src/HOL/Library/Card_Univ.thy
changeset 49043 a5377f6d9f14
child 49047 ba9e0f5b686d
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/HOL/Library/Card_Univ.thy	Tue May 29 15:31:58 2012 +0200
     1.3 @@ -0,0 +1,293 @@
     1.4 +(* Author: Andreas Lochbihler, KIT *)
     1.5 +
     1.6 +header {* A type class for computing the cardinality of a type's universe *}
     1.7 +
     1.8 +theory Card_Univ imports Main begin
     1.9 +
    1.10 +subsection {* A type class for computing the cardinality of a type's universe *}
    1.11 +
    1.12 +class card_UNIV = 
    1.13 +  fixes card_UNIV :: "'a itself \<Rightarrow> nat"
    1.14 +  assumes card_UNIV: "card_UNIV x = card (UNIV :: 'a set)"
    1.15 +begin
    1.16 +
    1.17 +lemma card_UNIV_neq_0_finite_UNIV:
    1.18 +  "card_UNIV x \<noteq> 0 \<longleftrightarrow> finite (UNIV :: 'a set)"
    1.19 +by(simp add: card_UNIV card_eq_0_iff)
    1.20 +
    1.21 +lemma card_UNIV_ge_0_finite_UNIV:
    1.22 +  "card_UNIV x > 0 \<longleftrightarrow> finite (UNIV :: 'a set)"
    1.23 +by(auto simp add: card_UNIV intro: card_ge_0_finite finite_UNIV_card_ge_0)
    1.24 +
    1.25 +lemma card_UNIV_eq_0_infinite_UNIV:
    1.26 +  "card_UNIV x = 0 \<longleftrightarrow> \<not> finite (UNIV :: 'a set)"
    1.27 +by(simp add: card_UNIV card_eq_0_iff)
    1.28 +
    1.29 +definition is_list_UNIV :: "'a list \<Rightarrow> bool"
    1.30 +where "is_list_UNIV xs = (let c = card_UNIV (TYPE('a)) in if c = 0 then False else size (remdups xs) = c)"
    1.31 +
    1.32 +lemma is_list_UNIV_iff:
    1.33 +  fixes xs :: "'a list"
    1.34 +  shows "is_list_UNIV xs \<longleftrightarrow> set xs = UNIV"
    1.35 +proof
    1.36 +  assume "is_list_UNIV xs"
    1.37 +  hence c: "card_UNIV (TYPE('a)) > 0" and xs: "size (remdups xs) = card_UNIV (TYPE('a))"
    1.38 +    unfolding is_list_UNIV_def by(simp_all add: Let_def split: split_if_asm)
    1.39 +  from c have fin: "finite (UNIV :: 'a set)" by(auto simp add: card_UNIV_ge_0_finite_UNIV)
    1.40 +  have "card (set (remdups xs)) = size (remdups xs)" by(subst distinct_card) auto
    1.41 +  also note set_remdups
    1.42 +  finally show "set xs = UNIV" using fin unfolding xs card_UNIV by-(rule card_eq_UNIV_imp_eq_UNIV)
    1.43 +next
    1.44 +  assume xs: "set xs = UNIV"
    1.45 +  from finite_set[of xs] have fin: "finite (UNIV :: 'a set)" unfolding xs .
    1.46 +  hence "card_UNIV (TYPE ('a)) \<noteq> 0" unfolding card_UNIV_neq_0_finite_UNIV .
