> P|Q
   1.365 +\tdx{disjI2}      Q ==> P|Q
   1.366 +\tdx{disjE}       [| P | Q; P ==> R; Q ==> R |] ==> R
   1.367 +
   1.368 +\tdx{notI}        (P ==> False) ==> ~ P
   1.369 +\tdx{notE}        [| ~ P;  P |] ==> R
   1.370 +\tdx{impE}        [| P-->Q;  P;  Q ==> R |] ==> R
   1.371 +\subcaption{Propositional logic}
   1.372 +
   1.373 +\tdx{iffI}        [| P ==> Q;  Q ==> P |] ==> P=Q
   1.374 +\tdx{iffD1}       [| P=Q; P |] ==> Q
   1.375 +\tdx{iffD2}       [| P=Q; Q |] ==> P
   1.376 +\tdx{iffE}        [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R
   1.377 +%
   1.378 +%\tdx{eqTrueI}     P ==> P=True 
   1.379 +%\tdx{eqTrueE}     P=True ==> P 
   1.380 +\subcaption{Logical equivalence}
   1.381 +
   1.382 +\end{ttbox}
   1.383 +\caption{Derived rules for \HOL} \label{hol-lemmas1}
   1.384 +\end{figure}
   1.385 +
   1.386 +
   1.387 +\begin{figure}
   1.388 +\begin{ttbox}\makeatother
   1.389 +\tdx{allI}      (!!x. P x) ==> !x. P x
   1.390 +\tdx{spec}      !x. P x ==> P x
   1.391 +\tdx{allE}      [| !x. P x;  P x ==> R |] ==> R
   1.392 +\tdx{all_dupE}  [| !x. P x;  [| P x; !x. P x |] ==> R |] ==> R
   1.393 +
   1.394 +\tdx{exI}       P x ==> ? x. P x
   1.395 +\tdx{exE}       [| ? x. P x; !!x. P x ==> Q |] ==> Q
   1.396 +
   1.397 +\tdx{ex1I}      [| P a;  !!x. P x ==> x=a |] ==> ?! x. P x
   1.398 +\tdx{ex1E}      [| ?! x. P x;  !!x. [| P x;  ! y. P y --> y=x |] ==> R 
   1.399 +          |] ==> R
   1.400 +
   1.401 +\tdx{select_equality} [| P a;  !!x. P x ==> x=a |] ==> (@x. P x) = a
   1.402 +\subcaption{Quantifiers and descriptions}
   1.403 +
   1.404 +\tdx{ccontr}          (~P ==> False) ==> P
   1.405 +\tdx{classical}       (~P ==> P) ==> P
   1.406 +\tdx{excluded_middle} ~P | P
   1.407 +
   1.408 +\tdx{disjCI}          (~Q ==> P) ==> P|Q
   1.409 +\tdx{exCI}            (! x. ~ P x ==> P a) ==> ? x. P x
   1.410 +\tdx{impCE}           [| P-->Q; ~ P ==> R; Q ==> R |] ==> R
   1.411 +\tdx{iffCE}           [| P=Q;  [| P;Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R
   1.412 +\tdx{notnotD}         ~~P ==> P
   1.413 +\tdx{swap}            ~P ==> (~Q ==> P) ==> Q
   1.414 +\subcaption{Classical logic}
   1.415 +
   1.416 +%\tdx{if_True}         (if True then x else y) = x
   1.417 +%\tdx{if_False}        (if False then x else y) = y
   1.418 +\tdx{if_P}            P ==> (if P then x else y) = x
   1.419 +\tdx{if_not_P}        ~ P ==> (if P then x else y) = y
   1.420 +\tdx{split_if}        P(if Q then x else y) = ((Q --> P x) & (~Q --> P y))
   1.421 +\subcaption{Conditionals}
   1.422 +\end{ttbox}
   1.423 +\caption{More derived rules} \label{hol-lemmas2}
   1.424 +\end{figure}
   1.425 +
   1.426 +Some derived rules are shown in Figures~\ref{hol-lemmas1}
   1.427 +and~\ref{hol-lemmas2}, with their {\ML} names.  These include natural rules
   1.428 +for the logical connectives, as well as sequent-style elimination rules for
   1.429 +conjunctions, implications, and universal quantifiers.  
   1.430 +
   1.431 +Note the equality rules: \tdx{ssubst} performs substitution in
   1.432 +backward proofs, while \tdx{box_equals} supports reasoning by
   1.433 +simplifying both sides of an equation.
   1.434 +
   1.435 +The following simple tactics are occasionally useful:
   1.436 +\begin{ttdescription}
   1.437 +\item[\ttindexbold{strip_tac} $i$] applies \texttt{allI} and \texttt{impI}
   1.438 +  repeatedly to remove all outermost universal quantifiers and implications
   1.439 +  from subgoal $i$.
   1.440 +\item[\ttindexbold{case_tac} {\tt"}$P${\tt"} $i$] performs case distinction
   1.441 +  on $P$ for subgoal $i$: the latter is replaced by two identical subgoals
   1.442 +  with the added assumptions $P$ and $\neg P$, respectively.
   1.443 +\end{ttdescription}
   1.444 +
   1.445 +
   1.446 +\begin{figure} 
   1.447 +\begin{center}
   1.448 +\begin{tabular}{rrr}
   1.449 +  \it name      &\it meta-type  & \it description \\ 
   1.450 +\index{{}@\verb'{}' symbol}
   1.451 +  \verb|{}|     & $\alpha\,set$         & the empty set \\
   1.452 +  \cdx{insert}  & $[\alpha,\alpha\,set]\To \alpha\,set$
   1.453 +        & insertion of element \\
   1.454 +  \cdx{Collect} & $(\alpha\To bool)\To\alpha\,set$
   1.455 +        & comprehension \\
   1.456 +  \cdx{Compl}   & $\alpha\,set\To\alpha\,set$
   1.457 +        & complement \\
   1.458 +  \cdx{INTER} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
   1.459 +        & intersection over a set\\
   1.460 +  \cdx{UNION} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
   1.461 +        & union over a set\\
   1.462 +  \cdx{Inter} & $(\alpha\,set)set\To\alpha\,set$
   1.463 +        &set of sets intersection \\
   1.464 +  \cdx{Union} & $(\alpha\,set)set\To\alpha\,set$
   1.465 +        &set of sets union \\
   1.466 +  \cdx{Pow}   & $\alpha\,set \To (\alpha\,set)set$
   1.467 +        & powerset \\[1ex]
   1.468 +  \cdx{range}   & $(\alpha\To\beta )\To\beta\,set$
   1.469 +        & range of a function \\[1ex]
   1.470 +  \cdx{Ball}~~\cdx{Bex} & $[\alpha\,set,\alpha\To bool]\To bool$
   1.471 +        & bounded quantifiers
   1.472 +\end{tabular}
   1.473 +\end{center}
   1.474 +\subcaption{Constants}
   1.475 +
   1.476 +\begin{center}
   1.477 +\begin{tabular}{llrrr} 
   1.478 +  \it symbol &\it name     &\it meta-type & \it priority & \it description \\
   1.479 +  \sdx{INT}  & \cdx{INTER1}  & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & 
   1.480 +        intersection over a type\\
   1.481 +  \sdx{UN}  & \cdx{UNION1}  & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & 
   1.482 +        union over a type
   1.483 +\end{tabular}
   1.484 +\end{center}
   1.485 +\subcaption{Binders} 
   1.486 +
   1.487 +\begin{center}
   1.488 +\index{*"`"` symbol}
   1.489 +\index{*": symbol}
   1.490 +\index{*"<"= symbol}
   1.491 +\begin{tabular}{rrrr} 
   1.492 +  \it symbol    & \it meta-type & \it priority & \it description \\ 
   1.493 +  \tt ``        & $[\alpha\To\beta ,\alpha\,set]\To  \beta\,set$
   1.494 +        & Left 90 & image \\
   1.495 +  \sdx{Int}     & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
   1.496 +        & Left 70 & intersection ($\int$) \\
   1.497 +  \sdx{Un}      & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
   1.498 +        & Left 65 & union ($\un$) \\
   1.499 +  \tt:          & $[\alpha ,\alpha\,set]\To bool$       
   1.500 +        & Left 50 & membership ($\in$) \\
   1.501 +  \tt <=        & $[\alpha\,set,\alpha\,set]\To bool$
   1.502 +        & Left 50 & subset ($\subseteq$) 
   1.503 +\end{tabular}
   1.504 +\end{center}
   1.505 +\subcaption{Infixes}
   1.506 +\caption{Syntax of the theory \texttt{Set}} \label{hol-set-syntax}
   1.507 +\end{figure} 
   1.508 +
   1.509 +
   1.510 +\begin{figure} 
   1.511 +\begin{center} \tt\frenchspacing
   1.512 +\index{*"! symbol}
   1.513 +\begin{tabular}{rrr} 
   1.514 +  \it external          & \it internal  & \it description \\ 
   1.515 +  $a$ \ttilde: $b$      & \ttilde($a$ : $b$)    & \rm non-membership\\
   1.516 +  {\ttlbrace}$a@1$, $\ldots${\ttrbrace}  &  insert $a@1$ $\ldots$ {\ttlbrace}{\ttrbrace} & \rm finite set \\
   1.517 +  {\ttlbrace}$x$. $P[x]${\ttrbrace}        &  Collect($\lambda x. P[x]$) &
   1.518 +        \rm comprehension \\
   1.519 +  \sdx{INT} $x$:$A$. $B[x]$      & INTER $A$ $\lambda x. B[x]$ &
   1.520 +        \rm intersection \\
   1.521 +  \sdx{UN}{\tt\ }  $x$:$A$. $B[x]$      & UNION $A$ $\lambda x. B[x]$ &
   1.522 +        \rm union \\
   1.523 +  \tt ! $x$:$A$. $P[x]$ or \sdx{ALL} $x$:$A$. $P[x]$ & 
   1.524 +        Ball $A$ $\lambda x. P[x]$ & 
   1.525 +        \rm bounded $\forall$ \\
   1.526 +  \sdx{?} $x$:$A$. $P[x]$ or \sdx{EX}{\tt\ } $x$:$A$. $P[x]$ & 
   1.527 +        Bex $A$ $\lambda x. P[x]$ & \rm bounded $\exists$
   1.528 +\end{tabular}
   1.529 +\end{center}
   1.530 +\subcaption{Translations}
   1.531 +
   1.532 +\dquotes
   1.533 +\[\begin{array}{rclcl}
   1.534 +    term & = & \hbox{other terms\ldots} \\
   1.535 +         & | & "{\ttlbrace}{\ttrbrace}" \\
   1.536 +         & | & "{\ttlbrace} " term\; ("," term)^* " {\ttrbrace}" \\
   1.537 +         & | & "{\ttlbrace} " id " . " formula " {\ttrbrace}" \\
   1.538 +         & | & term " `` " term \\
   1.539 +         & | & term " Int " term \\
   1.540 +         & | & term " Un " term \\
   1.541 +         & | & "INT~~"  id ":" term " . " term \\
   1.542 +         & | & "UN~~~"  id ":" term " . " term \\
   1.543 +         & | & "INT~~"  id~id^* " . " term \\
   1.544 +         & | & "UN~~~"  id~id^* " . " term \\[2ex]
   1.545 + formula & = & \hbox{other formulae\ldots} \\
   1.546 +         & | & term " : " term \\
   1.547 +         & | & term " \ttilde: " term \\
   1.548 +         & | & term " <= " term \\
   1.549 +         & | & "!~" id ":" term " . " formula 
   1.550 +         & | & "ALL " id ":" term " . " formula \\
   1.551 +         & | & "?~" id ":" term " . " formula 
   1.552 +         & | & "EX~~" id ":" term " . " formula
   1.553 +  \end{array}
   1.554 +\]
   1.555 +\subcaption{Full Grammar}
   1.556 +\caption{Syntax of the theory \texttt{Set} (continued)} \label{hol-set-syntax2}
   1.557 +\end{figure} 
   1.558 +
   1.559 +
   1.560 +\section{A formulation of set theory}
   1.561 +Historically, higher-order logic gives a foundation for Russell and
   1.562 +Whitehead's theory of classes.  Let us use modern terminology and call them
   1.563 +{\bf sets}, but note that these sets are distinct from those of {\ZF} set
   1.564 +theory, and behave more like {\ZF} classes.
   1.565 +\begin{itemize}
   1.566 +\item
   1.567 +Sets are given by predicates over some type~$\sigma$.  Types serve to
   1.568 +define universes for sets, but type-checking is still significant.
   1.569 +\item
   1.570 +There is a universal set (for each type).  Thus, sets have complements, and
   1.571 +may be defined by absolute comprehension.
   1.572 +\item
   1.573 +Although sets may contain other sets as elements, the containing set must
   1.574 +have a more complex type.
   1.575 +\end{itemize}
   1.576 +Finite unions and intersections have the same behaviour in \HOL\ as they
   1.577 +do in~{\ZF}.  In \HOL\ the intersection of the empty set is well-defined,
   1.578 +denoting the universal set for the given type.
   1.579 +
   1.580 +\subsection{Syntax of set theory}\index{*set type}
   1.581 +\HOL's set theory is called \thydx{Set}.  The type $\alpha\,set$ is
   1.582 +essentially the same as $\alpha\To bool$.  The new type is defined for
   1.583 +clarity and to avoid complications involving function types in unification.
   1.584 +The isomorphisms between the two types are declared explicitly.  They are
   1.585 +very natural: \texttt{Collect} maps $\alpha\To bool$ to $\alpha\,set$, while
   1.586 +\hbox{\tt op :} maps in the other direction (ignoring argument order).
   1.587 +
   1.588 +Figure~\ref{hol-set-syntax} lists the constants, infixes, and syntax
   1.589 +translations.  Figure~\ref{hol-set-syntax2} presents the grammar of the new
   1.590 +constructs.  Infix operators include union and intersection ($A\un B$
   1.591 +and $A\int B$), the subset and membership relations, and the image
   1.592 +operator~{\tt``}\@.  Note that $a$\verb|~:|$b$ is translated to
   1.593 +$\neg(a\in b)$.  
   1.594 +
   1.595 +The $\{a@1,\ldots\}$ notation abbreviates finite sets constructed in
   1.596 +the obvious manner using~\texttt{insert} and~$\{\}$:
   1.597 +\begin{eqnarray*}
   1.598 +  \{a, b, c\} & \equiv &
   1.599 +  \texttt{insert} \, a \, ({\tt insert} \, b \, ({\tt insert} \, c \, \{\}))
   1.600 +\end{eqnarray*}
   1.601 +
   1.602 +The set \hbox{\tt{\ttlbrace}$x$.\ $P[x]${\ttrbrace}} consists of all $x$ (of suitable type)
   1.603 +that satisfy~$P[x]$, where $P[x]$ is a formula that may contain free
   1.604 +occurrences of~$x$.  This syntax expands to \cdx{Collect}$(\lambda
   1.605 +x. P[x])$.  It defines sets by absolute comprehension, which is impossible
   1.606 +in~{\ZF}; the type of~$x$ implicitly restricts the comprehension.
   1.607 +
   1.608 +The set theory defines two {\bf bounded quantifiers}:
   1.609 +\begin{eqnarray*}
   1.610 +   \forall x\in A. P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\
   1.611 +   \exists x\in A. P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x]
   1.612 +\end{eqnarray*}
   1.613 +The constants~\cdx{Ball} and~\cdx{Bex} are defined
   1.614 +accordingly.  Instead of \texttt{Ball $A$ $P$} and \texttt{Bex $A$ $P$} we may
   1.615 +write\index{*"! symbol}\index{*"? symbol}
   1.616 +\index{*ALL symbol}\index{*EX symbol} 
   1.617 +%
   1.618 +\hbox{\tt !~$x$:$A$.\ $P[x]$} and \hbox{\tt ?~$x$:$A$.\ $P[x]$}.  Isabelle's
   1.619 +usual quantifier symbols, \sdx{ALL} and \sdx{EX}, are also accepted
   1.620 +for input.  As with the primitive quantifiers, the {\ML} reference
   1.621 +\ttindex{HOL_quantifiers} specifies which notation to use for output.
   1.622 +
   1.623 +Unions and intersections over sets, namely $\bigcup@{x\in A}B[x]$ and
   1.624 +$\bigcap@{x\in A}B[x]$, are written 
   1.625 +\sdx{UN}~\hbox{\tt$x$:$A$.\ $B[x]$} and
   1.626 +\sdx{INT}~\hbox{\tt$x$:$A$.\ $B[x]$}.  
   1.627 +
   1.628 +Unions and intersections over types, namely $\bigcup@x B[x]$ and $\bigcap@x
   1.629 +B[x]$, are written \sdx{UN}~\hbox{\tt$x$.\ $B[x]$} and
   1.630 +\sdx{INT}~\hbox{\tt$x$.\ $B[x]$}.  They are equivalent to the previous
   1.631 +union and intersection operators when $A$ is the universal set.
   1.632 +
   1.633 +The operators $\bigcup A$ and $\bigcap A$ act upon sets of sets.  They are
   1.634 +not binders, but are equal to $\bigcup@{x\in A}x$ and $\bigcap@{x\in A}x$,
   1.635 +respectively.
