move FinFuns from AFP to repository
authorAndreas Lochbihler
Tue, 29 May 2012 15:31:58 +0200
changeset 49043a5377f6d9f14
parent 49028 44de84112a67
child 49044 9d9c9069abbc
move FinFuns from AFP to repository
src/HOL/IsaMakefile
src/HOL/Library/Card_Univ.thy
src/HOL/Library/FinFun.thy
src/HOL/Library/Library.thy
src/HOL/ex/FinFunPred.thy
src/HOL/ex/ROOT.ML
     1.1 --- a/src/HOL/IsaMakefile	Tue May 29 13:46:50 2012 +0200
     1.2 +++ b/src/HOL/IsaMakefile	Tue May 29 15:31:58 2012 +0200
     1.3 @@ -441,7 +441,8 @@
     1.4    Library/Abstract_Rat.thy $(SRC)/Tools/Adhoc_Overloading.thy		\
     1.5    Library/AList.thy Library/AList_Mapping.thy 				\
     1.6    Library/BigO.thy Library/Binomial.thy 				\
     1.7 -  Library/Bit.thy Library/Boolean_Algebra.thy Library/Cardinality.thy	\
     1.8 +  Library/Bit.thy Library/Boolean_Algebra.thy Library/Card_Univ.thy	\
     1.9 +  Library/Cardinality.thy						\
    1.10    Library/Char_nat.thy Library/Code_Char.thy Library/Code_Char_chr.thy	\
    1.11    Library/Code_Char_ord.thy Library/Code_Integer.thy			\
    1.12    Library/Code_Nat.thy Library/Code_Natural.thy				\
    1.13 @@ -453,7 +454,8 @@
    1.14    Library/Dlist.thy Library/Eval_Witness.thy				\
    1.15    Library/DAList.thy Library/Dlist.thy					\
    1.16    Library/Eval_Witness.thy						\
    1.17 -  Library/Extended_Real.thy Library/Extended_Nat.thy Library/Float.thy	\
    1.18 +  Library/Extended_Real.thy Library/Extended_Nat.thy			\
    1.19 +  Library/FinFun.thy Library/Float.thy					\
    1.20    Library/Formal_Power_Series.thy Library/Fraction_Field.thy		\
    1.21    Library/FrechetDeriv.thy Library/FuncSet.thy				\
    1.22    Library/Function_Algebras.thy Library/Fundamental_Theorem_Algebra.thy	\
    1.23 @@ -1020,7 +1022,8 @@
    1.24    ex/Case_Product.thy ex/Chinese.thy ex/Classical.thy			\
    1.25    ex/Code_Nat_examples.thy						\
    1.26    ex/Coercion_Examples.thy ex/Coherent.thy ex/Dedekind_Real.thy		\
    1.27 -  ex/Eval_Examples.thy ex/Executable_Relation.thy ex/Fundefs.thy	\
    1.28 +  ex/Eval_Examples.thy ex/Executable_Relation.thy 			\
    1.29 +  ex/FinFunPred.thy ex/Fundefs.thy					\
    1.30    ex/Gauge_Integration.thy ex/Groebner_Examples.thy ex/Guess.thy	\
    1.31    ex/HarmonicSeries.thy ex/Hebrew.thy ex/Hex_Bin_Examples.thy		\
    1.32    ex/Higher_Order_Logic.thy ex/Iff_Oracle.thy ex/Induction_Schema.thy	\
     2.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.2 +++ b/src/HOL/Library/Card_Univ.thy	Tue May 29 15:31:58 2012 +0200
     2.3 @@ -0,0 +1,293 @@
     2.4 +(* Author: Andreas Lochbihler, KIT *)
     2.5 +
     2.6 +header {* A type class for computing the cardinality of a type's universe *}
     2.7 +
     2.8 +theory Card_Univ imports Main begin
     2.9 +
    2.10 +subsection {* A type class for computing the cardinality of a type's universe *}
    2.11 +
    2.12 +class card_UNIV = 
    2.13 +  fixes card_UNIV :: "'a itself \<Rightarrow> nat"
    2.14 +  assumes card_UNIV: "card_UNIV x = card (UNIV :: 'a set)"
    2.15 +begin
    2.16 +
    2.17 +lemma card_UNIV_neq_0_finite_UNIV:
    2.18 +  "card_UNIV x \<noteq> 0 \<longleftrightarrow> finite (UNIV :: 'a set)"
    2.19 +by(simp add: card_UNIV card_eq_0_iff)
    2.20 +
    2.21 +lemma card_UNIV_ge_0_finite_UNIV:
    2.22 +  "card_UNIV x > 0 \<longleftrightarrow> finite (UNIV :: 'a set)"
    2.23 +by(auto simp add: card_UNIV intro: card_ge_0_finite finite_UNIV_card_ge_0)
    2.24 +
    2.25 +lemma card_UNIV_eq_0_infinite_UNIV:
    2.26 +  "card_UNIV x = 0 \<longleftrightarrow> \<not> finite (UNIV :: 'a set)"
    2.27 +by(simp add: card_UNIV card_eq_0_iff)
    2.28 +
    2.29 +definition is_list_UNIV :: "'a list \<Rightarrow> bool"
    2.30 +where "is_list_UNIV xs = (let c = card_UNIV (TYPE('a)) in if c = 0 then False else size (remdups xs) = c)"
    2.31 +
    2.32 +lemma is_list_UNIV_iff:
    2.33 +  fixes xs :: "'a list"
    2.34 +  shows "is_list_UNIV xs \<longleftrightarrow> set xs = UNIV"
    2.35 +proof
    2.36 +  assume "is_list_UNIV xs"
    2.37 +  hence c: "card_UNIV (TYPE('a)) > 0" and xs: "size (remdups xs) = card_UNIV (TYPE('a))"
    2.38 +    unfolding is_list_UNIV_def by(simp_all add: Let_def split: split_if_asm)
    2.39 +  from c have fin: "finite (UNIV :: 'a set)" by(auto simp add: card_UNIV_ge_0_finite_UNIV)
    2.40 +  have "card (set (remdups xs)) = size (remdups xs)" by(subst distinct_card) auto
    2.41 +  also note set_remdups
    2.42 +  finally show "set xs = UNIV" using fin unfolding xs card_UNIV by-(rule card_eq_UNIV_imp_eq_UNIV)
    2.43 +next
    2.44 +  assume xs: "set xs = UNIV"
    2.45 +  from finite_set[of xs] have fin: "finite (UNIV :: 'a set)" unfolding xs .
    2.46 +  hence "card_UNIV (TYPE ('a)) \<noteq> 0" unfolding card_UNIV_neq_0_finite_UNIV .
    2.47 +  moreover have "size (remdups xs) = card (set (remdups xs))"
    2.48 +    by(subst distinct_card) auto
    2.49 +  ultimately show "is_list_UNIV xs" using xs by(simp add: is_list_UNIV_def Let_def card_UNIV)
    2.50 +qed
    2.51 +
    2.52 +lemma card_UNIV_eq_0_is_list_UNIV_False:
    2.53 +  assumes cU0: "card_UNIV x = 0"
    2.54 +  shows "is_list_UNIV = (\<lambda>xs. False)"
    2.55 +proof(rule ext)
    2.56 +  fix xs :: "'a list"
    2.57 +  from cU0 have "\<not> finite (UNIV :: 'a set)"
    2.58 +    by(auto simp only: card_UNIV_eq_0_infinite_UNIV)
    2.59 +  moreover have "finite (set xs)" by(rule finite_set)
    2.60 +  ultimately have "(UNIV :: 'a set) \<noteq> set xs" by(auto simp del: finite_set)
    2.61 +  thus "is_list_UNIV xs = False" unfolding is_list_UNIV_iff by simp
    2.62 +qed
    2.63 +
    2.64 +end
    2.65 +
    2.66 +subsection {* Instantiations for @{text "card_UNIV"} *}
    2.67 +
    2.68 +subsubsection {* @{typ "nat"} *}
    2.69 +
    2.70 +instantiation nat :: card_UNIV begin
    2.71 +
    2.72 +definition card_UNIV_nat_def:
    2.73 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: nat itself. 0)"
    2.74 +
    2.75 +instance proof
    2.76 +  fix x :: "nat itself"
    2.77 +  show "card_UNIV x = card (UNIV :: nat set)"
    2.78 +    unfolding card_UNIV_nat_def by simp
    2.79 +qed
    2.80 +
    2.81 +end
    2.82 +
    2.83 +subsubsection {* @{typ "int"} *}
    2.84 +
    2.85 +instantiation int :: card_UNIV begin
    2.86 +
    2.87 +definition card_UNIV_int_def:
    2.88 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: int itself. 0)"
    2.89 +
    2.90 +instance proof
    2.91 +  fix x :: "int itself"
    2.92 +  show "card_UNIV x = card (UNIV :: int set)"
    2.93 +    unfolding card_UNIV_int_def by(simp add: infinite_UNIV_int)
    2.94 +qed
    2.95 +
    2.96 +end
    2.97 +
    2.98 +subsubsection {* @{typ "'a list"} *}
    2.99 +
   2.100 +instantiation list :: (type) card_UNIV begin
   2.101 +
   2.102 +definition card_UNIV_list_def:
   2.103 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: 'a list itself. 0)"
   2.104 +
   2.105 +instance proof
   2.106 +  fix x :: "'a list itself"
   2.107 +  show "card_UNIV x = card (UNIV :: 'a list set)"
   2.108 +    unfolding card_UNIV_list_def by(simp add: infinite_UNIV_listI)
   2.109 +qed
   2.110 +
   2.111 +end
   2.112 +
   2.113 +subsubsection {* @{typ "unit"} *}
   2.114 +
   2.115 +lemma card_UNIV_unit: "card (UNIV :: unit set) = 1"
   2.116 +  unfolding UNIV_unit by simp
   2.117 +
   2.118 +instantiation unit :: card_UNIV begin
   2.119 +
   2.120 +definition card_UNIV_unit_def: 
   2.121 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: unit itself. 1)"
   2.122 +
   2.123 +instance proof
   2.124 +  fix x :: "unit itself"
   2.125 +  show "card_UNIV x = card (UNIV :: unit set)"
   2.126 +    by(simp add: card_UNIV_unit_def card_UNIV_unit)
   2.127 +qed
   2.128 +
   2.129 +end
   2.130 +
   2.131 +subsubsection {* @{typ "bool"} *}
   2.132 +
   2.133 +lemma card_UNIV_bool: "card (UNIV :: bool set) = 2"
   2.134 +  unfolding UNIV_bool by simp
   2.135 +
   2.136 +instantiation bool :: card_UNIV begin
   2.137 +
   2.138 +definition card_UNIV_bool_def: 
   2.139 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: bool itself. 2)"
   2.140 +
   2.141 +instance proof
   2.142 +  fix x :: "bool itself"
   2.143 +  show "card_UNIV x = card (UNIV :: bool set)"
   2.144 +    by(simp add: card_UNIV_bool_def card_UNIV_bool)
   2.145 +qed
   2.146 +
   2.147 +end
   2.148 +
   2.149 +subsubsection {* @{typ "char"} *}
   2.150 +
   2.151 +lemma card_UNIV_char: "card (UNIV :: char set) = 256"
   2.152 +proof -
   2.153 +  from enum_distinct
   2.154 +  have "card (set (Enum.enum :: char list)) = length (Enum.enum :: char list)"
   2.155 +    by (rule distinct_card)
   2.156 +  also have "set Enum.enum = (UNIV :: char set)" by (auto intro: in_enum)
   2.157 +  also note enum_chars
   2.158 +  finally show ?thesis by (simp add: chars_def)
   2.159 +qed
   2.160 +
   2.161 +instantiation char :: card_UNIV begin
   2.162 +
   2.163 +definition card_UNIV_char_def: 
   2.164 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: char itself. 256)"
   2.165 +
   2.166 +instance proof
   2.167 +  fix x :: "char itself"
   2.168 +  show "card_UNIV x = card (UNIV :: char set)"
   2.169 +    by(simp add: card_UNIV_char_def card_UNIV_char)
   2.170 +qed
   2.171 +
   2.172 +end
   2.173 +
   2.174 +subsubsection {* @{typ "'a \<times> 'b"} *}
   2.175 +
   2.176 +instantiation prod :: (card_UNIV, card_UNIV) card_UNIV begin
   2.177 +
   2.178 +definition card_UNIV_product_def: 
   2.179 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: ('a \<times> 'b) itself. card_UNIV (TYPE('a)) * card_UNIV (TYPE('b)))"
   2.180 +
   2.181 +instance proof
   2.182 +  fix x :: "('a \<times> 'b) itself"
   2.183 +  show "card_UNIV x = card (UNIV :: ('a \<times> 'b) set)"
   2.184 +    by(simp add: card_UNIV_product_def card_UNIV UNIV_Times_UNIV[symmetric] card_cartesian_product del: UNIV_Times_UNIV)
   2.185 +qed
   2.186 +
   2.187 +end
   2.188 +
   2.189 +subsubsection {* @{typ "'a + 'b"} *}
   2.190 +
   2.191 +instantiation sum :: (card_UNIV, card_UNIV) card_UNIV begin
   2.192 +
   2.193 +definition card_UNIV_sum_def: 
   2.194 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: ('a + 'b) itself. let ca = card_UNIV (TYPE('a)); cb = card_UNIV (TYPE('b))
   2.195 +                           in if ca \<noteq> 0 \<and> cb \<noteq> 0 then ca + cb else 0)"
   2.196 +
   2.197 +instance proof
   2.198 +  fix x :: "('a + 'b) itself"
   2.199 +  show "card_UNIV x = card (UNIV :: ('a + 'b) set)"
   2.200 +    by (auto simp add: card_UNIV_sum_def card_UNIV card_eq_0_iff UNIV_Plus_UNIV[symmetric] finite_Plus_iff Let_def card_Plus simp del: UNIV_Plus_UNIV dest!: card_ge_0_finite)
   2.201 +qed
   2.202 +
   2.203 +end
   2.204 +
   2.205 +subsubsection {* @{typ "'a \<Rightarrow> 'b"} *}
   2.206 +
   2.207 +instantiation "fun" :: (card_UNIV, card_UNIV) card_UNIV begin
   2.208 +
   2.209 +definition card_UNIV_fun_def: 
   2.210 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: ('a \<Rightarrow> 'b) itself. let ca = card_UNIV (TYPE('a)); cb = card_UNIV (TYPE('b))
   2.211 +                           in if ca \<noteq> 0 \<and> cb \<noteq> 0 \<or> cb = 1 then cb ^ ca else 0)"
   2.212 +
   2.213 +instance proof
   2.214 +  fix x :: "('a \<Rightarrow> 'b) itself"
   2.215 +
   2.216 +  { assume "0 < card (UNIV :: 'a set)"
   2.217 +    and "0 < card (UNIV :: 'b set)"
   2.218 +    hence fina: "finite (UNIV :: 'a set)" and finb: "finite (UNIV :: 'b set)"
   2.219 +      by(simp_all only: card_ge_0_finite)
   2.220 +    from finite_distinct_list[OF finb] obtain bs 
   2.221 +      where bs: "set bs = (UNIV :: 'b set)" and distb: "distinct bs" by blast
   2.222 +    from finite_distinct_list[OF fina] obtain as
   2.223 +      where as: "set as = (UNIV :: 'a set)" and dista: "distinct as" by blast
   2.224 +    have cb: "card (UNIV :: 'b set) = length bs"
   2.225 +      unfolding bs[symmetric] distinct_card[OF distb] ..
   2.226 +    have ca: "card (UNIV :: 'a set) = length as"
   2.227 +      unfolding as[symmetric] distinct_card[OF dista] ..
   2.228 +    let ?xs = "map (\<lambda>ys. the o map_of (zip as ys)) (Enum.n_lists (length as) bs)"
   2.229 +    have "UNIV = set ?xs"
   2.230 +    proof(rule UNIV_eq_I)
   2.231 +      fix f :: "'a \<Rightarrow> 'b"
   2.232 +      from as have "f = the \<circ> map_of (zip as (map f as))"
   2.233 +        by(auto simp add: map_of_zip_map intro: ext)
   2.234 +      thus "f \<in> set ?xs" using bs by(auto simp add: set_n_lists)
   2.235 +    qed
   2.236 +    moreover have "distinct ?xs" unfolding distinct_map
   2.237 +    proof(intro conjI distinct_n_lists distb inj_onI)
   2.238 +      fix xs ys :: "'b list"
   2.239 +      assume xs: "xs \<in> set (Enum.n_lists (length as) bs)"
   2.240 +        and ys: "ys \<in> set (Enum.n_lists (length as) bs)"
   2.241 +        and eq: "the \<circ> map_of (zip as xs) = the \<circ> map_of (zip as ys)"
   2.242 +      from xs ys have [simp]: "length xs = length as" "length ys = length as"
   2.243 +        by(simp_all add: length_n_lists_elem)
   2.244 +      have "map_of (zip as xs) = map_of (zip as ys)"
   2.245 +      proof
   2.246 +        fix x
   2.247 +        from as bs have "\<exists>y. map_of (zip as xs) x = Some y" "\<exists>y. map_of (zip as ys) x = Some y"
   2.248 +          by(simp_all add: map_of_zip_is_Some[symmetric])
   2.249 +        with eq show "map_of (zip as xs) x = map_of (zip as ys) x"
   2.250 +          by(auto dest: fun_cong[where x=x])
   2.251 +      qed
   2.252 +      with dista show "xs = ys" by(simp add: map_of_zip_inject)
   2.253 +    qed
   2.254 +    hence "card (set ?xs) = length ?xs" by(simp only: distinct_card)
   2.255 +    moreover have "length ?xs = length bs ^ length as" by(simp add: length_n_lists)
   2.256 +    ultimately have "card (UNIV :: ('a \<Rightarrow> 'b) set) = card (UNIV :: 'b set) ^ card (UNIV :: 'a set)"
   2.257 +      using cb ca by simp }
   2.258 +  moreover {
   2.259 +    assume cb: "card (UNIV :: 'b set) = Suc 0"
   2.260 +    then obtain b where b: "UNIV = {b :: 'b}" by(auto simp add: card_Suc_eq)
   2.261 +    have eq: "UNIV = {\<lambda>x :: 'a. b ::'b}"
   2.262 +    proof(rule UNIV_eq_I)
   2.263 +      fix x :: "'a \<Rightarrow> 'b"
   2.264 +      { fix y
   2.265 +        have "x y \<in> UNIV" ..
