src/ZF/ex/Primes.thy
author paulson
Wed, 27 Apr 2005 16:41:03 +0200
changeset 15863 78db9506cc78
parent 13339 0f89104dd377
child 16417 9bc16273c2d4
permissions -rw-r--r--
minor tidying
     1 (*  Title:      ZF/ex/Primes.thy
     2     ID:         $Id$
     3     Author:     Christophe Tabacznyj and Lawrence C Paulson
     4     Copyright   1996  University of Cambridge
     5 *)
     6 
     7 header{*The Divides Relation and Euclid's algorithm for the GCD*}
     8 
     9 theory Primes = Main:
    10 constdefs
    11   divides :: "[i,i]=>o"              (infixl "dvd" 50) 
    12     "m dvd n == m \<in> nat & n \<in> nat & (\<exists>k \<in> nat. n = m#*k)"
    13 
    14   is_gcd  :: "[i,i,i]=>o"     --{*definition of great common divisor*}
    15     "is_gcd(p,m,n) == ((p dvd m) & (p dvd n))   &
    16                        (\<forall>d\<in>nat. (d dvd m) & (d dvd n) --> d dvd p)"
    17 
    18   gcd     :: "[i,i]=>i"       --{*Euclid's algorithm for the gcd*}
    19     "gcd(m,n) == transrec(natify(n),
    20 			%n f. \<lambda>m \<in> nat.
    21 			        if n=0 then m else f`(m mod n)`n) ` natify(m)"
    22 
    23   coprime :: "[i,i]=>o"       --{*the coprime relation*}
    24     "coprime(m,n) == gcd(m,n) = 1"
    25   
    26   prime   :: i                --{*the set of prime numbers*}
    27    "prime == {p \<in> nat. 1<p & (\<forall>m \<in> nat. m dvd p --> m=1 | m=p)}"
    28 
    29 
    30 subsection{*The Divides Relation*}
    31 
    32 lemma dvdD: "m dvd n ==> m \<in> nat & n \<in> nat & (\<exists>k \<in> nat. n = m#*k)"
    33 by (unfold divides_def, assumption)
    34 
    35 lemma dvdE:
    36      "[|m dvd n;  !!k. [|m \<in> nat; n \<in> nat; k \<in> nat; n = m#*k|] ==> P|] ==> P"
    37 by (blast dest!: dvdD)
    38 
    39 lemmas dvd_imp_nat1 = dvdD [THEN conjunct1, standard]
    40 lemmas dvd_imp_nat2 = dvdD [THEN conjunct2, THEN conjunct1, standard]
    41 
    42 
    43 lemma dvd_0_right [simp]: "m \<in> nat ==> m dvd 0"
    44 apply (simp add: divides_def)
    45 apply (fast intro: nat_0I mult_0_right [symmetric])
    46 done
    47 
    48 lemma dvd_0_left: "0 dvd m ==> m = 0"
    49 by (simp add: divides_def)
    50 
    51 lemma dvd_refl [simp]: "m \<in> nat ==> m dvd m"
    52 apply (simp add: divides_def)
    53 apply (fast intro: nat_1I mult_1_right [symmetric])
    54 done
    55 
    56 lemma dvd_trans: "[| m dvd n; n dvd p |] ==> m dvd p"
    57 by (auto simp add: divides_def intro: mult_assoc mult_type)
    58 
    59 lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m=n"
    60 apply (simp add: divides_def)
    61 apply (force dest: mult_eq_self_implies_10
    62              simp add: mult_assoc mult_eq_1_iff)
    63 done
    64 
    65 lemma dvd_mult_left: "[|(i#*j) dvd k; i \<in> nat|] ==> i dvd k"
    66 by (auto simp add: divides_def mult_assoc)
    67 
    68 lemma dvd_mult_right: "[|(i#*j) dvd k; j \<in> nat|] ==> j dvd k"
    69 apply (simp add: divides_def, clarify)
    70 apply (rule_tac x = "i#*k" in bexI)
    71 apply (simp add: mult_ac)
    72 apply (rule mult_type)
    73 done
    74 
    75 
    76 subsection{*Euclid's Algorithm for the GCD*}
    77 