   1.636 +
   1.637 +
   1.638 +
   1.639 +\begin{figure} \underscoreon
   1.640 +\begin{ttbox}
   1.641 +\tdx{mem_Collect_eq}    (a : {\ttlbrace}x. P x{\ttrbrace}) = P a
   1.642 +\tdx{Collect_mem_eq}    {\ttlbrace}x. x:A{\ttrbrace} = A
   1.643 +
   1.644 +\tdx{empty_def}         {\ttlbrace}{\ttrbrace}          == {\ttlbrace}x. False{\ttrbrace}
   1.645 +\tdx{insert_def}        insert a B  == {\ttlbrace}x. x=a{\ttrbrace} Un B
   1.646 +\tdx{Ball_def}          Ball A P    == ! x. x:A --> P x
   1.647 +\tdx{Bex_def}           Bex A P     == ? x. x:A & P x
   1.648 +\tdx{subset_def}        A <= B      == ! x:A. x:B
   1.649 +\tdx{Un_def}            A Un B      == {\ttlbrace}x. x:A | x:B{\ttrbrace}
   1.650 +\tdx{Int_def}           A Int B     == {\ttlbrace}x. x:A & x:B{\ttrbrace}
   1.651 +\tdx{set_diff_def}      A - B       == {\ttlbrace}x. x:A & x~:B{\ttrbrace}
   1.652 +\tdx{Compl_def}         Compl A     == {\ttlbrace}x. ~ x:A{\ttrbrace}
   1.653 +\tdx{INTER_def}         INTER A B   == {\ttlbrace}y. ! x:A. y: B x{\ttrbrace}
   1.654 +\tdx{UNION_def}         UNION A B   == {\ttlbrace}y. ? x:A. y: B x{\ttrbrace}
   1.655 +\tdx{INTER1_def}        INTER1 B    == INTER {\ttlbrace}x. True{\ttrbrace} B 
   1.656 +\tdx{UNION1_def}        UNION1 B    == UNION {\ttlbrace}x. True{\ttrbrace} B 
   1.657 +\tdx{Inter_def}         Inter S     == (INT x:S. x)
   1.658 +\tdx{Union_def}         Union S     == (UN  x:S. x)
   1.659 +\tdx{Pow_def}           Pow A       == {\ttlbrace}B. B <= A{\ttrbrace}
   1.660 +\tdx{image_def}         f``A        == {\ttlbrace}y. ? x:A. y=f x{\ttrbrace}
   1.661 +\tdx{range_def}         range f     == {\ttlbrace}y. ? x. y=f x{\ttrbrace}
   1.662 +\end{ttbox}
   1.663 +\caption{Rules of the theory \texttt{Set}} \label{hol-set-rules}
   1.664 +\end{figure}
   1.665 +
   1.666 +
   1.667 +\begin{figure} \underscoreon
   1.668 +\begin{ttbox}
   1.669 +\tdx{CollectI}        [| P a |] ==> a : {\ttlbrace}x. P x{\ttrbrace}
   1.670 +\tdx{CollectD}        [| a : {\ttlbrace}x. P x{\ttrbrace} |] ==> P a
   1.671 +\tdx{CollectE}        [| a : {\ttlbrace}x. P x{\ttrbrace};  P a ==> W |] ==> W
   1.672 +
   1.673 +\tdx{ballI}           [| !!x. x:A ==> P x |] ==> ! x:A. P x
   1.674 +\tdx{bspec}           [| ! x:A. P x;  x:A |] ==> P x
   1.675 +\tdx{ballE}           [| ! x:A. P x;  P x ==> Q;  ~ x:A ==> Q |] ==> Q
   1.676 +
   1.677 +\tdx{bexI}            [| P x;  x:A |] ==> ? x:A. P x
   1.678 +\tdx{bexCI}           [| ! x:A. ~ P x ==> P a;  a:A |] ==> ? x:A. P x
   1.679 +\tdx{bexE}            [| ? x:A. P x;  !!x. [| x:A; P x |] ==> Q  |] ==> Q
   1.680 +\subcaption{Comprehension and Bounded quantifiers}
   1.681 +
   1.682 +\tdx{subsetI}         (!!x. x:A ==> x:B) ==> A <= B
   1.683 +\tdx{subsetD}         [| A <= B;  c:A |] ==> c:B
   1.684 +\tdx{subsetCE}        [| A <= B;  ~ (c:A) ==> P;  c:B ==> P |] ==> P
   1.685 +
   1.686 +\tdx{subset_refl}     A <= A
   1.687 +\tdx{subset_trans}    [| A<=B;  B<=C |] ==> A<=C
   1.688 +
   1.689 +\tdx{equalityI}       [| A <= B;  B <= A |] ==> A = B
   1.690 +\tdx{equalityD1}      A = B ==> A<=B
   1.691 +\tdx{equalityD2}      A = B ==> B<=A
   1.692 +\tdx{equalityE}       [| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P
   1.693 +
   1.694 +\tdx{equalityCE}      [| A = B;  [| c:A; c:B |] ==> P;  
   1.695 +                           [| ~ c:A; ~ c:B |] ==> P 
   1.696 +                |]  ==>  P
   1.697 +\subcaption{The subset and equality relations}
   1.698 +\end{ttbox}
   1.699 +\caption{Derived rules for set theory} \label{hol-set1}
   1.700 +\end{figure}
   1.701 +
   1.702 +
   1.703 +\begin{figure} \underscoreon
   1.704 +\begin{ttbox}
   1.705 +\tdx{emptyE}   a : {\ttlbrace}{\ttrbrace} ==> P
   1.706 +
   1.707 +\tdx{insertI1} a : insert a B
   1.708 +\tdx{insertI2} a : B ==> a : insert b B
   1.709 +\tdx{insertE}  [| a : insert b A;  a=b ==> P;  a:A ==> P |] ==> P
   1.710 +
   1.711 +\tdx{ComplI}   [| c:A ==> False |] ==> c : Compl A
   1.712 +\tdx{ComplD}   [| c : Compl A |] ==> ~ c:A
   1.713 +
   1.714 +\tdx{UnI1}     c:A ==> c : A Un B
   1.715 +\tdx{UnI2}     c:B ==> c : A Un B
   1.716 +\tdx{UnCI}     (~c:B ==> c:A) ==> c : A Un B
   1.717 +\tdx{UnE}      [| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P
   1.718 +
   1.719 +\tdx{IntI}     [| c:A;  c:B |] ==> c : A Int B
   1.720 +\tdx{IntD1}    c : A Int B ==> c:A
   1.721 +\tdx{IntD2}    c : A Int B ==> c:B
   1.722 +\tdx{IntE}     [| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P
   1.723 +
   1.724 +\tdx{UN_I}     [| a:A;  b: B a |] ==> b: (UN x:A. B x)
   1.725 +\tdx{UN_E}     [| b: (UN x:A. B x);  !!x.[| x:A;  b:B x |] ==> R |] ==> R
   1.726 +
   1.727 +\tdx{INT_I}    (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)
   1.728 +\tdx{INT_D}    [| b: (INT x:A. B x);  a:A |] ==> b: B a
   1.729 +\tdx{INT_E}    [| b: (INT x:A. B x);  b: B a ==> R;  ~ a:A ==> R |] ==> R
   1.730 +
   1.731 +\tdx{UnionI}   [| X:C;  A:X |] ==> A : Union C
   1.732 +\tdx{UnionE}   [| A : Union C;  !!X.[| A:X;  X:C |] ==> R |] ==> R
   1.733 +
   1.734 +\tdx{InterI}   [| !!X. X:C ==> A:X |] ==> A : Inter C
   1.735 +\tdx{InterD}   [| A : Inter C;  X:C |] ==> A:X
   1.736 +\tdx{InterE}   [| A : Inter C;  A:X ==> R;  ~ X:C ==> R |] ==> R
   1.737 +
   1.738 +\tdx{PowI}     A<=B ==> A: Pow B
   1.739 +\tdx{PowD}     A: Pow B ==> A<=B
   1.740 +
   1.741 +\tdx{imageI}   [| x:A |] ==> f x : f``A
   1.742 +\tdx{imageE}   [| b : f``A;  !!x.[| b=f x;  x:A |] ==> P |] ==> P
   1.743 +
   1.744 +\tdx{rangeI}   f x : range f
   1.745 +\tdx{rangeE}   [| b : range f;  !!x.[| b=f x |] ==> P |] ==> P
   1.746 +\end{ttbox}
   1.747 +\caption{Further derived rules for set theory} \label{hol-set2}
   1.748 +\end{figure}
   1.749 +
   1.750 +
   1.751 +\subsection{Axioms and rules of set theory}
   1.752 +Figure~\ref{hol-set-rules} presents the rules of theory \thydx{Set}.  The
   1.753 +axioms \tdx{mem_Collect_eq} and \tdx{Collect_mem_eq} assert
   1.754 +that the functions \texttt{Collect} and \hbox{\tt op :} are isomorphisms.  Of
   1.755 +course, \hbox{\tt op :} also serves as the membership relation.
   1.756 +
   1.757 +All the other axioms are definitions.  They include the empty set, bounded
   1.758 +quantifiers, unions, intersections, complements and the subset relation.
   1.759 +They also include straightforward constructions on functions: image~({\tt``})
   1.760 +and \texttt{range}.
   1.761 +
   1.762 +%The predicate \cdx{inj_on} is used for simulating type definitions.
   1.763 +%The statement ${\tt inj_on}~f~A$ asserts that $f$ is injective on the
   1.764 +%set~$A$, which specifies a subset of its domain type.  In a type
   1.765 +%definition, $f$ is the abstraction function and $A$ is the set of valid
   1.766 +%representations; we should not expect $f$ to be injective outside of~$A$.
   1.767 +
   1.768 +%\begin{figure} \underscoreon
   1.769 +%\begin{ttbox}
   1.770 +%\tdx{Inv_f_f}    inj f ==> Inv f (f x) = x
   1.771 +%\tdx{f_Inv_f}    y : range f ==> f(Inv f y) = y
   1.772 +%
   1.773 +%\tdx{Inv_injective}
   1.774 +%    [| Inv f x=Inv f y; x: range f;  y: range f |] ==> x=y
   1.775 +%
   1.776 +%
   1.777 +%\tdx{monoI}      [| !!A B. A <= B ==> f A <= f B |] ==> mono f
   1.778 +%\tdx{monoD}      [| mono f;  A <= B |] ==> f A <= f B
   1.779 +%
   1.780 +%\tdx{injI}       [| !! x y. f x = f y ==> x=y |] ==> inj f
   1.781 +%\tdx{inj_inverseI}              (!!x. g(f x) = x) ==> inj f
   1.782 +%\tdx{injD}       [| inj f; f x = f y |] ==> x=y
   1.783 +%
   1.784 +%\tdx{inj_onI}  (!!x y. [| f x=f y; x:A; y:A |] ==> x=y) ==> inj_on f A
   1.785 +%\tdx{inj_onD}  [| inj_on f A;  f x=f y;  x:A;  y:A |] ==> x=y
   1.786 +%
   1.787 +%\tdx{inj_on_inverseI}
   1.788 +%    (!!x. x:A ==> g(f x) = x) ==> inj_on f A
   1.789 +%\tdx{inj_on_contraD}
   1.790 +%    [| inj_on f A;  x~=y;  x:A;  y:A |] ==> ~ f x=f y
   1.791 +%\end{ttbox}
   1.792 +%\caption{Derived rules involving functions} \label{hol-fun}
   1.793 +%\end{figure}
   1.794 +
   1.795 +
   1.796 +\begin{figure} \underscoreon
   1.797 +\begin{ttbox}
   1.798 +\tdx{Union_upper}     B:A ==> B <= Union A
   1.799 +\tdx{Union_least}     [| !!X. X:A ==> X<=C |] ==> Union A <= C
   1.800 +
   1.801 +\tdx{Inter_lower}     B:A ==> Inter A <= B
   1.802 +\tdx{Inter_greatest}  [| !!X. X:A ==> C<=X |] ==> C <= Inter A
   1.803 +
   1.804 +\tdx{Un_upper1}       A <= A Un B
   1.805 +\tdx{Un_upper2}       B <= A Un B
   1.806 +\tdx{Un_least}        [| A<=C;  B<=C |] ==> A Un B <= C
   1.807 +
   1.808 +\tdx{Int_lower1}      A Int B <= A
   1.809 +\tdx{Int_lower2}      A Int B <= B
   1.810 +\tdx{Int_greatest}    [| C<=A;  C<=B |] ==> C <= A Int B
   1.811 +\end{ttbox}
   1.812 +\caption{Derived rules involving subsets} \label{hol-subset}
   1.813 +\end{figure}
   1.814 +
   1.815 +
   1.816 +\begin{figure} \underscoreon   \hfuzz=4pt%suppress "Overfull \hbox" message
   1.817 +\begin{ttbox}
   1.818 +\tdx{Int_absorb}        A Int A = A
   1.819 +\tdx{Int_commute}       A Int B = B Int A
   1.820 +\tdx{Int_assoc}         (A Int B) Int C  =  A Int (B Int C)
   1.821 +\tdx{Int_Un_distrib}    (A Un B)  Int C  =  (A Int C) Un (B Int C)
   1.822 +
   1.823 +\tdx{Un_absorb}         A Un A = A
   1.824 +\tdx{Un_commute}        A Un B = B Un A
   1.825 +\tdx{Un_assoc}          (A Un B)  Un C  =  A Un (B Un C)
   1.826 +\tdx{Un_Int_distrib}    (A Int B) Un C  =  (A Un C) Int (B Un C)
   1.827 +
   1.828 +\tdx{Compl_disjoint}    A Int (Compl A) = {\ttlbrace}x. False{\ttrbrace}
   1.829 +\tdx{Compl_partition}   A Un  (Compl A) = {\ttlbrace}x. True{\ttrbrace}
   1.830 +\tdx{double_complement} Compl(Compl A) = A
   1.831 +\tdx{Compl_Un}          Compl(A Un B)  = (Compl A) Int (Compl B)
   1.832 +\tdx{Compl_Int}         Compl(A Int B) = (Compl A) Un (Compl B)
   1.833 +
   1.834 +\tdx{Union_Un_distrib}  Union(A Un B) = (Union A) Un (Union B)
   1.835 +\tdx{Int_Union}         A Int (Union B) = (UN C:B. A Int C)
   1.836 +\tdx{Un_Union_image}    (UN x:C.(A x) Un (B x)) = Union(A``C) Un Union(B``C)
   1.837 +
   1.838 +\tdx{Inter_Un_distrib}  Inter(A Un B) = (Inter A) Int (Inter B)
   1.839 +\tdx{Un_Inter}          A Un (Inter B) = (INT C:B. A Un C)
   1.840 +\tdx{Int_Inter_image}   (INT x:C.(A x) Int (B x)) = Inter(A``C) Int Inter(B``C)
   1.841 +\end{ttbox}
   1.842 +\caption{Set equalities} \label{hol-equalities}
   1.843 +\end{figure}
   1.844 +
   1.845 +
   1.846 +Figures~\ref{hol-set1} and~\ref{hol-set2} present derived rules.  Most are
   1.847 +obvious and resemble rules of Isabelle's {\ZF} set theory.  Certain rules,
   1.848 +such as \tdx{subsetCE}, \tdx{bexCI} and \tdx{UnCI},
   1.849 +are designed for classical reasoning; the rules \tdx{subsetD},
   1.850 +\tdx{bexI}, \tdx{Un1} and~\tdx{Un2} are not
   1.851 +strictly necessary but yield more natural proofs.  Similarly,
   1.852 +\tdx{equalityCE} supports classical reasoning about extensionality,
   1.853 +after the fashion of \tdx{iffCE}.  See the file \texttt{HOL/Set.ML} for
   1.854 +proofs pertaining to set theory.
   1.855 +
   1.856 +Figure~\ref{hol-subset} presents lattice properties of the subset relation.
   1.857 +Unions form least upper bounds; non-empty intersections form greatest lower
   1.858 +bounds.  Reasoning directly about subsets often yields clearer proofs than
   1.859 +reasoning about the membership relation.  See the file \texttt{HOL/subset.ML}.
   1.860 +
   1.861 +Figure~\ref{hol-equalities} presents many common set equalities.  They
   1.862 +include commutative, associative and distributive laws involving unions,
   1.863 +intersections and complements.  For a complete listing see the file {\tt
   1.864 +HOL/equalities.ML}.
   1.865 +
   1.866 +\begin{warn}
   1.867 +\texttt{Blast_tac} proves many set-theoretic theorems automatically.
   1.868 +Hence you seldom need to refer to the theorems above.
   1.869 +\end{warn}
   1.870 +
   1.871 +\begin{figure}
   1.872 +\begin{center}
   1.873 +\begin{tabular}{rrr}
   1.874 +  \it name      &\it meta-type  & \it description \\ 
   1.875 +  \cdx{inj}~~\cdx{surj}& $(\alpha\To\beta )\To bool$
   1.876 +        & injective/surjective \\
   1.877 +  \cdx{inj_on}        & $[\alpha\To\beta ,\alpha\,set]\To bool$
   1.878 +        & injective over subset\\
   1.879 +  \cdx{inv} & $(\alpha\To\beta)\To(\beta\To\alpha)$ & inverse function
   1.880 +\end{tabular}
   1.881 +\end{center}
   1.882 +
   1.883 +\underscoreon
   1.884 +\begin{ttbox}
   1.885 +\tdx{inj_def}         inj f      == ! x y. f x=f y --> x=y
   1.886 +\tdx{surj_def}        surj f     == ! y. ? x. y=f x
   1.887 +\tdx{inj_on_def}      inj_on f A == !x:A. !y:A. f x=f y --> x=y
   1.888 +\tdx{inv_def}         inv f      == (\%y. @x. f(x)=y)
   1.889 +\end{ttbox}
   1.890 +\caption{Theory \thydx{Fun}} \label{fig:HOL:Fun}
   1.891 +\end{figure}
   1.892 +
   1.893 +\subsection{Properties of functions}\nopagebreak
   1.894 +Figure~\ref{fig:HOL:Fun} presents a theory of simple properties of functions.
   1.895 +Note that ${\tt inv}~f$ uses Hilbert's $\varepsilon$ to yield an inverse
   1.896 +of~$f$.  See the file \texttt{HOL/Fun.ML} for a complete listing of the derived
   1.897 +rules.  Reasoning about function composition (the operator~\sdx{o}) and the
   1.898 +predicate~\cdx{surj} is done simply by expanding the definitions.
   1.899 +
   1.900 +There is also a large collection of monotonicity theorems for constructions
   1.901 +on sets in the file \texttt{HOL/mono.ML}.
   1.902 +
   1.903 +\section{Generic packages}
   1.904 +\label{sec:HOL:generic-packages}
   1.905 +
   1.906 +\HOL\ instantiates most of Isabelle's generic packages, making available the
   1.907 +simplifier and the classical reasoner.
   1.908 +
   1.909 +\subsection{Simplification and substitution}
   1.910 +
   1.911 +Simplification tactics tactics such as \texttt{Asm_simp_tac} and \texttt{Full_simp_tac} use the default simpset
   1.912 +(\texttt{simpset()}), which works for most purposes.  A quite minimal
   1.913 +simplification set for higher-order logic is~\ttindexbold{HOL_ss};
   1.914 +even more frugal is \ttindexbold{HOL_basic_ss}.  Equality~($=$), which
   1.915 +also expresses logical equivalence, may be used for rewriting.  See
   1.916 +the file \texttt{HOL/simpdata.ML} for a complete listing of the basic
   1.917 +simplification rules.
   1.918 +
   1.919 +See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
   1.920 +{Chaps.\ts\ref{substitution} and~\ref{simp-chap}} for details of substitution
   1.921 +and simplification.
   1.922 +
   1.923 +\begin{warn}\index{simplification!of conjunctions}%
   1.924 +  Reducing $a=b\conj P(a)$ to $a=b\conj P(b)$ is sometimes advantageous.  The
   1.925 +  left part of a conjunction helps in simplifying the right part.  This effect
   1.926 +  is not available by default: it can be slow.  It can be obtained by
   1.927 +  including \ttindex{conj_cong} in a simpset, \verb$addcongs [conj_cong]$.
   1.928 +\end{warn}
   1.929 +
   1.930 +If the simplifier cannot use a certain rewrite rule --- either because
   1.931 +of nontermination or because its left-hand side is too flexible ---
   1.932 +then you might try \texttt{stac}:
   1.933 +\begin{ttdescription}
   1.934 +\item[\ttindexbold{stac} $thm$ $i,$] where $thm$ is of the form $lhs = rhs$,
   1.935 +  replaces in subgoal $i$ instances of $lhs$ by corresponding instances of
   1.936 +  $rhs$.  In case of multiple instances of $lhs$ in subgoal $i$, backtracking
   1.937 +  may be necessary to select the desired ones.
   1.938 +
   1.939 +If $thm$ is a conditional equality, the instantiated condition becomes an
   1.940 +additional (first) subgoal.
   1.941 +\end{ttdescription}
   1.942 +
   1.943 + \HOL{} provides the tactic \ttindex{hyp_subst_tac}, which substitutes
   1.944 +  for an equality throughout a subgoal and its hypotheses.  This tactic uses
   1.945 +  \HOL's general substitution rule.
   1.946 +
   1.947 +\subsubsection{Case splitting}
   1.948 +\label{subsec:HOL:case:splitting}
   1.949 +
   1.950 +\HOL{} also provides convenient means for case splitting during
   1.951 +rewriting. Goals containing a subterm of the form \texttt{if}~$b$~{\tt
   1.952 +then\dots else\dots} often require a case distinction on $b$. This is
   1.953 +expressed by the theorem \tdx{split_if}:
   1.954 +$$
   1.955 +\Var{P}(\mbox{\tt if}~\Var{b}~{\tt then}~\Var{x}~\mbox{\tt else}~\Var{y})~=~
   1.956 +((\Var{b} \to \Var{P}(\Var{x})) \land (\neg \Var{b} \to \Var{P}(\Var{y})))
   1.957 +\eqno{(*)}
   1.958 +$$
   1.959 +For example, a simple instance of $(*)$ is
   1.960 +\[
   1.961 +x \in (\mbox{\tt if}~x \in A~{\tt then}~A~\mbox{\tt else}~\{x\})~=~
   1.962 +((x \in A \to x \in A) \land (x \notin A \to x \in \{x\}))
   1.963 +\]
   1.964 +Because $(*)$ is too general as a rewrite rule for the simplifier (the
   1.965 +left-hand side is not a higher-order pattern in the sense of
   1.966 +\iflabelundefined{chap:simplification}{the {\em Reference Manual\/}}%
   1.967 +{Chap.\ts\ref{chap:simplification}}), there is a special infix function 
   1.968 +\ttindexbold{addsplits} of type \texttt{simpset * thm list -> simpset}
   1.969 +(analogous to \texttt{addsimps}) that adds rules such as $(*)$ to a
   1.970 +simpset, as in
   1.971 +\begin{ttbox}
   1.972 +by(simp_tac (simpset() addsplits [split_if]) 1);
   1.973 +\end{ttbox}
   1.974 +The effect is that after each round of simplification, one occurrence of
   1.975 +\texttt{if} is split acording to \texttt{split_if}, until all occurences of
   1.976 +\texttt{if} have been eliminated.