    1.47 +  moreover have "size (remdups xs) = card (set (remdups xs))"
    1.48 +    by(subst distinct_card) auto
    1.49 +  ultimately show "is_list_UNIV xs" using xs by(simp add: is_list_UNIV_def Let_def card_UNIV)
    1.50 +qed
    1.51 +
    1.52 +lemma card_UNIV_eq_0_is_list_UNIV_False:
    1.53 +  assumes cU0: "card_UNIV x = 0"
    1.54 +  shows "is_list_UNIV = (\<lambda>xs. False)"
    1.55 +proof(rule ext)
    1.56 +  fix xs :: "'a list"
    1.57 +  from cU0 have "\<not> finite (UNIV :: 'a set)"
    1.58 +    by(auto simp only: card_UNIV_eq_0_infinite_UNIV)
    1.59 +  moreover have "finite (set xs)" by(rule finite_set)
    1.60 +  ultimately have "(UNIV :: 'a set) \<noteq> set xs" by(auto simp del: finite_set)
    1.61 +  thus "is_list_UNIV xs = False" unfolding is_list_UNIV_iff by simp
    1.62 +qed
    1.63 +
    1.64 +end
    1.65 +
    1.66 +subsection {* Instantiations for @{text "card_UNIV"} *}
    1.67 +
    1.68 +subsubsection {* @{typ "nat"} *}
    1.69 +
    1.70 +instantiation nat :: card_UNIV begin
    1.71 +
    1.72 +definition card_UNIV_nat_def:
    1.73 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: nat itself. 0)"
    1.74 +
    1.75 +instance proof
    1.76 +  fix x :: "nat itself"
    1.77 +  show "card_UNIV x = card (UNIV :: nat set)"
    1.78 +    unfolding card_UNIV_nat_def by simp
    1.79 +qed
    1.80 +
    1.81 +end
    1.82 +
    1.83 +subsubsection {* @{typ "int"} *}
    1.84 +
    1.85 +instantiation int :: card_UNIV begin
    1.86 +
    1.87 +definition card_UNIV_int_def:
    1.88 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: int itself. 0)"
    1.89 +
    1.90 +instance proof
    1.91 +  fix x :: "int itself"
    1.92 +  show "card_UNIV x = card (UNIV :: int set)"
    1.93 +    unfolding card_UNIV_int_def by(simp add: infinite_UNIV_int)
    1.94 +qed
    1.95 +
    1.96 +end
    1.97 +
    1.98 +subsubsection {* @{typ "'a list"} *}
    1.99 +
   1.100 +instantiation list :: (type) card_UNIV begin
   1.101 +
   1.102 +definition card_UNIV_list_def:
   1.103 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: 'a list itself. 0)"
   1.104 +
   1.105 +instance proof
   1.106 +  fix x :: "'a list itself"
   1.107 +  show "card_UNIV x = card (UNIV :: 'a list set)"
   1.108 +    unfolding card_UNIV_list_def by(simp add: infinite_UNIV_listI)
   1.109 +qed
   1.110 +
   1.111 +end
   1.112 +
   1.113 +subsubsection {* @{typ "unit"} *}
   1.114 +
   1.115 +lemma card_UNIV_unit: "card (UNIV :: unit set) = 1"
   1.116 +  unfolding UNIV_unit by simp
   1.117 +
   1.118 +instantiation unit :: card_UNIV begin
   1.119 +
   1.120 +definition card_UNIV_unit_def: 
   1.121 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: unit itself. 1)"
   1.122 +
   1.123 +instance proof
   1.124 +  fix x :: "unit itself"
   1.125 +  show "card_UNIV x = card (UNIV :: unit set)"
   1.126 +    by(simp add: card_UNIV_unit_def card_UNIV_unit)
   1.127 +qed
   1.128 +
   1.129 +end
   1.130 +
   1.131 +subsubsection {* @{typ "bool"} *}
   1.132 +
   1.133 +lemma card_UNIV_bool: "card (UNIV :: bool set) = 2"
   1.134 +  unfolding UNIV_bool by simp
   1.135 +
   1.136 +instantiation bool :: card_UNIV begin
   1.137 +
   1.138 +definition card_UNIV_bool_def: 
   1.139 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: bool itself. 2)"
   1.140 +
   1.141 +instance proof
   1.142 +  fix x :: "bool itself"
   1.143 +  show "card_UNIV x = card (UNIV :: bool set)"
   1.144 +    by(simp add: card_UNIV_bool_def card_UNIV_bool)
   1.145 +qed
   1.146 +
   1.147 +end
   1.148 +
   1.149 +subsubsection {* @{typ "char"} *}
   1.150 +
