minor tidying
authorpaulson
Wed, 27 Apr 2005 16:41:03 +0200
changeset 1586378db9506cc78
parent 15862 67574c1b15a0
child 15864 cc1b4a289321
minor tidying
src/ZF/Induct/Comb.thy
src/ZF/ex/Primes.thy
     1.1 --- a/src/ZF/Induct/Comb.thy	Wed Apr 27 16:40:27 2005 +0200
     1.2 +++ b/src/ZF/Induct/Comb.thy	Wed Apr 27 16:41:03 2005 +0200
     1.3 @@ -39,7 +39,7 @@
     1.4    "p ---> q" == "<p,q> \<in> contract^*"
     1.5  
     1.6  syntax (xsymbols)
     1.7 -  "app"    :: "[i, i] => i"    	     (infixl "\<bullet>" 90)
     1.8 +  "comb.app"    :: "[i, i] => i"    	     (infixl "\<bullet>" 90)
     1.9  
    1.10  inductive
    1.11    domains "contract" \<subseteq> "comb \<times> comb"
    1.12 @@ -158,8 +158,6 @@
    1.13    and S_contractE [elim!]: "S -1-> r"
    1.14    and Ap_contractE [elim!]: "p\<bullet>q -1-> r"
    1.15  
    1.16 -declare contract.Ap1 [intro] contract.Ap2 [intro]
    1.17 -
    1.18  lemma I_contract_E: "I -1-> r ==> P"
    1.19    by (auto simp add: I_def)
    1.20  
     2.1 --- a/src/ZF/ex/Primes.thy	Wed Apr 27 16:40:27 2005 +0200
     2.2 +++ b/src/ZF/ex/Primes.thy	Wed Apr 27 16:41:03 2005 +0200
     2.3 @@ -2,33 +2,32 @@
     2.4      ID:         $Id$
     2.5      Author:     Christophe Tabacznyj and Lawrence C Paulson
     2.6      Copyright   1996  University of Cambridge
     2.7 +*)
     2.8  
     2.9 -The "divides" relation, the greatest common divisor and Euclid's algorithm
    2.10 -*)
    2.11 +header{*The Divides Relation and Euclid's algorithm for the GCD*}
    2.12  
    2.13  theory Primes = Main:
    2.14  constdefs
    2.15    divides :: "[i,i]=>o"              (infixl "dvd" 50) 
    2.16      "m dvd n == m \<in> nat & n \<in> nat & (\<exists>k \<in> nat. n = m#*k)"
    2.17  
    2.18 -  is_gcd  :: "[i,i,i]=>o"            (* great common divisor *)
    2.19 +  is_gcd  :: "[i,i,i]=>o"     --{*definition of great common divisor*}
    2.20      "is_gcd(p,m,n) == ((p dvd m) & (p dvd n))   &
    2.21                         (\<forall>d\<in>nat. (d dvd m) & (d dvd n) --> d dvd p)"
    2.22  
    2.23 -  gcd     :: "[i,i]=>i"              (* gcd by Euclid's algorithm *)
    2.24 +  gcd     :: "[i,i]=>i"       --{*Euclid's algorithm for the gcd*}
    2.25      "gcd(m,n) == transrec(natify(n),
    2.26  			%n f. \<lambda>m \<in> nat.
    2.27  			        if n=0 then m else f`(m mod n)`n) ` natify(m)"
    2.28  
    2.29 -  coprime :: "[i,i]=>o"              (* coprime relation *)
    2.30 +  coprime :: "[i,i]=>o"       --{*the coprime relation*}
    2.31      "coprime(m,n) == gcd(m,n) = 1"
    2.32    
    2.33 -  prime   :: i                     (* set of prime numbers *)
    2.34 +  prime   :: i                --{*the set of prime numbers*}
    2.35     "prime == {p \<in> nat. 1<p & (\<forall>m \<in> nat. m dvd p --> m=1 | m=p)}"
    2.36  
    2.37 -(************************************************)
    2.38 -(** Divides Relation                           **)
    2.39 -(************************************************)
    2.40 +
    2.41 +subsection{*The Divides Relation*}
    2.42  
    2.43  lemma dvdD: "m dvd n ==> m \<in> nat & n \<in> nat & (\<exists>k \<in> nat. n = m#*k)"
    2.44  by (unfold divides_def, assumption)
    2.45 @@ -42,50 +41,42 @@
    2.46  
    2.47  
    2.48  lemma dvd_0_right [simp]: "m \<in> nat ==> m dvd 0"
    2.49 -apply (unfold divides_def)
    2.50 +apply (simp add: divides_def)
    2.51  apply (fast intro: nat_0I mult_0_right [symmetric])