   1.977 +
   1.978 +It turns out that using \texttt{split_if} is almost always the right thing to
   1.979 +do. Hence \texttt{split_if} is already included in the default simpset. If
   1.980 +you want to delete it from a simpset, use \ttindexbold{delsplits}, which is
   1.981 +the inverse of \texttt{addsplits}:
   1.982 +\begin{ttbox}
   1.983 +by(simp_tac (simpset() delsplits [split_if]) 1);
   1.984 +\end{ttbox}
   1.985 +
   1.986 +In general, \texttt{addsplits} accepts rules of the form
   1.987 +\[
   1.988 +\Var{P}(c~\Var{x@1}~\dots~\Var{x@n})~=~ rhs
   1.989 +\]
   1.990 +where $c$ is a constant and $rhs$ is arbitrary. Note that $(*)$ is of the
   1.991 +right form because internally the left-hand side is
   1.992 +$\Var{P}(\mathtt{If}~\Var{b}~\Var{x}~~\Var{y})$. Important further examples
   1.993 +are splitting rules for \texttt{case} expressions (see~\S\ref{subsec:list}
   1.994 +and~\S\ref{subsec:datatype:basics}).
   1.995 +
   1.996 +Analogous to \texttt{Addsimps} and \texttt{Delsimps}, there are also
   1.997 +imperative versions of \texttt{addsplits} and \texttt{delsplits}
   1.998 +\begin{ttbox}
   1.999 +\ttindexbold{Addsplits}: thm list -> unit
  1.1000 +\ttindexbold{Delsplits}: thm list -> unit
  1.1001 +\end{ttbox}
  1.1002 +for adding splitting rules to, and deleting them from the current simpset.
  1.1003 +
  1.1004 +\subsection{Classical reasoning}
  1.1005 +
  1.1006 +\HOL\ derives classical introduction rules for $\disj$ and~$\exists$, as
  1.1007 +well as classical elimination rules for~$\imp$ and~$\bimp$, and the swap
  1.1008 +rule; recall Fig.\ts\ref{hol-lemmas2} above.
  1.1009 +
  1.1010 +The classical reasoner is installed.  Tactics such as \texttt{Blast_tac} and {\tt
  1.1011 +Best_tac} refer to the default claset (\texttt{claset()}), which works for most
  1.1012 +purposes.  Named clasets include \ttindexbold{prop_cs}, which includes the
  1.1013 +propositional rules, and \ttindexbold{HOL_cs}, which also includes quantifier
  1.1014 +rules.  See the file \texttt{HOL/cladata.ML} for lists of the classical rules,
  1.1015 +and \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
  1.1016 +{Chap.\ts\ref{chap:classical}} for more discussion of classical proof methods.
  1.1017 +
  1.1018 +
  1.1019 +\section{Types}\label{sec:HOL:Types}
  1.1020 +This section describes \HOL's basic predefined types ($\alpha \times
  1.1021 +\beta$, $\alpha + \beta$, $nat$ and $\alpha \; list$) and ways for
  1.1022 +introducing new types in general.  The most important type
  1.1023 +construction, the \texttt{datatype}, is treated separately in
  1.1024 +\S\ref{sec:HOL:datatype}.
  1.1025 +
  1.1026 +
  1.1027 +\subsection{Product and sum types}\index{*"* type}\index{*"+ type}
  1.1028 +\label{subsec:prod-sum}
  1.1029 +
  1.1030 +\begin{figure}[htbp]
  1.1031 +\begin{constants}
  1.1032 +  \it symbol    & \it meta-type &           & \it description \\ 
  1.1033 +  \cdx{Pair}    & $[\alpha,\beta]\To \alpha\times\beta$
  1.1034 +        & & ordered pairs $(a,b)$ \\
  1.1035 +  \cdx{fst}     & $\alpha\times\beta \To \alpha$        & & first projection\\
  1.1036 +  \cdx{snd}     & $\alpha\times\beta \To \beta$         & & second projection\\
  1.1037 +  \cdx{split}   & $[[\alpha,\beta]\To\gamma, \alpha\times\beta] \To \gamma$ 
  1.1038 +        & & generalized projection\\
  1.1039 +  \cdx{Sigma}  & 
  1.1040 +        $[\alpha\,set, \alpha\To\beta\,set]\To(\alpha\times\beta)set$ &
  1.1041 +        & general sum of sets
  1.1042 +\end{constants}
  1.1043 +\begin{ttbox}\makeatletter
  1.1044 +%\tdx{fst_def}      fst p     == @a. ? b. p = (a,b)
  1.1045 +%\tdx{snd_def}      snd p     == @b. ? a. p = (a,b)
  1.1046 +%\tdx{split_def}    split c p == c (fst p) (snd p)
  1.1047 +\tdx{Sigma_def}    Sigma A B == UN x:A. UN y:B x. {\ttlbrace}(x,y){\ttrbrace}
  1.1048 +
  1.1049 +\tdx{Pair_eq}      ((a,b) = (a',b')) = (a=a' & b=b')
  1.1050 +\tdx{Pair_inject}  [| (a, b) = (a',b');  [| a=a';  b=b' |] ==> R |] ==> R
  1.1051 +\tdx{PairE}        [| !!x y. p = (x,y) ==> Q |] ==> Q
  1.1052 +
  1.1053 +\tdx{fst_conv}     fst (a,b) = a
  1.1054 +\tdx{snd_conv}     snd (a,b) = b
  1.1055 +\tdx{surjective_pairing}  p = (fst p,snd p)
  1.1056 +
  1.1057 +\tdx{split}        split c (a,b) = c a b
  1.1058 +\tdx{split_split}  R(split c p) = (! x y. p = (x,y) --> R(c x y))
  1.1059 +
  1.1060 +\tdx{SigmaI}    [| a:A;  b:B a |] ==> (a,b) : Sigma A B
  1.1061 +\tdx{SigmaE}    [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P |] ==> P
  1.1062 +\end{ttbox}
  1.1063 +\caption{Type $\alpha\times\beta$}\label{hol-prod}
  1.1064 +\end{figure} 
  1.1065 +
  1.1066 +Theory \thydx{Prod} (Fig.\ts\ref{hol-prod}) defines the product type
  1.1067 +$\alpha\times\beta$, with the ordered pair syntax $(a, b)$.  General
  1.1068 +tuples are simulated by pairs nested to the right:
  1.1069 +\begin{center}
  1.1070 +\begin{tabular}{c|c}
  1.1071 +external & internal \\
  1.1072 +\hline
  1.1073 +$\tau@1 \times \dots \times \tau@n$ & $\tau@1 \times (\dots (\tau@{n-1} \times \tau@n)\dots)$ \\
  1.1074 +\hline
  1.1075 +$(t@1,\dots,t@n)$ & $(t@1,(\dots,(t@{n-1},t@n)\dots)$ \\
  1.1076 +\end{tabular}
  1.1077 +\end{center}
  1.1078 +In addition, it is possible to use tuples
  1.1079 +as patterns in abstractions:
  1.1080 +\begin{center}
  1.1081 +{\tt\%($x$,$y$). $t$} \quad stands for\quad \texttt{split(\%$x$\thinspace$y$.\ $t$)} 
  1.1082 +\end{center}
  1.1083 +Nested patterns are also supported.  They are translated stepwise:
  1.1084 +{\tt\%($x$,$y$,$z$). $t$} $\leadsto$ {\tt\%($x$,($y$,$z$)). $t$} $\leadsto$
  1.1085 +{\tt split(\%$x$.\%($y$,$z$). $t$)} $\leadsto$ \texttt{split(\%$x$. split(\%$y$
  1.1086 +  $z$.\ $t$))}.  The reverse translation is performed upon printing.
  1.1087 +\begin{warn}
  1.1088 +  The translation between patterns and \texttt{split} is performed automatically
  1.1089 +  by the parser and printer.  Thus the internal and external form of a term
  1.1090 +  may differ, which can affects proofs.  For example the term {\tt
  1.1091 +  (\%(x,y).(y,x))(a,b)} requires the theorem \texttt{split} (which is in the
  1.1092 +  default simpset) to rewrite to {\tt(b,a)}.
  1.1093 +\end{warn}
  1.1094 +In addition to explicit $\lambda$-abstractions, patterns can be used in any
  1.1095 +variable binding construct which is internally described by a
  1.1096 +$\lambda$-abstraction.  Some important examples are
  1.1097 +\begin{description}
  1.1098 +\item[Let:] \texttt{let {\it pattern} = $t$ in $u$}
  1.1099 +\item[Quantifiers:] \texttt{!~{\it pattern}:$A$.~$P$}
  1.1100 +\item[Choice:] {\underscoreon \tt @~{\it pattern}~.~$P$}
  1.1101 +\item[Set operations:] \texttt{UN~{\it pattern}:$A$.~$B$}
  1.1102 +\item[Sets:] \texttt{{\ttlbrace}~{\it pattern}~.~$P$~{\ttrbrace}}
  1.1103 +\end{description}
  1.1104 +
  1.1105 +There is a simple tactic which supports reasoning about patterns:
  1.1106 +\begin{ttdescription}
  1.1107 +\item[\ttindexbold{split_all_tac} $i$] replaces in subgoal $i$ all
  1.1108 +  {\tt!!}-quantified variables of product type by individual variables for
  1.1109 +  each component.  A simple example:
  1.1110 +\begin{ttbox}
  1.1111 +{\out 1. !!p. (\%(x,y,z). (x, y, z)) p = p}
  1.1112 +by(split_all_tac 1);
  1.1113 +{\out 1. !!x xa ya. (\%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)}
  1.1114 +\end{ttbox}
  1.1115 +\end{ttdescription}
  1.1116 +
  1.1117 +Theory \texttt{Prod} also introduces the degenerate product type \texttt{unit}
  1.1118 +which contains only a single element named {\tt()} with the property
  1.1119 +\begin{ttbox}
  1.1120 +\tdx{unit_eq}       u = ()
  1.1121 +\end{ttbox}
  1.1122 +\bigskip
  1.1123 +
  1.1124 +Theory \thydx{Sum} (Fig.~\ref{hol-sum}) defines the sum type $\alpha+\beta$
  1.1125 +which associates to the right and has a lower priority than $*$: $\tau@1 +
  1.1126 +\tau@2 + \tau@3*\tau@4$ means $\tau@1 + (\tau@2 + (\tau@3*\tau@4))$.
  1.1127 +
  1.1128 +The definition of products and sums in terms of existing types is not
  1.1129 +shown.  The constructions are fairly standard and can be found in the
  1.1130 +respective theory files.
  1.1131 +
  1.1132 +\begin{figure}
  1.1133 +\begin{constants}
  1.1134 +  \it symbol    & \it meta-type &           & \it description \\ 
  1.1135 +  \cdx{Inl}     & $\alpha \To \alpha+\beta$    & & first injection\\
  1.1136 +  \cdx{Inr}     & $\beta \To \alpha+\beta$     & & second injection\\
  1.1137 +  \cdx{sum_case} & $[\alpha\To\gamma, \beta\To\gamma, \alpha+\beta] \To\gamma$
  1.1138 +        & & conditional
  1.1139 +\end{constants}
  1.1140 +\begin{ttbox}\makeatletter
  1.1141 +%\tdx{sum_case_def}   sum_case == (\%f g p. @z. (!x. p=Inl x --> z=f x) &
  1.1142 +%                                        (!y. p=Inr y --> z=g y))
  1.1143 +%
  1.1144 +\tdx{Inl_not_Inr}    Inl a ~= Inr b
  1.1145 +
  1.1146 +\tdx{inj_Inl}        inj Inl
  1.1147 +\tdx{inj_Inr}        inj Inr
  1.1148 +
  1.1149 +\tdx{sumE}           [| !!x. P(Inl x);  !!y. P(Inr y) |] ==> P s
  1.1150 +
  1.1151 +\tdx{sum_case_Inl}   sum_case f g (Inl x) = f x
  1.1152 +\tdx{sum_case_Inr}   sum_case f g (Inr x) = g x
  1.1153 +
  1.1154 +\tdx{surjective_sum} sum_case (\%x. f(Inl x)) (\%y. f(Inr y)) s = f s
  1.1155 +\tdx{split_sum_case} R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) &
  1.1156 +                                     (! y. s = Inr(y) --> R(g(y))))
  1.1157 +\end{ttbox}
  1.1158 +\caption{Type $\alpha+\beta$}\label{hol-sum}
  1.1159 +\end{figure}
  1.1160 +
  1.1161 +\begin{figure}
  1.1162 +\index{*"< symbol}
  1.1163 +\index{*"* symbol}
  1.1164 +\index{*div symbol}
  1.1165 +\index{*mod symbol}
  1.1166 +\index{*"+ symbol}
  1.1167 +\index{*"- symbol}
  1.1168 +\begin{constants}
  1.1169 +  \it symbol    & \it meta-type & \it priority & \it description \\ 
  1.1170 +  \cdx{0}       & $nat$         & & zero \\
  1.1171 +  \cdx{Suc}     & $nat \To nat$ & & successor function\\
  1.1172 +% \cdx{nat_case} & $[\alpha, nat\To\alpha, nat] \To\alpha$ & & conditional\\
  1.1173 +% \cdx{nat_rec} & $[nat, \alpha, [nat, \alpha]\To\alpha] \To \alpha$
  1.1174 +%        & & primitive recursor\\
  1.1175 +  \tt *         & $[nat,nat]\To nat$    &  Left 70      & multiplication \\
  1.1176 +  \tt div       & $[nat,nat]\To nat$    &  Left 70      & division\\
  1.1177 +  \tt mod       & $[nat,nat]\To nat$    &  Left 70      & modulus\\
  1.1178 +  \tt +         & $[nat,nat]\To nat$    &  Left 65      & addition\\
  1.1179 +  \tt -         & $[nat,nat]\To nat$    &  Left 65      & subtraction
  1.1180 +\end{constants}
  1.1181 +\subcaption{Constants and infixes}
  1.1182 +
  1.1183 +\begin{ttbox}\makeatother
  1.1184 +\tdx{nat_induct}     [| P 0; !!n. P n ==> P(Suc n) |]  ==> P n
  1.1185 +
  1.1186 +\tdx{Suc_not_Zero}   Suc m ~= 0
  1.1187 +\tdx{inj_Suc}        inj Suc
  1.1188 +\tdx{n_not_Suc_n}    n~=Suc n
  1.1189 +\subcaption{Basic properties}
  1.1190 +\end{ttbox}
  1.1191 +\caption{The type of natural numbers, \tydx{nat}} \label{hol-nat1}
  1.1192 +\end{figure}
  1.1193 +
  1.1194 +
  1.1195 +\begin{figure}
  1.1196 +\begin{ttbox}\makeatother
  1.1197 +              0+n           = n
  1.1198 +              (Suc m)+n     = Suc(m+n)
  1.1199 +
  1.1200 +              m-0           = m
  1.1201 +              0-n           = n
  1.1202 +              Suc(m)-Suc(n) = m-n
  1.1203 +
  1.1204 +              0*n           = 0
  1.1205 +              Suc(m)*n      = n + m*n
  1.1206 +
  1.1207 +\tdx{mod_less}      m<n ==> m mod n = m
  1.1208 +\tdx{mod_geq}       [| 0<n;  ~m<n |] ==> m mod n = (m-n) mod n
  1.1209 +
  1.1210 +\tdx{div_less}      m<n ==> m div n = 0
  1.1211 +\tdx{div_geq}       [| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)
  1.1212 +\end{ttbox}
  1.1213 +\caption{Recursion equations for the arithmetic operators} \label{hol-nat2}
  1.1214 +\end{figure}
  1.1215 +
  1.1216 +\subsection{The type of natural numbers, \textit{nat}}
  1.1217 +\index{nat@{\textit{nat}} type|(}
  1.1218 +
  1.1219 +The theory \thydx{NatDef} defines the natural numbers in a roundabout but
  1.1220 +traditional way.  The axiom of infinity postulates a type~\tydx{ind} of
  1.1221 +individuals, which is non-empty and closed under an injective operation.  The
  1.1222 +natural numbers are inductively generated by choosing an arbitrary individual
  1.1223 +for~0 and using the injective operation to take successors.  This is a least
  1.1224 +fixedpoint construction.  For details see the file \texttt{NatDef.thy}.
  1.1225 +
  1.1226 +Type~\tydx{nat} is an instance of class~\cldx{ord}, which makes the
  1.1227 +overloaded functions of this class (esp.\ \cdx{<} and \cdx{<=}, but also
  1.1228 +\cdx{min}, \cdx{max} and \cdx{LEAST}) available on \tydx{nat}.  Theory
  1.1229 +\thydx{Nat} builds on \texttt{NatDef} and shows that {\tt<=} is a partial order,
  1.1230 +so \tydx{nat} is also an instance of class \cldx{order}.
  1.1231 +
  1.1232 +Theory \thydx{Arith} develops arithmetic on the natural numbers.  It defines
  1.1233 +addition, multiplication and subtraction.  Theory \thydx{Divides} defines
  1.1234 +division, remainder and the ``divides'' relation.  The numerous theorems
  1.1235 +proved include commutative, associative, distributive, identity and
  1.1236 +cancellation laws.  See Figs.\ts\ref{hol-nat1} and~\ref{hol-nat2}.  The
  1.1237 +recursion equations for the operators \texttt{+}, \texttt{-} and \texttt{*} on
  1.1238 +\texttt{nat} are part of the default simpset.
  1.1239 +
  1.1240 +Functions on \tydx{nat} can be defined by primitive or well-founded recursion;
  1.1241 +see \S\ref{sec:HOL:recursive}.  A simple example is addition.
  1.1242 +Here, \texttt{op +} is the name of the infix operator~\texttt{+}, following
  1.1243 +the standard convention.
  1.1244 +\begin{ttbox}
  1.1245 +\sdx{primrec}
  1.1246 +      "0 + n = n"
  1.1247 +  "Suc m + n = Suc (m + n)"
  1.1248 +\end{ttbox}
  1.1249 +There is also a \sdx{case}-construct
  1.1250 +of the form
  1.1251 +\begin{ttbox}
  1.1252 +case \(e\) of 0 => \(a\) | Suc \(m\) => \(b\)
  1.1253 +\end{ttbox}
  1.1254 +Note that Isabelle insists on precisely this format; you may not even change
  1.1255 +the order of the two cases.
  1.1256 +Both \texttt{primrec} and \texttt{case} are realized by a recursion operator
  1.1257 +\cdx{nat_rec}, the details of which can be found in theory \texttt{NatDef}.
  1.1258 +
  1.1259 +%The predecessor relation, \cdx{pred_nat}, is shown to be well-founded.
  1.1260 +%Recursion along this relation resembles primitive recursion, but is
  1.1261 +%stronger because we are in higher-order logic; using primitive recursion to
  1.1262 +%define a higher-order function, we can easily Ackermann's function, which
  1.1263 +%is not primitive recursive \cite[page~104]{thompson91}.
  1.1264 +%The transitive closure of \cdx{pred_nat} is~$<$.  Many functions on the
  1.1265 +%natural numbers are most easily expressed using recursion along~$<$.
  1.1266 +
  1.1267 +Tactic {\tt\ttindex{induct_tac} "$n$" $i$} performs induction on variable~$n$
  1.1268 +in subgoal~$i$ using theorem \texttt{nat_induct}.  There is also the derived
  1.1269 +theorem \tdx{less_induct}:
  1.1270 +\begin{ttbox}
  1.1271 +[| !!n. [| ! m. m<n --> P m |] ==> P n |]  ==>  P n
  1.1272 +\end{ttbox}
  1.1273 +
  1.1274 +
  1.1275 +Reasoning about arithmetic inequalities can be tedious.  Fortunately HOL
  1.1276 +provides a decision procedure for quantifier-free linear arithmetic (i.e.\ 
  1.1277 +only addition and subtraction). The simplifier invokes a weak version of this
  1.1278 +decision procedure automatically. If this is not sufficent, you can invoke
  1.1279 +the full procedure \ttindex{arith_tac} explicitly.  It copes with arbitrary
  1.1280 +formulae involving {\tt=}, {\tt<}, {\tt<=}, {\tt+}, {\tt-}, {\tt Suc}, {\tt
  1.1281 +  min}, {\tt max} and numerical constants; other subterms are treated as
  1.1282 +atomic; subformulae not involving type $nat$ are ignored; quantified
  1.1283 +subformulae are ignored unless they are positive universal or negative
  1.1284 +existential. Note that the running time is exponential in the number of
  1.1285 +occurrences of {\tt min}, {\tt max}, and {\tt-} because they require case
  1.1286 +distinctions. Note also that \texttt{arith_tac} is not complete: if
  1.1287 +divisibility plays a role, it may fail to prove a valid formula, for example
  1.1288 +$m+m \neq n+n+1$. Fortunately such examples are rare in practice.