   2.266 +        hence "x y = b" unfolding b by simp }
   2.267 +      thus "x \<in> {\<lambda>x. b}" by(auto intro: ext)
   2.268 +    qed
   2.269 +    have "card (UNIV :: ('a \<Rightarrow> 'b) set) = Suc 0" unfolding eq by simp }
   2.270 +  ultimately show "card_UNIV x = card (UNIV :: ('a \<Rightarrow> 'b) set)"
   2.271 +    unfolding card_UNIV_fun_def card_UNIV Let_def
   2.272 +    by(auto simp del: One_nat_def)(auto simp add: card_eq_0_iff dest: finite_fun_UNIVD2 finite_fun_UNIVD1)
   2.273 +qed
   2.274 +
   2.275 +end
   2.276 +
   2.277 +subsubsection {* @{typ "'a option"} *}
   2.278 +
   2.279 +instantiation option :: (card_UNIV) card_UNIV
   2.280 +begin
   2.281 +
   2.282 +definition card_UNIV_option_def: 
   2.283 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: 'a option itself. let c = card_UNIV (TYPE('a))
   2.284 +                           in if c \<noteq> 0 then Suc c else 0)"
   2.285 +
   2.286 +instance proof
   2.287 +  fix x :: "'a option itself"
   2.288 +  show "card_UNIV x = card (UNIV :: 'a option set)"
   2.289 +    unfolding UNIV_option_conv
   2.290 +    by(auto simp add: card_UNIV_option_def card_UNIV card_eq_0_iff Let_def intro: inj_Some dest: finite_imageD)
   2.291 +      (subst card_insert_disjoint, auto simp add: card_eq_0_iff card_image inj_Some intro: finite_imageI card_ge_0_finite)
   2.292 +qed
   2.293 +
   2.294 +end
   2.295 +
   2.296 +end
   2.297 \ No newline at end of file
     3.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.2 +++ b/src/HOL/Library/FinFun.thy	Tue May 29 15:31:58 2012 +0200
     3.3 @@ -0,0 +1,1473 @@
     3.4 +(* Author: Andreas Lochbihler, Uni Karlsruhe *)
     3.5 +
     3.6 +header {* Almost everywhere constant functions *}
     3.7 +
     3.8 +theory FinFun
     3.9 +imports Card_Univ
    3.10 +begin
    3.11 +
    3.12 +text {*
    3.13 +  This theory defines functions which are constant except for finitely
    3.14 +  many points (FinFun) and introduces a type finfin along with a
    3.15 +  number of operators for them. The code generator is set up such that
    3.16 +  such functions can be represented as data in the generated code and
    3.17 +  all operators are executable.
    3.18 +
    3.19 +  For details, see Formalising FinFuns - Generating Code for Functions as Data by A. Lochbihler in TPHOLs 2009.
    3.20 +*}
    3.21 +
    3.22 +
    3.23 +definition "code_abort" :: "(unit \<Rightarrow> 'a) \<Rightarrow> 'a"
    3.24 +where [simp, code del]: "code_abort f = f ()"
    3.25 +
    3.26 +code_abort "code_abort"
    3.27 +
    3.28 +hide_const (open) "code_abort"
    3.29 +
    3.30 +subsection {* The @{text "map_default"} operation *}
    3.31 +
    3.32 +definition map_default :: "'b \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
    3.33 +where "map_default b f a \<equiv> case f a of None \<Rightarrow> b | Some b' \<Rightarrow> b'"
    3.34 +
    3.35 +lemma map_default_delete [simp]:
    3.36 +  "map_default b (f(a := None)) = (map_default b f)(a := b)"
    3.37 +by(simp add: map_default_def fun_eq_iff)
    3.38 +
    3.39 +lemma map_default_insert:
    3.40 +  "map_default b (f(a \<mapsto> b')) = (map_default b f)(a := b')"
    3.41 +by(simp add: map_default_def fun_eq_iff)
    3.42 +
    3.43 +lemma map_default_empty [simp]: "map_default b empty = (\<lambda>a. b)"
    3.44 +by(simp add: fun_eq_iff map_default_def)
    3.45 +
    3.46 +lemma map_default_inject:
    3.47 +  fixes g g' :: "'a \<rightharpoonup> 'b"
    3.48 +  assumes infin_eq: "\<not> finite (UNIV :: 'a set) \<or> b = b'"
    3.49 +  and fin: "finite (dom g)" and b: "b \<notin> ran g"
    3.50 +  and fin': "finite (dom g')" and b': "b' \<notin> ran g'"
    3.51 +  and eq': "map_default b g = map_default b' g'"
    3.52 +  shows "b = b'" "g = g'"
    3.53 +proof -
    3.54 +  from infin_eq show bb': "b = b'"
    3.55 +  proof
    3.56 +    assume infin: "\<not> finite (UNIV :: 'a set)"
    3.57 +    from fin fin' have "finite (dom g \<union> dom g')" by auto
    3.58 +    with infin have "UNIV - (dom g \<union> dom g') \<noteq> {}" by(auto dest: finite_subset)
    3.59 +    then obtain a where a: "a \<notin> dom g \<union> dom g'" by auto
    3.60 +    hence "map_default b g a = b" "map_default b' g' a = b'" by(auto simp add: map_default_def)
    3.61 +    with eq' show "b = b'" by simp
    3.62 +  qed
    3.63 +
    3.64 +  show "g = g'"
    3.65 +  proof
    3.66 +    fix x
    3.67 +    show "g x = g' x"
    3.68 +    proof(cases "g x")
    3.69 +      case None
    3.70 +      hence "map_default b g x = b" by(simp add: map_default_def)
    3.71 +      with bb' eq' have "map_default b' g' x = b'" by simp
    3.72 +      with b' have "g' x = None" by(simp add: map_default_def ran_def split: option.split_asm)
    3.73 +      with None show ?thesis by simp
    3.74 +    next
    3.75 +      case (Some c)
    3.76 +      with b have cb: "c \<noteq> b" by(auto simp add: ran_def)
    3.77 +      moreover from Some have "map_default b g x = c" by(simp add: map_default_def)
    3.78 +      with eq' have "map_default b' g' x = c" by simp
    3.79 +      ultimately have "g' x = Some c" using b' bb' by(auto simp add: map_default_def split: option.splits)
    3.80 +      with Some show ?thesis by simp
    3.81 +    qed
    3.82 +  qed
    3.83 +qed
    3.84 +
    3.85 +subsection {* The finfun type *}
    3.86 +
    3.87 +definition "finfun = {f::'a\<Rightarrow>'b. \<exists>b. finite {a. f a \<noteq> b}}"
    3.88 +
    3.89 +typedef (open) ('a,'b) finfun  ("(_ \<Rightarrow>\<^isub>f /_)" [22, 21] 21) = "finfun :: ('a => 'b) set"
    3.90 +proof -
    3.91 +  have "\<exists>f. finite {x. f x \<noteq> undefined}"
    3.92 +  proof
    3.93 +    show "finite {x. (\<lambda>y. undefined) x \<noteq> undefined}" by auto
    3.94 +  qed
    3.95 +  then show ?thesis unfolding finfun_def by auto
    3.96 +qed
    3.97 +
    3.98 +setup_lifting type_definition_finfun
    3.99 +
   3.100 +lemma fun_upd_finfun: "y(a := b) \<in> finfun \<longleftrightarrow> y \<in> finfun"
   3.101 +proof -
   3.102 +  { fix b'
   3.103 +    have "finite {a'. (y(a := b)) a' \<noteq> b'} = finite {a'. y a' \<noteq> b'}"
   3.104 +    proof(cases "b = b'")
   3.105 +      case True
   3.106 +      hence "{a'. (y(a := b)) a' \<noteq> b'} = {a'. y a' \<noteq> b'} - {a}" by auto
   3.107 +      thus ?thesis by simp
   3.108 +    next
   3.109 +      case False
   3.110 +      hence "{a'. (y(a := b)) a' \<noteq> b'} = insert a {a'. y a' \<noteq> b'}" by auto
   3.111 +      thus ?thesis by simp
   3.112 +    qed }
   3.113 +  thus ?thesis unfolding finfun_def by blast
   3.114 +qed
   3.115 +
   3.116 +lemma const_finfun: "(\<lambda>x. a) \<in> finfun"
   3.117 +by(auto simp add: finfun_def)
   3.118 +
   3.119 +lemma finfun_left_compose:
   3.120 +  assumes "y \<in> finfun"
   3.121 +  shows "g \<circ> y \<in> finfun"
   3.122 +proof -
   3.123 +  from assms obtain b where "finite {a. y a \<noteq> b}"
   3.124 +    unfolding finfun_def by blast
   3.125 +  hence "finite {c. g (y c) \<noteq> g b}"
   3.126 +  proof(induct "{a. y a \<noteq> b}" arbitrary: y)
   3.127 +    case empty
   3.128 +    hence "y = (\<lambda>a. b)" by(auto intro: ext)
   3.129 +    thus ?case by(simp)
   3.130 +  next
   3.131 +    case (insert x F)
   3.132 +    note IH = `\<And>y. F = {a. y a \<noteq> b} \<Longrightarrow> finite {c. g (y c) \<noteq> g b}`
   3.133 +    from `insert x F = {a. y a \<noteq> b}` `x \<notin> F`
   3.134 +    have F: "F = {a. (y(x := b)) a \<noteq> b}" by(auto)
   3.135 +    show ?case
   3.136 +    proof(cases "g (y x) = g b")
   3.137 +      case True
   3.138 +      hence "{c. g ((y(x := b)) c) \<noteq> g b} = {c. g (y c) \<noteq> g b}" by auto
   3.139 +      with IH[OF F] show ?thesis by simp
   3.140 +    next
   3.141 +      case False
   3.142 +      hence "{c. g (y c) \<noteq> g b} = insert x {c. g ((y(x := b)) c) \<noteq> g b}" by auto
   3.143 +      with IH[OF F] show ?thesis by(simp)
   3.144 +    qed
   3.145 +  qed
   3.146 +  thus ?thesis unfolding finfun_def by auto
   3.147 +qed
   3.148 +
   3.149 +lemma assumes "y \<in> finfun"
   3.150 +  shows fst_finfun: "fst \<circ> y \<in> finfun"
   3.151 +  and snd_finfun: "snd \<circ> y \<in> finfun"
   3.152 +proof -
   3.153 +  from assms obtain b c where bc: "finite {a. y a \<noteq> (b, c)}"
   3.154 +    unfolding finfun_def by auto
   3.155 +  have "{a. fst (y a) \<noteq> b} \<subseteq> {a. y a \<noteq> (b, c)}"
   3.156 +    and "{a. snd (y a) \<noteq> c} \<subseteq> {a. y a \<noteq> (b, c)}" by auto
   3.157 +  hence "finite {a. fst (y a) \<noteq> b}" 
   3.158 +    and "finite {a. snd (y a) \<noteq> c}" using bc by(auto intro: finite_subset)
   3.159 +  thus "fst \<circ> y \<in> finfun" "snd \<circ> y \<in> finfun"
   3.160 +    unfolding finfun_def by auto
   3.161 +qed
   3.162 +
   3.163 +lemma map_of_finfun: "map_of xs \<in> finfun"
   3.164 +unfolding finfun_def
   3.165 +by(induct xs)(auto simp add: Collect_neg_eq Collect_conj_eq Collect_imp_eq intro: finite_subset)
   3.166 +
   3.167 +lemma Diag_finfun: "(\<lambda>x. (f x, g x)) \<in> finfun \<longleftrightarrow> f \<in> finfun \<and> g \<in> finfun"
   3.168 +by(auto intro: finite_subset simp add: Collect_neg_eq Collect_imp_eq Collect_conj_eq finfun_def)
   3.169 +
   3.170 +lemma finfun_right_compose:
   3.171 +  assumes g: "g \<in> finfun" and inj: "inj f"
   3.172 +  shows "g o f \<in> finfun"
   3.173 +proof -
   3.174 +  from g obtain b where b: "finite {a. g a \<noteq> b}" unfolding finfun_def by blast
   3.175 +  moreover have "f ` {a. g (f a) \<noteq> b} \<subseteq> {a. g a \<noteq> b}" by auto
   3.176 +  moreover from inj have "inj_on f {a.  g (f a) \<noteq> b}" by(rule subset_inj_on) blast
   3.177 +  ultimately have "finite {a. g (f a) \<noteq> b}"
   3.178 +    by(blast intro: finite_imageD[where f=f] finite_subset)
   3.179 +  thus ?thesis unfolding finfun_def by auto
   3.180 +qed
   3.181 +
   3.182 +lemma finfun_curry:
   3.183 +  assumes fin: "f \<in> finfun"
   3.184 +  shows "curry f \<in> finfun" "curry f a \<in> finfun"
   3.185 +proof -
   3.186 +  from fin obtain c where c: "finite {ab. f ab \<noteq> c}" unfolding finfun_def by blast
   3.187 +  moreover have "{a. \<exists>b. f (a, b) \<noteq> c} = fst ` {ab. f ab \<noteq> c}" by(force)
   3.188 +  hence "{a. curry f a \<noteq> (\<lambda>b. c)} = fst ` {ab. f ab \<noteq> c}"
   3.189 +    by(auto simp add: curry_def fun_eq_iff)
   3.190 +  ultimately have "finite {a. curry f a \<noteq> (\<lambda>b. c)}" by simp
   3.191 +  thus "curry f \<in> finfun" unfolding finfun_def by blast
   3.192 +  
   3.193 +  have "snd ` {ab. f ab \<noteq> c} = {b. \<exists>a. f (a, b) \<noteq> c}" by(force)
   3.194 +  hence "{b. f (a, b) \<noteq> c} \<subseteq> snd ` {ab. f ab \<noteq> c}" by auto
   3.195 +  hence "finite {b. f (a, b) \<noteq> c}" by(rule finite_subset)(rule finite_imageI[OF c])
   3.196 +  thus "curry f a \<in> finfun" unfolding finfun_def by auto
   3.197 +qed
   3.198 +
   3.199 +lemmas finfun_simp = 
   3.200 +  fst_finfun snd_finfun Abs_finfun_inverse Rep_finfun_inverse Abs_finfun_inject Rep_finfun_inject Diag_finfun finfun_curry
   3.201 +lemmas finfun_iff = const_finfun fun_upd_finfun Rep_finfun map_of_finfun
   3.202 +lemmas finfun_intro = finfun_left_compose fst_finfun snd_finfun
   3.203 +
   3.204 +lemma Abs_finfun_inject_finite:
   3.205 +  fixes x y :: "'a \<Rightarrow> 'b"
   3.206 +  assumes fin: "finite (UNIV :: 'a set)"
   3.207 +  shows "Abs_finfun x = Abs_finfun y \<longleftrightarrow> x = y"
   3.208 +proof
   3.209 +  assume "Abs_finfun x = Abs_finfun y"
   3.210 +  moreover have "x \<in> finfun" "y \<in> finfun" unfolding finfun_def
   3.211 +    by(auto intro: finite_subset[OF _ fin])
   3.212 +  ultimately show "x = y" by(simp add: Abs_finfun_inject)
   3.213 +qed simp
   3.214 +
   3.215 +lemma Abs_finfun_inject_finite_class:
   3.216 +  fixes x y :: "('a :: finite) \<Rightarrow> 'b"
   3.217 +  shows "Abs_finfun x = Abs_finfun y \<longleftrightarrow> x = y"
   3.218 +using finite_UNIV
   3.219 +by(simp add: Abs_finfun_inject_finite)
   3.220 +
   3.221 +lemma Abs_finfun_inj_finite:
   3.222 +  assumes fin: "finite (UNIV :: 'a set)"
   3.223 +  shows "inj (Abs_finfun :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b)"
   3.224 +proof(rule inj_onI)
   3.225 +  fix x y :: "'a \<Rightarrow> 'b"
   3.226 +  assume "Abs_finfun x = Abs_finfun y"
   3.227 +  moreover have "x \<in> finfun" "y \<in> finfun" unfolding finfun_def
   3.228 +    by(auto intro: finite_subset[OF _ fin])
   3.229 +  ultimately show "x = y" by(simp add: Abs_finfun_inject)
   3.230 +qed
   3.231 +
   3.232 +declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
   3.233 +
   3.234 +lemma Abs_finfun_inverse_finite:
   3.235 +  fixes x :: "'a \<Rightarrow> 'b"
   3.236 +  assumes fin: "finite (UNIV :: 'a set)"
   3.237 +  shows "Rep_finfun (Abs_finfun x) = x"
   3.238 +proof -
   3.239 +  from fin have "x \<in> finfun"
   3.240 +    by(auto simp add: finfun_def intro: finite_subset)
   3.241 +  thus ?thesis by simp
   3.242 +qed
   3.243 +
   3.244 +declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
   3.245 +
   3.246 +lemma Abs_finfun_inverse_finite_class:
   3.247 +  fixes x :: "('a :: finite) \<Rightarrow> 'b"
   3.248 +  shows "Rep_finfun (Abs_finfun x) = x"
   3.249 +using finite_UNIV by(simp add: Abs_finfun_inverse_finite)
   3.250 +
   3.251 +lemma finfun_eq_finite_UNIV: "finite (UNIV :: 'a set) \<Longrightarrow> (finfun :: ('a \<Rightarrow> 'b) set) = UNIV"
   3.252 +unfolding finfun_def by(auto intro: finite_subset)
   3.253 +
   3.254 +lemma finfun_finite_UNIV_class: "finfun = (UNIV :: ('a :: finite \<Rightarrow> 'b) set)"
   3.255 +by(simp add: finfun_eq_finite_UNIV)
   3.256 +
   3.257 +lemma map_default_in_finfun:
   3.258 +  assumes fin: "finite (dom f)"
   3.259 +  shows "map_default b f \<in> finfun"
   3.260 +unfolding finfun_def
   3.261 +proof(intro CollectI exI)
   3.262 +  from fin show "finite {a. map_default b f a \<noteq> b}"
   3.263 +    by(auto simp add: map_default_def dom_def Collect_conj_eq split: option.splits)
   3.264 +qed
   3.265 +
   3.266 +lemma finfun_cases_map_default:
   3.267 +  obtains b g where "f = Abs_finfun (map_default b g)" "finite (dom g)" "b \<notin> ran g"
   3.268 +proof -
   3.269 +  obtain y where f: "f = Abs_finfun y" and y: "y \<in> finfun" by(cases f)
   3.270 +  from y obtain b where b: "finite {a. y a \<noteq> b}" unfolding finfun_def by auto
   3.271 +  let ?g = "(\<lambda>a. if y a = b then None else Some (y a))"
   3.272 +  have "map_default b ?g = y" by(simp add: fun_eq_iff map_default_def)
   3.273 +  with f have "f = Abs_finfun (map_default b ?g)" by simp
   3.274 +  moreover from b have "finite (dom ?g)" by(auto simp add: dom_def)
   3.275 +  moreover have "b \<notin> ran ?g" by(auto simp add: ran_def)
   3.276 +  ultimately show ?thesis by(rule that)
   3.277 +qed
   3.278 +
   3.279 +
   3.280 +subsection {* Kernel functions for type @{typ "'a \<Rightarrow>\<^isub>f 'b"} *}
   3.281 +
   3.282 +lift_definition finfun_const :: "'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b" ("\<lambda>\<^isup>f/ _" [0] 1)