    2.52  done
    2.53  
    2.54  lemma dvd_0_left: "0 dvd m ==> m = 0"
    2.55 -by (unfold divides_def, force)
    2.56 +by (simp add: divides_def)
    2.57  
    2.58  lemma dvd_refl [simp]: "m \<in> nat ==> m dvd m"
    2.59 -apply (unfold divides_def)
    2.60 +apply (simp add: divides_def)
    2.61  apply (fast intro: nat_1I mult_1_right [symmetric])
    2.62  done
    2.63  
    2.64  lemma dvd_trans: "[| m dvd n; n dvd p |] ==> m dvd p"
    2.65 -apply (unfold divides_def)
    2.66 -apply (fast intro: mult_assoc mult_type)
    2.67 -done
    2.68 +by (auto simp add: divides_def intro: mult_assoc mult_type)
    2.69  
    2.70  lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m=n"
    2.71 -apply (unfold divides_def)
    2.72 +apply (simp add: divides_def)
    2.73  apply (force dest: mult_eq_self_implies_10
    2.74               simp add: mult_assoc mult_eq_1_iff)
    2.75  done
    2.76  
    2.77  lemma dvd_mult_left: "[|(i#*j) dvd k; i \<in> nat|] ==> i dvd k"
    2.78 -apply (unfold divides_def)
    2.79 -apply (simp add: mult_assoc, blast)
    2.80 -done
    2.81 +by (auto simp add: divides_def mult_assoc)
    2.82  
    2.83  lemma dvd_mult_right: "[|(i#*j) dvd k; j \<in> nat|] ==> j dvd k"
    2.84 -apply (unfold divides_def, clarify)
    2.85 +apply (simp add: divides_def, clarify)
    2.86  apply (rule_tac x = "i#*k" in bexI)
    2.87  apply (simp add: mult_ac)
    2.88  apply (rule mult_type)
    2.89  done
    2.90  
    2.91  
    2.92 -(************************************************)
    2.93 -(** Greatest Common Divisor                    **)
    2.94 -(************************************************)
    2.95 -
    2.96 -(* GCD by Euclid's Algorithm *)
    2.97 +subsection{*Euclid's Algorithm for the GCD*}
    2.98  
    2.99  lemma gcd_0 [simp]: "gcd(m,0) = natify(m)"
   2.100 -apply (unfold gcd_def)
   2.101 +apply (simp add: gcd_def)
   2.102  apply (subst transrec, simp)
   2.103  done
   2.104  
   2.105 @@ -97,7 +88,7 @@
   2.106  
   2.107  lemma gcd_non_0_raw: 
   2.108      "[| 0<n;  n \<in> nat |] ==> gcd(m,n) = gcd(n, m mod n)"
   2.109 -apply (unfold gcd_def)
   2.110 +apply (simp add: gcd_def)
   2.111  apply (rule_tac P = "%z. ?left (z) = ?right" in transrec [THEN ssubst])
   2.112  apply (simp add: ltD [THEN mem_imp_not_eq, THEN not_sym] 
   2.113                   mod_less_divisor [THEN ltD])
   2.114 @@ -112,12 +103,12 @@
   2.115  by (simp (no_asm_simp) add: gcd_non_0)
   2.116  
   2.117  lemma dvd_add: "[| k dvd a; k dvd b |] ==> k dvd (a #+ b)"
   2.118 -apply (unfold divides_def)
   2.119 +apply (simp add: divides_def)
   2.120  apply (fast intro: add_mult_distrib_left [symmetric] add_type)
   2.121  done
   2.122  
   2.123  lemma dvd_mult: "k dvd n ==> k dvd (m #* n)"
   2.124 -apply (unfold divides_def)
   2.125 +apply (simp add: divides_def)
   2.126  apply (fast intro: mult_left_commute mult_type)
   2.127  done
   2.128  
   2.129 @@ -132,7 +123,7 @@
   2.130  
   2.131  lemma dvd_mod_imp_dvd_raw:
   2.132       "[| a \<in> nat; b \<in> nat; k dvd b; k dvd (a mod b) |] ==> k dvd a"
   2.133 -apply (case_tac "b=0")
   2.134 +apply (case_tac "b=0") 
   2.135   apply (simp add: DIVISION_BY_ZERO_MOD)
   2.136  apply (blast intro: mod_div_equality [THEN subst]
   2.137               elim: dvdE 
   2.138 @@ -166,9 +157,9 @@
   2.139  by (blast intro: gcd_induct_lemma)
   2.140  
   2.141  
   2.142 +subsection{*Basic Properties of @{term gcd}*}
   2.143  
   2.144 -(* gcd type *)
   2.145 -
   2.146 +text{*type of gcd*}
   2.147  lemma gcd_type [simp,TC]: "gcd(m, n) \<in> nat"
   2.148  apply (subgoal_tac "gcd (natify (m), natify (n)) \<in> nat")
   2.149  apply simp
   2.150 @@ -178,7 +169,7 @@
   2.151  done
   2.152  
   2.153  
   2.154 -(* Property 1: gcd(a,b) divides a and b *)
   2.155 +text{* Property 1: gcd(a,b) divides a and b *}
   2.156  
   2.157  lemma gcd_dvd_both:
   2.158       "[| m \<in> nat; n \<in> nat |] ==> gcd (m, n) dvd m & gcd (m, n) dvd n"
   2.159 @@ -197,17 +188,17 @@
   2.160  apply auto
   2.161  done
   2.162  
   2.163 -(* if f divides a and b then f divides gcd(a,b) *)
   2.164 +text{* if f divides a and b then f divides gcd(a,b) *}
   2.165  
   2.166  lemma dvd_mod: "[| f dvd a; f dvd b |] ==> f dvd (a mod b)"
   2.167 -apply (unfold divides_def)
   2.168 +apply (simp add: divides_def)
   2.169  apply (case_tac "b=0")
   2.170   apply (simp add: DIVISION_BY_ZERO_MOD, auto)
   2.171  apply (blast intro: mod_mult_distrib2 [symmetric])
   2.172  done
   2.173  
   2.174 -(* Property 2: for all a,b,f naturals, 
   2.175 -               if f divides a and f divides b then f divides gcd(a,b)*)
   2.176 +text{* Property 2: for all a,b,f naturals, 
   2.177 +               if f divides a and f divides b then f divides gcd(a,b)*}
   2.178  
   2.179  lemma gcd_greatest_raw [rule_format]:
   2.180       "[| m \<in> nat; n \<in> nat; f \<in> nat |]    
   2.181 @@ -226,20 +217,22 @@
   2.182  by (blast intro!: gcd_greatest gcd_dvd1 gcd_dvd2 intro: dvd_trans)
   2.183  
   2.184  
   2.185 -(* GCD PROOF: GCD exists and gcd fits the definition *)
   2.186 +subsection{*The Greatest Common Divisor*}
   2.187 +
   2.188 +text{*The GCD exists and function gcd computes it.*}
   2.189  
   2.190  lemma is_gcd: "[| m \<in> nat; n \<in> nat |] ==> is_gcd(gcd(m,n), m, n)"
   2.191  by (simp add: is_gcd_def)
   2.192  
   2.193 -(* GCD is unique *)
   2.194 +text{*The GCD is unique*}
   2.195  
   2.196  lemma is_gcd_unique: "[|is_gcd(m,a,b); is_gcd(n,a,b); m\<in>nat; n\<in>nat|] ==> m=n"
   2.197 -apply (unfold is_gcd_def)
   2.198 +apply (simp add: is_gcd_def)
   2.199  apply (blast intro: dvd_anti_sym)
   2.200  done
   2.201  
   2.202  lemma is_gcd_commute: "is_gcd(k,m,n) <-> is_gcd(k,n,m)"
   2.203 -by (unfold is_gcd_def, blast)
   2.204 +by (simp add: is_gcd_def, blast)
   2.205  
   2.206  lemma gcd_commute_raw: "[| m \<in> nat; n \<in> nat |] ==> gcd(m,n) = gcd(n,m)"
   2.207  apply (rule is_gcd_unique)
   2.208 @@ -274,7 +267,36 @@
   2.209  by (simp add: gcd_commute [of 1])
   2.210  
   2.211  
   2.212 -(* Multiplication laws *)
   2.213 +subsection{*Addition laws*}
   2.214 +
   2.215 +lemma gcd_add1 [simp]: "gcd (m #+ n, n) = gcd (m, n)"
   2.216 +apply (subgoal_tac "gcd (m #+ natify (n), natify (n)) = gcd (m, natify (n))")
   2.217 +apply simp
   2.218 +apply (case_tac "natify (n) = 0")
   2.219 +apply (auto simp add: Ord_0_lt_iff gcd_non_0)
   2.220 +done
   2.221 +
   2.222 +lemma gcd_add2 [simp]: "gcd (m, m #+ n) = gcd (m, n)"
   2.223 +apply (rule gcd_commute [THEN trans])
   2.224 +apply (subst add_commute, simp)
   2.225 +apply (rule gcd_commute)
   2.226 +done
   2.227 +
   2.228 +lemma gcd_add2' [simp]: "gcd (m, n #+ m) = gcd (m, n)"
   2.229 +by (subst add_commute, rule gcd_add2)
   2.230 +
   2.231 +lemma gcd_add_mult_raw: "k \<in> nat ==> gcd (m, k #* m #+ n) = gcd (m, n)"
   2.232 +apply (erule nat_induct)
   2.233 +apply (auto simp add: gcd_add2 add_assoc)
   2.234 +done
   2.235 +
   2.236 +lemma gcd_add_mult: "gcd (m, k #* m #+ n) = gcd (m, n)"
   2.237 +apply (cut_tac k = "natify (k)" in gcd_add_mult_raw)
   2.238 +apply auto
   2.239 +done
   2.240 +
   2.241 +
   2.242 +subsection{* Multiplication Laws*}
   2.243  
   2.244  lemma gcd_mult_distrib2_raw:
   2.245       "[| k \<in> nat; m \<in> nat; n \<in> nat |]  
   2.246 @@ -310,59 +332,28 @@
   2.247  
   2.248  lemma prime_imp_relprime: 
   2.249       "[| p \<in> prime;  ~ (p dvd n);  n \<in> nat |] ==> gcd (p, n) = 1"
   2.250 -apply (unfold prime_def, clarify)
   2.251 +apply (simp add: prime_def, clarify)
   2.252  apply (drule_tac x = "gcd (p,n)" in bspec)
   2.253  apply auto
   2.254  apply (cut_tac m = p and n = n in gcd_dvd2, auto)
   2.255  done
   2.256  
   2.257  lemma prime_into_nat: "p \<in> prime ==> p \<in> nat"
   2.258 -by (unfold prime_def, auto)
   2.259 +by (simp add: prime_def)
   2.260  
   2.261  lemma prime_nonzero: "p \<in> prime \<Longrightarrow> p\<noteq>0"
   2.262 -by (unfold prime_def, auto)
   2.263 +by (auto simp add: prime_def)
   2.264  
   2.265  
   2.266 -(*This theorem leads immediately to a proof of the uniqueness of
   2.267 -  factorization.  If p divides a product of primes then it is
   2.268 -  one of those primes.*)
   2.269 +text{*This theorem leads immediately to a proof of the uniqueness of
   2.270 +  factorization.  If @{term p} divides a product of primes then it is
   2.271 +  one of those primes.*}
   2.272  
   2.273  lemma prime_dvd_mult:
   2.274       "[|p dvd m #* n; p \<in> prime; m \<in> nat; n \<in> nat |] ==> p dvd m \<or> p dvd n"
   2.275  by (blast intro: relprime_dvd_mult prime_imp_relprime prime_into_nat)
   2.276  
   2.277  
   2.278 -(** Addition laws **)
   2.279 -
   2.280 -lemma gcd_add1 [simp]: "gcd (m #+ n, n) = gcd (m, n)"
   2.281 -apply (subgoal_tac "gcd (m #+ natify (n), natify (n)) = gcd (m, natify (n))")
   2.282 -apply simp
   2.283 -apply (case_tac "natify (n) = 0")
   2.284 -apply (auto simp add: Ord_0_lt_iff gcd_non_0)
   2.285 -done
   2.286 -
   2.287 -lemma gcd_add2 [simp]: "gcd (m, m #+ n) = gcd (m, n)"
   2.288 -apply (rule gcd_commute [THEN trans])
   2.289 -apply (subst add_commute, simp)
   2.290 -apply (rule gcd_commute)
   2.291 -done
   2.292 -
   2.293 -lemma gcd_add2' [simp]: "gcd (m, n #+ m) = gcd (m, n)"
   2.294 -by (subst add_commute, rule gcd_add2)
   2.295 -
   2.296 -lemma gcd_add_mult_raw: "k \<in> nat ==> gcd (m, k #* m #+ n) = gcd (m, n)"
   2.297 -apply (erule nat_induct)
   2.298 -apply (auto simp add: gcd_add2 add_assoc)
   2.299 -done
   2.300 -
   2.301 -lemma gcd_add_mult: "gcd (m, k #* m #+ n) = gcd (m, n)"
   2.302 -apply (cut_tac k = "natify (k)" in gcd_add_mult_raw)
   2.303 -apply auto
   2.304 -done
   2.305 -
   2.306 -
   2.307 -(* More multiplication laws *)
   2.308 -
   2.309  lemma gcd_mult_cancel_raw:
   2.310       "[|gcd (k,n) = 1; m \<in> nat; n \<in> nat|] ==> gcd (k #* m, n) = gcd (m, n)"
   2.311  apply (rule dvd_anti_sym)
   2.312 @@ -380,7 +371,7 @@
   2.313  done
   2.314  
   2.315  
   2.316 -(*** The square root of a prime is irrational: key lemma ***)
   2.317 +subsection{*The Square Root of a Prime is Irrational: Key Lemma*}
   2.318  
   2.319  lemma prime_dvd_other_side:
   2.320       "\<lbrakk>n#*n = p#*(k#*k); p \<in> prime; n \<in> nat\<rbrakk> \<Longrightarrow> p dvd n"