  1.1289 +
  1.1290 +If \texttt{arith_tac} fails you, try to find relevant arithmetic results in
  1.1291 +the library.  The theory \texttt{NatDef} contains theorems about {\tt<} and
  1.1292 +{\tt<=}, the theory \texttt{Arith} contains theorems about \texttt{+},
  1.1293 +\texttt{-} and \texttt{*}, and theory \texttt{Divides} contains theorems about
  1.1294 +\texttt{div} and \texttt{mod}.  Use the \texttt{find}-functions to locate them
  1.1295 +(see the {\em Reference Manual\/}).
  1.1296 +
  1.1297 +\begin{figure}
  1.1298 +\index{#@{\tt[]} symbol}
  1.1299 +\index{#@{\tt\#} symbol}
  1.1300 +\index{"@@{\tt\at} symbol}
  1.1301 +\index{*"! symbol}
  1.1302 +\begin{constants}
  1.1303 +  \it symbol & \it meta-type & \it priority & \it description \\
  1.1304 +  \tt[]    & $\alpha\,list$ & & empty list\\
  1.1305 +  \tt \#   & $[\alpha,\alpha\,list]\To \alpha\,list$ & Right 65 & 
  1.1306 +        list constructor \\
  1.1307 +  \cdx{null}    & $\alpha\,list \To bool$ & & emptiness test\\
  1.1308 +  \cdx{hd}      & $\alpha\,list \To \alpha$ & & head \\
  1.1309 +  \cdx{tl}      & $\alpha\,list \To \alpha\,list$ & & tail \\
  1.1310 +  \cdx{last}    & $\alpha\,list \To \alpha$ & & last element \\
  1.1311 +  \cdx{butlast} & $\alpha\,list \To \alpha\,list$ & & drop last element \\
  1.1312 +  \tt\at  & $[\alpha\,list,\alpha\,list]\To \alpha\,list$ & Left 65 & append \\
  1.1313 +  \cdx{map}     & $(\alpha\To\beta) \To (\alpha\,list \To \beta\,list)$
  1.1314 +        & & apply to all\\
  1.1315 +  \cdx{filter}  & $(\alpha \To bool) \To (\alpha\,list \To \alpha\,list)$
  1.1316 +        & & filter functional\\
  1.1317 +  \cdx{set}& $\alpha\,list \To \alpha\,set$ & & elements\\
  1.1318 +  \sdx{mem}  & $\alpha \To \alpha\,list \To bool$  &  Left 55   & membership\\
  1.1319 +  \cdx{foldl}   & $(\beta\To\alpha\To\beta) \To \beta \To \alpha\,list \To \beta$ &
  1.1320 +  & iteration \\
  1.1321 +  \cdx{concat}   & $(\alpha\,list)list\To \alpha\,list$ & & concatenation \\
  1.1322 +  \cdx{rev}     & $\alpha\,list \To \alpha\,list$ & & reverse \\
  1.1323 +  \cdx{length}  & $\alpha\,list \To nat$ & & length \\
  1.1324 +  \tt! & $\alpha\,list \To nat \To \alpha$ & Left 100 & indexing \\
  1.1325 +  \cdx{take}, \cdx{drop} & $nat \To \alpha\,list \To \alpha\,list$ &&
  1.1326 +    take or drop a prefix \\
  1.1327 +  \cdx{takeWhile},\\
  1.1328 +  \cdx{dropWhile} &
  1.1329 +    $(\alpha \To bool) \To \alpha\,list \To \alpha\,list$ &&
  1.1330 +    take or drop a prefix
  1.1331 +\end{constants}
  1.1332 +\subcaption{Constants and infixes}
  1.1333 +
  1.1334 +\begin{center} \tt\frenchspacing
  1.1335 +\begin{tabular}{rrr} 
  1.1336 +  \it external        & \it internal  & \it description \\{}
  1.1337 +  [$x@1$, $\dots$, $x@n$]  &  $x@1$ \# $\cdots$ \# $x@n$ \# [] &
  1.1338 +        \rm finite list \\{}
  1.1339 +  [$x$:$l$. $P$]  & filter ($\lambda x{.}P$) $l$ & 
  1.1340 +        \rm list comprehension
  1.1341 +\end{tabular}
  1.1342 +\end{center}
  1.1343 +\subcaption{Translations}
  1.1344 +\caption{The theory \thydx{List}} \label{hol-list}
  1.1345 +\end{figure}
  1.1346 +
  1.1347 +
  1.1348 +\begin{figure}
  1.1349 +\begin{ttbox}\makeatother
  1.1350 +null [] = True
  1.1351 +null (x#xs) = False
  1.1352 +
  1.1353 +hd (x#xs) = x
  1.1354 +tl (x#xs) = xs
  1.1355 +tl [] = []
  1.1356 +
  1.1357 +[] @ ys = ys
  1.1358 +(x#xs) @ ys = x # xs @ ys
  1.1359 +
  1.1360 +map f [] = []
  1.1361 +map f (x#xs) = f x # map f xs
  1.1362 +
  1.1363 +filter P [] = []
  1.1364 +filter P (x#xs) = (if P x then x#filter P xs else filter P xs)
  1.1365 +
  1.1366 +set [] = \ttlbrace\ttrbrace
  1.1367 +set (x#xs) = insert x (set xs)
  1.1368 +
  1.1369 +x mem [] = False
  1.1370 +x mem (y#ys) = (if y=x then True else x mem ys)
  1.1371 +
  1.1372 +foldl f a [] = a
  1.1373 +foldl f a (x#xs) = foldl f (f a x) xs
  1.1374 +
  1.1375 +concat([]) = []
  1.1376 +concat(x#xs) = x @ concat(xs)
  1.1377 +
  1.1378 +rev([]) = []
  1.1379 +rev(x#xs) = rev(xs) @ [x]
  1.1380 +
  1.1381 +length([]) = 0
  1.1382 +length(x#xs) = Suc(length(xs))
  1.1383 +
  1.1384 +xs!0 = hd xs
  1.1385 +xs!(Suc n) = (tl xs)!n
  1.1386 +
  1.1387 +take n [] = []
  1.1388 +take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)
  1.1389 +
  1.1390 +drop n [] = []
  1.1391 +drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)
  1.1392 +
  1.1393 +takeWhile P [] = []
  1.1394 +takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])
  1.1395 +
  1.1396 +dropWhile P [] = []
  1.1397 +dropWhile P (x#xs) = (if P x then dropWhile P xs else xs)
  1.1398 +\end{ttbox}
  1.1399 +\caption{Recursions equations for list processing functions}
  1.1400 +\label{fig:HOL:list-simps}
  1.1401 +\end{figure}
  1.1402 +\index{nat@{\textit{nat}} type|)}
  1.1403 +
  1.1404 +
  1.1405 +\subsection{The type constructor for lists, \textit{list}}
  1.1406 +\label{subsec:list}
  1.1407 +\index{list@{\textit{list}} type|(}
  1.1408 +
  1.1409 +Figure~\ref{hol-list} presents the theory \thydx{List}: the basic list
  1.1410 +operations with their types and syntax.  Type $\alpha \; list$ is
  1.1411 +defined as a \texttt{datatype} with the constructors {\tt[]} and {\tt\#}.
  1.1412 +As a result the generic structural induction and case analysis tactics
  1.1413 +\texttt{induct\_tac} and \texttt{exhaust\_tac} also become available for
  1.1414 +lists.  A \sdx{case} construct of the form
  1.1415 +\begin{center}\tt
  1.1416 +case $e$ of [] => $a$  |  \(x\)\#\(xs\) => b
  1.1417 +\end{center}
  1.1418 +is defined by translation.  For details see~\S\ref{sec:HOL:datatype}. There
  1.1419 +is also a case splitting rule \tdx{split_list_case}
  1.1420 +\[
  1.1421 +\begin{array}{l}
  1.1422 +P(\mathtt{case}~e~\mathtt{of}~\texttt{[] =>}~a ~\texttt{|}~
  1.1423 +               x\texttt{\#}xs~\texttt{=>}~f~x~xs) ~= \\
  1.1424 +((e = \texttt{[]} \to P(a)) \land
  1.1425 + (\forall x~ xs. e = x\texttt{\#}xs \to P(f~x~xs)))
  1.1426 +\end{array}
  1.1427 +\]
  1.1428 +which can be fed to \ttindex{addsplits} just like
  1.1429 +\texttt{split_if} (see~\S\ref{subsec:HOL:case:splitting}).
  1.1430 +
  1.1431 +\texttt{List} provides a basic library of list processing functions defined by
  1.1432 +primitive recursion (see~\S\ref{sec:HOL:primrec}).  The recursion equations
  1.1433 +are shown in Fig.\ts\ref{fig:HOL:list-simps}.
  1.1434 +
  1.1435 +\index{list@{\textit{list}} type|)}
  1.1436 +
  1.1437 +
  1.1438 +\subsection{Introducing new types} \label{sec:typedef}
  1.1439 +
  1.1440 +The \HOL-methodology dictates that all extensions to a theory should
  1.1441 +be \textbf{definitional}.  The type definition mechanism that
  1.1442 +meets this criterion is \ttindex{typedef}.  Note that \emph{type synonyms},
  1.1443 +which are inherited from {\Pure} and described elsewhere, are just
  1.1444 +syntactic abbreviations that have no logical meaning.
  1.1445 +
  1.1446 +\begin{warn}
  1.1447 +  Types in \HOL\ must be non-empty; otherwise the quantifier rules would be
  1.1448 +  unsound, because $\exists x. x=x$ is a theorem \cite[\S7]{paulson-COLOG}.
  1.1449 +\end{warn}
  1.1450 +A \bfindex{type definition} identifies the new type with a subset of
  1.1451 +an existing type.  More precisely, the new type is defined by
  1.1452 +exhibiting an existing type~$\tau$, a set~$A::\tau\,set$, and a
  1.1453 +theorem of the form $x:A$.  Thus~$A$ is a non-empty subset of~$\tau$,
  1.1454 +and the new type denotes this subset.  New functions are defined that
  1.1455 +establish an isomorphism between the new type and the subset.  If
  1.1456 +type~$\tau$ involves type variables $\alpha@1$, \ldots, $\alpha@n$,
  1.1457 +then the type definition creates a type constructor
  1.1458 +$(\alpha@1,\ldots,\alpha@n)ty$ rather than a particular type.
  1.1459 +
  1.1460 +\begin{figure}[htbp]
  1.1461 +\begin{rail}
  1.1462 +typedef  : 'typedef' ( () | '(' name ')') type '=' set witness;
  1.1463 +
  1.1464 +type    : typevarlist name ( () | '(' infix ')' );
  1.1465 +set     : string;
  1.1466 +witness : () | '(' id ')';
  1.1467 +\end{rail}
  1.1468 +\caption{Syntax of type definitions}
  1.1469 +\label{fig:HOL:typedef}
  1.1470 +\end{figure}
  1.1471 +
  1.1472 +The syntax for type definitions is shown in Fig.~\ref{fig:HOL:typedef}.  For
  1.1473 +the definition of `typevarlist' and `infix' see
  1.1474 +\iflabelundefined{chap:classical}
  1.1475 +{the appendix of the {\em Reference Manual\/}}%
  1.1476 +{Appendix~\ref{app:TheorySyntax}}.  The remaining nonterminals have the
  1.1477 +following meaning:
  1.1478 +\begin{description}
  1.1479 +\item[\it type:] the new type constructor $(\alpha@1,\dots,\alpha@n)ty$ with
  1.1480 +  optional infix annotation.
  1.1481 +\item[\it name:] an alphanumeric name $T$ for the type constructor
  1.1482 +  $ty$, in case $ty$ is a symbolic name.  Defaults to $ty$.
  1.1483 +\item[\it set:] the representing subset $A$.
  1.1484 +\item[\it witness:] name of a theorem of the form $a:A$ proving
  1.1485 +  non-emptiness.  It can be omitted in case Isabelle manages to prove
  1.1486 +  non-emptiness automatically.
  1.1487 +\end{description}
  1.1488 +If all context conditions are met (no duplicate type variables in
  1.1489 +`typevarlist', no extra type variables in `set', and no free term variables
  1.1490 +in `set'), the following components are added to the theory:
  1.1491 +\begin{itemize}
  1.1492 +\item a type $ty :: (term,\dots,term)term$
  1.1493 +\item constants
  1.1494 +\begin{eqnarray*}
  1.1495 +T &::& \tau\;set \\
  1.1496 +Rep_T &::& (\alpha@1,\dots,\alpha@n)ty \To \tau \\
  1.1497 +Abs_T &::& \tau \To (\alpha@1,\dots,\alpha@n)ty
  1.1498 +\end{eqnarray*}
  1.1499 +\item a definition and three axioms
  1.1500 +\[
  1.1501 +\begin{array}{ll}
  1.1502 +T{\tt_def} & T \equiv A \\
  1.1503 +{\tt Rep_}T & Rep_T\,x \in T \\
  1.1504 +{\tt Rep_}T{\tt_inverse} & Abs_T\,(Rep_T\,x) = x \\
  1.1505 +{\tt Abs_}T{\tt_inverse} & y \in T \Imp Rep_T\,(Abs_T\,y) = y
  1.1506 +\end{array}
  1.1507 +\]
  1.1508 +stating that $(\alpha@1,\dots,\alpha@n)ty$ is isomorphic to $A$ by $Rep_T$
  1.1509 +and its inverse $Abs_T$.
  1.1510 +\end{itemize}
  1.1511 +Below are two simple examples of \HOL\ type definitions.  Non-emptiness
  1.1512 +is proved automatically here.
  1.1513 +\begin{ttbox}
  1.1514 +typedef unit = "{\ttlbrace}True{\ttrbrace}"
  1.1515 +
  1.1516 +typedef (prod)
  1.1517 +  ('a, 'b) "*"    (infixr 20)
  1.1518 +      = "{\ttlbrace}f . EX (a::'a) (b::'b). f = (\%x y. x = a & y = b){\ttrbrace}"
  1.1519 +\end{ttbox}
  1.1520 +
  1.1521 +Type definitions permit the introduction of abstract data types in a safe
  1.1522 +way, namely by providing models based on already existing types.  Given some
  1.1523 +abstract axiomatic description $P$ of a type, this involves two steps:
  1.1524 +\begin{enumerate}
  1.1525 +\item Find an appropriate type $\tau$ and subset $A$ which has the desired
  1.1526 +  properties $P$, and make a type definition based on this representation.
  1.1527 +\item Prove that $P$ holds for $ty$ by lifting $P$ from the representation.
  1.1528 +\end{enumerate}
  1.1529 +You can now forget about the representation and work solely in terms of the
  1.1530 +abstract properties $P$.
  1.1531 +
  1.1532 +\begin{warn}
  1.1533 +If you introduce a new type (constructor) $ty$ axiomatically, i.e.\ by
  1.1534 +declaring the type and its operations and by stating the desired axioms, you
  1.1535 +should make sure the type has a non-empty model.  You must also have a clause
  1.1536 +\par
  1.1537 +\begin{ttbox}
  1.1538 +arities \(ty\) :: (term,\thinspace\(\dots\),{\thinspace}term){\thinspace}term
  1.1539 +\end{ttbox}
  1.1540 +in your theory file to tell Isabelle that $ty$ is in class \texttt{term}, the
  1.1541 +class of all \HOL\ types.
  1.1542 +\end{warn}
  1.1543 +
  1.1544 +
  1.1545 +\section{Records}
  1.1546 +
  1.1547 +At a first approximation, records are just a minor generalisation of tuples,
  1.1548 +where components may be addressed by labels instead of just position (think of
  1.1549 +{\ML}, for example).  The version of records offered by Isabelle/HOL is
  1.1550 +slightly more advanced, though, supporting \emph{extensible record schemes}.
  1.1551 +This admits operations that are polymorphic with respect to record extension,
  1.1552 +yielding ``object-oriented'' effects like (single) inheritance.  See also
  1.1553 +\cite{Naraschewski-Wenzel:1998:TPHOL} for more details on object-oriented
  1.1554 +verification and record subtyping in HOL.
  1.1555 +
  1.1556 +
  1.1557 +\subsection{Basics}
  1.1558 +
  1.1559 +Isabelle/HOL supports fixed and schematic records both at the level of terms
  1.1560 +and types.  The concrete syntax is as follows:
  1.1561 +
  1.1562 +\begin{center}
  1.1563 +\begin{tabular}{l|l|l}
  1.1564 +  & record terms & record types \\ \hline
  1.1565 +  fixed & $\record{x = a\fs y = b}$ & $\record{x \ty A\fs y \ty B}$ \\
  1.1566 +  schematic & $\record{x = a\fs y = b\fs \more = m}$ &
  1.1567 +    $\record{x \ty A\fs y \ty B\fs \more \ty M}$ \\
  1.1568 +\end{tabular}
  1.1569 +\end{center}
  1.1570 +
  1.1571 +\noindent The \textsc{ascii} representation of $\record{x = a}$ is \texttt{(| x = a |)}.
  1.1572 +
  1.1573 +A fixed record $\record{x = a\fs y = b}$ has field $x$ of value $a$ and field
  1.1574 +$y$ of value $b$.  The corresponding type is $\record{x \ty A\fs y \ty B}$,
  1.1575 +assuming that $a \ty A$ and $b \ty B$.
  1.1576 +
  1.1577 +A record scheme like $\record{x = a\fs y = b\fs \more = m}$ contains fields
  1.1578 +$x$ and $y$ as before, but also possibly further fields as indicated by the
  1.1579 +``$\more$'' notation (which is actually part of the syntax).  The improper
  1.1580 +field ``$\more$'' of a record scheme is called the \emph{more part}.
  1.1581 +Logically it is just a free variable, which is occasionally referred to as
  1.1582 +\emph{row variable} in the literature.  The more part of a record scheme may
  1.1583 +be instantiated by zero or more further components.  For example, above scheme
  1.1584 +might get instantiated to $\record{x = a\fs y = b\fs z = c\fs \more = m'}$,
  1.1585 +where $m'$ refers to a different more part.  Fixed records are special
  1.1586 +instances of record schemes, where ``$\more$'' is properly terminated by the
  1.1587 +$() :: unit$ element.  Actually, $\record{x = a\fs y = b}$ is just an
  1.1588 +abbreviation for $\record{x = a\fs y = b\fs \more = ()}$.
  1.1589 +
  1.1590 +\medskip
  1.1591 +
  1.1592 +There are two key features that make extensible records in a simply typed
  1.1593 +language like HOL feasible:
  1.1594 +\begin{enumerate}
  1.1595 +\item the more part is internalised, as a free term or type variable,
  1.1596 +\item field names are externalised, they cannot be accessed within the logic
  1.1597 +  as first-class values.
  1.1598 +\end{enumerate}
  1.1599 +
  1.1600 +\medskip
  1.1601 +
  1.1602 +In Isabelle/HOL record types have to be defined explicitly, fixing their field
  1.1603 +names and types, and their (optional) parent record (see
  1.1604 +\S\ref{sec:HOL:record-def}).  Afterwards, records may be formed using above
  1.1605 +syntax, while obeying the canonical order of fields as given by their
  1.1606 +declaration.  The record package also provides several operations like
  1.1607 +selectors and updates (see \S\ref{sec:HOL:record-ops}), together with
  1.1608 +characteristic properties (see \S\ref{sec:HOL:record-thms}).
  1.1609 +
  1.1610 +There is an example theory demonstrating most basic aspects of extensible
  1.1611 +records (see theory \texttt{HOL/ex/Points} in the Isabelle sources).
  1.1612 +
  1.1613 +
  1.1614 +\subsection{Defining records}\label{sec:HOL:record-def}
  1.1615 +
  1.1616 +The theory syntax for record type definitions is shown in
  1.1617 +Fig.~\ref{fig:HOL:record}.  For the definition of `typevarlist' and `type' see
  1.1618 +\iflabelundefined{chap:classical}
  1.1619 +{the appendix of the {\em Reference Manual\/}}%
  1.1620 +{Appendix~\ref{app:TheorySyntax}}.
  1.1621 +
  1.1622 +\begin{figure}[htbp]
  1.1623 +\begin{rail}
  1.1624 +record  : 'record' typevarlist name '=' parent (field +);
  1.1625 +
  1.1626 +parent  : ( () | type '+');
  1.1627 +field   : name '::' type;
  1.1628 +\end{rail}
  1.1629 +\caption{Syntax of record type definitions}
  1.1630 +\label{fig:HOL:record}
  1.1631 +\end{figure}
  1.1632 +
  1.1633 +A general \ttindex{record} specification is of the following form:
  1.1634 +\[
  1.1635 +\mathtt{record}~(\alpha@1, \dots, \alpha@n) \, t ~=~
  1.1636 +  (\tau@1, \dots, \tau@m) \, s ~+~ c@1 :: \sigma@1 ~ \dots ~ c@l :: \sigma@l
  1.1637 +\]
  1.1638 +where $\vec\alpha@n$ are distinct type variables, and $\vec\tau@m$,
  1.1639 +$\vec\sigma@l$ are types containing at most variables from $\vec\alpha@n$.