   1.151 +lemma card_UNIV_char: "card (UNIV :: char set) = 256"
   1.152 +proof -
   1.153 +  from enum_distinct
   1.154 +  have "card (set (Enum.enum :: char list)) = length (Enum.enum :: char list)"
   1.155 +    by (rule distinct_card)
   1.156 +  also have "set Enum.enum = (UNIV :: char set)" by (auto intro: in_enum)
   1.157 +  also note enum_chars
   1.158 +  finally show ?thesis by (simp add: chars_def)
   1.159 +qed
   1.160 +
   1.161 +instantiation char :: card_UNIV begin
   1.162 +
   1.163 +definition card_UNIV_char_def: 
   1.164 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: char itself. 256)"
   1.165 +
   1.166 +instance proof
   1.167 +  fix x :: "char itself"
   1.168 +  show "card_UNIV x = card (UNIV :: char set)"
   1.169 +    by(simp add: card_UNIV_char_def card_UNIV_char)
   1.170 +qed
   1.171 +
   1.172 +end
   1.173 +
   1.174 +subsubsection {* @{typ "'a \<times> 'b"} *}
   1.175 +
   1.176 +instantiation prod :: (card_UNIV, card_UNIV) card_UNIV begin
   1.177 +
   1.178 +definition card_UNIV_product_def: 
   1.179 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: ('a \<times> 'b) itself. card_UNIV (TYPE('a)) * card_UNIV (TYPE('b)))"
   1.180 +
   1.181 +instance proof
   1.182 +  fix x :: "('a \<times> 'b) itself"
   1.183 +  show "card_UNIV x = card (UNIV :: ('a \<times> 'b) set)"
   1.184 +    by(simp add: card_UNIV_product_def card_UNIV UNIV_Times_UNIV[symmetric] card_cartesian_product del: UNIV_Times_UNIV)
   1.185 +qed
   1.186 +
   1.187 +end
   1.188 +
   1.189 +subsubsection {* @{typ "'a + 'b"} *}
   1.190 +
   1.191 +instantiation sum :: (card_UNIV, card_UNIV) card_UNIV begin
   1.192 +
   1.193 +definition card_UNIV_sum_def: 
   1.194 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: ('a + 'b) itself. let ca = card_UNIV (TYPE('a)); cb = card_UNIV (TYPE('b))
   1.195 +                           in if ca \<noteq> 0 \<and> cb \<noteq> 0 then ca + cb else 0)"
   1.196 +
   1.197 +instance proof
   1.198 +  fix x :: "('a + 'b) itself"
   1.199 +  show "card_UNIV x = card (UNIV :: ('a + 'b) set)"
   1.200 +    by (auto simp add: card_UNIV_sum_def card_UNIV card_eq_0_iff UNIV_Plus_UNIV[symmetric] finite_Plus_iff Let_def card_Plus simp del: UNIV_Plus_UNIV dest!: card_ge_0_finite)
   1.201 +qed
   1.202 +
   1.203 +end
   1.204 +
   1.205 +subsubsection {* @{typ "'a \<Rightarrow> 'b"} *}
   1.206 +
   1.207 +instantiation "fun" :: (card_UNIV, card_UNIV) card_UNIV begin
   1.208 +
   1.209 +definition card_UNIV_fun_def: 
   1.210 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: ('a \<Rightarrow> 'b) itself. let ca = card_UNIV (TYPE('a)); cb = card_UNIV (TYPE('b))
   1.211 +                           in if ca \<noteq> 0 \<and> cb \<noteq> 0 \<or> cb = 1 then cb ^ ca else 0)"
   1.212 +
   1.213 +instance proof
   1.214 +  fix x :: "('a \<Rightarrow> 'b) itself"
   1.215 +
   1.216 +  { assume "0 < card (UNIV :: 'a set)"
   1.217 +    and "0 < card (UNIV :: 'b set)"
   1.218 +    hence fina: "finite (UNIV :: 'a set)" and finb: "finite (UNIV :: 'b set)"
   1.219 +      by(simp_all only: card_ge_0_finite)
   1.220 +    from finite_distinct_list[OF finb] obtain bs 
   1.221 +      where bs: "set bs = (UNIV :: 'b set)" and distb: "distinct bs" by blast
   1.222 +    from finite_distinct_list[OF fina] obtain as
   1.223 +      where as: "set as = (UNIV :: 'a set)" and dista: "distinct as" by blast
   1.224 +    have cb: "card (UNIV :: 'b set) = length bs"
   1.225 +      unfolding bs[symmetric] distinct_card[OF distb] ..
   1.226 +    have ca: "card (UNIV :: 'a set) = length as"
   1.227 +      unfolding as[symmetric] distinct_card[OF dista] ..