    78 lemma gcd_0 [simp]: "gcd(m,0) = natify(m)"
    79 apply (simp add: gcd_def)
    80 apply (subst transrec, simp)
    81 done
    82 
    83 lemma gcd_natify1 [simp]: "gcd(natify(m),n) = gcd(m,n)"
    84 by (simp add: gcd_def)
    85 
    86 lemma gcd_natify2 [simp]: "gcd(m, natify(n)) = gcd(m,n)"
    87 by (simp add: gcd_def)
    88 
    89 lemma gcd_non_0_raw: 
    90     "[| 0<n;  n \<in> nat |] ==> gcd(m,n) = gcd(n, m mod n)"
    91 apply (simp add: gcd_def)
    92 apply (rule_tac P = "%z. ?left (z) = ?right" in transrec [THEN ssubst])
    93 apply (simp add: ltD [THEN mem_imp_not_eq, THEN not_sym] 
    94                  mod_less_divisor [THEN ltD])
    95 done
    96 
    97 lemma gcd_non_0: "0 < natify(n) ==> gcd(m,n) = gcd(n, m mod n)"
    98 apply (cut_tac m = m and n = "natify (n) " in gcd_non_0_raw)
    99 apply auto
   100 done
   101 
   102 lemma gcd_1 [simp]: "gcd(m,1) = 1"
   103 by (simp (no_asm_simp) add: gcd_non_0)
   104 
   105 lemma dvd_add: "[| k dvd a; k dvd b |] ==> k dvd (a #+ b)"
   106 apply (simp add: divides_def)
   107 apply (fast intro: add_mult_distrib_left [symmetric] add_type)
   108 done
   109 
   110 lemma dvd_mult: "k dvd n ==> k dvd (m #* n)"
   111 apply (simp add: divides_def)
   112 apply (fast intro: mult_left_commute mult_type)
   113 done
   114 
   115 lemma dvd_mult2: "k dvd m ==> k dvd (m #* n)"
   116 apply (subst mult_commute)
   117 apply (blast intro: dvd_mult)
   118 done
   119 
   120 (* k dvd (m*k) *)
   121 lemmas dvdI1 [simp] = dvd_refl [THEN dvd_mult, standard]
   122 lemmas dvdI2 [simp] = dvd_refl [THEN dvd_mult2, standard]
   123 
   124 lemma dvd_mod_imp_dvd_raw:
   125      "[| a \<in> nat; b \<in> nat; k dvd b; k dvd (a mod b) |] ==> k dvd a"
   126 apply (case_tac "b=0") 
   127  apply (simp add: DIVISION_BY_ZERO_MOD)
   128 apply (blast intro: mod_div_equality [THEN subst]
   129              elim: dvdE 
   130              intro!: dvd_add dvd_mult mult_type mod_type div_type)
   131 done
   132 
   133 lemma dvd_mod_imp_dvd: "[| k dvd (a mod b); k dvd b; a \<in> nat |] ==> k dvd a"
   134 apply (cut_tac b = "natify (b)" in dvd_mod_imp_dvd_raw)
   135 apply auto
   136 apply (simp add: divides_def)
   137 done
   138 
   139 (*Imitating TFL*)
   140 lemma gcd_induct_lemma [rule_format (no_asm)]: "[| n \<in> nat;  
   141          \<forall>m \<in> nat. P(m,0);  
   142          \<forall>m \<in> nat. \<forall>n \<in> nat. 0<n --> P(n, m mod n) --> P(m,n) |]  
   143       ==> \<forall>m \<in> nat. P (m,n)"
   144 apply (erule_tac i = n in complete_induct)
   145 apply (case_tac "x=0")
   146 apply (simp (no_asm_simp))
   147 apply clarify
   148 apply (drule_tac x1 = m and x = x in bspec [THEN bspec])
   149 apply (simp_all add: Ord_0_lt_iff)
   150 apply (blast intro: mod_less_divisor [THEN ltD])
   151 done
   152 
   153 lemma gcd_induct: "!!P. [| m \<in> nat; n \<in> nat;  
   154          !!m. m \<in> nat ==> P(m,0);  
   155          !!m n. [|m \<in> nat; n \<in> nat; 0<n; P(n, m mod n)|] ==> P(m,n) |]  
   156       ==> P (m,n)"
   157 by (blast intro: gcd_induct_lemma)
   158 
   159 
   160 subsection{*Basic Properties of @{term gcd}*}
   161 