  1.1640 +Type constructor $t$ has to be new, while $s$ has to specify an existing
  1.1641 +record type.  Furthermore, the $\vec c@l$ have to be distinct field names.
  1.1642 +There has to be at least one field.
  1.1643 +
  1.1644 +In principle, field names may never be shared with other records.  This is no
  1.1645 +actual restriction in practice, since $\vec c@l$ are internally declared
  1.1646 +within a separate name space qualified by the name $t$ of the record.
  1.1647 +
  1.1648 +\medskip
  1.1649 +
  1.1650 +Above definition introduces a new record type $(\vec\alpha@n) \, t$ by
  1.1651 +extending an existing one $(\vec\tau@m) \, s$ by new fields $\vec c@l \ty
  1.1652 +\vec\sigma@l$.  The parent record specification is optional, by omitting it
  1.1653 +$t$ becomes a \emph{root record}.  The hierarchy of all records declared
  1.1654 +within a theory forms a forest structure, i.e.\ a set of trees, where any of
  1.1655 +these is rooted by some root record.
  1.1656 +
  1.1657 +For convenience, $(\vec\alpha@n) \, t$ is made a type abbreviation for the
  1.1658 +fixed record type $\record{\vec c@l \ty \vec\sigma@l}$, and $(\vec\alpha@n,
  1.1659 +\zeta) \, t_scheme$ is made an abbreviation for $\record{\vec c@l \ty
  1.1660 +  \vec\sigma@l\fs \more \ty \zeta}$.
  1.1661 +
  1.1662 +\medskip
  1.1663 +
  1.1664 +The following simple example defines a root record type $point$ with fields $x
  1.1665 +\ty nat$ and $y \ty nat$, and record type $cpoint$ by extending $point$ with
  1.1666 +an additional $colour$ component.
  1.1667 +
  1.1668 +\begin{ttbox}
  1.1669 +  record point =
  1.1670 +    x :: nat
  1.1671 +    y :: nat
  1.1672 +
  1.1673 +  record cpoint = point +
  1.1674 +    colour :: string
  1.1675 +\end{ttbox}
  1.1676 +
  1.1677 +
  1.1678 +\subsection{Record operations}\label{sec:HOL:record-ops}
  1.1679 +
  1.1680 +Any record definition of the form presented above produces certain standard
  1.1681 +operations.  Selectors and updates are provided for any field, including the
  1.1682 +improper one ``$more$''.  There are also cumulative record constructor
  1.1683 +functions.
  1.1684 +
  1.1685 +To simplify the presentation below, we first assume that $(\vec\alpha@n) \, t$
  1.1686 +is a root record with fields $\vec c@l \ty \vec\sigma@l$.
  1.1687 +
  1.1688 +\medskip
  1.1689 +
  1.1690 +\textbf{Selectors} and \textbf{updates} are available for any field (including
  1.1691 +``$more$'') as follows:
  1.1692 +\begin{matharray}{lll}
  1.1693 +  c@i & \ty & \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \To \sigma@i \\
  1.1694 +  c@i_update & \ty & \sigma@i \To \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \To
  1.1695 +    \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta}
  1.1696 +\end{matharray}
  1.1697 +
  1.1698 +There is some special syntax for updates: $r \, \record{x \asn a}$ abbreviates
  1.1699 +term $x_update \, a \, r$.  Repeated updates are also supported: $r \,
  1.1700 +\record{x \asn a} \, \record{y \asn b} \, \record{z \asn c}$ may be written as
  1.1701 +$r \, \record{x \asn a\fs y \asn b\fs z \asn c}$.  Note that because of
  1.1702 +postfix notation the order of fields shown here is reverse than in the actual
  1.1703 +term.  This might lead to confusion in conjunction with proof tools like
  1.1704 +ordered rewriting.
  1.1705 +
  1.1706 +Since repeated updates are just function applications, fields may be freely
  1.1707 +permuted in $\record{x \asn a\fs y \asn b\fs z \asn c}$, as far as the logic
  1.1708 +is concerned.  Thus commutativity of updates can be proven within the logic
  1.1709 +for any two fields, but not as a general theorem: fields are not first-class
  1.1710 +values.
  1.1711 +
  1.1712 +\medskip
  1.1713 +
  1.1714 +\textbf{Make} operations provide cumulative record constructor functions:
  1.1715 +\begin{matharray}{lll}
  1.1716 +  make & \ty & \vec\sigma@l \To \record{\vec c@l \ty \vec \sigma@l} \\
  1.1717 +  make_scheme & \ty & \vec\sigma@l \To
  1.1718 +    \zeta \To \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \\
  1.1719 +\end{matharray}
  1.1720 +\noindent
  1.1721 +These functions are curried.  The corresponding definitions in terms of actual
  1.1722 +record terms are part of the standard simpset.  Thus $point\dtt make\,a\,b$
  1.1723 +rewrites to $\record{x = a\fs y = b}$.
  1.1724 +
  1.1725 +\medskip
  1.1726 +
  1.1727 +Any of above selector, update and make operations are declared within a local
  1.1728 +name space prefixed by the name $t$ of the record.  In case that different
  1.1729 +records share base names of fields, one has to qualify names explicitly (e.g.\ 
  1.1730 +$t\dtt c@i_update$).  This is recommended especially for operations like
  1.1731 +$make$ or $update_more$ that always have the same base name.  Just use $t\dtt
  1.1732 +make$ etc.\ to avoid confusion.
  1.1733 +
  1.1734 +\bigskip
  1.1735 +
  1.1736 +We reconsider the case of non-root records, which are derived of some parent
  1.1737 +record.  In general, the latter may depend on another parent as well,
  1.1738 +resulting in a list of \emph{ancestor records}.  Appending the lists of fields
  1.1739 +of all ancestors results in a certain field prefix.  The record package
  1.1740 +automatically takes care of this by lifting operations over this context of
  1.1741 +ancestor fields.  Assuming that $(\vec\alpha@n) \, t$ has ancestor fields
  1.1742 +$\vec d@k \ty \vec\rho@k$, selectors will get the following types:
  1.1743 +\begin{matharray}{lll}
  1.1744 +  c@i & \ty & \record{\vec d@k \ty \vec\rho@k, \vec c@l \ty \vec \sigma@l, \more \ty \zeta}
  1.1745 +    \To \sigma@i
  1.1746 +\end{matharray}
  1.1747 +\noindent
  1.1748 +Update and make operations are analogous.
  1.1749 +
  1.1750 +
  1.1751 +\subsection{Proof tools}\label{sec:HOL:record-thms}
  1.1752 +
  1.1753 +The record package provides the following proof rules for any record type $t$.
  1.1754 +\begin{enumerate}
  1.1755 +  
  1.1756 +\item Standard conversions (selectors or updates applied to record constructor
  1.1757 +  terms, make function definitions) are part of the standard simpset (via
  1.1758 +  \texttt{addsimps}).
  1.1759 +  
  1.1760 +\item Inject equations of a form analogous to $((x, y) = (x', y')) \equiv x=x'
  1.1761 +  \conj y=y'$ are made part of the standard simpset and claset (via
  1.1762 +  \texttt{addIffs}).
  1.1763 +  
  1.1764 +\item A tactic for record field splitting (\ttindex{record_split_tac}) is made
  1.1765 +  part of the standard claset (via \texttt{addSWrapper}).  This tactic is
  1.1766 +  based on rules analogous to $(\All x PROP~P~x) \equiv (\All{a~b} PROP~P(a,
  1.1767 +  b))$ for any field.
  1.1768 +\end{enumerate}
  1.1769 +
  1.1770 +The first two kinds of rules are stored within the theory as $t\dtt simps$ and
  1.1771 +$t\dtt iffs$, respectively.  In some situations it might be appropriate to
  1.1772 +expand the definitions of updates: $t\dtt updates$.  Following a new trend in
  1.1773 +Isabelle system architecture, these names are \emph{not} bound at the {\ML}
  1.1774 +level, though.
  1.1775 +
  1.1776 +\medskip
  1.1777 +
  1.1778 +The example theory \texttt{HOL/ex/Points} demonstrates typical proofs
  1.1779 +concerning records.  The basic idea is to make \ttindex{record_split_tac}
  1.1780 +expand quantified record variables and then simplify by the conversion rules.
  1.1781 +By using a combination of the simplifier and classical prover together with
  1.1782 +the default simpset and claset, record problems should be solved with a single
  1.1783 +stroke of \texttt{Auto_tac} or \texttt{Force_tac}.
  1.1784 +
  1.1785 +
  1.1786 +\section{Datatype definitions}
  1.1787 +\label{sec:HOL:datatype}
  1.1788 +\index{*datatype|(}
  1.1789 +
  1.1790 +Inductive datatypes, similar to those of \ML, frequently appear in 
  1.1791 +applications of Isabelle/HOL.  In principle, such types could be defined by
  1.1792 +hand via \texttt{typedef} (see \S\ref{sec:typedef}), but this would be far too
  1.1793 +tedious.  The \ttindex{datatype} definition package of \HOL\ automates such
  1.1794 +chores.  It generates an appropriate \texttt{typedef} based on a least
  1.1795 +fixed-point construction, and proves freeness theorems and induction rules, as
  1.1796 +well as theorems for recursion and case combinators.  The user just has to
  1.1797 +give a simple specification of new inductive types using a notation similar to
  1.1798 +{\ML} or Haskell.
  1.1799 +
  1.1800 +The current datatype package can handle both mutual and indirect recursion.
  1.1801 +It also offers to represent existing types as datatypes giving the advantage
  1.1802 +of a more uniform view on standard theories.
  1.1803 +
  1.1804 +
  1.1805 +\subsection{Basics}
  1.1806 +\label{subsec:datatype:basics}
  1.1807 +
  1.1808 +A general \texttt{datatype} definition is of the following form:
  1.1809 +\[
  1.1810 +\begin{array}{llcl}
  1.1811 +\mathtt{datatype} & (\alpha@1,\ldots,\alpha@h)t@1 & = &
  1.1812 +  C^1@1~\tau^1@{1,1}~\ldots~\tau^1@{1,m^1@1} ~\mid~ \ldots ~\mid~
  1.1813 +    C^1@{k@1}~\tau^1@{k@1,1}~\ldots~\tau^1@{k@1,m^1@{k@1}} \\
  1.1814 + & & \vdots \\
  1.1815 +\mathtt{and} & (\alpha@1,\ldots,\alpha@h)t@n & = &
  1.1816 +  C^n@1~\tau^n@{1,1}~\ldots~\tau^n@{1,m^n@1} ~\mid~ \ldots ~\mid~
  1.1817 +    C^n@{k@n}~\tau^n@{k@n,1}~\ldots~\tau^n@{k@n,m^n@{k@n}}
  1.1818 +\end{array}
  1.1819 +\]
  1.1820 +where $\alpha@i$ are type variables, $C^j@i$ are distinct constructor
  1.1821 +names and $\tau^j@{i,i'}$ are {\em admissible} types containing at
  1.1822 +most the type variables $\alpha@1, \ldots, \alpha@h$. A type $\tau$
  1.1823 +occurring in a \texttt{datatype} definition is {\em admissible} iff
  1.1824 +\begin{itemize}
  1.1825 +\item $\tau$ is non-recursive, i.e.\ $\tau$ does not contain any of the
  1.1826 +newly defined type constructors $t@1,\ldots,t@n$, or
  1.1827 +\item $\tau = (\alpha@1,\ldots,\alpha@h)t@{j'}$ where $1 \leq j' \leq n$, or
  1.1828 +\item $\tau = (\tau'@1,\ldots,\tau'@{h'})t'$, where $t'$ is
  1.1829 +the type constructor of an already existing datatype and $\tau'@1,\ldots,\tau'@{h'}$
  1.1830 +are admissible types.
  1.1831 +\end{itemize}
  1.1832 +If some $(\alpha@1,\ldots,\alpha@h)t@{j'}$ occurs in a type $\tau^j@{i,i'}$
  1.1833 +of the form
  1.1834 +\[
  1.1835 +(\ldots,\ldots ~ (\alpha@1,\ldots,\alpha@h)t@{j'} ~ \ldots,\ldots)t'
  1.1836 +\]
  1.1837 +this is called a {\em nested} (or \emph{indirect}) occurrence. A very simple
  1.1838 +example of a datatype is the type \texttt{list}, which can be defined by
  1.1839 +\begin{ttbox}
  1.1840 +datatype 'a list = Nil
  1.1841 +                 | Cons 'a ('a list)
  1.1842 +\end{ttbox}
  1.1843 +Arithmetic expressions \texttt{aexp} and boolean expressions \texttt{bexp} can be modelled
  1.1844 +by the mutually recursive datatype definition
  1.1845 +\begin{ttbox}
  1.1846 +datatype 'a aexp = If_then_else ('a bexp) ('a aexp) ('a aexp)
  1.1847 +                 | Sum ('a aexp) ('a aexp)
  1.1848 +                 | Diff ('a aexp) ('a aexp)
  1.1849 +                 | Var 'a
  1.1850 +                 | Num nat
  1.1851 +and      'a bexp = Less ('a aexp) ('a aexp)
  1.1852 +                 | And ('a bexp) ('a bexp)
  1.1853 +                 | Or ('a bexp) ('a bexp)
  1.1854 +\end{ttbox}
  1.1855 +The datatype \texttt{term}, which is defined by
  1.1856 +\begin{ttbox}
  1.1857 +datatype ('a, 'b) term = Var 'a
  1.1858 +                       | App 'b ((('a, 'b) term) list)
  1.1859 +\end{ttbox}
  1.1860 +is an example for a datatype with nested recursion.
  1.1861 +
  1.1862 +\medskip
  1.1863 +
  1.1864 +Types in HOL must be non-empty. Each of the new datatypes
  1.1865 +$(\alpha@1,\ldots,\alpha@h)t@j$ with $1 \le j \le n$ is non-empty iff it has a
  1.1866 +constructor $C^j@i$ with the following property: for all argument types
  1.1867 +$\tau^j@{i,i'}$ of the form $(\alpha@1,\ldots,\alpha@h)t@{j'}$ the datatype
  1.1868 +$(\alpha@1,\ldots,\alpha@h)t@{j'}$ is non-empty.
  1.1869 +
  1.1870 +If there are no nested occurrences of the newly defined datatypes, obviously
  1.1871 +at least one of the newly defined datatypes $(\alpha@1,\ldots,\alpha@h)t@j$
  1.1872 +must have a constructor $C^j@i$ without recursive arguments, a \emph{base
  1.1873 +  case}, to ensure that the new types are non-empty. If there are nested
  1.1874 +occurrences, a datatype can even be non-empty without having a base case
  1.1875 +itself. Since \texttt{list} is a non-empty datatype, \texttt{datatype t = C (t
  1.1876 +  list)} is non-empty as well.
  1.1877 +
  1.1878 +
  1.1879 +\subsubsection{Freeness of the constructors}
  1.1880 +
  1.1881 +The datatype constructors are automatically defined as functions of their
  1.1882 +respective type:
  1.1883 +\[ C^j@i :: [\tau^j@{i,1},\dots,\tau^j@{i,m^j@i}] \To (\alpha@1,\dots,\alpha@h)t@j \]
  1.1884 +These functions have certain {\em freeness} properties.  They construct
  1.1885 +distinct values:
  1.1886 +\[
  1.1887 +C^j@i~x@1~\dots~x@{m^j@i} \neq C^j@{i'}~y@1~\dots~y@{m^j@{i'}} \qquad
  1.1888 +\mbox{for all}~ i \neq i'.
  1.1889 +\]
  1.1890 +The constructor functions are injective:
  1.1891 +\[
  1.1892 +(C^j@i~x@1~\dots~x@{m^j@i} = C^j@i~y@1~\dots~y@{m^j@i}) =
  1.1893 +(x@1 = y@1 \land \dots \land x@{m^j@i} = y@{m^j@i})
  1.1894 +\]
  1.1895 +Because the number of distinctness inequalities is quadratic in the number of
  1.1896 +constructors, a different representation is used if there are $7$ or more of
  1.1897 +them.  In that case every constructor term is mapped to a natural number:
  1.1898 +\[
  1.1899 +t@j_ord \, (C^j@i \, x@1 \, \dots \, x@{m^j@i}) = i - 1
  1.1900 +\]
  1.1901 +Then distinctness of constructor terms is expressed by:
  1.1902 +\[
  1.1903 +t@j_ord \, x \neq t@j_ord \, y \Imp x \neq y.
  1.1904 +\]
  1.1905 +
  1.1906 +\subsubsection{Structural induction}
  1.1907 +
  1.1908 +The datatype package also provides structural induction rules.  For
  1.1909 +datatypes without nested recursion, this is of the following form:
  1.1910 +\[
  1.1911 +\infer{P@1~x@1 \wedge \dots \wedge P@n~x@n}
  1.1912 +  {\begin{array}{lcl}
  1.1913 +     \Forall x@1 \dots x@{m^1@1}.
  1.1914 +       \List{P@{s^1@{1,1}}~x@{r^1@{1,1}}; \dots;
  1.1915 +         P@{s^1@{1,l^1@1}}~x@{r^1@{1,l^1@1}}} & \Imp &
  1.1916 +           P@1~\left(C^1@1~x@1~\dots~x@{m^1@1}\right) \\
  1.1917 +     & \vdots \\
  1.1918 +     \Forall x@1 \dots x@{m^1@{k@1}}.
  1.1919 +       \List{P@{s^1@{k@1,1}}~x@{r^1@{k@1,1}}; \dots;
  1.1920 +         P@{s^1@{k@1,l^1@{k@1}}}~x@{r^1@{k@1,l^1@{k@1}}}} & \Imp &
  1.1921 +           P@1~\left(C^1@{k@1}~x@1~\ldots~x@{m^1@{k@1}}\right) \\
  1.1922 +     & \vdots \\
  1.1923 +     \Forall x@1 \dots x@{m^n@1}.
  1.1924 +       \List{P@{s^n@{1,1}}~x@{r^n@{1,1}}; \dots;
  1.1925 +         P@{s^n@{1,l^n@1}}~x@{r^n@{1,l^n@1}}} & \Imp &
  1.1926 +           P@n~\left(C^n@1~x@1~\ldots~x@{m^n@1}\right) \\
  1.1927 +     & \vdots \\
  1.1928 +     \Forall x@1 \dots x@{m^n@{k@n}}.
  1.1929 +       \List{P@{s^n@{k@n,1}}~x@{r^n@{k@n,1}}; \dots
  1.1930 +         P@{s^n@{k@n,l^n@{k@n}}}~x@{r^n@{k@n,l^n@{k@n}}}} & \Imp &
  1.1931 +           P@n~\left(C^n@{k@n}~x@1~\ldots~x@{m^n@{k@n}}\right)
  1.1932 +   \end{array}}
  1.1933 +\]
  1.1934 +where
  1.1935 +\[
  1.1936 +\begin{array}{rcl}
  1.1937 +Rec^j@i & := &
  1.1938 +   \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots,
  1.1939 +     \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\} = \\[2ex]
  1.1940 +&& \left\{(i',i'')~\left|~
  1.1941 +     1\leq i' \leq m^j@i \wedge 1 \leq i'' \leq n \wedge
  1.1942 +       \tau^j@{i,i'} = (\alpha@1,\ldots,\alpha@h)t@{i''}\right.\right\}
  1.1943 +\end{array}
  1.1944 +\]
  1.1945 +i.e.\ the properties $P@j$ can be assumed for all recursive arguments.