   3.283 +is "\<lambda> b x. b" by (rule const_finfun)
   3.284 +
   3.285 +lift_definition finfun_update :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b" ("_'(\<^sup>f/ _ := _')" [1000,0,0] 1000) is "fun_upd" by (simp add: fun_upd_finfun)
   3.286 +
   3.287 +declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
   3.288 +
   3.289 +lemma finfun_update_twist: "a \<noteq> a' \<Longrightarrow> f(\<^sup>f a := b)(\<^sup>f a' := b') = f(\<^sup>f a' := b')(\<^sup>f a := b)"
   3.290 +by transfer (simp add: fun_upd_twist)
   3.291 +
   3.292 +lemma finfun_update_twice [simp]:
   3.293 +  "finfun_update (finfun_update f a b) a b' = finfun_update f a b'"
   3.294 +by transfer simp
   3.295 +
   3.296 +lemma finfun_update_const_same: "(\<lambda>\<^isup>f b)(\<^sup>f a := b) = (\<lambda>\<^isup>f b)"
   3.297 +by transfer (simp add: fun_eq_iff)
   3.298 +
   3.299 +declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
   3.300 +
   3.301 +subsection {* Code generator setup *}
   3.302 +
   3.303 +definition finfun_update_code :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b" ("_'(\<^sup>fc/ _ := _')" [1000,0,0] 1000)
   3.304 +where [simp, code del]: "finfun_update_code = finfun_update"
   3.305 +
   3.306 +code_datatype finfun_const finfun_update_code
   3.307 +
   3.308 +lemma finfun_update_const_code [code]:
   3.309 +  "(\<lambda>\<^isup>f b)(\<^sup>f a := b') = (if b = b' then (\<lambda>\<^isup>f b) else finfun_update_code (\<lambda>\<^isup>f b) a b')"
   3.310 +by(simp add: finfun_update_const_same)
   3.311 +
   3.312 +lemma finfun_update_update_code [code]:
   3.313 +  "(finfun_update_code f a b)(\<^sup>f a' := b') = (if a = a' then f(\<^sup>f a := b') else finfun_update_code (f(\<^sup>f a' := b')) a b)"
   3.314 +by(simp add: finfun_update_twist)
   3.315 +
   3.316 +
   3.317 +subsection {* Setup for quickcheck *}
   3.318 +
   3.319 +quickcheck_generator finfun constructors: finfun_update_code, "finfun_const :: 'b => 'a \<Rightarrow>\<^isub>f 'b"
   3.320 +
   3.321 +subsection {* @{text "finfun_update"} as instance of @{text "comp_fun_commute"} *}
   3.322 +
   3.323 +declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
   3.324 +
   3.325 +interpretation finfun_update: comp_fun_commute "\<lambda>a f. f(\<^sup>f a :: 'a := b')"
   3.326 +proof
   3.327 +  fix a a' :: 'a
   3.328 +  show "(\<lambda>f. f(\<^sup>f a := b')) \<circ> (\<lambda>f. f(\<^sup>f a' := b')) = (\<lambda>f. f(\<^sup>f a' := b')) \<circ> (\<lambda>f. f(\<^sup>f a := b'))"
   3.329 +  proof
   3.330 +    fix b
   3.331 +    have "(Rep_finfun b)(a := b', a' := b') = (Rep_finfun b)(a' := b', a := b')"
   3.332 +      by(cases "a = a'")(auto simp add: fun_upd_twist)
   3.333 +    then have "b(\<^sup>f a := b')(\<^sup>f a' := b') = b(\<^sup>f a' := b')(\<^sup>f a := b')"
   3.334 +      by(auto simp add: finfun_update_def fun_upd_twist)
   3.335 +    then show "((\<lambda>f. f(\<^sup>f a := b')) \<circ> (\<lambda>f. f(\<^sup>f a' := b'))) b = ((\<lambda>f. f(\<^sup>f a' := b')) \<circ> (\<lambda>f. f(\<^sup>f a := b'))) b"
   3.336 +      by (simp add: fun_eq_iff)
   3.337 +  qed
   3.338 +qed
   3.339 +
   3.340 +lemma fold_finfun_update_finite_univ:
   3.341 +  assumes fin: "finite (UNIV :: 'a set)"
   3.342 +  shows "Finite_Set.fold (\<lambda>a f. f(\<^sup>f a := b')) (\<lambda>\<^isup>f b) (UNIV :: 'a set) = (\<lambda>\<^isup>f b')"
   3.343 +proof -
   3.344 +  { fix A :: "'a set"
   3.345 +    from fin have "finite A" by(auto intro: finite_subset)
   3.346 +    hence "Finite_Set.fold (\<lambda>a f. f(\<^sup>f a := b')) (\<lambda>\<^isup>f b) A = Abs_finfun (\<lambda>a. if a \<in> A then b' else b)"
   3.347 +    proof(induct)
   3.348 +      case (insert x F)
   3.349 +      have "(\<lambda>a. if a = x then b' else (if a \<in> F then b' else b)) = (\<lambda>a. if a = x \<or> a \<in> F then b' else b)"
   3.350 +        by(auto intro: ext)
   3.351 +      with insert show ?case
   3.352 +        by(simp add: finfun_const_def fun_upd_def)(simp add: finfun_update_def Abs_finfun_inverse_finite[OF fin] fun_upd_def)
   3.353 +    qed(simp add: finfun_const_def) }
   3.354 +  thus ?thesis by(simp add: finfun_const_def)
   3.355 +qed
   3.356 +
   3.357 +
   3.358 +subsection {* Default value for FinFuns *}
   3.359 +
   3.360 +definition finfun_default_aux :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b"
   3.361 +where [code del]: "finfun_default_aux f = (if finite (UNIV :: 'a set) then undefined else THE b. finite {a. f a \<noteq> b})"
   3.362 +
   3.363 +lemma finfun_default_aux_infinite:
   3.364 +  fixes f :: "'a \<Rightarrow> 'b"
   3.365 +  assumes infin: "\<not> finite (UNIV :: 'a set)"
   3.366 +  and fin: "finite {a. f a \<noteq> b}"
   3.367 +  shows "finfun_default_aux f = b"
   3.368 +proof -
   3.369 +  let ?B = "{a. f a \<noteq> b}"
   3.370 +  from fin have "(THE b. finite {a. f a \<noteq> b}) = b"
   3.371 +  proof(rule the_equality)
   3.372 +    fix b'
   3.373 +    assume "finite {a. f a \<noteq> b'}" (is "finite ?B'")
   3.374 +    with infin fin have "UNIV - (?B' \<union> ?B) \<noteq> {}" by(auto dest: finite_subset)
   3.375 +    then obtain a where a: "a \<notin> ?B' \<union> ?B" by auto
   3.376 +    thus "b' = b" by auto
   3.377 +  qed
   3.378 +  thus ?thesis using infin by(simp add: finfun_default_aux_def)
   3.379 +qed
   3.380 +
   3.381 +
   3.382 +lemma finite_finfun_default_aux:
   3.383 +  fixes f :: "'a \<Rightarrow> 'b"
   3.384 +  assumes fin: "f \<in> finfun"
   3.385 +  shows "finite {a. f a \<noteq> finfun_default_aux f}"
   3.386 +proof(cases "finite (UNIV :: 'a set)")
   3.387 +  case True thus ?thesis using fin
   3.388 +    by(auto simp add: finfun_def finfun_default_aux_def intro: finite_subset)
   3.389 +next
   3.390 +  case False
   3.391 +  from fin obtain b where b: "finite {a. f a \<noteq> b}" (is "finite ?B")
   3.392 +    unfolding finfun_def by blast
   3.393 +  with False show ?thesis by(simp add: finfun_default_aux_infinite)
   3.394 +qed
   3.395 +
   3.396 +lemma finfun_default_aux_update_const:
   3.397 +  fixes f :: "'a \<Rightarrow> 'b"
   3.398 +  assumes fin: "f \<in> finfun"
   3.399 +  shows "finfun_default_aux (f(a := b)) = finfun_default_aux f"
   3.400 +proof(cases "finite (UNIV :: 'a set)")
   3.401 +  case False
   3.402 +  from fin obtain b' where b': "finite {a. f a \<noteq> b'}" unfolding finfun_def by blast
   3.403 +  hence "finite {a'. (f(a := b)) a' \<noteq> b'}"
   3.404 +  proof(cases "b = b' \<and> f a \<noteq> b'") 
   3.405 +    case True
   3.406 +    hence "{a. f a \<noteq> b'} = insert a {a'. (f(a := b)) a' \<noteq> b'}" by auto
   3.407 +    thus ?thesis using b' by simp
   3.408 +  next
   3.409 +    case False
   3.410 +    moreover
   3.411 +    { assume "b \<noteq> b'"
   3.412 +      hence "{a'. (f(a := b)) a' \<noteq> b'} = insert a {a. f a \<noteq> b'}" by auto
   3.413 +      hence ?thesis using b' by simp }
   3.414 +    moreover
   3.415 +    { assume "b = b'" "f a = b'"
   3.416 +      hence "{a'. (f(a := b)) a' \<noteq> b'} = {a. f a \<noteq> b'}" by auto
   3.417 +      hence ?thesis using b' by simp }
   3.418 +    ultimately show ?thesis by blast
   3.419 +  qed
   3.420 +  with False b' show ?thesis by(auto simp del: fun_upd_apply simp add: finfun_default_aux_infinite)
   3.421 +next
   3.422 +  case True thus ?thesis by(simp add: finfun_default_aux_def)
   3.423 +qed
   3.424 +
   3.425 +lift_definition finfun_default :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'b"
   3.426 +is "finfun_default_aux" ..
   3.427 +
   3.428 +lemma finite_finfun_default: "finite {a. Rep_finfun f a \<noteq> finfun_default f}"
   3.429 +apply transfer apply (erule finite_finfun_default_aux)
   3.430 +unfolding Rel_def fun_rel_def cr_finfun_def by simp
   3.431 +
   3.432 +lemma finfun_default_const: "finfun_default ((\<lambda>\<^isup>f b) :: 'a \<Rightarrow>\<^isub>f 'b) = (if finite (UNIV :: 'a set) then undefined else b)"
   3.433 +apply(transfer)
   3.434 +apply(auto simp add: finfun_default_aux_infinite)
   3.435 +apply(simp add: finfun_default_aux_def)
   3.436 +done
   3.437 +
   3.438 +lemma finfun_default_update_const:
   3.439 +  "finfun_default (f(\<^sup>f a := b)) = finfun_default f"
   3.440 +by transfer (simp add: finfun_default_aux_update_const)
   3.441 +
   3.442 +lemma finfun_default_const_code [code]:
   3.443 +  "finfun_default ((\<lambda>\<^isup>f c) :: ('a :: card_UNIV) \<Rightarrow>\<^isub>f 'b) = (if card_UNIV (TYPE('a)) = 0 then c else undefined)"
   3.444 +by(simp add: finfun_default_const card_UNIV_eq_0_infinite_UNIV)
   3.445 +
   3.446 +lemma finfun_default_update_code [code]:
   3.447 +  "finfun_default (finfun_update_code f a b) = finfun_default f"
   3.448 +by(simp add: finfun_default_update_const)
   3.449 +
   3.450 +subsection {* Recursion combinator and well-formedness conditions *}
   3.451 +
   3.452 +definition finfun_rec :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow>\<^isub>f 'b) \<Rightarrow> 'c"
   3.453 +where [code del]:
   3.454 +  "finfun_rec cnst upd f \<equiv>
   3.455 +   let b = finfun_default f;
   3.456 +       g = THE g. f = Abs_finfun (map_default b g) \<and> finite (dom g) \<and> b \<notin> ran g
   3.457 +   in Finite_Set.fold (\<lambda>a. upd a (map_default b g a)) (cnst b) (dom g)"
   3.458 +
   3.459 +locale finfun_rec_wf_aux =
   3.460 +  fixes cnst :: "'b \<Rightarrow> 'c"
   3.461 +  and upd :: "'a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c"
   3.462 +  assumes upd_const_same: "upd a b (cnst b) = cnst b"
   3.463 +  and upd_commute: "a \<noteq> a' \<Longrightarrow> upd a b (upd a' b' c) = upd a' b' (upd a b c)"
   3.464 +  and upd_idemp: "b \<noteq> b' \<Longrightarrow> upd a b'' (upd a b' (cnst b)) = upd a b'' (cnst b)"
   3.465 +begin
   3.466 +
   3.467 +
   3.468 +lemma upd_left_comm: "comp_fun_commute (\<lambda>a. upd a (f a))"
   3.469 +by(unfold_locales)(auto intro: upd_commute simp add: fun_eq_iff)
   3.470 +
   3.471 +lemma upd_upd_twice: "upd a b'' (upd a b' (cnst b)) = upd a b'' (cnst b)"
   3.472 +by(cases "b \<noteq> b'")(auto simp add: fun_upd_def upd_const_same upd_idemp)
   3.473 +
   3.474 +declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
   3.475 +
   3.476 +lemma map_default_update_const:
   3.477 +  assumes fin: "finite (dom f)"
   3.478 +  and anf: "a \<notin> dom f"
   3.479 +  and fg: "f \<subseteq>\<^sub>m g"
   3.480 +  shows "upd a d  (Finite_Set.fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f)) =
   3.481 +         Finite_Set.fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f)"
   3.482 +proof -
   3.483 +  let ?upd = "\<lambda>a. upd a (map_default d g a)"
   3.484 +  let ?fr = "\<lambda>A. Finite_Set.fold ?upd (cnst d) A"
   3.485 +  interpret gwf: comp_fun_commute "?upd" by(rule upd_left_comm)
   3.486 +  
   3.487 +  from fin anf fg show ?thesis
   3.488 +  proof(induct "dom f" arbitrary: f)
   3.489 +    case empty
   3.490 +    from `{} = dom f` have "f = empty" by(auto simp add: dom_def intro: ext)
   3.491 +    thus ?case by(simp add: finfun_const_def upd_const_same)
   3.492 +  next
   3.493 +    case (insert a' A)
   3.494 +    note IH = `\<And>f.  \<lbrakk> A = dom f; a \<notin> dom f; f \<subseteq>\<^sub>m g \<rbrakk> \<Longrightarrow> upd a d (?fr (dom f)) = ?fr (dom f)`
   3.495 +    note fin = `finite A` note anf = `a \<notin> dom f` note a'nA = `a' \<notin> A`
   3.496 +    note domf = `insert a' A = dom f` note fg = `f \<subseteq>\<^sub>m g`
   3.497 +    
   3.498 +    from domf obtain b where b: "f a' = Some b" by auto
   3.499 +    let ?f' = "f(a' := None)"
   3.500 +    have "upd a d (?fr (insert a' A)) = upd a d (upd a' (map_default d g a') (?fr A))"
   3.501 +      by(subst gwf.fold_insert[OF fin a'nA]) rule
   3.502 +    also from b fg have "g a' = f a'" by(auto simp add: map_le_def intro: domI dest: bspec)
   3.503 +    hence ga': "map_default d g a' = map_default d f a'" by(simp add: map_default_def)
   3.504 +    also from anf domf have "a \<noteq> a'" by auto note upd_commute[OF this]
   3.505 +    also from domf a'nA anf fg have "a \<notin> dom ?f'" "?f' \<subseteq>\<^sub>m g" and A: "A = dom ?f'" by(auto simp add: ran_def map_le_def)
   3.506 +    note A also note IH[OF A `a \<notin> dom ?f'` `?f' \<subseteq>\<^sub>m g`]
   3.507 +    also have "upd a' (map_default d f a') (?fr (dom (f(a' := None)))) = ?fr (dom f)"
   3.508 +      unfolding domf[symmetric] gwf.fold_insert[OF fin a'nA] ga' unfolding A ..
   3.509 +    also have "insert a' (dom ?f') = dom f" using domf by auto
   3.510 +    finally show ?case .
   3.511 +  qed
   3.512 +qed
   3.513 +
   3.514 +lemma map_default_update_twice:
   3.515 +  assumes fin: "finite (dom f)"
   3.516 +  and anf: "a \<notin> dom f"
   3.517 +  and fg: "f \<subseteq>\<^sub>m g"
   3.518 +  shows "upd a d'' (upd a d' (Finite_Set.fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f))) =
   3.519 +         upd a d'' (Finite_Set.fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f))"
   3.520 +proof -
   3.521 +  let ?upd = "\<lambda>a. upd a (map_default d g a)"
   3.522 +  let ?fr = "\<lambda>A. Finite_Set.fold ?upd (cnst d) A"
   3.523 +  interpret gwf: comp_fun_commute "?upd" by(rule upd_left_comm)
   3.524 +  
   3.525 +  from fin anf fg show ?thesis
   3.526 +  proof(induct "dom f" arbitrary: f)
   3.527 +    case empty
   3.528 +    from `{} = dom f` have "f = empty" by(auto simp add: dom_def intro: ext)
   3.529 +    thus ?case by(auto simp add: finfun_const_def finfun_update_def upd_upd_twice)
   3.530 +  next
   3.531 +    case (insert a' A)
   3.532 +    note IH = `\<And>f. \<lbrakk>A = dom f; a \<notin> dom f; f \<subseteq>\<^sub>m g\<rbrakk> \<Longrightarrow> upd a d'' (upd a d' (?fr (dom f))) = upd a d'' (?fr (dom f))`
   3.533 +    note fin = `finite A` note anf = `a \<notin> dom f` note a'nA = `a' \<notin> A`
   3.534 +    note domf = `insert a' A = dom f` note fg = `f \<subseteq>\<^sub>m g`
   3.535 +    
   3.536 +    from domf obtain b where b: "f a' = Some b" by auto
   3.537 +    let ?f' = "f(a' := None)"
   3.538 +    let ?b' = "case f a' of None \<Rightarrow> d | Some b \<Rightarrow> b"
   3.539 +    from domf have "upd a d'' (upd a d' (?fr (dom f))) = upd a d'' (upd a d' (?fr (insert a' A)))" by simp
   3.540 +    also note gwf.fold_insert[OF fin a'nA]
   3.541 +    also from b fg have "g a' = f a'" by(auto simp add: map_le_def intro: domI dest: bspec)
   3.542 +    hence ga': "map_default d g a' = map_default d f a'" by(simp add: map_default_def)
   3.543 +    also from anf domf have ana': "a \<noteq> a'" by auto note upd_commute[OF this]
   3.544 +    also note upd_commute[OF ana']
   3.545 +    also from domf a'nA anf fg have "a \<notin> dom ?f'" "?f' \<subseteq>\<^sub>m g" and A: "A = dom ?f'" by(auto simp add: ran_def map_le_def)
   3.546 +    note A also note IH[OF A `a \<notin> dom ?f'` `?f' \<subseteq>\<^sub>m g`]
   3.547 +    also note upd_commute[OF ana'[symmetric]] also note ga'[symmetric] also note A[symmetric]
   3.548 +    also note gwf.fold_insert[symmetric, OF fin a'nA] also note domf
   3.549 +    finally show ?case .