   162 text{*type of gcd*}
   163 lemma gcd_type [simp,TC]: "gcd(m, n) \<in> nat"
   164 apply (subgoal_tac "gcd (natify (m), natify (n)) \<in> nat")
   165 apply simp
   166 apply (rule_tac m = "natify (m)" and n = "natify (n)" in gcd_induct)
   167 apply auto
   168 apply (simp add: gcd_non_0)
   169 done
   170 
   171 
   172 text{* Property 1: gcd(a,b) divides a and b *}
   173 
   174 lemma gcd_dvd_both:
   175      "[| m \<in> nat; n \<in> nat |] ==> gcd (m, n) dvd m & gcd (m, n) dvd n"
   176 apply (rule_tac m = m and n = n in gcd_induct)
   177 apply (simp_all add: gcd_non_0)
   178 apply (blast intro: dvd_mod_imp_dvd_raw nat_into_Ord [THEN Ord_0_lt])
   179 done
   180 
   181 lemma gcd_dvd1 [simp]: "m \<in> nat ==> gcd(m,n) dvd m"
   182 apply (cut_tac m = "natify (m)" and n = "natify (n)" in gcd_dvd_both)
   183 apply auto
   184 done
   185 
   186 lemma gcd_dvd2 [simp]: "n \<in> nat ==> gcd(m,n) dvd n"
   187 apply (cut_tac m = "natify (m)" and n = "natify (n)" in gcd_dvd_both)
   188 apply auto
   189 done
   190 
   191 text{* if f divides a and b then f divides gcd(a,b) *}
   192 
   193 lemma dvd_mod: "[| f dvd a; f dvd b |] ==> f dvd (a mod b)"
   194 apply (simp add: divides_def)
   195 apply (case_tac "b=0")
   196  apply (simp add: DIVISION_BY_ZERO_MOD, auto)
   197 apply (blast intro: mod_mult_distrib2 [symmetric])
   198 done
   199 
   200 text{* Property 2: for all a,b,f naturals, 
   201                if f divides a and f divides b then f divides gcd(a,b)*}
   202 
   203 lemma gcd_greatest_raw [rule_format]:
   204      "[| m \<in> nat; n \<in> nat; f \<in> nat |]    
   205       ==> (f dvd m) --> (f dvd n) --> f dvd gcd(m,n)"
   206 apply (rule_tac m = m and n = n in gcd_induct)
   207 apply (simp_all add: gcd_non_0 dvd_mod)
   208 done
   209 
   210 lemma gcd_greatest: "[| f dvd m;  f dvd n;  f \<in> nat |] ==> f dvd gcd(m,n)"
   211 apply (rule gcd_greatest_raw)
   212 apply (auto simp add: divides_def)
   213 done
   214 
   215 lemma gcd_greatest_iff [simp]: "[| k \<in> nat; m \<in> nat; n \<in> nat |]  
   216       ==> (k dvd gcd (m, n)) <-> (k dvd m & k dvd n)"
   217 by (blast intro!: gcd_greatest gcd_dvd1 gcd_dvd2 intro: dvd_trans)
   218 
   219 
   220 subsection{*The Greatest Common Divisor*}
   221 
   222 text{*The GCD exists and function gcd computes it.*}
   223 
   224 lemma is_gcd: "[| m \<in> nat; n \<in> nat |] ==> is_gcd(gcd(m,n), m, n)"
   225 by (simp add: is_gcd_def)
   226 
   227 text{*The GCD is unique*}
   228 
   229 lemma is_gcd_unique: "[|is_gcd(m,a,b); is_gcd(n,a,b); m\<in>nat; n\<in>nat|] ==> m=n"
   230 apply (simp add: is_gcd_def)
   231 apply (blast intro: dvd_anti_sym)
   232 done
   233 
   234 lemma is_gcd_commute: "is_gcd(k,m,n) <-> is_gcd(k,n,m)"
   235 by (simp add: is_gcd_def, blast)
   236 
   237 lemma gcd_commute_raw: "[| m \<in> nat; n \<in> nat |] ==> gcd(m,n) = gcd(n,m)"
   238 apply (rule is_gcd_unique)
   239 apply (rule is_gcd)
   240 apply (rule_tac [3] is_gcd_commute [THEN iffD1])
   241 apply (rule_tac [3] is_gcd, auto)
   242 done
   243 
   244 lemma gcd_commute: "gcd(m,n) = gcd(n,m)"
   245 apply (cut_tac m = "natify (m)" and n = "natify (n)" in gcd_commute_raw)
   246 apply auto
   247 done
   248 
   249 lemma gcd_assoc_raw: "[| k \<in> nat; m \<in> nat; n \<in> nat |]  
   250       ==> gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
   251 apply (rule is_gcd_unique)
   252 apply (rule is_gcd)
   253 apply (simp_all add: is_gcd_def)
   254 apply (blast intro: gcd_dvd1 gcd_dvd2 gcd_type intro: dvd_trans)
   255 done
   256 
   257 lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
   258 apply (cut_tac k = "natify (k)" and m = "natify (m)" and n = "natify (n) " 
   259        in gcd_assoc_raw)
   260 apply auto
   261 done
   262 
   263 lemma gcd_0_left [simp]: "gcd (0, m) = natify(m)"
   264 by (simp add: gcd_commute [of 0])
   265 
   266 lemma gcd_1_left [simp]: "gcd (1, m) = 1"
   267 by (simp add: gcd_commute [of 1])
   268 
   269 
   270 subsection{*Addition laws*}
   271 
   272 lemma gcd_add1 [simp]: "gcd (m #+ n, n) = gcd (m, n)"
   273 apply (subgoal_tac "gcd (m #+ natify (n), natify (n)) = gcd (m, natify (n))")
   274 apply simp
   275 apply (case_tac "natify (n) = 0")
   276 apply (auto simp add: Ord_0_lt_iff gcd_non_0)
   277 done
   278 
   279 lemma gcd_add2 [simp]: "gcd (m, m #+ n) = gcd (m, n)"
   280 apply (rule gcd_commute [THEN trans])
   281 apply (subst add_commute, simp)
   282 apply (rule gcd_commute)
   283 done
   284 
   285 lemma gcd_add2' [simp]: "gcd (m, n #+ m) = gcd (m, n)"
   286 by (subst add_commute, rule gcd_add2)
   287 
   288 lemma gcd_add_mult_raw: "k \<in> nat ==> gcd (m, k #* m #+ n) = gcd (m, n)"
   289 apply (erule nat_induct)
   290 apply (auto simp add: gcd_add2 add_assoc)
   291 done
   292 
   293 lemma gcd_add_mult: "gcd (m, k #* m #+ n) = gcd (m, n)"
   294 apply (cut_tac k = "natify (k)" in gcd_add_mult_raw)
   295 apply auto
   296 done
   297 
   298 
   299 subsection{* Multiplication Laws*}
   300 
   301 lemma gcd_mult_distrib2_raw:
   302      "[| k \<in> nat; m \<in> nat; n \<in> nat |]  
   303       ==> k #* gcd (m, n) = gcd (k #* m, k #* n)"
   304 apply (erule_tac m = m and n = n in gcd_induct, assumption)
   305 apply simp
   306 apply (case_tac "k = 0", simp)
   307 apply (simp add: mod_geq gcd_non_0 mod_mult_distrib2 Ord_0_lt_iff)
   308 done
   309 
   310 lemma gcd_mult_distrib2: "k #* gcd (m, n) = gcd (k #* m, k #* n)"
   311 apply (cut_tac k = "natify (k)" and m = "natify (m)" and n = "natify (n) " 
   312        in gcd_mult_distrib2_raw)
   313 apply auto
   314 done
   315 
   316 lemma gcd_mult [simp]: "gcd (k, k #* n) = natify(k)"
   317 by (cut_tac k = k and m = 1 and n = n in gcd_mult_distrib2, auto)
   318 
   319 lemma gcd_self [simp]: "gcd (k, k) = natify(k)"
   320 by (cut_tac k = k and n = 1 in gcd_mult, auto)
   321 
   322 lemma relprime_dvd_mult:
   323      "[| gcd (k,n) = 1;  k dvd (m #* n);  m \<in> nat |] ==> k dvd m"
   324 apply (cut_tac k = m and m = k and n = n in gcd_mult_distrib2, auto)
   325 apply (erule_tac b = m in ssubst)
   326 apply (simp add: dvd_imp_nat1)
   327 done
   328 
   329 lemma relprime_dvd_mult_iff:
   330      "[| gcd (k,n) = 1;  m \<in> nat |] ==> k dvd (m #* n) <-> k dvd m"
   331 by (blast intro: dvdI2 relprime_dvd_mult dvd_trans)
   332 
   333 lemma prime_imp_relprime: 
   334      "[| p \<in> prime;  ~ (p dvd n);  n \<in> nat |] ==> gcd (p, n) = 1"
   335 apply (simp add: prime_def, clarify)
   336 apply (drule_tac x = "gcd (p,n)" in bspec)
   337 apply auto
   338 apply (cut_tac m = p and n = n in gcd_dvd2, auto)
   339 done
   340 
   341 lemma prime_into_nat: "p \<in> prime ==> p \<in> nat"
   342 by (simp add: prime_def)
   343 
   344 lemma prime_nonzero: "p \<in> prime \<Longrightarrow> p\<noteq>0"
   345 by (auto simp add: prime_def)
   346 
   347 
   348 text{*This theorem leads immediately to a proof of the uniqueness of
   349   factorization.  If @{term p} divides a product of primes then it is
   350   one of those primes.*}
   351 
   352 lemma prime_dvd_mult:
   353      "[|p dvd m #* n; p \<in> prime; m \<in> nat; n \<in> nat |] ==> p dvd m \<or> p dvd n"
   354 by (blast intro: relprime_dvd_mult prime_imp_relprime prime_into_nat)
   355 
   356 
   357 lemma gcd_mult_cancel_raw:
   358      "[|gcd (k,n) = 1; m \<in> nat; n \<in> nat|] ==> gcd (k #* m, n) = gcd (m, n)"
   359 apply (rule dvd_anti_sym)
   360  apply (rule gcd_greatest)
   361   apply (rule relprime_dvd_mult [of _ k])
   362 apply (simp add: gcd_assoc)
   363 apply (simp add: gcd_commute)
   364 apply (simp_all add: mult_commute)
   365 apply (blast intro: dvdI1 gcd_dvd1 dvd_trans)
   366 done
   367 
   368 lemma gcd_mult_cancel: "gcd (k,n) = 1 ==> gcd (k #* m, n) = gcd (m, n)"
   369 apply (cut_tac m = "natify (m)" and n = "natify (n)" in gcd_mult_cancel_raw)
   370 apply auto
   371 done
   372 
   373 
   374 subsection{*The Square Root of a Prime is Irrational: Key Lemma*}
   375 
   376 lemma prime_dvd_other_side:
   377      "\<lbrakk>n#*n = p#*(k#*k); p \<in> prime; n \<in> nat\<rbrakk> \<Longrightarrow> p dvd n"
   378 apply (subgoal_tac "p dvd n#*n")
   379  apply (blast dest: prime_dvd_mult)
   380 apply (rule_tac j = "k#*k" in dvd_mult_left)
   381  apply (auto simp add: prime_def)
   382 done
   383 
   384 lemma reduction:
   385      "\<lbrakk>k#*k = p#*(j#*j); p \<in> prime; 0 < k; j \<in> nat; k \<in> nat\<rbrakk>  
   386       \<Longrightarrow> k < p#*j & 0 < j"
   387 apply (rule ccontr)
   388 apply (simp add: not_lt_iff_le prime_into_nat)
   389 apply (erule disjE)
   390  apply (frule mult_le_mono, assumption+)
   391 apply (simp add: mult_ac)
   392 apply (auto dest!: natify_eqE 
   393             simp add: not_lt_iff_le prime_into_nat mult_le_cancel_le1)
   394 apply (simp add: prime_def)
   395 apply (blast dest: lt_trans1)
   396 done
   397 
   398 lemma rearrange: "j #* (p#*j) = k#*k \<Longrightarrow> k#*k = p#*(j#*j)"
   399 by (simp add: mult_ac)
   400 
   401 lemma prime_not_square:
   402      "\<lbrakk>m \<in> nat; p \<in> prime\<rbrakk> \<Longrightarrow> \<forall>k \<in> nat. 0<k \<longrightarrow> m#*m \<noteq> p#*(k#*k)"
   403 apply (erule complete_induct, clarify)
   404 apply (frule prime_dvd_other_side, assumption)
   405 apply assumption
   406 apply (erule dvdE)
   407 apply (simp add: mult_assoc mult_cancel1 prime_nonzero prime_into_nat)
   408 apply (blast dest: rearrange reduction ltD)
   409 done
   410 
   411 end