  1.1946 +
  1.1947 +For datatypes with nested recursion, such as the \texttt{term} example from
  1.1948 +above, things are a bit more complicated.  Conceptually, Isabelle/HOL unfolds
  1.1949 +a definition like
  1.1950 +\begin{ttbox}
  1.1951 +datatype ('a, 'b) term = Var 'a
  1.1952 +                       | App 'b ((('a, 'b) term) list)
  1.1953 +\end{ttbox}
  1.1954 +to an equivalent definition without nesting:
  1.1955 +\begin{ttbox}
  1.1956 +datatype ('a, 'b) term      = Var
  1.1957 +                            | App 'b (('a, 'b) term_list)
  1.1958 +and      ('a, 'b) term_list = Nil'
  1.1959 +                            | Cons' (('a,'b) term) (('a,'b) term_list)
  1.1960 +\end{ttbox}
  1.1961 +Note however, that the type \texttt{('a,'b) term_list} and the constructors {\tt
  1.1962 +  Nil'} and \texttt{Cons'} are not really introduced.  One can directly work with
  1.1963 +the original (isomorphic) type \texttt{(('a, 'b) term) list} and its existing
  1.1964 +constructors \texttt{Nil} and \texttt{Cons}. Thus, the structural induction rule for
  1.1965 +\texttt{term} gets the form
  1.1966 +\[
  1.1967 +\infer{P@1~x@1 \wedge P@2~x@2}
  1.1968 +  {\begin{array}{l}
  1.1969 +     \Forall x.~P@1~(\mathtt{Var}~x) \\
  1.1970 +     \Forall x@1~x@2.~P@2~x@2 \Imp P@1~(\mathtt{App}~x@1~x@2) \\
  1.1971 +     P@2~\mathtt{Nil} \\
  1.1972 +     \Forall x@1~x@2. \List{P@1~x@1; P@2~x@2} \Imp P@2~(\mathtt{Cons}~x@1~x@2)
  1.1973 +   \end{array}}
  1.1974 +\]
  1.1975 +Note that there are two predicates $P@1$ and $P@2$, one for the type \texttt{('a,'b) term}
  1.1976 +and one for the type \texttt{(('a, 'b) term) list}.
  1.1977 +
  1.1978 +\medskip In principle, inductive types are already fully determined by
  1.1979 +freeness and structural induction.  For convenience in applications,
  1.1980 +the following derived constructions are automatically provided for any
  1.1981 +datatype.
  1.1982 +
  1.1983 +\subsubsection{The \sdx{case} construct}
  1.1984 +
  1.1985 +The type comes with an \ML-like \texttt{case}-construct:
  1.1986 +\[
  1.1987 +\begin{array}{rrcl}
  1.1988 +\mbox{\tt case}~e~\mbox{\tt of} & C^j@1~x@{1,1}~\dots~x@{1,m^j@1} & \To & e@1 \\
  1.1989 +                           \vdots \\
  1.1990 +                           \mid & C^j@{k@j}~x@{k@j,1}~\dots~x@{k@j,m^j@{k@j}} & \To & e@{k@j}
  1.1991 +\end{array}
  1.1992 +\]
  1.1993 +where the $x@{i,j}$ are either identifiers or nested tuple patterns as in
  1.1994 +\S\ref{subsec:prod-sum}.
  1.1995 +\begin{warn}
  1.1996 +  All constructors must be present, their order is fixed, and nested patterns
  1.1997 +  are not supported (with the exception of tuples).  Violating this
  1.1998 +  restriction results in strange error messages.
  1.1999 +\end{warn}
  1.2000 +
  1.2001 +To perform case distinction on a goal containing a \texttt{case}-construct,
  1.2002 +the theorem $t@j.$\texttt{split} is provided:
  1.2003 +\[
  1.2004 +\begin{array}{@{}rcl@{}}
  1.2005 +P(t@j_\mathtt{case}~f@1~\dots~f@{k@j}~e) &\!\!\!=&
  1.2006 +\!\!\! ((\forall x@1 \dots x@{m^j@1}. e = C^j@1~x@1\dots x@{m^j@1} \to
  1.2007 +                             P(f@1~x@1\dots x@{m^j@1})) \\
  1.2008 +&&\!\!\! ~\land~ \dots ~\land \\
  1.2009 +&&~\!\!\! (\forall x@1 \dots x@{m^j@{k@j}}. e = C^j@{k@j}~x@1\dots x@{m^j@{k@j}} \to
  1.2010 +                             P(f@{k@j}~x@1\dots x@{m^j@{k@j}})))
  1.2011 +\end{array}
  1.2012 +\]
  1.2013 +where $t@j$\texttt{_case} is the internal name of the \texttt{case}-construct.
  1.2014 +This theorem can be added to a simpset via \ttindex{addsplits}
  1.2015 +(see~\S\ref{subsec:HOL:case:splitting}).
  1.2016 +
  1.2017 +\subsubsection{The function \cdx{size}}\label{sec:HOL:size}
  1.2018 +
  1.2019 +Theory \texttt{Arith} declares a generic function \texttt{size} of type
  1.2020 +$\alpha\To nat$.  Each datatype defines a particular instance of \texttt{size}
  1.2021 +by overloading according to the following scheme:
  1.2022 +%%% FIXME: This formula is too big and is completely unreadable
  1.2023 +\[
  1.2024 +size(C^j@i~x@1~\dots~x@{m^j@i}) = \!
  1.2025 +\left\{
  1.2026 +\begin{array}{ll}
  1.2027 +0 & \!\mbox{if $Rec^j@i = \emptyset$} \\
  1.2028 +\!\!\begin{array}{l}
  1.2029 +size~x@{r^j@{i,1}} + \cdots \\
  1.2030 +\cdots + size~x@{r^j@{i,l^j@i}} + 1
  1.2031 +\end{array} &
  1.2032 + \!\mbox{if $Rec^j@i = \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots,
  1.2033 +  \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\}$}
  1.2034 +\end{array}
  1.2035 +\right.
  1.2036 +\]
  1.2037 +where $Rec^j@i$ is defined above.  Viewing datatypes as generalised trees, the
  1.2038 +size of a leaf is 0 and the size of a node is the sum of the sizes of its
  1.2039 +subtrees ${}+1$.
  1.2040 +
  1.2041 +\subsection{Defining datatypes}
  1.2042 +
  1.2043 +The theory syntax for datatype definitions is shown in
  1.2044 +Fig.~\ref{datatype-grammar}.  In order to be well-formed, a datatype
  1.2045 +definition has to obey the rules stated in the previous section.  As a result
  1.2046 +the theory is extended with the new types, the constructors, and the theorems
  1.2047 +listed in the previous section.
  1.2048 +
  1.2049 +\begin{figure}
  1.2050 +\begin{rail}
  1.2051 +datatype : 'datatype' typedecls;
  1.2052 +
  1.2053 +typedecls: ( newtype '=' (cons + '|') ) + 'and'
  1.2054 +         ;
  1.2055 +newtype  : typevarlist id ( () | '(' infix ')' )
  1.2056 +         ;
  1.2057 +cons     : name (argtype *) ( () | ( '(' mixfix ')' ) )
  1.2058 +         ;
  1.2059 +argtype  : id | tid | ('(' typevarlist id ')')
  1.2060 +         ;
  1.2061 +\end{rail}
  1.2062 +\caption{Syntax of datatype declarations}
  1.2063 +\label{datatype-grammar}
  1.2064 +\end{figure}
  1.2065 +
  1.2066 +Most of the theorems about datatypes become part of the default simpset and
  1.2067 +you never need to see them again because the simplifier applies them
  1.2068 +automatically.  Only induction or exhaustion are usually invoked by hand.
  1.2069 +\begin{ttdescription}
  1.2070 +\item[\ttindexbold{induct_tac} {\tt"}$x${\tt"} $i$]
  1.2071 + applies structural induction on variable $x$ to subgoal $i$, provided the
  1.2072 + type of $x$ is a datatype.
  1.2073 +\item[\ttindexbold{mutual_induct_tac}
  1.2074 +  {\tt["}$x@1${\tt",}$\ldots${\tt,"}$x@n${\tt"]} $i$] applies simultaneous
  1.2075 +  structural induction on the variables $x@1,\ldots,x@n$ to subgoal $i$.  This
  1.2076 +  is the canonical way to prove properties of mutually recursive datatypes
  1.2077 +  such as \texttt{aexp} and \texttt{bexp}, or datatypes with nested recursion such as
  1.2078 +  \texttt{term}.
  1.2079 +\end{ttdescription}
  1.2080 +In some cases, induction is overkill and a case distinction over all
  1.2081 +constructors of the datatype suffices.
  1.2082 +\begin{ttdescription}
  1.2083 +\item[\ttindexbold{exhaust_tac} {\tt"}$u${\tt"} $i$]
  1.2084 + performs an exhaustive case analysis for the term $u$ whose type
  1.2085 + must be a datatype.  If the datatype has $k@j$ constructors
  1.2086 + $C^j@1$, \dots $C^j@{k@j}$, subgoal $i$ is replaced by $k@j$ new subgoals which
  1.2087 + contain the additional assumption $u = C^j@{i'}~x@1~\dots~x@{m^j@{i'}}$ for
  1.2088 + $i'=1$, $\dots$,~$k@j$.
  1.2089 +\end{ttdescription}
  1.2090 +
  1.2091 +Note that induction is only allowed on free variables that should not occur
  1.2092 +among the premises of the subgoal.  Exhaustion applies to arbitrary terms.
  1.2093 +
  1.2094 +\bigskip
  1.2095 +
  1.2096 +
  1.2097 +For the technically minded, we exhibit some more details.  Processing the
  1.2098 +theory file produces an \ML\ structure which, in addition to the usual
  1.2099 +components, contains a structure named $t$ for each datatype $t$ defined in
  1.2100 +the file.  Each structure $t$ contains the following elements:
  1.2101 +\begin{ttbox}
  1.2102 +val distinct : thm list
  1.2103 +val inject : thm list
  1.2104 +val induct : thm
  1.2105 +val exhaust : thm
  1.2106 +val cases : thm list
  1.2107 +val split : thm
  1.2108 +val split_asm : thm
  1.2109 +val recs : thm list
  1.2110 +val size : thm list
  1.2111 +val simps : thm list
  1.2112 +\end{ttbox}
  1.2113 +\texttt{distinct}, \texttt{inject}, \texttt{induct}, \texttt{size}
  1.2114 +and \texttt{split} contain the theorems
  1.2115 +described above.  For user convenience, \texttt{distinct} contains
  1.2116 +inequalities in both directions.  The reduction rules of the {\tt
  1.2117 +  case}-construct are in \texttt{cases}.  All theorems from {\tt
  1.2118 +  distinct}, \texttt{inject} and \texttt{cases} are combined in \texttt{simps}.
  1.2119 +In case of mutually recursive datatypes, \texttt{recs}, \texttt{size}, \texttt{induct}
  1.2120 +and \texttt{simps} are contained in a separate structure named $t@1_\ldots_t@n$.
  1.2121 +
  1.2122 +
  1.2123 +\subsection{Representing existing types as datatypes}
  1.2124 +
  1.2125 +For foundational reasons, some basic types such as \texttt{nat}, \texttt{*}, {\tt
  1.2126 +  +}, \texttt{bool} and \texttt{unit} are not defined in a \texttt{datatype} section,
  1.2127 +but by more primitive means using \texttt{typedef}. To be able to use the
  1.2128 +tactics \texttt{induct_tac} and \texttt{exhaust_tac} and to define functions by
  1.2129 +primitive recursion on these types, such types may be represented as actual
  1.2130 +datatypes.  This is done by specifying an induction rule, as well as theorems
  1.2131 +stating the distinctness and injectivity of constructors in a {\tt
  1.2132 +  rep_datatype} section.  For type \texttt{nat} this works as follows:
  1.2133 +\begin{ttbox}
  1.2134 +rep_datatype nat
  1.2135 +  distinct Suc_not_Zero, Zero_not_Suc
  1.2136 +  inject   Suc_Suc_eq
  1.2137 +  induct   nat_induct
  1.2138 +\end{ttbox}
  1.2139 +The datatype package automatically derives additional theorems for recursion
  1.2140 +and case combinators from these rules.  Any of the basic HOL types mentioned
  1.2141 +above are represented as datatypes.  Try an induction on \texttt{bool}
  1.2142 +today.
  1.2143 +
  1.2144 +
  1.2145 +\subsection{Examples}
  1.2146 +
  1.2147 +\subsubsection{The datatype $\alpha~mylist$}
  1.2148 +
  1.2149 +We want to define a type $\alpha~mylist$. To do this we have to build a new
  1.2150 +theory that contains the type definition.  We start from the theory
  1.2151 +\texttt{Datatype} instead of \texttt{Main} in order to avoid clashes with the
  1.2152 +\texttt{List} theory of Isabelle/HOL.
  1.2153 +\begin{ttbox}
  1.2154 +MyList = Datatype +
  1.2155 +  datatype 'a mylist = Nil | Cons 'a ('a mylist)
  1.2156 +end
  1.2157 +\end{ttbox}
  1.2158 +After loading the theory, we can prove $Cons~x~xs\neq xs$, for example.  To
  1.2159 +ease the induction applied below, we state the goal with $x$ quantified at the
  1.2160 +object-level.  This will be stripped later using \ttindex{qed_spec_mp}.
  1.2161 +\begin{ttbox}
  1.2162 +Goal "!x. Cons x xs ~= xs";
  1.2163 +{\out Level 0}
  1.2164 +{\out ! x. Cons x xs ~= xs}
  1.2165 +{\out  1. ! x. Cons x xs ~= xs}
  1.2166 +\end{ttbox}
  1.2167 +This can be proved by the structural induction tactic:
  1.2168 +\begin{ttbox}
  1.2169 +by (induct_tac "xs" 1);
  1.2170 +{\out Level 1}
  1.2171 +{\out ! x. Cons x xs ~= xs}
  1.2172 +{\out  1. ! x. Cons x Nil ~= Nil}
  1.2173 +{\out  2. !!a mylist.}
  1.2174 +{\out        ! x. Cons x mylist ~= mylist ==>}
  1.2175 +{\out        ! x. Cons x (Cons a mylist) ~= Cons a mylist}
  1.2176 +\end{ttbox}
  1.2177 +The first subgoal can be proved using the simplifier.  Isabelle/HOL has
  1.2178 +already added the freeness properties of lists to the default simplification
  1.2179 +set.
  1.2180 +\begin{ttbox}
  1.2181 +by (Simp_tac 1);
  1.2182 +{\out Level 2}
  1.2183 +{\out ! x. Cons x xs ~= xs}
  1.2184 +{\out  1. !!a mylist.}
  1.2185 +{\out        ! x. Cons x mylist ~= mylist ==>}
  1.2186 +{\out        ! x. Cons x (Cons a mylist) ~= Cons a mylist}
  1.2187 +\end{ttbox}
  1.2188 +Similarly, we prove the remaining goal.
  1.2189 +\begin{ttbox}
  1.2190 +by (Asm_simp_tac 1);
  1.2191 +{\out Level 3}
  1.2192 +{\out ! x. Cons x xs ~= xs}
  1.2193 +{\out No subgoals!}
  1.2194 +\ttbreak
  1.2195 +qed_spec_mp "not_Cons_self";
  1.2196 +{\out val not_Cons_self = "Cons x xs ~= xs" : thm}
  1.2197 +\end{ttbox}
  1.2198 +Because both subgoals could have been proved by \texttt{Asm_simp_tac}
  1.2199 +we could have done that in one step:
  1.2200 +\begin{ttbox}
  1.2201 +by (ALLGOALS Asm_simp_tac);
  1.2202 +\end{ttbox}
  1.2203 +
  1.2204 +
  1.2205 +\subsubsection{The datatype $\alpha~mylist$ with mixfix syntax}
  1.2206 +
  1.2207 +In this example we define the type $\alpha~mylist$ again but this time
  1.2208 +we want to write \texttt{[]} for \texttt{Nil} and we want to use infix
  1.2209 +notation \verb|#| for \texttt{Cons}.  To do this we simply add mixfix
  1.2210 +annotations after the constructor declarations as follows:
  1.2211 +\begin{ttbox}
  1.2212 +MyList = Datatype +
  1.2213 +  datatype 'a mylist =
  1.2214 +    Nil ("[]")  |
  1.2215 +    Cons 'a ('a mylist)  (infixr "#" 70)
  1.2216 +end
  1.2217 +\end{ttbox}
  1.2218 +Now the theorem in the previous example can be written \verb|x#xs ~= xs|.
  1.2219 +
  1.2220 +
  1.2221 +\subsubsection{A datatype for weekdays}
  1.2222 +
  1.2223 +This example shows a datatype that consists of 7 constructors:
  1.2224 +\begin{ttbox}
  1.2225 +Days = Main +
  1.2226 +  datatype days = Mon | Tue | Wed | Thu | Fri | Sat | Sun
  1.2227 +end
  1.2228 +\end{ttbox}
  1.2229 +Because there are more than 6 constructors, inequality is expressed via a function
  1.2230 +\verb|days_ord|.  The theorem \verb|Mon ~= Tue| is not directly
  1.2231 +contained among the distinctness theorems, but the simplifier can
  1.2232 +prove it thanks to rewrite rules inherited from theory \texttt{Arith}:
  1.2233 +\begin{ttbox}
  1.2234 +Goal "Mon ~= Tue";
  1.2235 +by (Simp_tac 1);
  1.2236 +\end{ttbox}
  1.2237 +You need not derive such inequalities explicitly: the simplifier will dispose
  1.2238 +of them automatically.
  1.2239 +\index{*datatype|)}
  1.2240 +
  1.2241 +
  1.2242 +\section{Recursive function definitions}\label{sec:HOL:recursive}
  1.2243 +\index{recursive functions|see{recursion}}
  1.2244 +
  1.2245 +Isabelle/HOL provides two main mechanisms of defining recursive functions.
  1.2246 +\begin{enumerate}
  1.2247 +\item \textbf{Primitive recursion} is available only for datatypes, and it is
  1.2248 +  somewhat restrictive.  Recursive calls are only allowed on the argument's
  1.2249 +  immediate constituents.  On the other hand, it is the form of recursion most
  1.2250 +  often wanted, and it is easy to use.
  1.2251 +  
  1.2252 +\item \textbf{Well-founded recursion} requires that you supply a well-founded
  1.2253 +  relation that governs the recursion.  Recursive calls are only allowed if
  1.2254 +  they make the argument decrease under the relation.  Complicated recursion
  1.2255 +  forms, such as nested recursion, can be dealt with.  Termination can even be
  1.2256 +  proved at a later time, though having unsolved termination conditions around
  1.2257 +  can make work difficult.%
  1.2258 +  \footnote{This facility is based on Konrad Slind's TFL
  1.2259 +    package~\cite{slind-tfl}.  Thanks are due to Konrad for implementing TFL
  1.2260 +    and assisting with its installation.}
  1.2261 +\end{enumerate}
  1.2262 +
  1.2263 +Following good HOL tradition, these declarations do not assert arbitrary
  1.2264 +axioms.  Instead, they define the function using a recursion operator.  Both
  1.2265 +HOL and ZF derive the theory of well-founded recursion from first
  1.2266 +principles~\cite{paulson-set-II}.  Primitive recursion over some datatype
  1.2267 +relies on the recursion operator provided by the datatype package.  With
  1.2268 +either form of function definition, Isabelle proves the desired recursion
  1.2269 +equations as theorems.
  1.2270 +
  1.2271 +
  1.2272 +\subsection{Primitive recursive functions}
  1.2273 +\label{sec:HOL:primrec}
  1.2274 +\index{recursion!primitive|(}
  1.2275 +\index{*primrec|(}
  1.2276 +
  1.2277 +Datatypes come with a uniform way of defining functions, {\bf primitive
  1.2278 +  recursion}.  In principle, one could introduce primitive recursive functions
  1.2279 +by asserting their reduction rules as new axioms, but this is not recommended:
  1.2280 +\begin{ttbox}\slshape
  1.2281 +Append = Main +
  1.2282 +consts app :: ['a list, 'a list] => 'a list
  1.2283 +rules 
  1.2284 +   app_Nil   "app [] ys = ys"
  1.2285 +   app_Cons  "app (x#xs) ys = x#app xs ys"
  1.2286 +end
  1.2287 +\end{ttbox}
  1.2288 +Asserting axioms brings the danger of accidentally asserting nonsense, as
  1.2289 +in \verb$app [] ys = us$.
  1.2290 +
  1.2291 +The \ttindex{primrec} declaration is a safe means of defining primitive
  1.2292 +recursive functions on datatypes:
  1.2293 +\begin{ttbox}
  1.2294 +Append = Main +
  1.2295 +consts app :: ['a list, 'a list] => 'a list
  1.2296 +primrec
  1.2297 +   "app [] ys = ys"
  1.2298 +   "app (x#xs) ys = x#app xs ys"
  1.2299 +end
  1.2300 +\end{ttbox}
  1.2301 +Isabelle will now check that the two rules do indeed form a primitive
  1.2302 +recursive definition.  For example
  1.2303 +\begin{ttbox}
  1.2304 +primrec
  1.2305 +    "app [] ys = us"
  1.2306 +\end{ttbox}
  1.2307 +is rejected with an error message ``\texttt{Extra variables on rhs}''.