   3.550 +  qed
   3.551 +qed
   3.552 +
   3.553 +declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
   3.554 +
   3.555 +lemma map_default_eq_id [simp]: "map_default d ((\<lambda>a. Some (f a)) |` {a. f a \<noteq> d}) = f"
   3.556 +by(auto simp add: map_default_def restrict_map_def intro: ext)
   3.557 +
   3.558 +lemma finite_rec_cong1:
   3.559 +  assumes f: "comp_fun_commute f" and g: "comp_fun_commute g"
   3.560 +  and fin: "finite A"
   3.561 +  and eq: "\<And>a. a \<in> A \<Longrightarrow> f a = g a"
   3.562 +  shows "Finite_Set.fold f z A = Finite_Set.fold g z A"
   3.563 +proof -
   3.564 +  interpret f: comp_fun_commute f by(rule f)
   3.565 +  interpret g: comp_fun_commute g by(rule g)
   3.566 +  { fix B
   3.567 +    assume BsubA: "B \<subseteq> A"
   3.568 +    with fin have "finite B" by(blast intro: finite_subset)
   3.569 +    hence "B \<subseteq> A \<Longrightarrow> Finite_Set.fold f z B = Finite_Set.fold g z B"
   3.570 +    proof(induct)
   3.571 +      case empty thus ?case by simp
   3.572 +    next
   3.573 +      case (insert a B)
   3.574 +      note finB = `finite B` note anB = `a \<notin> B` note sub = `insert a B \<subseteq> A`
   3.575 +      note IH = `B \<subseteq> A \<Longrightarrow> Finite_Set.fold f z B = Finite_Set.fold g z B`
   3.576 +      from sub anB have BpsubA: "B \<subset> A" and BsubA: "B \<subseteq> A" and aA: "a \<in> A" by auto
   3.577 +      from IH[OF BsubA] eq[OF aA] finB anB
   3.578 +      show ?case by(auto)
   3.579 +    qed
   3.580 +    with BsubA have "Finite_Set.fold f z B = Finite_Set.fold g z B" by blast }
   3.581 +  thus ?thesis by blast
   3.582 +qed
   3.583 +
   3.584 +declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
   3.585 +
   3.586 +lemma finfun_rec_upd [simp]:
   3.587 +  "finfun_rec cnst upd (f(\<^sup>f a' := b')) = upd a' b' (finfun_rec cnst upd f)"
   3.588 +proof -
   3.589 +  obtain b where b: "b = finfun_default f" by auto
   3.590 +  let ?the = "\<lambda>f g. f = Abs_finfun (map_default b g) \<and> finite (dom g) \<and> b \<notin> ran g"
   3.591 +  obtain g where g: "g = The (?the f)" by blast
   3.592 +  obtain y where f: "f = Abs_finfun y" and y: "y \<in> finfun" by (cases f)
   3.593 +  from f y b have bfin: "finite {a. y a \<noteq> b}" by(simp add: finfun_default_def finite_finfun_default_aux)
   3.594 +
   3.595 +  let ?g = "(\<lambda>a. Some (y a)) |` {a. y a \<noteq> b}"
   3.596 +  from bfin have fing: "finite (dom ?g)" by auto
   3.597 +  have bran: "b \<notin> ran ?g" by(auto simp add: ran_def restrict_map_def)
   3.598 +  have yg: "y = map_default b ?g" by simp
   3.599 +  have gg: "g = ?g" unfolding g
   3.600 +  proof(rule the_equality)
   3.601 +    from f y bfin show "?the f ?g"
   3.602 +      by(auto)(simp add: restrict_map_def ran_def split: split_if_asm)
   3.603 +  next
   3.604 +    fix g'
   3.605 +    assume "?the f g'"
   3.606 +    hence fin': "finite (dom g')" and ran': "b \<notin> ran g'"
   3.607 +      and eq: "Abs_finfun (map_default b ?g) = Abs_finfun (map_default b g')" using f yg by auto
   3.608 +    from fin' fing have "map_default b ?g \<in> finfun" "map_default b g' \<in> finfun" by(blast intro: map_default_in_finfun)+
   3.609 +    with eq have "map_default b ?g = map_default b g'" by simp
   3.610 +    with fing bran fin' ran' show "g' = ?g" by(rule map_default_inject[OF disjI2[OF refl], THEN sym])
   3.611 +  qed
   3.612 +
   3.613 +  show ?thesis
   3.614 +  proof(cases "b' = b")
   3.615 +    case True
   3.616 +    note b'b = True
   3.617 +
   3.618 +    let ?g' = "(\<lambda>a. Some ((y(a' := b)) a)) |` {a. (y(a' := b)) a \<noteq> b}"
   3.619 +    from bfin b'b have fing': "finite (dom ?g')"
   3.620 +      by(auto simp add: Collect_conj_eq Collect_imp_eq intro: finite_subset)
   3.621 +    have brang': "b \<notin> ran ?g'" by(auto simp add: ran_def restrict_map_def)
   3.622 +
   3.623 +    let ?b' = "\<lambda>a. case ?g' a of None \<Rightarrow> b | Some b \<Rightarrow> b"
   3.624 +    let ?b = "map_default b ?g"
   3.625 +    from upd_left_comm upd_left_comm fing'
   3.626 +    have "Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g') = Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g')"
   3.627 +      by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b b map_default_def)
   3.628 +    also interpret gwf: comp_fun_commute "\<lambda>a. upd a (?b a)" by(rule upd_left_comm)
   3.629 +    have "Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g') = upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g))"
   3.630 +    proof(cases "y a' = b")
   3.631 +      case True
   3.632 +      with b'b have g': "?g' = ?g" by(auto simp add: restrict_map_def intro: ext)
   3.633 +      from True have a'ndomg: "a' \<notin> dom ?g" by auto
   3.634 +      from f b'b b show ?thesis unfolding g'
   3.635 +        by(subst map_default_update_const[OF fing a'ndomg map_le_refl, symmetric]) simp
   3.636 +    next
   3.637 +      case False
   3.638 +      hence domg: "dom ?g = insert a' (dom ?g')" by auto
   3.639 +      from False b'b have a'ndomg': "a' \<notin> dom ?g'" by auto
   3.640 +      have "Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g')) = 
   3.641 +            upd a' (?b a') (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'))"
   3.642 +        using fing' a'ndomg' unfolding b'b by(rule gwf.fold_insert)
   3.643 +      hence "upd a' b (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g'))) =
   3.644 +             upd a' b (upd a' (?b a') (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g')))" by simp
   3.645 +      also from b'b have g'leg: "?g' \<subseteq>\<^sub>m ?g" by(auto simp add: restrict_map_def map_le_def)
   3.646 +      note map_default_update_twice[OF fing' a'ndomg' this, of b "?b a'" b]
   3.647 +      also note map_default_update_const[OF fing' a'ndomg' g'leg, of b]
   3.648 +      finally show ?thesis unfolding b'b domg[unfolded b'b] by(rule sym)
   3.649 +    qed
   3.650 +    also have "The (?the (f(\<^sup>f a' := b'))) = ?g'"
   3.651 +    proof(rule the_equality)
   3.652 +      from f y b b'b brang' fing' show "?the (f(\<^sup>f a' := b')) ?g'"
   3.653 +        by(auto simp del: fun_upd_apply simp add: finfun_update_def)
   3.654 +    next
   3.655 +      fix g'
   3.656 +      assume "?the (f(\<^sup>f a' := b')) g'"
   3.657 +      hence fin': "finite (dom g')" and ran': "b \<notin> ran g'"
   3.658 +        and eq: "f(\<^sup>f a' := b') = Abs_finfun (map_default b g')" 
   3.659 +        by(auto simp del: fun_upd_apply)
   3.660 +      from fin' fing' have "map_default b g' \<in> finfun" "map_default b ?g' \<in> finfun"
   3.661 +        by(blast intro: map_default_in_finfun)+
   3.662 +      with eq f b'b b have "map_default b ?g' = map_default b g'"
   3.663 +        by(simp del: fun_upd_apply add: finfun_update_def)
   3.664 +      with fing' brang' fin' ran' show "g' = ?g'"
   3.665 +        by(rule map_default_inject[OF disjI2[OF refl], THEN sym])
   3.666 +    qed
   3.667 +    ultimately show ?thesis unfolding finfun_rec_def Let_def b gg[unfolded g b] using bfin b'b b
   3.668 +      by(simp only: finfun_default_update_const map_default_def)
   3.669 +  next
   3.670 +    case False
   3.671 +    note b'b = this
   3.672 +    let ?g' = "?g(a' \<mapsto> b')"
   3.673 +    let ?b' = "map_default b ?g'"
   3.674 +    let ?b = "map_default b ?g"
   3.675 +    from fing have fing': "finite (dom ?g')" by auto
   3.676 +    from bran b'b have bnrang': "b \<notin> ran ?g'" by(auto simp add: ran_def)
   3.677 +    have ffmg': "map_default b ?g' = y(a' := b')" by(auto intro: ext simp add: map_default_def restrict_map_def)
   3.678 +    with f y have f_Abs: "f(\<^sup>f a' := b') = Abs_finfun (map_default b ?g')" by(auto simp add: finfun_update_def)
   3.679 +    have g': "The (?the (f(\<^sup>f a' := b'))) = ?g'"
   3.680 +    proof (rule the_equality)
   3.681 +      from fing' bnrang' f_Abs show "?the (f(\<^sup>f a' := b')) ?g'" by(auto simp add: finfun_update_def restrict_map_def)
   3.682 +    next
   3.683 +      fix g' assume "?the (f(\<^sup>f a' := b')) g'"
   3.684 +      hence f': "f(\<^sup>f a' := b') = Abs_finfun (map_default b g')"
   3.685 +        and fin': "finite (dom g')" and brang': "b \<notin> ran g'" by auto
   3.686 +      from fing' fin' have "map_default b ?g' \<in> finfun" "map_default b g' \<in> finfun"
   3.687 +        by(auto intro: map_default_in_finfun)
   3.688 +      with f' f_Abs have "map_default b g' = map_default b ?g'" by simp
   3.689 +      with fin' brang' fing' bnrang' show "g' = ?g'"
   3.690 +        by(rule map_default_inject[OF disjI2[OF refl]])
   3.691 +    qed
   3.692 +    have dom: "dom (((\<lambda>a. Some (y a)) |` {a. y a \<noteq> b})(a' \<mapsto> b')) = insert a' (dom ((\<lambda>a. Some (y a)) |` {a. y a \<noteq> b}))"
   3.693 +      by auto
   3.694 +    show ?thesis
   3.695 +    proof(cases "y a' = b")
   3.696 +      case True
   3.697 +      hence a'ndomg: "a' \<notin> dom ?g" by auto
   3.698 +      from f y b'b True have yff: "y = map_default b (?g' |` dom ?g)"
   3.699 +        by(auto simp add: restrict_map_def map_default_def intro!: ext)
   3.700 +      hence f': "f = Abs_finfun (map_default b (?g' |` dom ?g))" using f by simp
   3.701 +      interpret g'wf: comp_fun_commute "\<lambda>a. upd a (?b' a)" by(rule upd_left_comm)
   3.702 +      from upd_left_comm upd_left_comm fing
   3.703 +      have "Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g) = Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g)"
   3.704 +        by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b True map_default_def)
   3.705 +      thus ?thesis unfolding finfun_rec_def Let_def finfun_default_update_const b[symmetric]
   3.706 +        unfolding g' g[symmetric] gg g'wf.fold_insert[OF fing a'ndomg, of "cnst b", folded dom]
   3.707 +        by -(rule arg_cong2[where f="upd a'"], simp_all add: map_default_def)
   3.708 +    next
   3.709 +      case False
   3.710 +      hence "insert a' (dom ?g) = dom ?g" by auto
   3.711 +      moreover {
   3.712 +        let ?g'' = "?g(a' := None)"
   3.713 +        let ?b'' = "map_default b ?g''"
   3.714 +        from False have domg: "dom ?g = insert a' (dom ?g'')" by auto
   3.715 +        from False have a'ndomg'': "a' \<notin> dom ?g''" by auto
   3.716 +        have fing'': "finite (dom ?g'')" by(rule finite_subset[OF _ fing]) auto
   3.717 +        have bnrang'': "b \<notin> ran ?g''" by(auto simp add: ran_def restrict_map_def)
   3.718 +        interpret gwf: comp_fun_commute "\<lambda>a. upd a (?b a)" by(rule upd_left_comm)
   3.719 +        interpret g'wf: comp_fun_commute "\<lambda>a. upd a (?b' a)" by(rule upd_left_comm)
   3.720 +        have "upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g''))) =
   3.721 +              upd a' b' (upd a' (?b a') (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'')))"
   3.722 +          unfolding gwf.fold_insert[OF fing'' a'ndomg''] f ..
   3.723 +        also have g''leg: "?g |` dom ?g'' \<subseteq>\<^sub>m ?g" by(auto simp add: map_le_def)
   3.724 +        have "dom (?g |` dom ?g'') = dom ?g''" by auto
   3.725 +        note map_default_update_twice[where d=b and f = "?g |` dom ?g''" and a=a' and d'="?b a'" and d''=b' and g="?g",
   3.726 +                                     unfolded this, OF fing'' a'ndomg'' g''leg]
   3.727 +        also have b': "b' = ?b' a'" by(auto simp add: map_default_def)
   3.728 +        from upd_left_comm upd_left_comm fing''
   3.729 +        have "Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'') = Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g'')"
   3.730 +          by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b map_default_def)
   3.731 +        with b' have "upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'')) =
   3.732 +                     upd a' (?b' a') (Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g''))" by simp
   3.733 +        also note g'wf.fold_insert[OF fing'' a'ndomg'', symmetric]
   3.734 +        finally have "upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g)) =
   3.735 +                   Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g)"
   3.736 +          unfolding domg . }
   3.737 +      ultimately have "Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (insert a' (dom ?g)) =
   3.738 +                    upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g))" by simp
   3.739 +      thus ?thesis unfolding finfun_rec_def Let_def finfun_default_update_const b[symmetric] g[symmetric] g' dom[symmetric]
   3.740 +        using b'b gg by(simp add: map_default_insert)
   3.741 +    qed
   3.742 +  qed
   3.743 +qed
   3.744 +
   3.745 +declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
   3.746 +
   3.747 +end
   3.748 +
   3.749 +locale finfun_rec_wf = finfun_rec_wf_aux + 
   3.750 +  assumes const_update_all:
   3.751 +  "finite (UNIV :: 'a set) \<Longrightarrow> Finite_Set.fold (\<lambda>a. upd a b') (cnst b) (UNIV :: 'a set) = cnst b'"
   3.752 +begin
   3.753 +
   3.754 +declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
   3.755 +
   3.756 +lemma finfun_rec_const [simp]:
   3.757 +  "finfun_rec cnst upd (\<lambda>\<^isup>f c) = cnst c"
   3.758 +proof(cases "finite (UNIV :: 'a set)")
   3.759 +  case False
   3.760 +  hence "finfun_default ((\<lambda>\<^isup>f c) :: 'a \<Rightarrow>\<^isub>f 'b) = c" by(simp add: finfun_default_const)
   3.761 +  moreover have "(THE g :: 'a \<rightharpoonup> 'b. (\<lambda>\<^isup>f c) = Abs_finfun (map_default c g) \<and> finite (dom g) \<and> c \<notin> ran g) = empty"
   3.762 +  proof (rule the_equality)
   3.763 +    show "(\<lambda>\<^isup>f c) = Abs_finfun (map_default c empty) \<and> finite (dom empty) \<and> c \<notin> ran empty"
   3.764 +      by(auto simp add: finfun_const_def)
   3.765 +  next
   3.766 +    fix g :: "'a \<rightharpoonup> 'b"
   3.767 +    assume "(\<lambda>\<^isup>f c) = Abs_finfun (map_default c g) \<and> finite (dom g) \<and> c \<notin> ran g"
   3.768 +    hence g: "(\<lambda>\<^isup>f c) = Abs_finfun (map_default c g)" and fin: "finite (dom g)" and ran: "c \<notin> ran g" by blast+
   3.769 +    from g map_default_in_finfun[OF fin, of c] have "map_default c g = (\<lambda>a. c)"
   3.770 +      by(simp add: finfun_const_def)
   3.771 +    moreover have "map_default c empty = (\<lambda>a. c)" by simp
   3.772 +    ultimately show "g = empty" by-(rule map_default_inject[OF disjI2[OF refl] fin ran], auto)
   3.773 +  qed
   3.774 +  ultimately show ?thesis by(simp add: finfun_rec_def)
   3.775 +next
   3.776 +  case True
   3.777 +  hence default: "finfun_default ((\<lambda>\<^isup>f c) :: 'a \<Rightarrow>\<^isub>f 'b) = undefined" by(simp add: finfun_default_const)
   3.778 +  let ?the = "\<lambda>g :: 'a \<rightharpoonup> 'b. (\<lambda>\<^isup>f c) = Abs_finfun (map_default undefined g) \<and> finite (dom g) \<and> undefined \<notin> ran g"
   3.779 +  show ?thesis
   3.780 +  proof(cases "c = undefined")
   3.781 +    case True
   3.782 +    have the: "The ?the = empty"
   3.783 +    proof (rule the_equality)
   3.784 +      from True show "?the empty" by(auto simp add: finfun_const_def)
   3.785 +    next
   3.786 +      fix g'
   3.787 +      assume "?the g'"
   3.788 +      hence fg: "(\<lambda>\<^isup>f c) = Abs_finfun (map_default undefined g')"
   3.789 +        and fin: "finite (dom g')" and g: "undefined \<notin> ran g'" by simp_all
   3.790 +      from fin have "map_default undefined g' \<in> finfun" by(rule map_default_in_finfun)
   3.791 +      with fg have "map_default undefined g' = (\<lambda>a. c)"
   3.792 +        by(auto simp add: finfun_const_def intro: Abs_finfun_inject[THEN iffD1])
   3.793 +      with True show "g' = empty"
   3.794 +        by -(rule map_default_inject(2)[OF _ fin g], auto)
   3.795 +    qed
   3.796 +    show ?thesis unfolding finfun_rec_def using `finite UNIV` True
   3.797 +      unfolding Let_def the default by(simp)
   3.798 +  next
   3.799 +    case False
   3.800 +    have the: "The ?the = (\<lambda>a :: 'a. Some c)"
   3.801 +    proof (rule the_equality)
   3.802 +      from False True show "?the (\<lambda>a :: 'a. Some c)"
   3.803 +        by(auto simp add: map_default_def [abs_def] finfun_const_def dom_def ran_def)
   3.804 +    next
   3.805 +      fix g' :: "'a \<rightharpoonup> 'b"
   3.806 +      assume "?the g'"
   3.807 +      hence fg: "(\<lambda>\<^isup>f c) = Abs_finfun (map_default undefined g')"
   3.808 +        and fin: "finite (dom g')" and g: "undefined \<notin> ran g'" by simp_all
   3.809 +      from fin have "map_default undefined g' \<in> finfun" by(rule map_default_in_finfun)
   3.810 +      with fg have "map_default undefined g' = (\<lambda>a. c)"
   3.811 +        by(auto simp add: finfun_const_def intro: Abs_finfun_inject[THEN iffD1])
   3.812 +      with True False show "g' = (\<lambda>a::'a. Some c)"
   3.813 +        by - (rule map_default_inject(2)[OF _ fin g],
   3.814 +          auto simp add: dom_def ran_def map_default_def [abs_def])
   3.815 +    qed
   3.816 +    show ?thesis unfolding finfun_rec_def using True False
   3.817 +      unfolding Let_def the default by(simp add: dom_def map_default_def const_update_all)
   3.818 +  qed
   3.819 +qed
   3.820 +
   3.821 +declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
   3.822 +
   3.823 +end
   3.824 +
   3.825 +subsection {* Weak induction rule and case analysis for FinFuns *}
   3.826 +
   3.827 +declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
   3.828 +
   3.829 +lemma finfun_weak_induct [consumes 0, case_names const update]:
   3.830 +  assumes const: "\<And>b. P (\<lambda>\<^isup>f b)"
   3.831 +  and update: "\<And>f a b. P f \<Longrightarrow> P (f(\<^sup>f a := b))"
   3.832 +  shows "P x"
   3.833 +proof(induct x rule: Abs_finfun_induct)
   3.834 +  case (Abs_finfun y)
   3.835 +  then obtain b where "finite {a. y a \<noteq> b}" unfolding finfun_def by blast
   3.836 +  thus ?case using `y \<in> finfun`
   3.837 +  proof(induct "{a. y a \<noteq> b}" arbitrary: y rule: finite_induct)
   3.838 +    case empty
   3.839 +    hence "\<And>a. y a = b" by blast
   3.840 +    hence "y = (\<lambda>a. b)" by(auto intro: ext)
   3.841 +    hence "Abs_finfun y = finfun_const b" unfolding finfun_const_def by simp
   3.842 +    thus ?case by(simp add: const)
   3.843 +  next
   3.844 +    case (insert a A)
   3.845 +    note IH = `\<And>y. \<lbrakk> A = {a. y a \<noteq> b}; y \<in> finfun  \<rbrakk> \<Longrightarrow> P (Abs_finfun y)`
   3.846 +    note y = `y \<in> finfun`
   3.847 +    with `insert a A = {a. y a \<noteq> b}` `a \<notin> A`
   3.848 +    have "A = {a'. (y(a := b)) a' \<noteq> b}" "y(a := b) \<in> finfun" by auto
   3.849 +    from IH[OF this] have "P (finfun_update (Abs_finfun (y(a := b))) a (y a))" by(rule update)
   3.850 +    thus ?case using y unfolding finfun_update_def by simp
   3.851 +  qed
   3.852 +qed
   3.853 +
   3.854 +declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
   3.855 +
   3.856 +lemma finfun_exhaust_disj: "(\<exists>b. x = finfun_const b) \<or> (\<exists>f a b. x = finfun_update f a b)"
   3.857 +by(induct x rule: finfun_weak_induct) blast+
   3.858 +
   3.859 +lemma finfun_exhaust:
   3.860 +  obtains b where "x = (\<lambda>\<^isup>f b)"
   3.861 +        | f a b where "x = f(\<^sup>f a := b)"
   3.862 +by(atomize_elim)(rule finfun_exhaust_disj)
   3.863 +
   3.864 +lemma finfun_rec_unique:
   3.865 +  fixes f :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'c"
   3.866 +  assumes c: "\<And>c. f (\<lambda>\<^isup>f c) = cnst c"
   3.867 +  and u: "\<And>g a b. f (g(\<^sup>f a := b)) = upd g a b (f g)"
   3.868 +  and c': "\<And>c. f' (\<lambda>\<^isup>f c) = cnst c"
   3.869 +  and u': "\<And>g a b. f' (g(\<^sup>f a := b)) = upd g a b (f' g)"
   3.870 +  shows "f = f'"
   3.871 +proof
   3.872 +  fix g :: "'a \<Rightarrow>\<^isub>f 'b"
   3.873 +  show "f g = f' g"
   3.874 +    by(induct g rule: finfun_weak_induct)(auto simp add: c u c' u')
   3.875 +qed
   3.876 +
   3.877 +
   3.878 +subsection {* Function application *}
   3.879 +
   3.880 +definition finfun_apply :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow> 'b" ("_\<^sub>f" [1000] 1000)
   3.881 +where [code del]: "finfun_apply = (\<lambda>f a. finfun_rec (\<lambda>b. b) (\<lambda>a' b c. if (a = a') then b else c) f)"
   3.882 +
   3.883 +interpretation finfun_apply_aux: finfun_rec_wf_aux "\<lambda>b. b" "\<lambda>a' b c. if (a = a') then b else c"
   3.884 +by(unfold_locales) auto
   3.885 +
   3.886 +interpretation finfun_apply: finfun_rec_wf "\<lambda>b. b" "\<lambda>a' b c. if (a = a') then b else c"
   3.887 +proof(unfold_locales)
   3.888 +  fix b' b :: 'a
   3.889 +  assume fin: "finite (UNIV :: 'b set)"
   3.890 +  { fix A :: "'b set"
   3.891 +    interpret comp_fun_commute "\<lambda>a'. If (a = a') b'" by(rule finfun_apply_aux.upd_left_comm)
   3.892 +    from fin have "finite A" by(auto intro: finite_subset)
   3.893 +    hence "Finite_Set.fold (\<lambda>a'. If (a = a') b') b A = (if a \<in> A then b' else b)"
   3.894 +      by induct auto }
   3.895 +  from this[of UNIV] show "Finite_Set.fold (\<lambda>a'. If (a = a') b') b UNIV = b'" by simp
   3.896 +qed
   3.897 +
   3.898 +lemma finfun_const_apply [simp, code]: "(\<lambda>\<^isup>f b)\<^sub>f a = b"
   3.899 +by(simp add: finfun_apply_def)
   3.900 +
   3.901 +lemma finfun_upd_apply: "f(\<^sup>fa := b)\<^sub>f a' = (if a = a' then b else f\<^sub>f a')"
   3.902 +  and finfun_upd_apply_code [code]: "(finfun_update_code f a b)\<^sub>f a' = (if a = a' then b else f\<^sub>f a')"
   3.903 +by(simp_all add: finfun_apply_def)
   3.904 +
   3.905 +lemma finfun_upd_apply_same [simp]:
   3.906 +  "f(\<^sup>fa := b)\<^sub>f a = b"
   3.907 +by(simp add: finfun_upd_apply)
   3.908 +
   3.909 +lemma finfun_upd_apply_other [simp]:
   3.910 +  "a \<noteq> a' \<Longrightarrow> f(\<^sup>fa := b)\<^sub>f a' = f\<^sub>f a'"
   3.911 +by(simp add: finfun_upd_apply)
   3.912 +
   3.913 +declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
   3.914 +
   3.915 +lemma finfun_apply_Rep_finfun:
   3.916 +  "finfun_apply = Rep_finfun"
   3.917 +proof(rule finfun_rec_unique)
   3.918 +  fix c show "Rep_finfun (\<lambda>\<^isup>f c) = (\<lambda>a. c)" by(auto simp add: finfun_const_def)
   3.919 +next
   3.920 +  fix g a b show "Rep_finfun g(\<^sup>f a := b) = (\<lambda>c. if c = a then b else Rep_finfun g c)"
   3.921 +    by(auto simp add: finfun_update_def fun_upd_finfun Abs_finfun_inverse Rep_finfun intro: ext)
   3.922 +qed(auto intro: ext)
   3.923 +
   3.924 +lemma finfun_ext: "(\<And>a. f\<^sub>f a = g\<^sub>f a) \<Longrightarrow> f = g"
   3.925 +by(auto simp add: finfun_apply_Rep_finfun Rep_finfun_inject[symmetric] simp del: Rep_finfun_inject intro: ext)
   3.926 +
   3.927 +declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
   3.928 +
   3.929 +lemma expand_finfun_eq: "(f = g) = (f\<^sub>f = g\<^sub>f)"
   3.930 +by(auto intro: finfun_ext)
   3.931 +
   3.932 +lemma finfun_const_inject [simp]: "(\<lambda>\<^isup>f b) = (\<lambda>\<^isup>f b') \<equiv> b = b'"
   3.933 +by(simp add: expand_finfun_eq fun_eq_iff)
   3.934 +
   3.935 +lemma finfun_const_eq_update:
   3.936 +  "((\<lambda>\<^isup>f b) = f(\<^sup>f a := b')) = (b = b' \<and> (\<forall>a'. a \<noteq> a' \<longrightarrow> f\<^sub>f a' = b))"
   3.937 +by(auto simp add: expand_finfun_eq fun_eq_iff finfun_upd_apply)
   3.938 +
   3.939 +subsection {* Function composition *}
   3.940 +
   3.941 +definition finfun_comp :: "('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow>\<^isub>f 'a \<Rightarrow> 'c \<Rightarrow>\<^isub>f 'b" (infixr "\<circ>\<^isub>f" 55)
   3.942 +where [code del]: "g \<circ>\<^isub>f f  = finfun_rec (\<lambda>b. (\<lambda>\<^isup>f g b)) (\<lambda>a b c. c(\<^sup>f a := g b)) f"
   3.943 +
   3.944 +interpretation finfun_comp_aux: finfun_rec_wf_aux "(\<lambda>b. (\<lambda>\<^isup>f g b))" "(\<lambda>a b c. c(\<^sup>f a := g b))"
   3.945 +by(unfold_locales)(auto simp add: finfun_upd_apply intro: finfun_ext)
   3.946 +
   3.947 +interpretation finfun_comp: finfun_rec_wf "(\<lambda>b. (\<lambda>\<^isup>f g b))" "(\<lambda>a b c. c(\<^sup>f a := g b))"
   3.948 +proof
   3.949 +  fix b' b :: 'a
   3.950 +  assume fin: "finite (UNIV :: 'c set)"
   3.951 +  { fix A :: "'c set"
   3.952 +    from fin have "finite A" by(auto intro: finite_subset)
   3.953 +    hence "Finite_Set.fold (\<lambda>(a :: 'c) c. c(\<^sup>f a := g b')) (\<lambda>\<^isup>f g b) A =
   3.954 +      Abs_finfun (\<lambda>a. if a \<in> A then g b' else g b)"
   3.955 +      by induct (simp_all add: finfun_const_def, auto simp add: finfun_update_def Abs_finfun_inverse_finite fun_upd_def Abs_finfun_inject_finite fun_eq_iff fin) }
   3.956 +  from this[of UNIV] show "Finite_Set.fold (\<lambda>(a :: 'c) c. c(\<^sup>f a := g b')) (\<lambda>\<^isup>f g b) UNIV = (\<lambda>\<^isup>f g b')"
   3.957 +    by(simp add: finfun_const_def)
   3.958 +qed
   3.959 +
   3.960 +lemma finfun_comp_const [simp, code]:
   3.961 +  "g \<circ>\<^isub>f (\<lambda>\<^isup>f c) = (\<lambda>\<^isup>f g c)"
   3.962 +by(simp add: finfun_comp_def)
   3.963 +
   3.964 +lemma finfun_comp_update [simp]: "g \<circ>\<^isub>f (f(\<^sup>f a := b)) = (g \<circ>\<^isub>f f)(\<^sup>f a := g b)"
   3.965 +  and finfun_comp_update_code [code]: "g \<circ>\<^isub>f (finfun_update_code f a b) = finfun_update_code (g \<circ>\<^isub>f f) a (g b)"
   3.966 +by(simp_all add: finfun_comp_def)
   3.967 +
   3.968 +lemma finfun_comp_apply [simp]:
   3.969 +  "(g \<circ>\<^isub>f f)\<^sub>f = g \<circ> f\<^sub>f"
   3.970 +by(induct f rule: finfun_weak_induct)(auto simp add: finfun_upd_apply intro: ext)
   3.971 +
   3.972 +lemma finfun_comp_comp_collapse [simp]: "f \<circ>\<^isub>f g \<circ>\<^isub>f h = (f o g) \<circ>\<^isub>f h"
   3.973 +by(induct h rule: finfun_weak_induct) simp_all
   3.974 +
   3.975 +lemma finfun_comp_const1 [simp]: "(\<lambda>x. c) \<circ>\<^isub>f f = (\<lambda>\<^isup>f c)"
   3.976 +by(induct f rule: finfun_weak_induct)(auto intro: finfun_ext simp add: finfun_upd_apply)
   3.977 +
   3.978 +lemma finfun_comp_id1 [simp]: "(\<lambda>x. x) \<circ>\<^isub>f f = f" "id \<circ>\<^isub>f f = f"
   3.979 +by(induct f rule: finfun_weak_induct) auto
   3.980 +
   3.981 +declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
   3.982 +
   3.983 +lemma finfun_comp_conv_comp: "g \<circ>\<^isub>f f = Abs_finfun (g \<circ> finfun_apply f)"
   3.984 +proof -
   3.985 +  have "(\<lambda>f. g \<circ>\<^isub>f f) = (\<lambda>f. Abs_finfun (g \<circ> finfun_apply f))"
   3.986 +  proof(rule finfun_rec_unique)
   3.987 +    { fix c show "Abs_finfun (g \<circ> (\<lambda>\<^isup>f c)\<^sub>f) = (\<lambda>\<^isup>f g c)"
   3.988 +        by(simp add: finfun_comp_def o_def)(simp add: finfun_const_def) }
   3.989 +    { fix g' a b show "Abs_finfun (g \<circ> g'(\<^sup>f a := b)\<^sub>f) = (Abs_finfun (g \<circ> g'\<^sub>f))(\<^sup>f a := g b)"
   3.990 +      proof -
   3.991 +        obtain y where y: "y \<in> finfun" and g': "g' = Abs_finfun y" by(cases g')
   3.992 +        moreover hence "(g \<circ> g'\<^sub>f) \<in> finfun" by(simp add: finfun_apply_Rep_finfun finfun_left_compose)
   3.993 +        moreover have "g \<circ> y(a := b) = (g \<circ> y)(a := g b)" by(auto intro: ext)
   3.994 +        ultimately show ?thesis by(simp add: finfun_comp_def finfun_update_def finfun_apply_Rep_finfun)
   3.995 +      qed }
   3.996 +  qed auto
   3.997 +  thus ?thesis by(auto simp add: fun_eq_iff)
   3.998 +qed
   3.999 +
  3.1000 +declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  3.1001 +
  3.1002 +definition finfun_comp2 :: "'b \<Rightarrow>\<^isub>f 'c \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'c" (infixr "\<^sub>f\<circ>" 55)
  3.1003 +where [code del]: "finfun_comp2 g f = Abs_finfun (Rep_finfun g \<circ> f)"
  3.1004 +
  3.1005 +declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  3.1006 +
  3.1007 +lemma finfun_comp2_const [code, simp]: "finfun_comp2 (\<lambda>\<^isup>f c) f = (\<lambda>\<^isup>f c)"
  3.1008 +by(simp add: finfun_comp2_def finfun_const_def comp_def)
  3.1009 +
  3.1010 +lemma finfun_comp2_update:
  3.1011 +  assumes inj: "inj f"
  3.1012 +  shows "finfun_comp2 (g(\<^sup>f b := c)) f = (if b \<in> range f then (finfun_comp2 g f)(\<^sup>f inv f b := c) else finfun_comp2 g f)"
  3.1013 +proof(cases "b \<in> range f")
  3.1014 +  case True
  3.1015 +  from inj have "\<And>x. (Rep_finfun g)(f x := c) \<circ> f = (Rep_finfun g \<circ> f)(x := c)" by(auto intro!: ext dest: injD)
  3.1016 +  with inj True show ?thesis by(auto simp add: finfun_comp2_def finfun_update_def finfun_right_compose)
  3.1017 +next
  3.1018 +  case False
  3.1019 +  hence "(Rep_finfun g)(b := c) \<circ> f = Rep_finfun g \<circ> f" by(auto simp add: fun_eq_iff)
  3.1020 +  with False show ?thesis by(auto simp add: finfun_comp2_def finfun_update_def)
  3.1021 +qed
  3.1022 +
  3.1023 +declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  3.1024 +
  3.1025 +
  3.1026 +
  3.1027 +subsection {* Universal quantification *}
  3.1028 +
  3.1029 +definition finfun_All_except :: "'a list \<Rightarrow> 'a \<Rightarrow>\<^isub>f bool \<Rightarrow> bool"
  3.1030 +where [code del]: "finfun_All_except A P \<equiv> \<forall>a. a \<in> set A \<or> P\<^sub>f a"
  3.1031 +
  3.1032 +lemma finfun_All_except_const: "finfun_All_except A (\<lambda>\<^isup>f b) \<longleftrightarrow> b \<or> set A = UNIV"
  3.1033 +by(auto simp add: finfun_All_except_def)
  3.1034 +
  3.1035 +lemma finfun_All_except_const_finfun_UNIV_code [code]:
  3.1036 +  "finfun_All_except A (\<lambda>\<^isup>f b) = (b \<or> is_list_UNIV A)"
  3.1037 +by(simp add: finfun_All_except_const is_list_UNIV_iff)
  3.1038 +
  3.1039 +lemma finfun_All_except_update: 
  3.1040 +  "finfun_All_except A f(\<^sup>f a := b) = ((a \<in> set A \<or> b) \<and> finfun_All_except (a # A) f)"
  3.1041 +by(fastforce simp add: finfun_All_except_def finfun_upd_apply)
  3.1042 +
  3.1043 +lemma finfun_All_except_update_code [code]:
  3.1044 +  fixes a :: "'a :: card_UNIV"
  3.1045 +  shows "finfun_All_except A (finfun_update_code f a b) = ((a \<in> set A \<or> b) \<and> finfun_All_except (a # A) f)"
  3.1046 +by(simp add: finfun_All_except_update)
  3.1047 +
  3.1048 +definition finfun_All :: "'a \<Rightarrow>\<^isub>f bool \<Rightarrow> bool"
  3.1049 +where "finfun_All = finfun_All_except []"
  3.1050 +
  3.1051 +lemma finfun_All_const [simp]: "finfun_All (\<lambda>\<^isup>f b) = b"
  3.1052 +by(simp add: finfun_All_def finfun_All_except_def)
  3.1053 +
  3.1054 +lemma finfun_All_update: "finfun_All f(\<^sup>f a := b) = (b \<and> finfun_All_except [a] f)"
  3.1055 +by(simp add: finfun_All_def finfun_All_except_update)
  3.1056 +
  3.1057 +lemma finfun_All_All: "finfun_All P = All P\<^sub>f"
  3.1058 +by(simp add: finfun_All_def finfun_All_except_def)
  3.1059 +
  3.1060 +
  3.1061 +definition finfun_Ex :: "'a \<Rightarrow>\<^isub>f bool \<Rightarrow> bool"
  3.1062 +where "finfun_Ex P = Not (finfun_All (Not \<circ>\<^isub>f P))"
  3.1063 +
  3.1064 +lemma finfun_Ex_Ex: "finfun_Ex P = Ex P\<^sub>f"
  3.1065 +unfolding finfun_Ex_def finfun_All_All by simp
  3.1066 +
  3.1067 +lemma finfun_Ex_const [simp]: "finfun_Ex (\<lambda>\<^isup>f b) = b"
  3.1068 +by(simp add: finfun_Ex_def)
  3.1069 +
  3.1070 +
  3.1071 +subsection {* A diagonal operator for FinFuns *}
  3.1072 +
  3.1073 +definition finfun_Diag :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'c \<Rightarrow> 'a \<Rightarrow>\<^isub>f ('b \<times> 'c)" ("(1'(_,/ _')\<^sup>f)" [0, 0] 1000)
  3.1074 +where [code del]: "finfun_Diag f g = finfun_rec (\<lambda>b. Pair b \<circ>\<^isub>f g) (\<lambda>a b c. c(\<^sup>f a := (b, g\<^sub>f a))) f"
  3.1075 +
  3.1076 +interpretation finfun_Diag_aux: finfun_rec_wf_aux "\<lambda>b. Pair b \<circ>\<^isub>f g" "\<lambda>a b c. c(\<^sup>f a := (b, g\<^sub>f a))"
  3.1077 +by(unfold_locales)(simp_all add: expand_finfun_eq fun_eq_iff finfun_upd_apply)
  3.1078 +
  3.1079 +interpretation finfun_Diag: finfun_rec_wf "\<lambda>b. Pair b \<circ>\<^isub>f g" "\<lambda>a b c. c(\<^sup>f a := (b, g\<^sub>f a))"
  3.1080 +proof
  3.1081 +  fix b' b :: 'a
  3.1082 +  assume fin: "finite (UNIV :: 'c set)"
  3.1083 +  { fix A :: "'c set"
  3.1084 +    interpret comp_fun_commute "\<lambda>a c. c(\<^sup>f a := (b', g\<^sub>f a))" by(rule finfun_Diag_aux.upd_left_comm)
  3.1085 +    from fin have "finite A" by(auto intro: finite_subset)
  3.1086 +    hence "Finite_Set.fold (\<lambda>a c. c(\<^sup>f a := (b', g\<^sub>f a))) (Pair b \<circ>\<^isub>f g) A =
  3.1087 +      Abs_finfun (\<lambda>a. (if a \<in> A then b' else b, g\<^sub>f a))"
  3.1088 +      by(induct)(simp_all add: finfun_const_def finfun_comp_conv_comp o_def,
  3.1089 +                 auto simp add: finfun_update_def Abs_finfun_inverse_finite fun_upd_def Abs_finfun_inject_finite fun_eq_iff fin) }
  3.1090 +  from this[of UNIV] show "Finite_Set.fold (\<lambda>a c. c(\<^sup>f a := (b', g\<^sub>f a))) (Pair b \<circ>\<^isub>f g) UNIV = Pair b' \<circ>\<^isub>f g"
  3.1091 +    by(simp add: finfun_const_def finfun_comp_conv_comp o_def)
  3.1092 +qed
  3.1093 +
  3.1094 +lemma finfun_Diag_const1: "(\<lambda>\<^isup>f b, g)\<^sup>f = Pair b \<circ>\<^isub>f g"
  3.1095 +by(simp add: finfun_Diag_def)
  3.1096 +
  3.1097 +text {*
  3.1098 +  Do not use @{thm finfun_Diag_const1} for the code generator because @{term "Pair b"} is injective, i.e. if @{term g} is free of redundant updates, there is no need to check for redundant updates as is done for @{text "\<circ>\<^isub>f"}.
  3.1099 +*}
  3.1100 +
  3.1101 +lemma finfun_Diag_const_code [code]:
  3.1102 +  "(\<lambda>\<^isup>f b, \<lambda>\<^isup>f c)\<^sup>f = (\<lambda>\<^isup>f (b, c))"
  3.1103 +  "(\<lambda>\<^isup>f b, g(\<^sup>fc a := c))\<^sup>f = (\<lambda>\<^isup>f b, g)\<^sup>f(\<^sup>fc a := (b, c))"
  3.1104 +by(simp_all add: finfun_Diag_const1)
  3.1105 +
  3.1106 +lemma finfun_Diag_update1: "(f(\<^sup>f a := b), g)\<^sup>f = (f, g)\<^sup>f(\<^sup>f a := (b, g\<^sub>f a))"
  3.1107 +  and finfun_Diag_update1_code [code]: "(finfun_update_code f a b, g)\<^sup>f = (f, g)\<^sup>f(\<^sup>f a := (b, g\<^sub>f a))"
  3.1108 +by(simp_all add: finfun_Diag_def)
  3.1109 +
  3.1110 +lemma finfun_Diag_const2: "(f, \<lambda>\<^isup>f c)\<^sup>f = (\<lambda>b. (b, c)) \<circ>\<^isub>f f"
  3.1111 +by(induct f rule: finfun_weak_induct)(auto intro!: finfun_ext simp add: finfun_upd_apply finfun_Diag_const1 finfun_Diag_update1)
  3.1112 +
  3.1113 +lemma finfun_Diag_update2: "(f, g(\<^sup>f a := c))\<^sup>f = (f, g)\<^sup>f(\<^sup>f a := (f\<^sub>f a, c))"
  3.1114 +by(induct f rule: finfun_weak_induct)(auto intro!: finfun_ext simp add: finfun_upd_apply finfun_Diag_const1 finfun_Diag_update1)
  3.1115 +
  3.1116 +lemma finfun_Diag_const_const [simp]: "(\<lambda>\<^isup>f b, \<lambda>\<^isup>f c)\<^sup>f = (\<lambda>\<^isup>f (b, c))"
  3.1117 +by(simp add: finfun_Diag_const1)
  3.1118 +
  3.1119 +lemma finfun_Diag_const_update:
  3.1120 +  "(\<lambda>\<^isup>f b, g(\<^sup>f a := c))\<^sup>f = (\<lambda>\<^isup>f b, g)\<^sup>f(\<^sup>f a := (b, c))"
  3.1121 +by(simp add: finfun_Diag_const1)
  3.1122 +
  3.1123 +lemma finfun_Diag_update_const:
  3.1124 +  "(f(\<^sup>f a := b), \<lambda>\<^isup>f c)\<^sup>f = (f, \<lambda>\<^isup>f c)\<^sup>f(\<^sup>f a := (b, c))"
  3.1125 +by(simp add: finfun_Diag_def)
  3.1126 +
  3.1127 +lemma finfun_Diag_update_update:
  3.1128 +  "(f(\<^sup>f a := b), g(\<^sup>f a' := c))\<^sup>f = (if a = a' then (f, g)\<^sup>f(\<^sup>f a := (b, c)) else (f, g)\<^sup>f(\<^sup>f a := (b, g\<^sub>f a))(\<^sup>f a' := (f\<^sub>f a', c)))"
  3.1129 +by(auto simp add: finfun_Diag_update1 finfun_Diag_update2)
  3.1130 +
  3.1131 +lemma finfun_Diag_apply [simp]: "(f, g)\<^sup>f\<^sub>f = (\<lambda>x. (f\<^sub>f x, g\<^sub>f x))"
  3.1132 +by(induct f rule: finfun_weak_induct)(auto simp add: finfun_Diag_const1 finfun_Diag_update1 finfun_upd_apply intro: ext)
  3.1133 +
  3.1134 +declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  3.1135 +
  3.1136 +lemma finfun_Diag_conv_Abs_finfun:
  3.1137 +  "(f, g)\<^sup>f = Abs_finfun ((\<lambda>x. (Rep_finfun f x, Rep_finfun g x)))"
  3.1138 +proof -
  3.1139 +  have "(\<lambda>f :: 'a \<Rightarrow>\<^isub>f 'b. (f, g)\<^sup>f) = (\<lambda>f. Abs_finfun ((\<lambda>x. (Rep_finfun f x, Rep_finfun g x))))"
  3.1140 +  proof(rule finfun_rec_unique)
  3.1141 +    { fix c show "Abs_finfun (\<lambda>x. (Rep_finfun (\<lambda>\<^isup>f c) x, Rep_finfun g x)) = Pair c \<circ>\<^isub>f g"
  3.1142 +        by(simp add: finfun_comp_conv_comp finfun_apply_Rep_finfun o_def finfun_const_def) }
  3.1143 +    { fix g' a b
  3.1144 +      show "Abs_finfun (\<lambda>x. (Rep_finfun g'(\<^sup>f a := b) x, Rep_finfun g x)) =
  3.1145 +            (Abs_finfun (\<lambda>x. (Rep_finfun g' x, Rep_finfun g x)))(\<^sup>f a := (b, g\<^sub>f a))"
  3.1146 +        by(auto simp add: finfun_update_def fun_eq_iff finfun_apply_Rep_finfun simp del: fun_upd_apply) simp }
  3.1147 +  qed(simp_all add: finfun_Diag_const1 finfun_Diag_update1)
  3.1148 +  thus ?thesis by(auto simp add: fun_eq_iff)
  3.1149 +qed
  3.1150 +
  3.1151 +declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  3.1152 +
  3.1153 +lemma finfun_Diag_eq: "(f, g)\<^sup>f = (f', g')\<^sup>f \<longleftrightarrow> f = f' \<and> g = g'"
  3.1154 +by(auto simp add: expand_finfun_eq fun_eq_iff)
  3.1155 +
  3.1156 +definition finfun_fst :: "'a \<Rightarrow>\<^isub>f ('b \<times> 'c) \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b"
  3.1157 +where [code]: "finfun_fst f = fst \<circ>\<^isub>f f"
  3.1158 +
  3.1159 +lemma finfun_fst_const: "finfun_fst (\<lambda>\<^isup>f bc) = (\<lambda>\<^isup>f fst bc)"
  3.1160 +by(simp add: finfun_fst_def)
  3.1161 +
  3.1162 +lemma finfun_fst_update: "finfun_fst (f(\<^sup>f a := bc)) = (finfun_fst f)(\<^sup>f a := fst bc)"
  3.1163 +  and finfun_fst_update_code: "finfun_fst (finfun_update_code f a bc) = (finfun_fst f)(\<^sup>f a := fst bc)"
  3.1164 +by(simp_all add: finfun_fst_def)
  3.1165 +
  3.1166 +lemma finfun_fst_comp_conv: "finfun_fst (f \<circ>\<^isub>f g) = (fst \<circ> f) \<circ>\<^isub>f g"
  3.1167 +by(simp add: finfun_fst_def)
  3.1168 +
  3.1169 +lemma finfun_fst_conv [simp]: "finfun_fst (f, g)\<^sup>f = f"
  3.1170 +by(induct f rule: finfun_weak_induct)(simp_all add: finfun_Diag_const1 finfun_fst_comp_conv o_def finfun_Diag_update1 finfun_fst_update)
  3.1171 +
  3.1172 +lemma finfun_fst_conv_Abs_finfun: "finfun_fst = (\<lambda>f. Abs_finfun (fst o Rep_finfun f))"
  3.1173 +by(simp add: finfun_fst_def [abs_def] finfun_comp_conv_comp finfun_apply_Rep_finfun)
  3.1174 +
  3.1175 +
  3.1176 +definition finfun_snd :: "'a \<Rightarrow>\<^isub>f ('b \<times> 'c) \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'c"
  3.1177 +where [code]: "finfun_snd f = snd \<circ>\<^isub>f f"
  3.1178 +
  3.1179 +lemma finfun_snd_const: "finfun_snd (\<lambda>\<^isup>f bc) = (\<lambda>\<^isup>f snd bc)"
  3.1180 +by(simp add: finfun_snd_def)
  3.1181 +
  3.1182 +lemma finfun_snd_update: "finfun_snd (f(\<^sup>f a := bc)) = (finfun_snd f)(\<^sup>f a := snd bc)"
  3.1183 +  and finfun_snd_update_code [code]: "finfun_snd (finfun_update_code f a bc) = (finfun_snd f)(\<^sup>f a := snd bc)"
  3.1184 +by(simp_all add: finfun_snd_def)
  3.1185 +
  3.1186 +lemma finfun_snd_comp_conv: "finfun_snd (f \<circ>\<^isub>f g) = (snd \<circ> f) \<circ>\<^isub>f g"
  3.1187 +by(simp add: finfun_snd_def)
  3.1188 +
  3.1189 +lemma finfun_snd_conv [simp]: "finfun_snd (f, g)\<^sup>f = g"
  3.1190 +apply(induct f rule: finfun_weak_induct)
  3.1191 +apply(auto simp add: finfun_Diag_const1 finfun_snd_comp_conv o_def finfun_Diag_update1 finfun_snd_update finfun_upd_apply intro: finfun_ext)
  3.1192 +done
  3.1193 +
  3.1194 +lemma finfun_snd_conv_Abs_finfun: "finfun_snd = (\<lambda>f. Abs_finfun (snd o Rep_finfun f))"
  3.1195 +by(simp add: finfun_snd_def [abs_def] finfun_comp_conv_comp finfun_apply_Rep_finfun)
  3.1196 +
  3.1197 +lemma finfun_Diag_collapse [simp]: "(finfun_fst f, finfun_snd f)\<^sup>f = f"
  3.1198 +by(induct f rule: finfun_weak_induct)(simp_all add: finfun_fst_const finfun_snd_const finfun_fst_update finfun_snd_update finfun_Diag_update_update)
  3.1199 +
  3.1200 +subsection {* Currying for FinFuns *}
  3.1201 +
  3.1202 +definition finfun_curry :: "('a \<times> 'b) \<Rightarrow>\<^isub>f 'c \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b \<Rightarrow>\<^isub>f 'c"
  3.1203 +where [code del]: "finfun_curry = finfun_rec (finfun_const \<circ> finfun_const) (\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c)))"
  3.1204 +
  3.1205 +interpretation finfun_curry_aux: finfun_rec_wf_aux "finfun_const \<circ> finfun_const" "\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))"
  3.1206 +apply(unfold_locales)
  3.1207 +apply(auto simp add: split_def finfun_update_twist finfun_upd_apply split_paired_all finfun_update_const_same)
  3.1208 +done
  3.1209 +
  3.1210 +declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  3.1211 +
  3.1212 +interpretation finfun_curry: finfun_rec_wf "finfun_const \<circ> finfun_const" "\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))"
  3.1213 +proof(unfold_locales)
  3.1214 +  fix b' b :: 'b
  3.1215 +  assume fin: "finite (UNIV :: ('c \<times> 'a) set)"
  3.1216 +  hence fin1: "finite (UNIV :: 'c set)" and fin2: "finite (UNIV :: 'a set)"
  3.1217 +    unfolding UNIV_Times_UNIV[symmetric]
  3.1218 +    by(fastforce dest: finite_cartesian_productD1 finite_cartesian_productD2)+
  3.1219 +  note [simp] = Abs_finfun_inverse_finite[OF fin] Abs_finfun_inverse_finite[OF fin1] Abs_finfun_inverse_finite[OF fin2]
  3.1220 +  { fix A :: "('c \<times> 'a) set"
  3.1221 +    interpret comp_fun_commute "\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))) a b'"
  3.1222 +      by(rule finfun_curry_aux.upd_left_comm)
  3.1223 +    from fin have "finite A" by(auto intro: finite_subset)
  3.1224 +    hence "Finite_Set.fold (\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))) a b') ((finfun_const \<circ> finfun_const) b) A = Abs_finfun (\<lambda>a. Abs_finfun (\<lambda>b''. if (a, b'') \<in> A then b' else b))"
  3.1225 +      by induct (simp_all, auto simp add: finfun_update_def finfun_const_def split_def finfun_apply_Rep_finfun intro!: arg_cong[where f="Abs_finfun"] ext) }
  3.1226 +  from this[of UNIV]
  3.1227 +  show "Finite_Set.fold (\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))) a b') ((finfun_const \<circ> finfun_const) b) UNIV = (finfun_const \<circ> finfun_const) b'"
  3.1228 +    by(simp add: finfun_const_def)
  3.1229 +qed
  3.1230 +
  3.1231 +declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
  3.1232 +
  3.1233 +lemma finfun_curry_const [simp, code]: "finfun_curry (\<lambda>\<^isup>f c) = (\<lambda>\<^isup>f \<lambda>\<^isup>f c)"
  3.1234 +by(simp add: finfun_curry_def)
  3.1235 +
  3.1236 +lemma finfun_curry_update [simp]:
  3.1237 +  "finfun_curry (f(\<^sup>f (a, b) := c)) = (finfun_curry f)(\<^sup>f a := ((finfun_curry f)\<^sub>f a)(\<^sup>f b := c))"
  3.1238 +  and finfun_curry_update_code [code]:
  3.1239 +  "finfun_curry (f(\<^sup>fc (a, b) := c)) = (finfun_curry f)(\<^sup>f a := ((finfun_curry f)\<^sub>f a)(\<^sup>f b := c))"
  3.1240 +by(simp_all add: finfun_curry_def)
  3.1241 +
  3.1242 +declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
  3.1243 +
  3.1244 +lemma finfun_Abs_finfun_curry: assumes fin: "f \<in> finfun"
  3.1245 +  shows "(\<lambda>a. Abs_finfun (curry f a)) \<in> finfun"
  3.1246 +proof -
  3.1247 +  from fin obtain c where c: "finite {ab. f ab \<noteq> c}" unfolding finfun_def by blast
  3.1248 +  have "{a. \<exists>b. f (a, b) \<noteq> c} = fst ` {ab. f ab \<noteq> c}" by(force)
  3.1249 +  hence "{a. curry f a \<noteq> (\<lambda>x. c)} = fst ` {ab. f ab \<noteq> c}"
  3.1250 +    by(auto simp add: curry_def fun_eq_iff)
  3.1251 +  with fin c have "finite {a.  Abs_finfun (curry f a) \<noteq> (\<lambda>\<^isup>f c)}"
  3.1252 +    by(simp add: finfun_const_def finfun_curry)
  3.1253 +  thus ?thesis unfolding finfun_def by auto
  3.1254 +qed
  3.1255 +
  3.1256 +lemma finfun_curry_conv_curry:
  3.1257 +  fixes f :: "('a \<times> 'b) \<Rightarrow>\<^isub>f 'c"
  3.1258 +  shows "finfun_curry f = Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun f) a))"
  3.1259 +proof -
  3.1260 +  have "finfun_curry = (\<lambda>f :: ('a \<times> 'b) \<Rightarrow>\<^isub>f 'c. Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun f) a)))"
  3.1261 +  proof(rule finfun_rec_unique)
  3.1262 +    { fix c show "finfun_curry (\<lambda>\<^isup>f c) = (\<lambda>\<^isup>f \<lambda>\<^isup>f c)" by simp }
  3.1263 +    { fix f a c show "finfun_curry (f(\<^sup>f a := c)) = (finfun_curry f)(\<^sup>f fst a := ((finfun_curry f)\<^sub>f (fst a))(\<^sup>f snd a := c))"
  3.1264 +        by(cases a) simp }
  3.1265 +    { fix c show "Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun (\<lambda>\<^isup>f c)) a)) = (\<lambda>\<^isup>f \<lambda>\<^isup>f c)"
  3.1266 +        by(simp add: finfun_curry_def finfun_const_def curry_def) }
  3.1267 +    { fix g a b
  3.1268 +      show "Abs_finfun (\<lambda>aa. Abs_finfun (curry (Rep_finfun g(\<^sup>f a := b)) aa)) =
  3.1269 +       (Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun g) a)))(\<^sup>f
  3.1270 +       fst a := ((Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun g) a)))\<^sub>f (fst a))(\<^sup>f snd a := b))"
  3.1271 +        by(cases a)(auto intro!: ext arg_cong[where f=Abs_finfun] simp add: finfun_curry_def finfun_update_def finfun_apply_Rep_finfun finfun_curry finfun_Abs_finfun_curry) }
  3.1272 +  qed
  3.1273 +  thus ?thesis by(auto simp add: fun_eq_iff)
  3.1274 +qed
  3.1275 +
  3.1276 +subsection {* Executable equality for FinFuns *}
  3.1277 +
  3.1278 +lemma eq_finfun_All_ext: "(f = g) \<longleftrightarrow> finfun_All ((\<lambda>(x, y). x = y) \<circ>\<^isub>f (f, g)\<^sup>f)"
  3.1279 +by(simp add: expand_finfun_eq fun_eq_iff finfun_All_All o_def)
  3.1280 +
  3.1281 +instantiation finfun :: ("{card_UNIV,equal}",equal) equal begin
  3.1282 +definition eq_finfun_def [code]: "HOL.equal f g \<longleftrightarrow> finfun_All ((\<lambda>(x, y). x = y) \<circ>\<^isub>f (f, g)\<^sup>f)"
  3.1283 +instance by(intro_classes)(simp add: eq_finfun_All_ext eq_finfun_def)
  3.1284 +end
  3.1285 +
  3.1286 +lemma [code nbe]:
  3.1287 +  "HOL.equal (f :: _ \<Rightarrow>\<^isub>f _) f \<longleftrightarrow> True"
  3.1288 +  by (fact equal_refl)
  3.1289 +
  3.1290 +subsection {* An operator that explicitly removes all redundant updates in the generated representations *}
  3.1291 +
  3.1292 +definition finfun_clearjunk :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b"
  3.1293 +where [simp, code del]: "finfun_clearjunk = id"
  3.1294 +
  3.1295 +lemma finfun_clearjunk_const [code]: "finfun_clearjunk (\<lambda>\<^isup>f b) = (\<lambda>\<^isup>f b)"
  3.1296 +by simp
  3.1297 +
  3.1298 +lemma finfun_clearjunk_update [code]: "finfun_clearjunk (finfun_update_code f a b) = f(\<^sup>f a := b)"
  3.1299 +by simp
  3.1300 +
  3.1301 +subsection {* The domain of a FinFun as a FinFun *}
  3.1302 +
  3.1303 +definition finfun_dom :: "('a \<Rightarrow>\<^isub>f 'b) \<Rightarrow> ('a \<Rightarrow>\<^isub>f bool)"
  3.1304 +where [code del]: "finfun_dom f = Abs_finfun (\<lambda>a. f\<^sub>f a \<noteq> finfun_default f)"
  3.1305 +
  3.1306 +lemma finfun_dom_const:
  3.1307 +  "finfun_dom ((\<lambda>\<^isup>f c) :: 'a \<Rightarrow>\<^isub>f 'b) = (\<lambda>\<^isup>f finite (UNIV :: 'a set) \<and> c \<noteq> undefined)"
  3.1308 +unfolding finfun_dom_def finfun_default_const
  3.1309 +by(auto)(simp_all add: finfun_const_def)
  3.1310 +
  3.1311 +text {*
  3.1312 +  @{term "finfun_dom" } raises an exception when called on a FinFun whose domain is a finite type. 
  3.1313 +  For such FinFuns, the default value (and as such the domain) is undefined.
  3.1314 +*}
  3.1315 +
  3.1316 +lemma finfun_dom_const_code [code]:
  3.1317 +  "finfun_dom ((\<lambda>\<^isup>f c) :: ('a :: card_UNIV) \<Rightarrow>\<^isub>f 'b) = 
  3.1318 +   (if card_UNIV (TYPE('a)) = 0 then (\<lambda>\<^isup>f False) else FinFun.code_abort (\<lambda>_. finfun_dom (\<lambda>\<^isup>f c)))"
  3.1319 +unfolding card_UNIV_eq_0_infinite_UNIV
  3.1320 +by(simp add: finfun_dom_const)
  3.1321 +
  3.1322 +lemma finfun_dom_finfunI: "(\<lambda>a. f\<^sub>f a \<noteq> finfun_default f) \<in> finfun"
  3.1323 +using finite_finfun_default[of f]
  3.1324 +by(simp add: finfun_def finfun_apply_Rep_finfun exI[where x=False])
  3.1325 +
  3.1326 +lemma finfun_dom_update [simp]:
  3.1327 +  "finfun_dom (f(\<^sup>f a := b)) = (finfun_dom f)(\<^sup>f a := (b \<noteq> finfun_default f))"
  3.1328 +unfolding finfun_dom_def finfun_update_def
  3.1329 +apply(simp add: finfun_default_update_const finfun_upd_apply finfun_dom_finfunI)
  3.1330 +apply(fold finfun_update.rep_eq)
  3.1331 +apply(simp add: finfun_upd_apply fun_eq_iff finfun_default_update_const)
  3.1332 +done
  3.1333 +
  3.1334 +lemma finfun_dom_update_code [code]:
  3.1335 +  "finfun_dom (finfun_update_code f a b) = finfun_update_code (finfun_dom f) a (b \<noteq> finfun_default f)"
  3.1336 +by(simp)
  3.1337 +
  3.1338 +lemma finite_finfun_dom: "finite {x. (finfun_dom f)\<^sub>f x}"
  3.1339 +proof(induct f rule: finfun_weak_induct)
  3.1340 +  case (const b)
  3.1341 +  thus ?case
  3.1342 +    by (cases "finite (UNIV :: 'a set) \<and> b \<noteq> undefined")
  3.1343 +      (auto simp add: finfun_dom_const UNIV_def [symmetric] Set.empty_def [symmetric])
  3.1344 +next
  3.1345 +  case (update f a b)
  3.1346 +  have "{x. (finfun_dom f(\<^sup>f a := b))\<^sub>f x} =
  3.1347 +    (if b = finfun_default f then {x. (finfun_dom f)\<^sub>f x} - {a} else insert a {x. (finfun_dom f)\<^sub>f x})"
  3.1348 +    by (auto simp add: finfun_upd_apply split: split_if_asm)
  3.1349 +  thus ?case using update by simp
  3.1350 +qed
  3.1351 +
  3.1352 +
  3.1353 +subsection {* The domain of a FinFun as a sorted list *}
  3.1354 +
  3.1355 +definition finfun_to_list :: "('a :: linorder) \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a list"
  3.1356 +where
  3.1357 +  "finfun_to_list f = (THE xs. set xs = {x. (finfun_dom f)\<^sub>f x} \<and> sorted xs \<and> distinct xs)"
  3.1358 +
  3.1359 +lemma set_finfun_to_list [simp]: "set (finfun_to_list f) = {x. (finfun_dom f)\<^sub>f x}" (is ?thesis1)
  3.1360 +  and sorted_finfun_to_list: "sorted (finfun_to_list f)" (is ?thesis2)
  3.1361 +  and distinct_finfun_to_list: "distinct (finfun_to_list f)" (is ?thesis3)
  3.1362 +proof -
  3.1363 +  have "?thesis1 \<and> ?thesis2 \<and> ?thesis3"
  3.1364 +    unfolding finfun_to_list_def
  3.1365 +    by(rule theI')(rule finite_sorted_distinct_unique finite_finfun_dom)+
  3.1366 +  thus ?thesis1 ?thesis2 ?thesis3 by simp_all
  3.1367 +qed
  3.1368 +
  3.1369 +lemma finfun_const_False_conv_bot: "(\<lambda>\<^isup>f False)\<^sub>f = bot"
  3.1370 +by auto
  3.1371 +
  3.1372 +lemma finfun_const_True_conv_top: "(\<lambda>\<^isup>f True)\<^sub>f = top"
  3.1373 +by auto
  3.1374 +
  3.1375 +lemma finfun_to_list_const:
  3.1376 +  "finfun_to_list ((\<lambda>\<^isup>f c) :: ('a :: {linorder} \<Rightarrow>\<^isub>f 'b)) = 
  3.1377 +  (if \<not> finite (UNIV :: 'a set) \<or> c = undefined then [] else THE xs. set xs = UNIV \<and> sorted xs \<and> distinct xs)"
  3.1378 +by(auto simp add: finfun_to_list_def finfun_const_False_conv_bot finfun_const_True_conv_top finfun_dom_const)
  3.1379 +
  3.1380 +lemma finfun_to_list_const_code [code]:
  3.1381 +  "finfun_to_list ((\<lambda>\<^isup>f c) :: ('a :: {linorder, card_UNIV} \<Rightarrow>\<^isub>f 'b)) =
  3.1382 +   (if card_UNIV (TYPE('a)) = 0 then [] else FinFun.code_abort (\<lambda>_. finfun_to_list ((\<lambda>\<^isup>f c) :: ('a \<Rightarrow>\<^isub>f 'b))))"
  3.1383 +unfolding card_UNIV_eq_0_infinite_UNIV
  3.1384 +by(auto simp add: finfun_to_list_const)
  3.1385 +
  3.1386 +lemma remove1_insort_insert_same:
  3.1387 +  "x \<notin> set xs \<Longrightarrow> remove1 x (insort_insert x xs) = xs"
  3.1388 +by (metis insort_insert_insort remove1_insort)
  3.1389 +
  3.1390 +lemma finfun_dom_conv:
  3.1391 +  "(finfun_dom f)\<^sub>f x \<longleftrightarrow> f\<^sub>f x \<noteq> finfun_default f"
  3.1392 +by(induct f rule: finfun_weak_induct)(auto simp add: finfun_dom_const finfun_default_const finfun_default_update_const finfun_upd_apply)
  3.1393 +
  3.1394 +lemma finfun_to_list_update:
  3.1395 +  "finfun_to_list (f(\<^sup>f a := b)) = 
  3.1396 +  (if b = finfun_default f then List.remove1 a (finfun_to_list f) else List.insort_insert a (finfun_to_list f))"
  3.1397 +proof(subst finfun_to_list_def, rule the_equality)
  3.1398 +  fix xs
  3.1399 +  assume "set xs = {x. (finfun_dom f(\<^sup>f a := b))\<^sub>f x} \<and> sorted xs \<and> distinct xs"
  3.1400 +  hence eq: "set xs = {x. (finfun_dom f(\<^sup>f a := b))\<^sub>f x}"
  3.1401 +    and [simp]: "sorted xs" "distinct xs" by simp_all
  3.1402 +  show "xs = (if b = finfun_default f then remove1 a (finfun_to_list f) else insort_insert a (finfun_to_list f))"
  3.1403 +  proof(cases "b = finfun_default f")
  3.1404 +    case True [simp]
  3.1405 +    show ?thesis
  3.1406 +    proof(cases "(finfun_dom f)\<^sub>f a")
  3.1407 +      case True
  3.1408 +      have "finfun_to_list f = insort_insert a xs"
  3.1409 +        unfolding finfun_to_list_def
  3.1410 +      proof(rule the_equality)
  3.1411 +        have "set (insort_insert a xs) = insert a (set xs)" by(simp add: set_insort_insert)
  3.1412 +        also note eq also
  3.1413 +        have "insert a {x. (finfun_dom f(\<^sup>f a := b))\<^sub>f x} = {x. (finfun_dom f)\<^sub>f x}" using True
  3.1414 +          by(auto simp add: finfun_upd_apply split: split_if_asm)
  3.1415 +        finally show 1: "set (insort_insert a xs) = {x. (finfun_dom f)\<^sub>f x} \<and> sorted (insort_insert a xs) \<and> distinct (insort_insert a xs)"
  3.1416 +          by(simp add: sorted_insort_insert distinct_insort_insert)
  3.1417 +
  3.1418 +        fix xs'
  3.1419 +        assume "set xs' = {x. (finfun_dom f)\<^sub>f x} \<and> sorted xs' \<and> distinct xs'"
  3.1420 +        thus "xs' = insort_insert a xs" using 1 by(auto dest: sorted_distinct_set_unique)
  3.1421 +      qed
  3.1422 +      with eq True show ?thesis by(simp add: remove1_insort_insert_same)
  3.1423 +    next
  3.1424 +      case False
  3.1425 +      hence "f\<^sub>f a = b" by(auto simp add: finfun_dom_conv)
  3.1426 +      hence f: "f(\<^sup>f a := b) = f" by(simp add: expand_finfun_eq fun_eq_iff finfun_upd_apply)
  3.1427 +      from eq have "finfun_to_list f = xs" unfolding f finfun_to_list_def
  3.1428 +        by(auto elim: sorted_distinct_set_unique intro!: the_equality)
  3.1429 +      with eq False show ?thesis unfolding f by(simp add: remove1_idem)
  3.1430 +    qed
  3.1431 +  next
  3.1432 +    case False
  3.1433 +    show ?thesis
  3.1434 +    proof(cases "(finfun_dom f)\<^sub>f a")
  3.1435 +      case True
  3.1436 +      have "finfun_to_list f = xs"
  3.1437 +        unfolding finfun_to_list_def
  3.1438 +      proof(rule the_equality)
  3.1439 +        have "finfun_dom f = finfun_dom f(\<^sup>f a := b)" using False True
  3.1440 +          by(simp add: expand_finfun_eq fun_eq_iff finfun_upd_apply)
  3.1441 +        with eq show 1: "set xs = {x. (finfun_dom f)\<^sub>f x} \<and> sorted xs \<and> distinct xs"
  3.1442 +          by(simp del: finfun_dom_update)
  3.1443 +        
  3.1444 +        fix xs'
  3.1445 +        assume "set xs' = {x. (finfun_dom f)\<^sub>f x} \<and> sorted xs' \<and> distinct xs'"
  3.1446 +        thus "xs' = xs" using 1 by(auto elim: sorted_distinct_set_unique)
  3.1447 +      qed
  3.1448 +      thus ?thesis using False True eq by(simp add: insort_insert_triv)
  3.1449 +    next
  3.1450 +      case False
  3.1451 +      have "finfun_to_list f = remove1 a xs"
  3.1452 +        unfolding finfun_to_list_def
  3.1453 +      proof(rule the_equality)
  3.1454 +        have "set (remove1 a xs) = set xs - {a}" by simp
  3.1455 +        also note eq also
  3.1456 +        have "{x. (finfun_dom f(\<^sup>f a := b))\<^sub>f x} - {a} = {x. (finfun_dom f)\<^sub>f x}" using False
  3.1457 +          by(auto simp add: finfun_upd_apply split: split_if_asm)
  3.1458 +        finally show 1: "set (remove1 a xs) = {x. (finfun_dom f)\<^sub>f x} \<and> sorted (remove1 a xs) \<and> distinct (remove1 a xs)"
  3.1459 +          by(simp add: sorted_remove1)
  3.1460 +        
  3.1461 +        fix xs'
  3.1462 +        assume "set xs' = {x. (finfun_dom f)\<^sub>f x} \<and> sorted xs' \<and> distinct xs'"
  3.1463 +        thus "xs' = remove1 a xs" using 1 by(blast intro: sorted_distinct_set_unique)
  3.1464 +      qed
  3.1465 +      thus ?thesis using False eq `b \<noteq> finfun_default f` 
  3.1466 +        by (simp add: insort_insert_insort insort_remove1)
  3.1467 +    qed
  3.1468 +  qed
  3.1469 +qed (auto simp add: distinct_finfun_to_list sorted_finfun_to_list sorted_remove1 set_insort_insert sorted_insort_insert distinct_insort_insert finfun_upd_apply split: split_if_asm)
  3.1470 +
  3.1471 +lemma finfun_to_list_update_code [code]:
  3.1472 +  "finfun_to_list (finfun_update_code f a b) = 
  3.1473 +  (if b = finfun_default f then List.remove1 a (finfun_to_list f) else List.insort_insert a (finfun_to_list f))"
  3.1474 +by(simp add: finfun_to_list_update)
  3.1475 +
  3.1476 +end
     4.1 --- a/src/HOL/Library/Library.thy	Tue May 29 13:46:50 2012 +0200
     4.2 +++ b/src/HOL/Library/Library.thy	Tue May 29 15:31:58 2012 +0200
     4.3 @@ -14,6 +14,7 @@
     4.4    Countable
     4.5    Eval_Witness
     4.6    Extended_Nat
     4.7 +  FinFun
     4.8    Float
     4.9    Formal_Power_Series
    4.10    Fraction_Field
     5.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     5.2 +++ b/src/HOL/ex/FinFunPred.thy	Tue May 29 15:31:58 2012 +0200
     5.3 @@ -0,0 +1,261 @@
     5.4 +(*  Author:     Andreas Lochbihler *)
     5.5 +
     5.6 +header {*
     5.7 +  Predicates modelled as FinFuns
     5.8 +*}
     5.9 +
    5.10 +theory FinFunPred imports "~~/src/HOL/Library/FinFun" begin
    5.11 +
    5.12 +text {* Instantiate FinFun predicates just like predicates *}
    5.13 +
    5.14 +type_synonym 'a pred\<^isub>f = "'a \<Rightarrow>\<^isub>f bool"
    5.15 +
    5.16 +instantiation "finfun" :: (type, ord) ord
    5.17 +begin
    5.18 +
    5.19 +definition le_finfun_def [code del]: "f \<le> g \<longleftrightarrow> (\<forall>x. f\<^sub>f x \<le> g\<^sub>f x)"
    5.20 +
    5.21 +definition [code del]: "(f\<Colon>'a \<Rightarrow>\<^isub>f 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> f \<ge> g"
    5.22 +
    5.23 +instance ..
    5.24 +
    5.25 +lemma le_finfun_code [code]:
    5.26 +  "f \<le> g \<longleftrightarrow> finfun_All ((\<lambda>(x, y). x \<le> y) \<circ>\<^isub>f (f, g)\<^sup>f)"
    5.27 +by(simp add: le_finfun_def finfun_All_All o_def)
    5.28 +
    5.29 +end
    5.30 +
    5.31 +instance "finfun" :: (type, preorder) preorder
    5.32 +  by(intro_classes)(auto simp add: less_finfun_def le_finfun_def intro: order_trans)
    5.33 +
    5.34 +instance "finfun" :: (type, order) order
    5.35 +by(intro_classes)(auto simp add: le_finfun_def order_antisym_conv intro: finfun_ext)
    5.36 +
    5.37 +instantiation "finfun" :: (type, bot) bot begin
    5.38 +definition "bot = finfun_const bot"
    5.39 +instance by(intro_classes)(simp add: bot_finfun_def le_finfun_def)
    5.40 +end
    5.41 +
    5.42 +lemma bot_finfun_apply [simp]: "bot\<^sub>f = (\<lambda>_. bot)"
    5.43 +by(auto simp add: bot_finfun_def)
    5.44 +
    5.45 +instantiation "finfun" :: (type, top) top begin
    5.46 +definition "top = finfun_const top"
    5.47 +instance by(intro_classes)(simp add: top_finfun_def le_finfun_def)
    5.48 +end
    5.49 +
    5.50 +lemma top_finfun_apply [simp]: "top\<^sub>f = (\<lambda>_. top)"
    5.51 +by(auto simp add: top_finfun_def)
    5.52 +
    5.53 +instantiation "finfun" :: (type, inf) inf begin
    5.54 +definition [code]: "inf f g = (\<lambda>(x, y). inf x y) \<circ>\<^isub>f (f, g)\<^sup>f"
    5.55 +instance ..
    5.56 +end
    5.57 +
    5.58 +lemma inf_finfun_apply [simp]: "(inf f g)\<^sub>f = inf f\<^sub>f g\<^sub>f"
    5.59 +by(auto simp add: inf_finfun_def o_def inf_fun_def)
    5.60 +
    5.61 +instantiation "finfun" :: (type, sup) sup begin
    5.62 +definition [code]: "sup f g = (\<lambda>(x, y). sup x y) \<circ>\<^isub>f (f, g)\<^sup>f"
    5.63 +instance ..
    5.64 +end
    5.65 +
    5.66 +lemma sup_finfun_apply [simp]: "(sup f g)\<^sub>f = sup f\<^sub>f g\<^sub>f"
    5.67 +by(auto simp add: sup_finfun_def o_def sup_fun_def)
    5.68 +
    5.69 +instance "finfun" :: (type, semilattice_inf) semilattice_inf
    5.70 +by(intro_classes)(simp_all add: inf_finfun_def le_finfun_def)
    5.71 +
    5.72 +instance "finfun" :: (type, semilattice_sup) semilattice_sup
    5.73 +by(intro_classes)(simp_all add: sup_finfun_def le_finfun_def)
    5.74 +
    5.75 +instance "finfun" :: (type, lattice) lattice ..
    5.76 +
    5.77 +instance "finfun" :: (type, bounded_lattice) bounded_lattice
    5.78 +by(intro_classes)
    5.79 +
    5.80 +instance "finfun" :: (type, distrib_lattice) distrib_lattice
    5.81 +by(intro_classes)(simp add: sup_finfun_def inf_finfun_def expand_finfun_eq o_def sup_inf_distrib1)
    5.82 +
    5.83 +instantiation "finfun" :: (type, minus) minus begin
    5.84 +definition "f - g = split (op -) \<circ>\<^isub>f (f, g)\<^sup>f"
    5.85 +instance ..
    5.86 +end
    5.87 +
    5.88 +lemma minus_finfun_apply [simp]: "(f - g)\<^sub>f = f\<^sub>f - g\<^sub>f"
    5.89 +by(simp add: minus_finfun_def o_def fun_diff_def)
    5.90 +
    5.91 +instantiation "finfun" :: (type, uminus) uminus begin
    5.92 +definition "- A = uminus \<circ>\<^isub>f A"
    5.93 +instance ..
    5.94 +end
    5.95 +
    5.96 +lemma uminus_finfun_apply [simp]: "(- g)\<^sub>f = - g\<^sub>f"
    5.97 +by(simp add: uminus_finfun_def o_def fun_Compl_def)
    5.98 +
    5.99 +instance "finfun" :: (type, boolean_algebra) boolean_algebra
   5.100 +by(intro_classes)
   5.101 +  (simp_all add: uminus_finfun_def inf_finfun_def expand_finfun_eq sup_fun_def inf_fun_def fun_Compl_def o_def inf_compl_bot sup_compl_top diff_eq)
   5.102 +
   5.103 +text {*
   5.104 +  Replicate predicate operations for FinFuns
   5.105 +*}
   5.106 +
   5.107 +abbreviation finfun_empty :: "'a pred\<^isub>f" ("{}\<^isub>f")
   5.108 +where "{}\<^isub>f \<equiv> bot"
   5.109 +
   5.110 +abbreviation finfun_UNIV :: "'a pred\<^isub>f" 
   5.111 +where "finfun_UNIV \<equiv> top"
   5.112 +
   5.113 +definition finfun_single :: "'a \<Rightarrow> 'a pred\<^isub>f"
   5.114 +where [code]: "finfun_single x = finfun_empty(\<^sup>f x := True)"
   5.115 +
   5.116 +lemma finfun_single_apply [simp]:
   5.117 +  "(finfun_single x)\<^sub>f y \<longleftrightarrow> x = y"
   5.118 +by(simp add: finfun_single_def finfun_upd_apply)
   5.119 +
   5.120 +lemma [iff]:
   5.121 +  shows finfun_single_neq_bot: "finfun_single x \<noteq> bot" 
   5.122 +  and bot_neq_finfun_single: "bot \<noteq> finfun_single x"
   5.123 +by(simp_all add: expand_finfun_eq fun_eq_iff)
   5.124 +
   5.125 +lemma finfun_leI [intro!]: "(!!x. A\<^sub>f x \<Longrightarrow> B\<^sub>f x) \<Longrightarrow> A \<le> B"
   5.126 +by(simp add: le_finfun_def)
   5.127 +
   5.128 +lemma finfun_leD [elim]: "\<lbrakk> A \<le> B; A\<^sub>f x \<rbrakk> \<Longrightarrow> B\<^sub>f x"
   5.129 +by(simp add: le_finfun_def)
   5.130 +
   5.131 +text {* Bounded quantification.
   5.132 +  Warning: @{text "finfun_Ball"} and @{text "finfun_Ex"} may raise an exception, they should not be used for quickcheck
   5.133 +*}
   5.134 +
   5.135 +definition finfun_Ball_except :: "'a list \<Rightarrow> 'a pred\<^isub>f \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
   5.136 +where [code del]: "finfun_Ball_except xs A P = (\<forall>a. A\<^sub>f a \<longrightarrow> a \<in> set xs \<or> P a)"
   5.137 +
   5.138 +lemma finfun_Ball_except_const:
   5.139 +  "finfun_Ball_except xs (\<lambda>\<^isup>f b) P \<longleftrightarrow> \<not> b \<or> set xs = UNIV \<or> FinFun.code_abort (\<lambda>u. finfun_Ball_except xs (\<lambda>\<^isup>f b) P)"
   5.140 +by(auto simp add: finfun_Ball_except_def)
   5.141 +
   5.142 +lemma finfun_Ball_except_const_finfun_UNIV_code [code]:
   5.143 +  "finfun_Ball_except xs (\<lambda>\<^isup>f b) P \<longleftrightarrow> \<not> b \<or> is_list_UNIV xs \<or> FinFun.code_abort (\<lambda>u. finfun_Ball_except xs (\<lambda>\<^isup>f b) P)"
   5.144 +by(auto simp add: finfun_Ball_except_def is_list_UNIV_iff)
   5.145 +
   5.146 +lemma finfun_Ball_except_update:
   5.147 +  "finfun_Ball_except xs (A(\<^sup>f a := b)) P = ((a \<in> set xs \<or> (b \<longrightarrow> P a)) \<and> finfun_Ball_except (a # xs) A P)"
   5.148 +by(fastforce simp add: finfun_Ball_except_def finfun_upd_apply split: split_if_asm)
   5.149 +
   5.150 +lemma finfun_Ball_except_update_code [code]:
   5.151 +  fixes a :: "'a :: card_UNIV"
   5.152 +  shows "finfun_Ball_except xs (finfun_update_code f a b) P = ((a \<in> set xs \<or> (b \<longrightarrow> P a)) \<and> finfun_Ball_except (a # xs) f P)"
   5.153 +by(simp add: finfun_Ball_except_update)
   5.154 +
   5.155 +definition finfun_Ball :: "'a pred\<^isub>f \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
   5.156 +where [code del]: "finfun_Ball A P = Ball {x. A\<^sub>f x} P"
   5.157 +
   5.158 +lemma finfun_Ball_code [code]: "finfun_Ball = finfun_Ball_except []"
   5.159 +by(auto intro!: ext simp add: finfun_Ball_except_def finfun_Ball_def)
   5.160 +
   5.161 +
   5.162 +definition finfun_Bex_except :: "'a list \<Rightarrow> 'a pred\<^isub>f \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
   5.163 +where [code del]: "finfun_Bex_except xs A P = (\<exists>a. A\<^sub>f a \<and> a \<notin> set xs \<and> P a)"
   5.164 +
   5.165 +lemma finfun_Bex_except_const:
   5.166 +  "finfun_Bex_except xs (\<lambda>\<^isup>f b) P \<longleftrightarrow> b \<and> set xs \<noteq> UNIV \<and> FinFun.code_abort (\<lambda>u. finfun_Bex_except xs (\<lambda>\<^isup>f b) P)"
   5.167 +by(auto simp add: finfun_Bex_except_def)
   5.168 +
   5.169 +lemma finfun_Bex_except_const_finfun_UNIV_code [code]:
   5.170 +  "finfun_Bex_except xs (\<lambda>\<^isup>f b) P \<longleftrightarrow> b \<and> \<not> is_list_UNIV xs \<and> FinFun.code_abort (\<lambda>u. finfun_Bex_except xs (\<lambda>\<^isup>f b) P)"
   5.171 +by(auto simp add: finfun_Bex_except_def is_list_UNIV_iff)
   5.172 +
   5.173 +lemma finfun_Bex_except_update: 
   5.174 +  "finfun_Bex_except xs (A(\<^sup>f a := b)) P \<longleftrightarrow> (a \<notin> set xs \<and> b \<and> P a) \<or> finfun_Bex_except (a # xs) A P"
   5.175 +by(fastforce simp add: finfun_Bex_except_def finfun_upd_apply dest: bspec split: split_if_asm)
   5.176 +
   5.177 +lemma finfun_Bex_except_update_code [code]:
   5.178 +  fixes a :: "'a :: card_UNIV"
   5.179 +  shows "finfun_Bex_except xs (finfun_update_code f a b) P \<longleftrightarrow> ((a \<notin> set xs \<and> b \<and> P a) \<or> finfun_Bex_except (a # xs) f P)"
   5.180 +by(simp add: finfun_Bex_except_update)
   5.181 +
   5.182 +definition finfun_Bex :: "'a pred\<^isub>f \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
   5.183 +where [code del]: "finfun_Bex A P = Bex {x. A\<^sub>f x} P"
   5.184 +
   5.185 +lemma finfun_Bex_code [code]: "finfun_Bex = finfun_Bex_except []"
   5.186 +by(auto intro!: ext simp add: finfun_Bex_except_def finfun_Bex_def)
   5.187 +
   5.188 +
   5.189 +text {* Automatically replace predicate operations by finfun predicate operations where possible *}
   5.190 +
   5.191 +lemma iso_finfun_le [code_unfold]:
   5.192 +  "A\<^sub>f \<le> B\<^sub>f \<longleftrightarrow> A \<le> B"
   5.193 +by (metis le_finfun_def le_funD le_funI)
   5.194 +
   5.195 +lemma iso_finfun_less [code_unfold]:
   5.196 +  "A\<^sub>f < B\<^sub>f \<longleftrightarrow> A < B"
   5.197 +by (metis iso_finfun_le less_finfun_def less_fun_def)
   5.198 +
   5.199 +lemma iso_finfun_eq [code_unfold]:
   5.200 +  "A\<^sub>f = B\<^sub>f \<longleftrightarrow> A = B"
   5.201 +by(simp add: expand_finfun_eq)
   5.202 +
   5.203 +lemma iso_finfun_sup [code_unfold]:
   5.204 +  "sup A\<^sub>f B\<^sub>f = (sup A B)\<^sub>f"
   5.205 +by(simp)
   5.206 +
   5.207 +lemma iso_finfun_disj [code_unfold]:
   5.208 +  "A\<^sub>f x \<or> B\<^sub>f x \<longleftrightarrow> (sup A B)\<^sub>f x"
   5.209 +by(simp add: sup_fun_def)
   5.210 +
   5.211 +lemma iso_finfun_inf [code_unfold]:
   5.212 +  "inf A\<^sub>f B\<^sub>f = (inf A B)\<^sub>f"
   5.213 +by(simp)
   5.214 +
   5.215 +lemma iso_finfun_conj [code_unfold]:
   5.216 +  "A\<^sub>f x \<and> B\<^sub>f x \<longleftrightarrow> (inf A B)\<^sub>f x"
   5.217 +by(simp add: inf_fun_def)
   5.218 +
   5.219 +lemma iso_finfun_empty_conv [code_unfold]:
   5.220 +  "(\<lambda>_. False) = {}\<^isub>f\<^sub>f"
   5.221 +by simp
   5.222 +
   5.223 +lemma iso_finfun_UNIV_conv [code_unfold]:
   5.224 +  "(\<lambda>_. True) = finfun_UNIV\<^sub>f"
   5.225 +by simp
   5.226 +
   5.227 +lemma iso_finfun_upd [code_unfold]:
   5.228 +  fixes A :: "'a pred\<^isub>f"
   5.229 +  shows "A\<^sub>f(x := b) = (A(\<^sup>f x := b))\<^sub>f"
   5.230 +by(simp add: fun_eq_iff)
   5.231 +
   5.232 +lemma iso_finfun_uminus [code_unfold]:
   5.233 +  fixes A :: "'a pred\<^isub>f"
   5.234 +  shows "- A\<^sub>f = (- A)\<^sub>f"
   5.235 +by(simp)
   5.236 +
   5.237 +lemma iso_finfun_minus [code_unfold]:
   5.238 +  fixes A :: "'a pred\<^isub>f"
   5.239 +  shows "A\<^sub>f - B\<^sub>f = (A - B)\<^sub>f"
   5.240 +by(simp)
   5.241 +
   5.242 +text {*
   5.243 +  Do not declare the following two theorems as @{text "[code_unfold]"},
   5.244 +  because this causes quickcheck to fail frequently when bounded quantification is used which raises an exception.
   5.245 +  For code generation, the same problems occur, but then, no randomly generated FinFun is usually around.
   5.246 +*}
   5.247 +
   5.248 +lemma iso_finfun_Ball_Ball:
   5.249 +  "(\<forall>x. A\<^sub>f x \<longrightarrow> P x) \<longleftrightarrow> finfun_Ball A P"
   5.250 +by(simp add: finfun_Ball_def)
   5.251 +
   5.252 +lemma iso_finfun_Bex_Bex:
   5.253 +  "(\<exists>x. A\<^sub>f x \<and> P x) \<longleftrightarrow> finfun_Bex A P"
   5.254 +by(simp add: finfun_Bex_def)
   5.255 +
   5.256 +text {* Test replacement setup *}
   5.257 +
   5.258 +notepad begin
   5.259 +have "inf ((\<lambda>_ :: nat. False)(1 := True, 2 := True)) ((\<lambda>_. True)(3 := False)) \<le> 
   5.260 +      sup ((\<lambda>_. False)(1 := True, 5 := True)) (- ((\<lambda>_. True)(2 := False, 3 := False)))"
   5.261 +  by eval
   5.262 +end
   5.263 +
   5.264 +end
   5.265 \ No newline at end of file
     6.1 --- a/src/HOL/ex/ROOT.ML	Tue May 29 13:46:50 2012 +0200
     6.2 +++ b/src/HOL/ex/ROOT.ML	Tue May 29 15:31:58 2012 +0200
     6.3 @@ -11,7 +11,8 @@
     6.4    "Normalization_by_Evaluation",
     6.5    "Hebrew",
     6.6    "Chinese",
     6.7 -  "Serbian"
     6.8 +  "Serbian",
     6.9 +  "~~/src/HOL/Library/FinFun"
    6.10  ];
    6.11  
    6.12  use_thys [
    6.13 @@ -70,7 +71,8 @@
    6.14    "List_to_Set_Comprehension_Examples",
    6.15    "Seq",
    6.16    "Simproc_Tests",
    6.17 -  "Executable_Relation"
    6.18 +  "Executable_Relation",
    6.19 +  "FinFunPred"
    6.20  ];
    6.21  
    6.22  use_thy "SVC_Oracle";