   1.228 +    let ?xs = "map (\<lambda>ys. the o map_of (zip as ys)) (Enum.n_lists (length as) bs)"
   1.229 +    have "UNIV = set ?xs"
   1.230 +    proof(rule UNIV_eq_I)
   1.231 +      fix f :: "'a \<Rightarrow> 'b"
   1.232 +      from as have "f = the \<circ> map_of (zip as (map f as))"
   1.233 +        by(auto simp add: map_of_zip_map intro: ext)
   1.234 +      thus "f \<in> set ?xs" using bs by(auto simp add: set_n_lists)
   1.235 +    qed
   1.236 +    moreover have "distinct ?xs" unfolding distinct_map
   1.237 +    proof(intro conjI distinct_n_lists distb inj_onI)
   1.238 +      fix xs ys :: "'b list"
   1.239 +      assume xs: "xs \<in> set (Enum.n_lists (length as) bs)"
   1.240 +        and ys: "ys \<in> set (Enum.n_lists (length as) bs)"
   1.241 +        and eq: "the \<circ> map_of (zip as xs) = the \<circ> map_of (zip as ys)"
   1.242 +      from xs ys have [simp]: "length xs = length as" "length ys = length as"
   1.243 +        by(simp_all add: length_n_lists_elem)
   1.244 +      have "map_of (zip as xs) = map_of (zip as ys)"
   1.245 +      proof
   1.246 +        fix x
   1.247 +        from as bs have "\<exists>y. map_of (zip as xs) x = Some y" "\<exists>y. map_of (zip as ys) x = Some y"
   1.248 +          by(simp_all add: map_of_zip_is_Some[symmetric])
   1.249 +        with eq show "map_of (zip as xs) x = map_of (zip as ys) x"
   1.250 +          by(auto dest: fun_cong[where x=x])
   1.251 +      qed
   1.252 +      with dista show "xs = ys" by(simp add: map_of_zip_inject)
   1.253 +    qed
   1.254 +    hence "card (set ?xs) = length ?xs" by(simp only: distinct_card)
   1.255 +    moreover have "length ?xs = length bs ^ length as" by(simp add: length_n_lists)
   1.256 +    ultimately have "card (UNIV :: ('a \<Rightarrow> 'b) set) = card (UNIV :: 'b set) ^ card (UNIV :: 'a set)"
   1.257 +      using cb ca by simp }
   1.258 +  moreover {
   1.259 +    assume cb: "card (UNIV :: 'b set) = Suc 0"
   1.260 +    then obtain b where b: "UNIV = {b :: 'b}" by(auto simp add: card_Suc_eq)
   1.261 +    have eq: "UNIV = {\<lambda>x :: 'a. b ::'b}"
   1.262 +    proof(rule UNIV_eq_I)
   1.263 +      fix x :: "'a \<Rightarrow> 'b"
   1.264 +      { fix y
   1.265 +        have "x y \<in> UNIV" ..
   1.266 +        hence "x y = b" unfolding b by simp }
   1.267 +      thus "x \<in> {\<lambda>x. b}" by(auto intro: ext)
   1.268 +    qed
   1.269 +    have "card (UNIV :: ('a \<Rightarrow> 'b) set) = Suc 0" unfolding eq by simp }
   1.270 +  ultimately show "card_UNIV x = card (UNIV :: ('a \<Rightarrow> 'b) set)"
   1.271 +    unfolding card_UNIV_fun_def card_UNIV Let_def
   1.272 +    by(auto simp del: One_nat_def)(auto simp add: card_eq_0_iff dest: finite_fun_UNIVD2 finite_fun_UNIVD1)
   1.273 +qed
   1.274 +
   1.275 +end
   1.276 +
   1.277 +subsubsection {* @{typ "'a option"} *}
   1.278 +
   1.279 +instantiation option :: (card_UNIV) card_UNIV
   1.280 +begin
   1.281 +
   1.282 +definition card_UNIV_option_def: 
   1.283 +  "card_UNIV_class.card_UNIV = (\<lambda>a :: 'a option itself. let c = card_UNIV (TYPE('a))
   1.284 +                           in if c \<noteq> 0 then Suc c else 0)"
   1.285 +
   1.286 +instance proof
   1.287 +  fix x :: "'a option itself"
   1.288 +  show "card_UNIV x = card (UNIV :: 'a option set)"
   1.289 +    unfolding UNIV_option_conv
   1.290 +    by(auto simp add: card_UNIV_option_def card_UNIV card_eq_0_iff Let_def intro: inj_Some dest: finite_imageD)
   1.291 +      (subst card_insert_disjoint, auto simp add: card_eq_0_iff card_image inj_Some intro: finite_imageI card_ge_0_finite)
   1.292 +qed
   1.293 +
   1.294 +end
   1.295 +
   1.296 +end
   1.297 \ No newline at end of file