  1.2308 +
  1.2309 +\bigskip
  1.2310 +
  1.2311 +The general form of a primitive recursive definition is
  1.2312 +\begin{ttbox}
  1.2313 +primrec
  1.2314 +    {\it reduction rules}
  1.2315 +\end{ttbox}
  1.2316 +where \textit{reduction rules} specify one or more equations of the form
  1.2317 +\[ f \, x@1 \, \dots \, x@m \, (C \, y@1 \, \dots \, y@k) \, z@1 \,
  1.2318 +\dots \, z@n = r \] such that $C$ is a constructor of the datatype, $r$
  1.2319 +contains only the free variables on the left-hand side, and all recursive
  1.2320 +calls in $r$ are of the form $f \, \dots \, y@i \, \dots$ for some $i$.  There
  1.2321 +must be at most one reduction rule for each constructor.  The order is
  1.2322 +immaterial.  For missing constructors, the function is defined to return a
  1.2323 +default value.  
  1.2324 +
  1.2325 +If you would like to refer to some rule by name, then you must prefix
  1.2326 +the rule with an identifier.  These identifiers, like those in the
  1.2327 +\texttt{rules} section of a theory, will be visible at the \ML\ level.
  1.2328 +
  1.2329 +The primitive recursive function can have infix or mixfix syntax:
  1.2330 +\begin{ttbox}\underscoreon
  1.2331 +consts "@"  :: ['a list, 'a list] => 'a list  (infixr 60)
  1.2332 +primrec
  1.2333 +   "[] @ ys = ys"
  1.2334 +   "(x#xs) @ ys = x#(xs @ ys)"
  1.2335 +\end{ttbox}
  1.2336 +
  1.2337 +The reduction rules become part of the default simpset, which
  1.2338 +leads to short proof scripts:
  1.2339 +\begin{ttbox}\underscoreon
  1.2340 +Goal "(xs @ ys) @ zs = xs @ (ys @ zs)";
  1.2341 +by (induct\_tac "xs" 1);
  1.2342 +by (ALLGOALS Asm\_simp\_tac);
  1.2343 +\end{ttbox}
  1.2344 +
  1.2345 +\subsubsection{Example: Evaluation of expressions}
  1.2346 +Using mutual primitive recursion, we can define evaluation functions \texttt{eval_aexp}
  1.2347 +and \texttt{eval_bexp} for the datatypes of arithmetic and boolean expressions mentioned in
  1.2348 +\S\ref{subsec:datatype:basics}:
  1.2349 +\begin{ttbox}
  1.2350 +consts
  1.2351 +  eval_aexp :: "['a => nat, 'a aexp] => nat"
  1.2352 +  eval_bexp :: "['a => nat, 'a bexp] => bool"
  1.2353 +
  1.2354 +primrec
  1.2355 +  "eval_aexp env (If_then_else b a1 a2) =
  1.2356 +     (if eval_bexp env b then eval_aexp env a1 else eval_aexp env a2)"
  1.2357 +  "eval_aexp env (Sum a1 a2) = eval_aexp env a1 + eval_aexp env a2"
  1.2358 +  "eval_aexp env (Diff a1 a2) = eval_aexp env a1 - eval_aexp env a2"
  1.2359 +  "eval_aexp env (Var v) = env v"
  1.2360 +  "eval_aexp env (Num n) = n"
  1.2361 +
  1.2362 +  "eval_bexp env (Less a1 a2) = (eval_aexp env a1 < eval_aexp env a2)"
  1.2363 +  "eval_bexp env (And b1 b2) = (eval_bexp env b1 & eval_bexp env b2)"
  1.2364 +  "eval_bexp env (Or b1 b2) = (eval_bexp env b1 & eval_bexp env b2)"
  1.2365 +\end{ttbox}
  1.2366 +Since the value of an expression depends on the value of its variables,
  1.2367 +the functions \texttt{eval_aexp} and \texttt{eval_bexp} take an additional
  1.2368 +parameter, an {\em environment} of type \texttt{'a => nat}, which maps
  1.2369 +variables to their values.
  1.2370 +
  1.2371 +Similarly, we may define substitution functions \texttt{subst_aexp}
  1.2372 +and \texttt{subst_bexp} for expressions: The mapping \texttt{f} of type
  1.2373 +\texttt{'a => 'a aexp} given as a parameter is lifted canonically
  1.2374 +on the types {'a aexp} and {'a bexp}:
  1.2375 +\begin{ttbox}
  1.2376 +consts
  1.2377 +  subst_aexp :: "['a => 'b aexp, 'a aexp] => 'b aexp"
  1.2378 +  subst_bexp :: "['a => 'b aexp, 'a bexp] => 'b bexp"
  1.2379 +
  1.2380 +primrec
  1.2381 +  "subst_aexp f (If_then_else b a1 a2) =
  1.2382 +     If_then_else (subst_bexp f b) (subst_aexp f a1) (subst_aexp f a2)"
  1.2383 +  "subst_aexp f (Sum a1 a2) = Sum (subst_aexp f a1) (subst_aexp f a2)"
  1.2384 +  "subst_aexp f (Diff a1 a2) = Diff (subst_aexp f a1) (subst_aexp f a2)"
  1.2385 +  "subst_aexp f (Var v) = f v"
  1.2386 +  "subst_aexp f (Num n) = Num n"
  1.2387 +
  1.2388 +  "subst_bexp f (Less a1 a2) = Less (subst_aexp f a1) (subst_aexp f a2)"
  1.2389 +  "subst_bexp f (And b1 b2) = And (subst_bexp f b1) (subst_bexp f b2)"
  1.2390 +  "subst_bexp f (Or b1 b2) = Or (subst_bexp f b1) (subst_bexp f b2)"
  1.2391 +\end{ttbox}
  1.2392 +In textbooks about semantics one often finds {\em substitution theorems},
  1.2393 +which express the relationship between substitution and evaluation. For
  1.2394 +\texttt{'a aexp} and \texttt{'a bexp}, we can prove such a theorem by mutual
  1.2395 +induction, followed by simplification:
  1.2396 +\begin{ttbox}
  1.2397 +Goal
  1.2398 +  "eval_aexp env (subst_aexp (Var(v := a')) a) =
  1.2399 +     eval_aexp (env(v := eval_aexp env a')) a &
  1.2400 +   eval_bexp env (subst_bexp (Var(v := a')) b) =
  1.2401 +     eval_bexp (env(v := eval_aexp env a')) b";
  1.2402 +by (mutual_induct_tac ["a","b"] 1);
  1.2403 +by (ALLGOALS Asm_full_simp_tac);
  1.2404 +\end{ttbox}
  1.2405 +
  1.2406 +\subsubsection{Example: A substitution function for terms}
  1.2407 +Functions on datatypes with nested recursion, such as the type
  1.2408 +\texttt{term} mentioned in \S\ref{subsec:datatype:basics}, are
  1.2409 +also defined by mutual primitive recursion. A substitution
  1.2410 +function \texttt{subst_term} on type \texttt{term}, similar to the functions
  1.2411 +\texttt{subst_aexp} and \texttt{subst_bexp} described above, can
  1.2412 +be defined as follows:
  1.2413 +\begin{ttbox}
  1.2414 +consts
  1.2415 +  subst_term :: "['a => ('a, 'b) term, ('a, 'b) term] => ('a, 'b) term"
  1.2416 +  subst_term_list ::
  1.2417 +    "['a => ('a, 'b) term, ('a, 'b) term list] => ('a, 'b) term list"
  1.2418 +
  1.2419 +primrec
  1.2420 +  "subst_term f (Var a) = f a"
  1.2421 +  "subst_term f (App b ts) = App b (subst_term_list f ts)"
  1.2422 +
  1.2423 +  "subst_term_list f [] = []"
  1.2424 +  "subst_term_list f (t # ts) =
  1.2425 +     subst_term f t # subst_term_list f ts"
  1.2426 +\end{ttbox}
  1.2427 +The recursion scheme follows the structure of the unfolded definition of type
  1.2428 +\texttt{term} shown in \S\ref{subsec:datatype:basics}. To prove properties of
  1.2429 +this substitution function, mutual induction is needed:
  1.2430 +\begin{ttbox}
  1.2431 +Goal
  1.2432 +  "(subst_term ((subst_term f1) o f2) t) =
  1.2433 +     (subst_term f1 (subst_term f2 t)) &
  1.2434 +   (subst_term_list ((subst_term f1) o f2) ts) =
  1.2435 +     (subst_term_list f1 (subst_term_list f2 ts))";
  1.2436 +by (mutual_induct_tac ["t", "ts"] 1);
  1.2437 +by (ALLGOALS Asm_full_simp_tac);
  1.2438 +\end{ttbox}
  1.2439 +
  1.2440 +\index{recursion!primitive|)}
  1.2441 +\index{*primrec|)}
  1.2442 +
  1.2443 +
  1.2444 +\subsection{General recursive functions}
  1.2445 +\label{sec:HOL:recdef}
  1.2446 +\index{recursion!general|(}
  1.2447 +\index{*recdef|(}
  1.2448 +
  1.2449 +Using \texttt{recdef}, you can declare functions involving nested recursion
  1.2450 +and pattern-matching.  Recursion need not involve datatypes and there are few
  1.2451 +syntactic restrictions.  Termination is proved by showing that each recursive
  1.2452 +call makes the argument smaller in a suitable sense, which you specify by
  1.2453 +supplying a well-founded relation.
  1.2454 +
  1.2455 +Here is a simple example, the Fibonacci function.  The first line declares
  1.2456 +\texttt{fib} to be a constant.  The well-founded relation is simply~$<$ (on
  1.2457 +the natural numbers).  Pattern-matching is used here: \texttt{1} is a
  1.2458 +macro for \texttt{Suc~0}.
  1.2459 +\begin{ttbox}
  1.2460 +consts fib  :: "nat => nat"
  1.2461 +recdef fib "less_than"
  1.2462 +    "fib 0 = 0"
  1.2463 +    "fib 1 = 1"
  1.2464 +    "fib (Suc(Suc x)) = (fib x + fib (Suc x))"
  1.2465 +\end{ttbox}
  1.2466 +
  1.2467 +With \texttt{recdef}, function definitions may be incomplete, and patterns may
  1.2468 +overlap, as in functional programming.  The \texttt{recdef} package
  1.2469 +disambiguates overlapping patterns by taking the order of rules into account.
  1.2470 +For missing patterns, the function is defined to return a default value.
  1.2471 +
  1.2472 +%For example, here is a declaration of the list function \cdx{hd}:
  1.2473 +%\begin{ttbox}
  1.2474 +%consts hd :: 'a list => 'a
  1.2475 +%recdef hd "\{\}"
  1.2476 +%    "hd (x#l) = x"
  1.2477 +%\end{ttbox}
  1.2478 +%Because this function is not recursive, we may supply the empty well-founded
  1.2479 +%relation, $\{\}$.
  1.2480 +
  1.2481 +The well-founded relation defines a notion of ``smaller'' for the function's
  1.2482 +argument type.  The relation $\prec$ is \textbf{well-founded} provided it
  1.2483 +admits no infinitely decreasing chains
  1.2484 +\[ \cdots\prec x@n\prec\cdots\prec x@1. \]
  1.2485 +If the function's argument has type~$\tau$, then $\prec$ has to be a relation
  1.2486 +over~$\tau$: it must have type $(\tau\times\tau)set$.
  1.2487 +
  1.2488 +Proving well-foundedness can be tricky, so Isabelle/HOL provides a collection
  1.2489 +of operators for building well-founded relations.  The package recognises
  1.2490 +these operators and automatically proves that the constructed relation is
  1.2491 +well-founded.  Here are those operators, in order of importance:
  1.2492 +\begin{itemize}
  1.2493 +\item \texttt{less_than} is ``less than'' on the natural numbers.
  1.2494 +  (It has type $(nat\times nat)set$, while $<$ has type $[nat,nat]\To bool$.
  1.2495 +  
  1.2496 +\item $\mathop{\mathtt{measure}} f$, where $f$ has type $\tau\To nat$, is the
  1.2497 +  relation~$\prec$ on type~$\tau$ such that $x\prec y$ iff $f(x)<f(y)$.
  1.2498 +  Typically, $f$ takes the recursive function's arguments (as a tuple) and
  1.2499 +  returns a result expressed in terms of the function \texttt{size}.  It is
  1.2500 +  called a \textbf{measure function}.  Recall that \texttt{size} is overloaded
  1.2501 +  and is defined on all datatypes (see \S\ref{sec:HOL:size}).
  1.2502 +                                                    
  1.2503 +\item $\mathop{\mathtt{inv_image}} f\;R$ is a generalisation of
  1.2504 +  \texttt{measure}.  It specifies a relation such that $x\prec y$ iff $f(x)$
  1.2505 +  is less than $f(y)$ according to~$R$, which must itself be a well-founded
  1.2506 +  relation.
  1.2507 +
  1.2508 +\item $R@1\texttt{**}R@2$ is the lexicographic product of two relations.  It
  1.2509 +  is a relation on pairs and satisfies $(x@1,x@2)\prec(y@1,y@2)$ iff $x@1$
  1.2510 +  is less than $y@1$ according to~$R@1$ or $x@1=y@1$ and $x@2$
  1.2511 +  is less than $y@2$ according to~$R@2$.
  1.2512 +
  1.2513 +\item \texttt{finite_psubset} is the proper subset relation on finite sets.
  1.2514 +\end{itemize}
  1.2515 +
  1.2516 +We can use \texttt{measure} to declare Euclid's algorithm for the greatest
  1.2517 +common divisor.  The measure function, $\lambda(m,n). n$, specifies that the
  1.2518 +recursion terminates because argument~$n$ decreases.
  1.2519 +\begin{ttbox}
  1.2520 +recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)"
  1.2521 +    "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
  1.2522 +\end{ttbox}
  1.2523 +
  1.2524 +The general form of a well-founded recursive definition is
  1.2525 +\begin{ttbox}
  1.2526 +recdef {\it function} {\it rel}
  1.2527 +    congs   {\it congruence rules}      {\bf(optional)}
  1.2528 +    simpset {\it simplification set}      {\bf(optional)}
  1.2529 +   {\it reduction rules}
  1.2530 +\end{ttbox}
  1.2531 +where
  1.2532 +\begin{itemize}
  1.2533 +\item \textit{function} is the name of the function, either as an \textit{id}
  1.2534 +  or a \textit{string}.  
  1.2535 +  
  1.2536 +\item \textit{rel} is a {\HOL} expression for the well-founded termination
  1.2537 +  relation.
  1.2538 +  
  1.2539 +\item \textit{congruence rules} are required only in highly exceptional
  1.2540 +  circumstances.
  1.2541 +  
  1.2542 +\item The \textit{simplification set} is used to prove that the supplied
  1.2543 +  relation is well-founded.  It is also used to prove the \textbf{termination
  1.2544 +    conditions}: assertions that arguments of recursive calls decrease under
  1.2545 +  \textit{rel}.  By default, simplification uses \texttt{simpset()}, which
  1.2546 +  is sufficient to prove well-foundedness for the built-in relations listed
  1.2547 +  above. 
  1.2548 +  
  1.2549 +\item \textit{reduction rules} specify one or more recursion equations.  Each
  1.2550 +  left-hand side must have the form $f\,t$, where $f$ is the function and $t$
  1.2551 +  is a tuple of distinct variables.  If more than one equation is present then
  1.2552 +  $f$ is defined by pattern-matching on components of its argument whose type
  1.2553 +  is a \texttt{datatype}.  
  1.2554 +
  1.2555 +  Unlike with \texttt{primrec}, the reduction rules are not added to the
  1.2556 +  default simpset, and individual rules may not be labelled with identifiers.
  1.2557 +  However, the identifier $f$\texttt{.rules} is visible at the \ML\ level
  1.2558 +  as a list of theorems.
  1.2559 +\end{itemize}
  1.2560 +
  1.2561 +With the definition of \texttt{gcd} shown above, Isabelle/HOL is unable to
  1.2562 +prove one termination condition.  It remains as a precondition of the
  1.2563 +recursion theorems.
  1.2564 +\begin{ttbox}
  1.2565 +gcd.rules;
  1.2566 +{\out ["! m n. n ~= 0 --> m mod n < n}
  1.2567 +{\out   ==> gcd (?m, ?n) = (if ?n = 0 then ?m else gcd (?n, ?m mod ?n))"] }
  1.2568 +{\out : thm list}
  1.2569 +\end{ttbox}
  1.2570 +The theory \texttt{HOL/ex/Primes} illustrates how to prove termination
  1.2571 +conditions afterwards.  The function \texttt{Tfl.tgoalw} is like the standard
  1.2572 +function \texttt{goalw}, which sets up a goal to prove, but its argument
  1.2573 +should be the identifier $f$\texttt{.rules} and its effect is to set up a
  1.2574 +proof of the termination conditions:
  1.2575 +\begin{ttbox}
  1.2576 +Tfl.tgoalw thy [] gcd.rules;
  1.2577 +{\out Level 0}
  1.2578 +{\out ! m n. n ~= 0 --> m mod n < n}
  1.2579 +{\out  1. ! m n. n ~= 0 --> m mod n < n}
  1.2580 +\end{ttbox}
  1.2581 +This subgoal has a one-step proof using \texttt{simp_tac}.  Once the theorem
  1.2582 +is proved, it can be used to eliminate the termination conditions from
  1.2583 +elements of \texttt{gcd.rules}.  Theory \texttt{HOL/Subst/Unify} is a much
  1.2584 +more complicated example of this process, where the termination conditions can
  1.2585 +only be proved by complicated reasoning involving the recursive function
  1.2586 +itself.
  1.2587 +
  1.2588 +Isabelle/HOL can prove the \texttt{gcd} function's termination condition
  1.2589 +automatically if supplied with the right simpset.
  1.2590 +\begin{ttbox}
  1.2591 +recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)"
  1.2592 +  simpset "simpset() addsimps [mod_less_divisor, zero_less_eq]"
  1.2593 +    "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
  1.2594 +\end{ttbox}
  1.2595 +
  1.2596 +A \texttt{recdef} definition also returns an induction rule specialised for
  1.2597 +the recursive function.  For the \texttt{gcd} function above, the induction
  1.2598 +rule is
  1.2599 +\begin{ttbox}
  1.2600 +gcd.induct;
  1.2601 +{\out "(!!m n. n ~= 0 --> ?P n (m mod n) ==> ?P m n) ==> ?P ?u ?v" : thm}
  1.2602 +\end{ttbox}
  1.2603 +This rule should be used to reason inductively about the \texttt{gcd}
  1.2604 +function.  It usually makes the induction hypothesis available at all
  1.2605 +recursive calls, leading to very direct proofs.  If any termination conditions
  1.2606 +remain unproved, they will become additional premises of this rule.
  1.2607 +
  1.2608 +\index{recursion!general|)}
  1.2609 +\index{*recdef|)}
  1.2610 +
  1.2611 +
  1.2612 +\section{Inductive and coinductive definitions}
  1.2613 +\index{*inductive|(}
  1.2614 +\index{*coinductive|(}
  1.2615 +
  1.2616 +An {\bf inductive definition} specifies the least set~$R$ closed under given
  1.2617 +rules.  (Applying a rule to elements of~$R$ yields a result within~$R$.)  For
  1.2618 +example, a structural operational semantics is an inductive definition of an
  1.2619 +evaluation relation.  Dually, a {\bf coinductive definition} specifies the
  1.2620 +greatest set~$R$ consistent with given rules.  (Every element of~$R$ can be
  1.2621 +seen as arising by applying a rule to elements of~$R$.)  An important example
  1.2622 +is using bisimulation relations to formalise equivalence of processes and
  1.2623 +infinite data structures.
  1.2624 +
  1.2625 +A theory file may contain any number of inductive and coinductive
  1.2626 +definitions.  They may be intermixed with other declarations; in
  1.2627 +particular, the (co)inductive sets {\bf must} be declared separately as
  1.2628 +constants, and may have mixfix syntax or be subject to syntax translations.
  1.2629 +
  1.2630 +Each (co)inductive definition adds definitions to the theory and also
  1.2631 +proves some theorems.  Each definition creates an \ML\ structure, which is a
  1.2632 +substructure of the main theory structure.
  1.2633 +
  1.2634 +This package is related to the \ZF\ one, described in a separate
  1.2635 +paper,%
  1.2636 +\footnote{It appeared in CADE~\cite{paulson-CADE}; a longer version is
  1.2637 +  distributed with Isabelle.}  %
  1.2638 +which you should refer to in case of difficulties.  The package is simpler
  1.2639 +than \ZF's thanks to \HOL's extra-logical automatic type-checking.  The types
  1.2640 +of the (co)inductive sets determine the domain of the fixedpoint definition,
  1.2641 +and the package does not have to use inference rules for type-checking.
  1.2642 +
  1.2643 +
  1.2644 +\subsection{The result structure}
  1.2645 +Many of the result structure's components have been discussed in the paper;
  1.2646 +others are self-explanatory.
  1.2647 +\begin{description}
  1.2648 +\item[\tt defs] is the list of definitions of the recursive sets.
  1.2649 +
  1.2650 +\item[\tt mono] is a monotonicity theorem for the fixedpoint operator.
  1.2651 +
  1.2652 +\item[\tt unfold] is a fixedpoint equation for the recursive set (the union of
  1.2653 +the recursive sets, in the case of mutual recursion).
  1.2654 +
  1.2655 +\item[\tt intrs] is the list of introduction rules, now proved as theorems, for
  1.2656 +the recursive sets.  The rules are also available individually, using the
  1.2657 +names given them in the theory file. 
  1.2658 +
  1.2659 +\item[\tt elims] is the list of elimination rule.
  1.2660 +
  1.2661 +\item[\tt elim] is the head of the list \texttt{elims}.
  1.2662 +  
  1.2663 +\item[\tt mk_cases] is a function to create simplified instances of {\tt
  1.2664 +elim} using freeness reasoning on underlying datatypes.
  1.2665 +\end{description}
  1.2666 +
  1.2667 +For an inductive definition, the result structure contains the
  1.2668 +rule \texttt{induct}.  For a
  1.2669 +coinductive definition, it contains the rule \verb|coinduct|.
  1.2670 +
  1.2671 +Figure~\ref{def-result-fig} summarises the two result signatures,
  1.2672 +specifying the types of all these components.
  1.2673 +
  1.2674 +\begin{figure}
  1.2675 +\begin{ttbox}
  1.2676 +sig
  1.2677 +val defs         : thm list
  1.2678 +val mono         : thm
  1.2679 +val unfold       : thm
  1.2680 +val intrs        : thm list
  1.2681 +val elims        : thm list
  1.2682 +val elim         : thm
  1.2683 +val mk_cases     : string -> thm
  1.2684 +{\it(Inductive definitions only)} 
  1.2685 +val induct       : thm
  1.2686 +{\it(coinductive definitions only)}
  1.2687 +val coinduct     : thm
  1.2688 +end
  1.2689 +\end{ttbox}
  1.2690 +\hrule
  1.2691 +\caption{The {\ML} result of a (co)inductive definition} \label{def-result-fig}
  1.2692 +\end{figure}
  1.2693 +
  1.2694 +\subsection{The syntax of a (co)inductive definition}
  1.2695 +An inductive definition has the form
  1.2696 +\begin{ttbox}
  1.2697 +inductive    {\it inductive sets}
  1.2698 +  intrs      {\it introduction rules}
  1.2699 +  monos      {\it monotonicity theorems}
  1.2700 +  con_defs   {\it constructor definitions}
  1.2701 +\end{ttbox}
  1.2702 +A coinductive definition is identical, except that it starts with the keyword
  1.2703 +\texttt{coinductive}.  
  1.2704 +
  1.2705 +The \texttt{monos} and \texttt{con_defs} sections are optional.  If present,
  1.2706 +each is specified by a list of identifiers.
  1.2707 +
  1.2708 +\begin{itemize}
  1.2709 +\item The \textit{inductive sets} are specified by one or more strings.
  1.2710 +
  1.2711 +\item The \textit{introduction rules} specify one or more introduction rules in
  1.2712 +  the form \textit{ident\/}~\textit{string}, where the identifier gives the name of
  1.2713 +  the rule in the result structure.
  1.2714 +
  1.2715 +\item The \textit{monotonicity theorems} are required for each operator
  1.2716 +  applied to a recursive set in the introduction rules.  There {\bf must}
  1.2717 +  be a theorem of the form $A\subseteq B\Imp M(A)\subseteq M(B)$, for each
  1.2718 +  premise $t\in M(R@i)$ in an introduction rule!
  1.2719 +
  1.2720 +\item The \textit{constructor definitions} contain definitions of constants
  1.2721 +  appearing in the introduction rules.  In most cases it can be omitted.
  1.2722 +\end{itemize}
  1.2723 +
  1.2724 +
  1.2725 +\subsection{Example of an inductive definition}
  1.2726 +Two declarations, included in a theory file, define the finite powerset
  1.2727 +operator.  First we declare the constant~\texttt{Fin}.  Then we declare it
  1.2728 +inductively, with two introduction rules:
  1.2729 +\begin{ttbox}
  1.2730 +consts Fin :: 'a set => 'a set set
  1.2731 +inductive "Fin A"
  1.2732 +  intrs
  1.2733 +    emptyI  "{\ttlbrace}{\ttrbrace} : Fin A"
  1.2734 +    insertI "[| a: A;  b: Fin A |] ==> insert a b : Fin A"
  1.2735 +\end{ttbox}
  1.2736 +The resulting theory structure contains a substructure, called~\texttt{Fin}.
  1.2737 +It contains the \texttt{Fin}$~A$ introduction rules as the list \texttt{Fin.intrs},
  1.2738 +and also individually as \texttt{Fin.emptyI} and \texttt{Fin.consI}.  The induction
  1.2739 +rule is \texttt{Fin.induct}.
  1.2740 +
  1.2741 +For another example, here is a theory file defining the accessible
  1.2742 +part of a relation.  The main thing to note is the use of~\texttt{Pow} in
  1.2743 +the sole introduction rule, and the corresponding mention of the rule
  1.2744 +\verb|Pow_mono| in the \texttt{monos} list.  The paper
  1.2745 +\cite{paulson-CADE} discusses a \ZF\ version of this example in more
  1.2746 +detail.
  1.2747 +\begin{ttbox}
  1.2748 +Acc = WF + 
  1.2749 +consts pred :: "['b, ('a * 'b)set] => 'a set"   (*Set of predecessors*)
  1.2750 +       acc  :: "('a * 'a)set => 'a set"         (*Accessible part*)
  1.2751 +defs   pred_def  "pred x r == {y. (y,x):r}"
  1.2752 +inductive "acc r"
  1.2753 +  intrs
  1.2754 +     pred "pred a r: Pow(acc r) ==> a: acc r"
  1.2755 +  monos   Pow_mono
  1.2756 +end
  1.2757 +\end{ttbox}
  1.2758 +The Isabelle distribution contains many other inductive definitions.  Simple
  1.2759 +examples are collected on subdirectory \texttt{HOL/Induct}.  The theory
  1.2760 +\texttt{HOL/Induct/LList} contains coinductive definitions.  Larger examples
  1.2761 +may be found on other subdirectories of \texttt{HOL}, such as \texttt{IMP},
  1.2762 +\texttt{Lambda} and \texttt{Auth}.
  1.2763 +
  1.2764 +\index{*coinductive|)} \index{*inductive|)}
  1.2765 +
  1.2766 +
  1.2767 +\section{The examples directories}
  1.2768 +
  1.2769 +Directory \texttt{HOL/Auth} contains theories for proving the correctness of 
  1.2770 +cryptographic protocols.  The approach is based upon operational 
  1.2771 +semantics~\cite{paulson-security} rather than the more usual belief logics.
  1.2772 +On the same directory are proofs for some standard examples, such as the 
  1.2773 +Needham-Schroeder public-key authentication protocol~\cite{paulson-ns} 
  1.2774 +and the Otway-Rees protocol.
  1.2775 +
  1.2776 +Directory \texttt{HOL/IMP} contains a formalization of various denotational,
  1.2777 +operational and axiomatic semantics of a simple while-language, the necessary
  1.2778 +equivalence proofs, soundness and completeness of the Hoare rules with respect
  1.2779 +to the 
  1.2780 +denotational semantics, and soundness and completeness of a verification
  1.2781 +condition generator.  Much of development is taken from
  1.2782 +Winskel~\cite{winskel93}.  For details see~\cite{nipkow-IMP}.
  1.2783 +
  1.2784 +Directory \texttt{HOL/Hoare} contains a user friendly surface syntax for Hoare
  1.2785 +logic, including a tactic for generating verification-conditions.
  1.2786 +
  1.2787 +Directory \texttt{HOL/MiniML} contains a formalization of the type system of the
  1.2788 +core functional language Mini-ML and a correctness proof for its type
  1.2789 +inference algorithm $\cal W$~\cite{milner78,nazareth-nipkow}.
  1.2790 +
  1.2791 +Directory \texttt{HOL/Lambda} contains a formalization of untyped
  1.2792 +$\lambda$-calculus in de~Bruijn notation and Church-Rosser proofs for $\beta$
  1.2793 +and $\eta$ reduction~\cite{Nipkow-CR}.
  1.2794 +
  1.2795 +Directory \texttt{HOL/Subst} contains Martin Coen's mechanization of a theory of
  1.2796 +substitutions and unifiers.  It is based on Paulson's previous
  1.2797 +mechanisation in {\LCF}~\cite{paulson85} of Manna and Waldinger's
  1.2798 +theory~\cite{mw81}.  It demonstrates a complicated use of \texttt{recdef},
  1.2799 +with nested recursion.
  1.2800 +
  1.2801 +Directory \texttt{HOL/Induct} presents simple examples of (co)inductive
  1.2802 +definitions and datatypes.
  1.2803 +\begin{itemize}
  1.2804 +\item Theory \texttt{PropLog} proves the soundness and completeness of
  1.2805 +  classical propositional logic, given a truth table semantics.  The only
  1.2806 +  connective is $\imp$.  A Hilbert-style axiom system is specified, and its
  1.2807 +  set of theorems defined inductively.  A similar proof in \ZF{} is
  1.2808 +  described elsewhere~\cite{paulson-set-II}.
  1.2809 +
  1.2810 +\item Theory \texttt{Term} defines the datatype \texttt{term}.
  1.2811 +
  1.2812 +\item Theory \texttt{ABexp} defines arithmetic and boolean expressions
  1.2813 + as mutually recursive datatypes.
  1.2814 +
  1.2815 +\item The definition of lazy lists demonstrates methods for handling
  1.2816 +  infinite data structures and coinduction in higher-order
  1.2817 +  logic~\cite{paulson-coind}.%
  1.2818 +\footnote{To be precise, these lists are \emph{potentially infinite} rather
  1.2819 +  than lazy.  Lazy implies a particular operational semantics.}
  1.2820 +  Theory \thydx{LList} defines an operator for
  1.2821 +  corecursion on lazy lists, which is used to define a few simple functions
  1.2822 +  such as map and append.   A coinduction principle is defined
  1.2823 +  for proving equations on lazy lists.
  1.2824 +  
  1.2825 +\item Theory \thydx{LFilter} defines the filter functional for lazy lists.
  1.2826 +  This functional is notoriously difficult to define because finding the next
  1.2827 +  element meeting the predicate requires possibly unlimited search.  It is not
  1.2828 +  computable, but can be expressed using a combination of induction and
  1.2829 +  corecursion.  
  1.2830 +
  1.2831 +\item Theory \thydx{Exp} illustrates the use of iterated inductive definitions
  1.2832 +  to express a programming language semantics that appears to require mutual
  1.2833 +  induction.  Iterated induction allows greater modularity.
  1.2834 +\end{itemize}
  1.2835 +
  1.2836 +Directory \texttt{HOL/ex} contains other examples and experimental proofs in
  1.2837 +{\HOL}.  
  1.2838 +\begin{itemize}
  1.2839 +\item Theory \texttt{Recdef} presents many examples of using \texttt{recdef}
  1.2840 +  to define recursive functions.  Another example is \texttt{Fib}, which
  1.2841 +  defines the Fibonacci function.
  1.2842 +
  1.2843 +\item Theory \texttt{Primes} defines the Greatest Common Divisor of two
  1.2844 +  natural numbers and proves a key lemma of the Fundamental Theorem of
  1.2845 +  Arithmetic: if $p$ is prime and $p$ divides $m\times n$ then $p$ divides~$m$
  1.2846 +  or $p$ divides~$n$.
  1.2847 +
  1.2848 +\item Theory \texttt{Primrec} develops some computation theory.  It
  1.2849 +  inductively defines the set of primitive recursive functions and presents a
  1.2850 +  proof that Ackermann's function is not primitive recursive.
  1.2851 +
  1.2852 +\item File \texttt{cla.ML} demonstrates the classical reasoner on over sixty
  1.2853 +  predicate calculus theorems, ranging from simple tautologies to
  1.2854 +  moderately difficult problems involving equality and quantifiers.
  1.2855 +
  1.2856 +\item File \texttt{meson.ML} contains an experimental implementation of the {\sc
  1.2857 +    meson} proof procedure, inspired by Plaisted~\cite{plaisted90}.  It is
  1.2858 +  much more powerful than Isabelle's classical reasoner.  But it is less
  1.2859 +  useful in practice because it works only for pure logic; it does not
  1.2860 +  accept derived rules for the set theory primitives, for example.
  1.2861 +
  1.2862 +\item File \texttt{mesontest.ML} contains test data for the {\sc meson} proof
  1.2863 +  procedure.  These are mostly taken from Pelletier \cite{pelletier86}.
  1.2864 +
  1.2865 +\item File \texttt{set.ML} proves Cantor's Theorem, which is presented in
  1.2866 +  \S\ref{sec:hol-cantor} below, and the Schr\"oder-Bernstein Theorem.
  1.2867 +
  1.2868 +\item Theory \texttt{MT} contains Jacob Frost's formalization~\cite{frost93} of
  1.2869 +  Milner and Tofte's coinduction example~\cite{milner-coind}.  This
  1.2870 +  substantial proof concerns the soundness of a type system for a simple
  1.2871 +  functional language.  The semantics of recursion is given by a cyclic
  1.2872 +  environment, which makes a coinductive argument appropriate.
  1.2873 +\end{itemize}
  1.2874 +
  1.2875 +
  1.2876 +\goodbreak
  1.2877 +\section{Example: Cantor's Theorem}\label{sec:hol-cantor}
  1.2878 +Cantor's Theorem states that every set has more subsets than it has
  1.2879 +elements.  It has become a favourite example in higher-order logic since
  1.2880 +it is so easily expressed:
  1.2881 +\[  \forall f::\alpha \To \alpha \To bool. \exists S::\alpha\To bool.
  1.2882 +    \forall x::\alpha. f~x \not= S 
  1.2883 +\] 
  1.2884 +%
  1.2885 +Viewing types as sets, $\alpha\To bool$ represents the powerset
  1.2886 +of~$\alpha$.  This version states that for every function from $\alpha$ to
  1.2887 +its powerset, some subset is outside its range.  
  1.2888 +
  1.2889 +The Isabelle proof uses \HOL's set theory, with the type $\alpha\,set$ and
  1.2890 +the operator \cdx{range}.
  1.2891 +\begin{ttbox}
  1.2892 +context Set.thy;
  1.2893 +\end{ttbox}
  1.2894 +The set~$S$ is given as an unknown instead of a
  1.2895 +quantified variable so that we may inspect the subset found by the proof.
  1.2896 +\begin{ttbox}
  1.2897 +Goal "?S ~: range\thinspace(f :: 'a=>'a set)";
  1.2898 +{\out Level 0}
  1.2899 +{\out ?S ~: range f}
  1.2900 +{\out  1. ?S ~: range f}
  1.2901 +\end{ttbox}
  1.2902 +The first two steps are routine.  The rule \tdx{rangeE} replaces
  1.2903 +$\Var{S}\in \texttt{range} \, f$ by $\Var{S}=f~x$ for some~$x$.
  1.2904 +\begin{ttbox}
  1.2905 +by (resolve_tac [notI] 1);
  1.2906 +{\out Level 1}
  1.2907 +{\out ?S ~: range f}
  1.2908 +{\out  1. ?S : range f ==> False}
  1.2909 +\ttbreak
  1.2910 +by (eresolve_tac [rangeE] 1);
  1.2911 +{\out Level 2}
  1.2912 +{\out ?S ~: range f}
  1.2913 +{\out  1. !!x. ?S = f x ==> False}
  1.2914 +\end{ttbox}
  1.2915 +Next, we apply \tdx{equalityCE}, reasoning that since $\Var{S}=f~x$,
  1.2916 +we have $\Var{c}\in \Var{S}$ if and only if $\Var{c}\in f~x$ for
  1.2917 +any~$\Var{c}$.
  1.2918 +\begin{ttbox}
  1.2919 +by (eresolve_tac [equalityCE] 1);
  1.2920 +{\out Level 3}
  1.2921 +{\out ?S ~: range f}
  1.2922 +{\out  1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False}
  1.2923 +{\out  2. !!x. [| ?c3 x ~: ?S; ?c3 x ~: f x |] ==> False}
  1.2924 +\end{ttbox}
  1.2925 +Now we use a bit of creativity.  Suppose that~$\Var{S}$ has the form of a
  1.2926 +comprehension.  Then $\Var{c}\in\{x.\Var{P}~x\}$ implies
  1.2927 +$\Var{P}~\Var{c}$.   Destruct-resolution using \tdx{CollectD}
  1.2928 +instantiates~$\Var{S}$ and creates the new assumption.
  1.2929 +\begin{ttbox}
  1.2930 +by (dresolve_tac [CollectD] 1);
  1.2931 +{\out Level 4}
  1.2932 +{\out {\ttlbrace}x. ?P7 x{\ttrbrace} ~: range f}
  1.2933 +{\out  1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False}
  1.2934 +{\out  2. !!x. [| ?c3 x ~: {\ttlbrace}x. ?P7 x{\ttrbrace}; ?c3 x ~: f x |] ==> False}
  1.2935 +\end{ttbox}
  1.2936 +Forcing a contradiction between the two assumptions of subgoal~1
  1.2937 +completes the instantiation of~$S$.  It is now the set $\{x. x\not\in
  1.2938 +f~x\}$, which is the standard diagonal construction.
  1.2939 +\begin{ttbox}
  1.2940 +by (contr_tac 1);
  1.2941 +{\out Level 5}
  1.2942 +{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  1.2943 +{\out  1. !!x. [| x ~: {\ttlbrace}x. x ~: f x{\ttrbrace}; x ~: f x |] ==> False}
  1.2944 +\end{ttbox}
  1.2945 +The rest should be easy.  To apply \tdx{CollectI} to the negated
  1.2946 +assumption, we employ \ttindex{swap_res_tac}:
  1.2947 +\begin{ttbox}
  1.2948 +by (swap_res_tac [CollectI] 1);
  1.2949 +{\out Level 6}
  1.2950 +{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  1.2951 +{\out  1. !!x. [| x ~: f x; ~ False |] ==> x ~: f x}
  1.2952 +\ttbreak
  1.2953 +by (assume_tac 1);
  1.2954 +{\out Level 7}
  1.2955 +{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  1.2956 +{\out No subgoals!}
  1.2957 +\end{ttbox}
  1.2958 +How much creativity is required?  As it happens, Isabelle can prove this
  1.2959 +theorem automatically.  The default classical set \texttt{claset()} contains rules
  1.2960 +for most of the constructs of \HOL's set theory.  We must augment it with
  1.2961 +\tdx{equalityCE} to break up set equalities, and then apply best-first
  1.2962 +search.  Depth-first search would diverge, but best-first search
  1.2963 +successfully navigates through the large search space.
  1.2964 +\index{search!best-first}
  1.2965 +\begin{ttbox}
  1.2966 +choplev 0;
  1.2967 +{\out Level 0}
  1.2968 +{\out ?S ~: range f}
  1.2969 +{\out  1. ?S ~: range f}
  1.2970 +\ttbreak
  1.2971 +by (best_tac (claset() addSEs [equalityCE]) 1);
  1.2972 +{\out Level 1}
  1.2973 +{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  1.2974 +{\out No subgoals!}
  1.2975 +\end{ttbox}
  1.2976 +If you run this example interactively, make sure your current theory contains
  1.2977 +theory \texttt{Set}, for example by executing \ttindex{context}~{\tt Set.thy}.
  1.2978 +Otherwise the default claset may not contain the rules for set theory.
  1.2979 +\index{higher-order logic|)}
  1.2980 +
  1.2981 +%%% Local Variables: 
  1.2982 +%%% mode: latex
  1.2983 +%%% TeX-master: "logics"
  1.2984 +%%% End: