src/HOL/Ring_and_Field.thy
author obua
Tue, 11 May 2004 20:11:08 +0200
changeset 14738 83f1a514dcb4
parent 14603 985eb6708207
child 14754 a080eeeaec14
permissions -rw-r--r--
changes made due to new Ring_and_Field theory
     1 (*  Title:   HOL/Ring_and_Field.thy
     2     ID:      $Id$
     3     Author:  Gertrud Bauer and Markus Wenzel, TU Muenchen
     4              Lawrence C Paulson, University of Cambridge
     5              Revised and splitted into Ring_and_Field.thy and Group.thy 
     6              by Steven Obua, TU Muenchen, in May 2004
     7     License: GPL (GNU GENERAL PUBLIC LICENSE)
     8 *)
     9 
    10 header {* (Ordered) Rings and Fields *}
    11 
    12 theory Ring_and_Field = OrderedGroup:
    13 
    14 text {*
    15   The theory of partially ordered rings is taken from the books:
    16   \begin{itemize}
    17   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
    18   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
    19   \end{itemize}
    20   Most of the used notions can also be looked up in 
    21   \begin{itemize}
    22   \item \emph{www.mathworld.com} by Eric Weisstein et. al.
    23   \item \emph{Algebra I} by van der Waerden, Springer.
    24   \end{itemize}
    25 *}
    26 
    27 axclass semiring \<subseteq> ab_semigroup_add, semigroup_mult
    28   left_distrib: "(a + b) * c = a * c + b * c"
    29   right_distrib: "a * (b + c) = a * b + a * c"
    30 
    31 axclass semiring_0 \<subseteq> semiring, comm_monoid_add
    32 
    33 axclass comm_semiring \<subseteq> ab_semigroup_add, ab_semigroup_mult  
    34   mult_commute: "a * b = b * a"
    35   distrib: "(a + b) * c = a * c + b * c"
    36 
    37 instance comm_semiring \<subseteq> semiring
    38 proof
    39   fix a b c :: 'a
    40   show "(a + b) * c = a * c + b * c" by (simp add: distrib)
    41   have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
    42   also have "... = b * a + c * a" by (simp only: distrib)
    43   also have "... = a * b + a * c" by (simp add: mult_ac)
    44   finally show "a * (b + c) = a * b + a * c" by blast
    45 qed
    46 
    47 axclass comm_semiring_0 \<subseteq> comm_semiring, comm_monoid_add
    48 
    49 instance comm_semiring_0 \<subseteq> semiring_0 ..
    50 
    51 axclass axclass_0_neq_1 \<subseteq> zero, one
    52   zero_neq_one [simp]: "0 \<noteq> 1"
    53 
    54 axclass semiring_1 \<subseteq> axclass_0_neq_1, semiring_0, monoid_mult
    55 
    56 axclass comm_semiring_1 \<subseteq> axclass_0_neq_1, comm_semiring_0, comm_monoid_mult (* previously almost_semiring *)
    57 
    58 instance comm_semiring_1 \<subseteq> semiring_1 ..
    59 
    60 axclass axclass_no_zero_divisors \<subseteq> zero, times
    61   no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0"
    62 
    63 axclass comm_semiring_1_cancel \<subseteq> comm_semiring_1, cancel_ab_semigroup_add (* previously semiring *)
    64 
    65 axclass ring \<subseteq> semiring, ab_group_add
    66 
    67 instance ring \<subseteq> semiring_0 ..
    68 
    69 axclass comm_ring \<subseteq> comm_semiring_0, ab_group_add
    70 
    71 instance comm_ring \<subseteq> ring ..
    72 
    73 instance comm_ring \<subseteq> comm_semiring_0 ..
    74 
    75 axclass ring_1 \<subseteq> ring, semiring_1
    76 
    77 axclass comm_ring_1 \<subseteq> comm_ring, comm_semiring_1 (* previously ring *)
    78 
    79 instance comm_ring_1 \<subseteq> ring_1 ..
    80 
    81 instance comm_ring_1 \<subseteq> comm_semiring_1_cancel ..
    82 
    83 axclass idom \<subseteq> comm_ring_1, axclass_no_zero_divisors
    84 
    85 axclass field \<subseteq> comm_ring_1, inverse
    86   left_inverse [simp]: "a \<noteq> 0 ==> inverse a * a = 1"
    87   divide_inverse:      "a / b = a * inverse b"
    88 
    89 lemma mult_zero_left [simp]: "0 * a = (0::'a::{semiring_0, cancel_semigroup_add})"
    90 proof -
    91   have "0*a + 0*a = 0*a + 0"
    92     by (simp add: left_distrib [symmetric])
    93   thus ?thesis 
    94     by (simp only: add_left_cancel)
    95 qed
    96 
    97 lemma mult_zero_right [simp]: "a * 0 = (0::'a::{semiring_0, cancel_semigroup_add})"
    98 proof -
    99   have "a*0 + a*0 = a*0 + 0"
   100     by (simp add: right_distrib [symmetric])
   101   thus ?thesis 
   102     by (simp only: add_left_cancel)
   103 qed
   104 
   105 lemma field_mult_eq_0_iff [simp]: "(a*b = (0::'a::field)) = (a = 0 | b = 0)"
   106 proof cases
   107   assume "a=0" thus ?thesis by simp
   108 next
   109   assume anz [simp]: "a\<noteq>0"
   110   { assume "a * b = 0"
   111     hence "inverse a * (a * b) = 0" by simp
   112     hence "b = 0"  by (simp (no_asm_use) add: mult_assoc [symmetric])}
   113   thus ?thesis by force
   114 qed
   115 
   116 instance field \<subseteq> idom
   117 by (intro_classes, simp)
   118   
   119 axclass division_by_zero \<subseteq> zero, inverse
   120   inverse_zero [simp]: "inverse 0 = 0"
   121 
   122 subsection {* Distribution rules *}
   123 
   124 theorems ring_distrib = right_distrib left_distrib
   125 
   126 text{*For the @{text combine_numerals} simproc*}
   127 lemma combine_common_factor:
   128      "a*e + (b*e + c) = (a+b)*e + (c::'a::semiring)"
   129 by (simp add: left_distrib add_ac)
   130 
   131 lemma minus_mult_left: "- (a * b) = (-a) * (b::'a::ring)"
   132 apply (rule equals_zero_I)
   133 apply (simp add: left_distrib [symmetric]) 
   134 done
   135 
   136 lemma minus_mult_right: "- (a * b) = a * -(b::'a::ring)"
   137 apply (rule equals_zero_I)
   138 apply (simp add: right_distrib [symmetric]) 
   139 done
   140 
   141 lemma minus_mult_minus [simp]: "(- a) * (- b) = a * (b::'a::ring)"
   142   by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
   143 
   144 lemma minus_mult_commute: "(- a) * b = a * (- b::'a::ring)"
   145   by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
   146 
   147 lemma right_diff_distrib: "a * (b - c) = a * b - a * (c::'a::ring)"
   148 by (simp add: right_distrib diff_minus 
   149               minus_mult_left [symmetric] minus_mult_right [symmetric]) 
   150 
   151 lemma left_diff_distrib: "(a - b) * c = a * c - b * (c::'a::ring)"
   152 by (simp add: left_distrib diff_minus 
   153               minus_mult_left [symmetric] minus_mult_right [symmetric]) 
   154 
   155 axclass pordered_semiring \<subseteq> semiring_0, pordered_ab_semigroup_add 
   156   mult_left_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> c * a <= c * b"
   157   mult_right_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> a * c <= b * c"
   158 
   159 axclass pordered_cancel_semiring \<subseteq> pordered_semiring, cancel_ab_semigroup_add
   160 
   161 axclass ordered_semiring_strict \<subseteq> semiring_0, ordered_cancel_ab_semigroup_add
   162   mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
   163   mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c"
   164 
   165 instance ordered_semiring_strict \<subseteq> pordered_cancel_semiring
   166 apply intro_classes
   167 apply (case_tac "a < b & 0 < c")
   168 apply (auto simp add: mult_strict_left_mono order_less_le)
   169 apply (auto simp add: mult_strict_left_mono order_le_less)
   170 apply (simp add: mult_strict_right_mono)
   171 done
   172 
   173 axclass pordered_comm_semiring \<subseteq> comm_semiring_0, pordered_ab_semigroup_add
   174   mult_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> c * a <= c * b"
   175 
   176 axclass pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring, cancel_ab_semigroup_add
   177 
   178 instance pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring ..
   179 
   180 axclass ordered_comm_semiring_strict \<subseteq> comm_semiring_0, ordered_cancel_ab_semigroup_add
   181   mult_strict_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
   182 
   183 instance pordered_comm_semiring \<subseteq> pordered_semiring
   184 by (intro_classes, insert mult_mono, simp_all add: mult_commute, blast+)
   185 
   186 instance pordered_cancel_comm_semiring \<subseteq> pordered_cancel_semiring ..
   187 
   188 instance ordered_comm_semiring_strict \<subseteq> ordered_semiring_strict
   189 by (intro_classes, insert mult_strict_mono, simp_all add: mult_commute, blast+)
   190 
   191 instance ordered_comm_semiring_strict \<subseteq> pordered_cancel_comm_semiring
   192 apply (intro_classes)
   193 apply (case_tac "a < b & 0 < c")
   194 apply (auto simp add: mult_strict_left_mono order_less_le)
   195 apply (auto simp add: mult_strict_left_mono order_le_less)
   196 done
   197 
   198 axclass pordered_ring \<subseteq> ring, pordered_semiring 
   199 
   200 instance pordered_ring \<subseteq> pordered_ab_group_add ..
   201 
   202 instance pordered_ring \<subseteq> pordered_cancel_semiring ..
   203 
   204 axclass lordered_ring \<subseteq> pordered_ring, lordered_ab_group_abs
   205 
   206 axclass axclass_abs_if \<subseteq> minus, ord, zero
   207   abs_if: "abs a = (if (a < 0) then (-a) else a)"
   208 
   209 axclass ordered_ring_strict \<subseteq> ring, ordered_semiring_strict, axclass_abs_if
   210 
   211 instance ordered_ring_strict \<subseteq> lordered_ab_group ..
   212 
   213 instance ordered_ring_strict \<subseteq> lordered_ring
   214 by (intro_classes, simp add: abs_if join_eq_if)
   215 
   216 axclass pordered_comm_ring \<subseteq> comm_ring, pordered_comm_semiring
   217 
   218 axclass ordered_semidom \<subseteq> comm_semiring_1_cancel, ordered_comm_semiring_strict (* previously ordered_semiring *)
   219   zero_less_one [simp]: "0 < 1"
   220 
   221 axclass ordered_idom \<subseteq> comm_ring_1, ordered_comm_semiring_strict, axclass_abs_if (* previously ordered_ring *)
   222 
   223 instance ordered_idom \<subseteq> ordered_ring_strict ..
   224 
   225 axclass ordered_field \<subseteq> field, ordered_idom
   226 
   227 lemma eq_add_iff1:
   228      "(a*e + c = b*e + d) = ((a-b)*e + c = (d::'a::ring))"
   229 apply (simp add: diff_minus left_distrib)
   230 apply (simp add: diff_minus left_distrib add_ac)
   231 apply (simp add: compare_rls minus_mult_left [symmetric])
   232 done
   233 
   234 lemma eq_add_iff2:
   235      "(a*e + c = b*e + d) = (c = (b-a)*e + (d::'a::ring))"
   236 apply (simp add: diff_minus left_distrib add_ac)
   237 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   238 done
   239 
   240 lemma less_add_iff1:
   241      "(a*e + c < b*e + d) = ((a-b)*e + c < (d::'a::pordered_ring))"
   242 apply (simp add: diff_minus left_distrib add_ac)
   243 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   244 done
   245 
   246 lemma less_add_iff2:
   247      "(a*e + c < b*e + d) = (c < (b-a)*e + (d::'a::pordered_ring))"
   248 apply (simp add: diff_minus left_distrib add_ac)
   249 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   250 done
   251 
   252 lemma le_add_iff1:
   253      "(a*e + c \<le> b*e + d) = ((a-b)*e + c \<le> (d::'a::pordered_ring))"
   254 apply (simp add: diff_minus left_distrib add_ac)
   255 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   256 done
   257 
   258 lemma le_add_iff2:
   259      "(a*e + c \<le> b*e + d) = (c \<le> (b-a)*e + (d::'a::pordered_ring))"
   260 apply (simp add: diff_minus left_distrib add_ac)
   261 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   262 done
   263 
   264 subsection {* Ordering Rules for Multiplication *}
   265 
   266 lemma mult_left_le_imp_le:
   267      "[|c*a \<le> c*b; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
   268   by (force simp add: mult_strict_left_mono linorder_not_less [symmetric])
   269  
   270 lemma mult_right_le_imp_le:
   271      "[|a*c \<le> b*c; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
   272   by (force simp add: mult_strict_right_mono linorder_not_less [symmetric])
   273 
   274 lemma mult_left_less_imp_less:
   275      "[|c*a < c*b; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
   276   by (force simp add: mult_left_mono linorder_not_le [symmetric])
   277  
   278 lemma mult_right_less_imp_less:
   279      "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
   280   by (force simp add: mult_right_mono linorder_not_le [symmetric])
   281 
   282 lemma mult_strict_left_mono_neg:
   283      "[|b < a; c < 0|] ==> c * a < c * (b::'a::ordered_ring_strict)"
   284 apply (drule mult_strict_left_mono [of _ _ "-c"])
   285 apply (simp_all add: minus_mult_left [symmetric]) 
   286 done
   287 
   288 lemma mult_left_mono_neg:
   289      "[|b \<le> a; c \<le> 0|] ==> c * a \<le>  c * (b::'a::pordered_ring)"
   290 apply (drule mult_left_mono [of _ _ "-c"])
   291 apply (simp_all add: minus_mult_left [symmetric]) 
   292 done
   293 
   294 lemma mult_strict_right_mono_neg:
   295      "[|b < a; c < 0|] ==> a * c < b * (c::'a::ordered_ring_strict)"
   296 apply (drule mult_strict_right_mono [of _ _ "-c"])
   297 apply (simp_all add: minus_mult_right [symmetric]) 
   298 done
   299 
   300 lemma mult_right_mono_neg:
   301      "[|b \<le> a; c \<le> 0|] ==> a * c \<le>  (b::'a::pordered_ring) * c"
   302 apply (drule mult_right_mono [of _ _ "-c"])
   303 apply (simp)
   304 apply (simp_all add: minus_mult_right [symmetric]) 
   305 done
   306 
   307 subsection{* Products of Signs *}
   308 
   309 lemma mult_pos: "[| (0::'a::ordered_semiring_strict) < a; 0 < b |] ==> 0 < a*b"
   310 by (drule mult_strict_left_mono [of 0 b], auto)
   311 
   312 lemma mult_pos_le: "[| (0::'a::pordered_cancel_semiring) \<le> a; 0 \<le> b |] ==> 0 \<le> a*b"
   313 by (drule mult_left_mono [of 0 b], auto)
   314 
   315 lemma mult_pos_neg: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> a*b < 0"
   316 by (drule mult_strict_left_mono [of b 0], auto)
   317 
   318 lemma mult_pos_neg_le: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> a*b \<le> 0"
   319 by (drule mult_left_mono [of b 0], auto)
   320 
   321 lemma mult_pos_neg2: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> b*a < 0" 
   322 by (drule mult_strict_right_mono[of b 0], auto)
   323 
   324 lemma mult_pos_neg2_le: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> b*a \<le> 0" 
   325 by (drule mult_right_mono[of b 0], auto)
   326 
   327 lemma mult_neg: "[| a < (0::'a::ordered_ring_strict); b < 0 |] ==> 0 < a*b"
   328 by (drule mult_strict_right_mono_neg, auto)
   329 
   330 lemma mult_neg_le: "[| a \<le> (0::'a::pordered_ring); b \<le> 0 |] ==> 0 \<le> a*b"
   331 by (drule mult_right_mono_neg[of a 0 b ], auto)
   332 
   333 lemma zero_less_mult_pos:
   334      "[| 0 < a*b; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
   335 apply (case_tac "b\<le>0") 
   336  apply (auto simp add: order_le_less linorder_not_less)
   337 apply (drule_tac mult_pos_neg [of a b]) 
   338  apply (auto dest: order_less_not_sym)
   339 done
   340 
   341 lemma zero_less_mult_pos2:
   342      "[| 0 < b*a; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
   343 apply (case_tac "b\<le>0") 
   344  apply (auto simp add: order_le_less linorder_not_less)
   345 apply (drule_tac mult_pos_neg2 [of a b]) 
   346  apply (auto dest: order_less_not_sym)
   347 done
   348 
   349 lemma zero_less_mult_iff:
   350      "((0::'a::ordered_ring_strict) < a*b) = (0 < a & 0 < b | a < 0 & b < 0)"
   351 apply (auto simp add: order_le_less linorder_not_less mult_pos mult_neg)
   352 apply (blast dest: zero_less_mult_pos) 
   353 apply (blast dest: zero_less_mult_pos2)
   354 done
   355 
   356 text{*A field has no "zero divisors", and this theorem holds without the
   357       assumption of an ordering.  See @{text field_mult_eq_0_iff} below.*}
   358 lemma mult_eq_0_iff [simp]: "(a*b = (0::'a::ordered_ring_strict)) = (a = 0 | b = 0)"
   359 apply (case_tac "a < 0")
   360 apply (auto simp add: linorder_not_less order_le_less linorder_neq_iff)
   361 apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono)+
   362 done
   363 
   364 lemma zero_le_mult_iff:
   365      "((0::'a::ordered_ring_strict) \<le> a*b) = (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
   366 by (auto simp add: eq_commute [of 0] order_le_less linorder_not_less
   367                    zero_less_mult_iff)
   368 
   369 lemma mult_less_0_iff:
   370      "(a*b < (0::'a::ordered_ring_strict)) = (0 < a & b < 0 | a < 0 & 0 < b)"
   371 apply (insert zero_less_mult_iff [of "-a" b]) 
   372 apply (force simp add: minus_mult_left[symmetric]) 
   373 done
   374 
   375 lemma mult_le_0_iff:
   376      "(a*b \<le> (0::'a::ordered_ring_strict)) = (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
   377 apply (insert zero_le_mult_iff [of "-a" b]) 
   378 apply (force simp add: minus_mult_left[symmetric]) 
   379 done
   380 
   381 lemma split_mult_pos_le: "(0 \<le> a & 0 \<le> b) | (a \<le> 0 & b \<le> 0) \<Longrightarrow> 0 \<le> a * (b::_::pordered_ring)"
   382 by (auto simp add: mult_pos_le mult_neg_le)
   383 
   384 lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> (0::_::pordered_cancel_semiring)" 
   385 by (auto simp add: mult_pos_neg_le mult_pos_neg2_le)
   386 
   387 lemma zero_le_square: "(0::'a::ordered_ring_strict) \<le> a*a"
   388 by (simp add: zero_le_mult_iff linorder_linear) 
   389 
   390 text{*Proving axiom @{text zero_less_one} makes all @{text ordered_semidom}
   391       theorems available to members of @{term ordered_idom} *}
   392 
   393 instance ordered_idom \<subseteq> ordered_semidom
   394 proof
   395   have "(0::'a) \<le> 1*1" by (rule zero_le_square)
   396   thus "(0::'a) < 1" by (simp add: order_le_less) 
   397 qed
   398 
   399 instance ordered_ring_strict \<subseteq> axclass_no_zero_divisors 
   400 by (intro_classes, simp)
   401 
   402 instance ordered_idom \<subseteq> idom ..
   403 
   404 text{*All three types of comparision involving 0 and 1 are covered.*}
   405 
   406 declare zero_neq_one [THEN not_sym, simp]
   407 
   408 lemma zero_le_one [simp]: "(0::'a::ordered_semidom) \<le> 1"
   409   by (rule zero_less_one [THEN order_less_imp_le]) 
   410 
   411 lemma not_one_le_zero [simp]: "~ (1::'a::ordered_semidom) \<le> 0"
   412 by (simp add: linorder_not_le) 
   413 
   414 lemma not_one_less_zero [simp]: "~ (1::'a::ordered_semidom) < 0"
   415 by (simp add: linorder_not_less) 
   416 
   417 subsection{*More Monotonicity*}
   418 
   419 lemma mult_left_mono_neg:
   420      "[|b \<le> a; c \<le> 0|] ==> c * a \<le> c * (b::'a::pordered_ring)"
   421 apply (drule mult_left_mono [of _ _ "-c"]) 
   422 apply (simp_all add: minus_mult_left [symmetric]) 
   423 done
   424 
   425 lemma mult_right_mono_neg:
   426      "[|b \<le> a; c \<le> 0|] ==> a * c \<le> b * (c::'a::pordered_ring)"
   427 apply (drule mult_right_mono [of _ _ "-c"]) 
   428 apply (simp_all add: minus_mult_right [symmetric]) 
   429 done  
   430 
   431 text{*Strict monotonicity in both arguments*}
   432 lemma mult_strict_mono:
   433      "[|a<b; c<d; 0<b; 0\<le>c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
   434 apply (case_tac "c=0")
   435  apply (simp add: mult_pos) 
   436 apply (erule mult_strict_right_mono [THEN order_less_trans])
   437  apply (force simp add: order_le_less) 
   438 apply (erule mult_strict_left_mono, assumption)
   439 done
   440 
   441 text{*This weaker variant has more natural premises*}
   442 lemma mult_strict_mono':
   443      "[| a<b; c<d; 0 \<le> a; 0 \<le> c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
   444 apply (rule mult_strict_mono)
   445 apply (blast intro: order_le_less_trans)+
   446 done
   447 
   448 lemma mult_mono:
   449      "[|a \<le> b; c \<le> d; 0 \<le> b; 0 \<le> c|] 
   450       ==> a * c  \<le>  b * (d::'a::pordered_semiring)"
   451 apply (erule mult_right_mono [THEN order_trans], assumption)
   452 apply (erule mult_left_mono, assumption)
   453 done
   454 
   455 lemma less_1_mult: "[| 1 < m; 1 < n |] ==> 1 < m*(n::'a::ordered_semidom)"
   456 apply (insert mult_strict_mono [of 1 m 1 n]) 
   457 apply (simp add:  order_less_trans [OF zero_less_one]) 
   458 done
   459 
   460 subsection{*Cancellation Laws for Relationships With a Common Factor*}
   461 
   462 text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
   463    also with the relations @{text "\<le>"} and equality.*}
   464 
   465 lemma mult_less_cancel_right:
   466     "(a*c < b*c) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
   467 apply (case_tac "c = 0")
   468 apply (auto simp add: linorder_neq_iff mult_strict_right_mono 
   469                       mult_strict_right_mono_neg)
   470 apply (auto simp add: linorder_not_less 
   471                       linorder_not_le [symmetric, of "a*c"]
   472                       linorder_not_le [symmetric, of a])
   473 apply (erule_tac [!] notE)
   474 apply (auto simp add: order_less_imp_le mult_right_mono 
   475                       mult_right_mono_neg)
   476 done
   477 
   478 lemma mult_less_cancel_left:
   479     "(c*a < c*b) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
   480 apply (case_tac "c = 0")
   481 apply (auto simp add: linorder_neq_iff mult_strict_left_mono 
   482                       mult_strict_left_mono_neg)
   483 apply (auto simp add: linorder_not_less 
   484                       linorder_not_le [symmetric, of "c*a"]
   485                       linorder_not_le [symmetric, of a])
   486 apply (erule_tac [!] notE)
   487 apply (auto simp add: order_less_imp_le mult_left_mono 
   488                       mult_left_mono_neg)
   489 done
   490 
   491 lemma mult_le_cancel_right:
   492      "(a*c \<le> b*c) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
   493 by (simp add: linorder_not_less [symmetric] mult_less_cancel_right)
   494 
   495 lemma mult_le_cancel_left:
   496      "(c*a \<le> c*b) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
   497 by (simp add: linorder_not_less [symmetric] mult_less_cancel_left)
   498 
   499 lemma mult_less_imp_less_left:
   500       assumes less: "c*a < c*b" and nonneg: "0 \<le> c"
   501       shows "a < (b::'a::ordered_semiring_strict)"
   502 proof (rule ccontr)
   503   assume "~ a < b"
   504   hence "b \<le> a" by (simp add: linorder_not_less)
   505   hence "c*b \<le> c*a" by (rule mult_left_mono)
   506   with this and less show False 
   507     by (simp add: linorder_not_less [symmetric])
   508 qed
   509 
   510 lemma mult_less_imp_less_right:
   511   assumes less: "a*c < b*c" and nonneg: "0 <= c"
   512   shows "a < (b::'a::ordered_semiring_strict)"
   513 proof (rule ccontr)
   514   assume "~ a < b"
   515   hence "b \<le> a" by (simp add: linorder_not_less)
   516   hence "b*c \<le> a*c" by (rule mult_right_mono)
   517   with this and less show False 
   518     by (simp add: linorder_not_less [symmetric])
   519 qed  
   520 
   521 text{*Cancellation of equalities with a common factor*}
   522 lemma mult_cancel_right [simp]:
   523      "(a*c = b*c) = (c = (0::'a::ordered_ring_strict) | a=b)"
   524 apply (cut_tac linorder_less_linear [of 0 c])
   525 apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono
   526              simp add: linorder_neq_iff)
   527 done
   528 
   529 text{*These cancellation theorems require an ordering. Versions are proved
   530       below that work for fields without an ordering.*}
   531 lemma mult_cancel_left [simp]:
   532      "(c*a = c*b) = (c = (0::'a::ordered_ring_strict) | a=b)"
   533 apply (cut_tac linorder_less_linear [of 0 c])
   534 apply (force dest: mult_strict_left_mono_neg mult_strict_left_mono
   535              simp add: linorder_neq_iff)
   536 done
   537 
   538 text{*This list of rewrites decides ring equalities by ordered rewriting.*}
   539 lemmas ring_eq_simps =
   540   mult_ac
   541   left_distrib right_distrib left_diff_distrib right_diff_distrib
   542   add_ac
   543   add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
   544   diff_eq_eq eq_diff_eq
   545     
   546 thm ring_eq_simps
   547 subsection {* Fields *}
   548 
   549 lemma right_inverse [simp]:
   550       assumes not0: "a \<noteq> 0" shows "a * inverse (a::'a::field) = 1"
   551 proof -
   552   have "a * inverse a = inverse a * a" by (simp add: mult_ac)
   553   also have "... = 1" using not0 by simp
   554   finally show ?thesis .
   555 qed
   556 
   557 lemma right_inverse_eq: "b \<noteq> 0 ==> (a / b = 1) = (a = (b::'a::field))"
   558 proof
   559   assume neq: "b \<noteq> 0"
   560   {
   561     hence "a = (a / b) * b" by (simp add: divide_inverse mult_ac)
   562     also assume "a / b = 1"
   563     finally show "a = b" by simp
   564   next
   565     assume "a = b"
   566     with neq show "a / b = 1" by (simp add: divide_inverse)
   567   }
   568 qed
   569 
   570 lemma nonzero_inverse_eq_divide: "a \<noteq> 0 ==> inverse (a::'a::field) = 1/a"
   571 by (simp add: divide_inverse)
   572 
   573 lemma divide_self [simp]: "a \<noteq> 0 ==> a / (a::'a::field) = 1"
   574   by (simp add: divide_inverse)
   575 
   576 lemma divide_zero [simp]: "a / 0 = (0::'a::{field,division_by_zero})"
   577 by (simp add: divide_inverse)
   578 
   579 lemma divide_zero_left [simp]: "0/a = (0::'a::field)"
   580 by (simp add: divide_inverse)
   581 
   582 lemma inverse_eq_divide: "inverse (a::'a::field) = 1/a"
   583 by (simp add: divide_inverse)
   584 
   585 lemma add_divide_distrib: "(a+b)/(c::'a::field) = a/c + b/c"
   586 by (simp add: divide_inverse left_distrib) 
   587 
   588 
   589 text{*Compared with @{text mult_eq_0_iff}, this version removes the requirement
   590       of an ordering.*}
   591 lemma field_mult_eq_0_iff [simp]: "(a*b = (0::'a::field)) = (a = 0 | b = 0)"
   592 proof cases
   593   assume "a=0" thus ?thesis by simp
   594 next
   595   assume anz [simp]: "a\<noteq>0"
   596   { assume "a * b = 0"
   597     hence "inverse a * (a * b) = 0" by simp
   598     hence "b = 0"  by (simp (no_asm_use) add: mult_assoc [symmetric])}
   599   thus ?thesis by force
   600 qed
   601 
   602 text{*Cancellation of equalities with a common factor*}
   603 lemma field_mult_cancel_right_lemma:
   604       assumes cnz: "c \<noteq> (0::'a::field)"
   605 	  and eq:  "a*c = b*c"
   606 	 shows "a=b"
   607 proof -
   608   have "(a * c) * inverse c = (b * c) * inverse c"
   609     by (simp add: eq)
   610   thus "a=b"
   611     by (simp add: mult_assoc cnz)
   612 qed
   613 
   614 lemma field_mult_cancel_right [simp]:
   615      "(a*c = b*c) = (c = (0::'a::field) | a=b)"
   616 proof cases
   617   assume "c=0" thus ?thesis by simp
   618 next
   619   assume "c\<noteq>0" 
   620   thus ?thesis by (force dest: field_mult_cancel_right_lemma)
   621 qed
   622 
   623 lemma field_mult_cancel_left [simp]:
   624      "(c*a = c*b) = (c = (0::'a::field) | a=b)"
   625   by (simp add: mult_commute [of c] field_mult_cancel_right) 
   626 
   627 lemma nonzero_imp_inverse_nonzero: "a \<noteq> 0 ==> inverse a \<noteq> (0::'a::field)"
   628 proof
   629   assume ianz: "inverse a = 0"
   630   assume "a \<noteq> 0"
   631   hence "1 = a * inverse a" by simp
   632   also have "... = 0" by (simp add: ianz)
   633   finally have "1 = (0::'a::field)" .
   634   thus False by (simp add: eq_commute)
   635 qed
   636 
   637 
   638 subsection{*Basic Properties of @{term inverse}*}
   639 
   640 lemma inverse_zero_imp_zero: "inverse a = 0 ==> a = (0::'a::field)"
   641 apply (rule ccontr) 
   642 apply (blast dest: nonzero_imp_inverse_nonzero) 
   643 done
   644 
   645 lemma inverse_nonzero_imp_nonzero:
   646    "inverse a = 0 ==> a = (0::'a::field)"
   647 apply (rule ccontr) 
   648 apply (blast dest: nonzero_imp_inverse_nonzero) 
   649 done
   650 
   651 lemma inverse_nonzero_iff_nonzero [simp]:
   652    "(inverse a = 0) = (a = (0::'a::{field,division_by_zero}))"
   653 by (force dest: inverse_nonzero_imp_nonzero) 
   654 
   655 lemma nonzero_inverse_minus_eq:
   656       assumes [simp]: "a\<noteq>0"  shows "inverse(-a) = -inverse(a::'a::field)"
   657 proof -
   658   have "-a * inverse (- a) = -a * - inverse a"
   659     by simp
   660   thus ?thesis 
   661     by (simp only: field_mult_cancel_left, simp)
   662 qed
   663 
   664 lemma inverse_minus_eq [simp]:
   665    "inverse(-a) = -inverse(a::'a::{field,division_by_zero})";
   666 proof cases
   667   assume "a=0" thus ?thesis by (simp add: inverse_zero)
   668 next
   669   assume "a\<noteq>0" 
   670   thus ?thesis by (simp add: nonzero_inverse_minus_eq)
   671 qed
   672 
   673 lemma nonzero_inverse_eq_imp_eq:
   674       assumes inveq: "inverse a = inverse b"
   675 	  and anz:  "a \<noteq> 0"
   676 	  and bnz:  "b \<noteq> 0"
   677 	 shows "a = (b::'a::field)"
   678 proof -
   679   have "a * inverse b = a * inverse a"
   680     by (simp add: inveq)
   681   hence "(a * inverse b) * b = (a * inverse a) * b"
   682     by simp
   683   thus "a = b"
   684     by (simp add: mult_assoc anz bnz)
   685 qed
   686 
   687 lemma inverse_eq_imp_eq:
   688      "inverse a = inverse b ==> a = (b::'a::{field,division_by_zero})"
   689 apply (case_tac "a=0 | b=0") 
   690  apply (force dest!: inverse_zero_imp_zero
   691               simp add: eq_commute [of "0::'a"])
   692 apply (force dest!: nonzero_inverse_eq_imp_eq) 
   693 done
   694 
   695 lemma inverse_eq_iff_eq [simp]:
   696      "(inverse a = inverse b) = (a = (b::'a::{field,division_by_zero}))"
   697 by (force dest!: inverse_eq_imp_eq) 
   698 
   699 lemma nonzero_inverse_inverse_eq:
   700       assumes [simp]: "a \<noteq> 0"  shows "inverse(inverse (a::'a::field)) = a"
   701   proof -
   702   have "(inverse (inverse a) * inverse a) * a = a" 
   703     by (simp add: nonzero_imp_inverse_nonzero)
   704   thus ?thesis
   705     by (simp add: mult_assoc)
   706   qed
   707 
   708 lemma inverse_inverse_eq [simp]:
   709      "inverse(inverse (a::'a::{field,division_by_zero})) = a"
   710   proof cases
   711     assume "a=0" thus ?thesis by simp
   712   next
   713     assume "a\<noteq>0" 
   714     thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
   715   qed
   716 
   717 lemma inverse_1 [simp]: "inverse 1 = (1::'a::field)"
   718   proof -
   719   have "inverse 1 * 1 = (1::'a::field)" 
   720     by (rule left_inverse [OF zero_neq_one [symmetric]])
   721   thus ?thesis  by simp
   722   qed
   723 
   724 lemma nonzero_inverse_mult_distrib: 
   725       assumes anz: "a \<noteq> 0"
   726           and bnz: "b \<noteq> 0"
   727       shows "inverse(a*b) = inverse(b) * inverse(a::'a::field)"
   728   proof -
   729   have "inverse(a*b) * (a * b) * inverse(b) = inverse(b)" 
   730     by (simp add: field_mult_eq_0_iff anz bnz)
   731   hence "inverse(a*b) * a = inverse(b)" 
   732     by (simp add: mult_assoc bnz)
   733   hence "inverse(a*b) * a * inverse(a) = inverse(b) * inverse(a)" 
   734     by simp
   735   thus ?thesis
   736     by (simp add: mult_assoc anz)
   737   qed
   738 
   739 text{*This version builds in division by zero while also re-orienting
   740       the right-hand side.*}
   741 lemma inverse_mult_distrib [simp]:
   742      "inverse(a*b) = inverse(a) * inverse(b::'a::{field,division_by_zero})"
   743   proof cases
   744     assume "a \<noteq> 0 & b \<noteq> 0" 
   745     thus ?thesis  by (simp add: nonzero_inverse_mult_distrib mult_commute)
   746   next
   747     assume "~ (a \<noteq> 0 & b \<noteq> 0)" 
   748     thus ?thesis  by force
   749   qed
   750 
   751 text{*There is no slick version using division by zero.*}
   752 lemma inverse_add:
   753      "[|a \<noteq> 0;  b \<noteq> 0|]
   754       ==> inverse a + inverse b = (a+b) * inverse a * inverse (b::'a::field)"
   755 apply (simp add: left_distrib mult_assoc)
   756 apply (simp add: mult_commute [of "inverse a"]) 
   757 apply (simp add: mult_assoc [symmetric] add_commute)
   758 done
   759 
   760 lemma inverse_divide [simp]:
   761       "inverse (a/b) = b / (a::'a::{field,division_by_zero})"
   762   by (simp add: divide_inverse mult_commute)
   763 
   764 lemma nonzero_mult_divide_cancel_left:
   765   assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" 
   766     shows "(c*a)/(c*b) = a/(b::'a::field)"
   767 proof -
   768   have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
   769     by (simp add: field_mult_eq_0_iff divide_inverse 
   770                   nonzero_inverse_mult_distrib)
   771   also have "... =  a * inverse b * (inverse c * c)"
   772     by (simp only: mult_ac)
   773   also have "... =  a * inverse b"
   774     by simp
   775     finally show ?thesis 
   776     by (simp add: divide_inverse)
   777 qed
   778 
   779 lemma mult_divide_cancel_left:
   780      "c\<noteq>0 ==> (c*a) / (c*b) = a / (b::'a::{field,division_by_zero})"
   781 apply (case_tac "b = 0")
   782 apply (simp_all add: nonzero_mult_divide_cancel_left)
   783 done
   784 
   785 lemma nonzero_mult_divide_cancel_right:
   786      "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (b*c) = a/(b::'a::field)"
   787 by (simp add: mult_commute [of _ c] nonzero_mult_divide_cancel_left) 
   788 
   789 lemma mult_divide_cancel_right:
   790      "c\<noteq>0 ==> (a*c) / (b*c) = a / (b::'a::{field,division_by_zero})"
   791 apply (case_tac "b = 0")
   792 apply (simp_all add: nonzero_mult_divide_cancel_right)
   793 done
   794 
   795 (*For ExtractCommonTerm*)
   796 lemma mult_divide_cancel_eq_if:
   797      "(c*a) / (c*b) = 
   798       (if c=0 then 0 else a / (b::'a::{field,division_by_zero}))"
   799   by (simp add: mult_divide_cancel_left)
   800 
   801 lemma divide_1 [simp]: "a/1 = (a::'a::field)"
   802   by (simp add: divide_inverse)
   803 
   804 lemma times_divide_eq_right [simp]: "a * (b/c) = (a*b) / (c::'a::field)"
   805 by (simp add: divide_inverse mult_assoc)
   806 
   807 lemma times_divide_eq_left: "(b/c) * a = (b*a) / (c::'a::field)"
   808 by (simp add: divide_inverse mult_ac)
   809 
   810 lemma divide_divide_eq_right [simp]:
   811      "a / (b/c) = (a*c) / (b::'a::{field,division_by_zero})"
   812 by (simp add: divide_inverse mult_ac)
   813 
   814 lemma divide_divide_eq_left [simp]:
   815      "(a / b) / (c::'a::{field,division_by_zero}) = a / (b*c)"
   816 by (simp add: divide_inverse mult_assoc)
   817 
   818 
   819 subsection {* Division and Unary Minus *}
   820 
   821 lemma nonzero_minus_divide_left: "b \<noteq> 0 ==> - (a/b) = (-a) / (b::'a::field)"
   822 by (simp add: divide_inverse minus_mult_left)
   823 
   824 lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a/b) = a / -(b::'a::field)"
   825 by (simp add: divide_inverse nonzero_inverse_minus_eq minus_mult_right)
   826 
   827 lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a)/(-b) = a / (b::'a::field)"
   828 by (simp add: divide_inverse nonzero_inverse_minus_eq)
   829 
   830 lemma minus_divide_left: "- (a/b) = (-a) / (b::'a::field)"
   831 by (simp add: divide_inverse minus_mult_left [symmetric])
   832 
   833 lemma minus_divide_right: "- (a/b) = a / -(b::'a::{field,division_by_zero})"
   834 by (simp add: divide_inverse minus_mult_right [symmetric])
   835 
   836 
   837 text{*The effect is to extract signs from divisions*}
   838 declare minus_divide_left  [symmetric, simp]
   839 declare minus_divide_right [symmetric, simp]
   840 
   841 text{*Also, extract signs from products*}
   842 declare minus_mult_left [symmetric, simp]
   843 declare minus_mult_right [symmetric, simp]
   844 
   845 lemma minus_divide_divide [simp]:
   846      "(-a)/(-b) = a / (b::'a::{field,division_by_zero})"
   847 apply (case_tac "b=0", simp) 
   848 apply (simp add: nonzero_minus_divide_divide) 
   849 done
   850 
   851 lemma diff_divide_distrib: "(a-b)/(c::'a::field) = a/c - b/c"
   852 by (simp add: diff_minus add_divide_distrib) 
   853 
   854 
   855 subsection {* Ordered Fields *}
   856 
   857 lemma positive_imp_inverse_positive: 
   858       assumes a_gt_0: "0 < a"  shows "0 < inverse (a::'a::ordered_field)"
   859   proof -
   860   have "0 < a * inverse a" 
   861     by (simp add: a_gt_0 [THEN order_less_imp_not_eq2] zero_less_one)
   862   thus "0 < inverse a" 
   863     by (simp add: a_gt_0 [THEN order_less_not_sym] zero_less_mult_iff)
   864   qed
   865 
   866 lemma negative_imp_inverse_negative:
   867      "a < 0 ==> inverse a < (0::'a::ordered_field)"
   868   by (insert positive_imp_inverse_positive [of "-a"], 
   869       simp add: nonzero_inverse_minus_eq order_less_imp_not_eq) 
   870 
   871 lemma inverse_le_imp_le:
   872       assumes invle: "inverse a \<le> inverse b"
   873 	  and apos:  "0 < a"
   874 	 shows "b \<le> (a::'a::ordered_field)"
   875   proof (rule classical)
   876   assume "~ b \<le> a"
   877   hence "a < b"
   878     by (simp add: linorder_not_le)
   879   hence bpos: "0 < b"
   880     by (blast intro: apos order_less_trans)
   881   hence "a * inverse a \<le> a * inverse b"
   882     by (simp add: apos invle order_less_imp_le mult_left_mono)
   883   hence "(a * inverse a) * b \<le> (a * inverse b) * b"
   884     by (simp add: bpos order_less_imp_le mult_right_mono)
   885   thus "b \<le> a"
   886     by (simp add: mult_assoc apos bpos order_less_imp_not_eq2)
   887   qed
   888 
   889 lemma inverse_positive_imp_positive:
   890       assumes inv_gt_0: "0 < inverse a"
   891           and [simp]:   "a \<noteq> 0"
   892         shows "0 < (a::'a::ordered_field)"
   893   proof -
   894   have "0 < inverse (inverse a)"
   895     by (rule positive_imp_inverse_positive)
   896   thus "0 < a"
   897     by (simp add: nonzero_inverse_inverse_eq)
   898   qed
   899 
   900 lemma inverse_positive_iff_positive [simp]:
   901       "(0 < inverse a) = (0 < (a::'a::{ordered_field,division_by_zero}))"
   902 apply (case_tac "a = 0", simp)
   903 apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
   904 done
   905 
   906 lemma inverse_negative_imp_negative:
   907       assumes inv_less_0: "inverse a < 0"
   908           and [simp]:   "a \<noteq> 0"
   909         shows "a < (0::'a::ordered_field)"
   910   proof -
   911   have "inverse (inverse a) < 0"
   912     by (rule negative_imp_inverse_negative)
   913   thus "a < 0"
   914     by (simp add: nonzero_inverse_inverse_eq)
   915   qed
   916 
   917 lemma inverse_negative_iff_negative [simp]:
   918       "(inverse a < 0) = (a < (0::'a::{ordered_field,division_by_zero}))"
   919 apply (case_tac "a = 0", simp)
   920 apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
   921 done
   922 
   923 lemma inverse_nonnegative_iff_nonnegative [simp]:
   924       "(0 \<le> inverse a) = (0 \<le> (a::'a::{ordered_field,division_by_zero}))"
   925 by (simp add: linorder_not_less [symmetric])
   926 
   927 lemma inverse_nonpositive_iff_nonpositive [simp]:
   928       "(inverse a \<le> 0) = (a \<le> (0::'a::{ordered_field,division_by_zero}))"
   929 by (simp add: linorder_not_less [symmetric])
   930 
   931 
   932 subsection{*Anti-Monotonicity of @{term inverse}*}
   933 
   934 lemma less_imp_inverse_less:
   935       assumes less: "a < b"
   936 	  and apos:  "0 < a"
   937 	shows "inverse b < inverse (a::'a::ordered_field)"
   938   proof (rule ccontr)
   939   assume "~ inverse b < inverse a"
   940   hence "inverse a \<le> inverse b"
   941     by (simp add: linorder_not_less)
   942   hence "~ (a < b)"
   943     by (simp add: linorder_not_less inverse_le_imp_le [OF _ apos])
   944   thus False
   945     by (rule notE [OF _ less])
   946   qed
   947 
   948 lemma inverse_less_imp_less:
   949    "[|inverse a < inverse b; 0 < a|] ==> b < (a::'a::ordered_field)"
   950 apply (simp add: order_less_le [of "inverse a"] order_less_le [of "b"])
   951 apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) 
   952 done
   953 
   954 text{*Both premises are essential. Consider -1 and 1.*}
   955 lemma inverse_less_iff_less [simp]:
   956      "[|0 < a; 0 < b|] 
   957       ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
   958 by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) 
   959 
   960 lemma le_imp_inverse_le:
   961    "[|a \<le> b; 0 < a|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
   962   by (force simp add: order_le_less less_imp_inverse_less)
   963 
   964 lemma inverse_le_iff_le [simp]:
   965      "[|0 < a; 0 < b|] 
   966       ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
   967 by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) 
   968 
   969 
   970 text{*These results refer to both operands being negative.  The opposite-sign
   971 case is trivial, since inverse preserves signs.*}
   972 lemma inverse_le_imp_le_neg:
   973    "[|inverse a \<le> inverse b; b < 0|] ==> b \<le> (a::'a::ordered_field)"
   974   apply (rule classical) 
   975   apply (subgoal_tac "a < 0") 
   976    prefer 2 apply (force simp add: linorder_not_le intro: order_less_trans) 
   977   apply (insert inverse_le_imp_le [of "-b" "-a"])
   978   apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
   979   done
   980 
   981 lemma less_imp_inverse_less_neg:
   982    "[|a < b; b < 0|] ==> inverse b < inverse (a::'a::ordered_field)"
   983   apply (subgoal_tac "a < 0") 
   984    prefer 2 apply (blast intro: order_less_trans) 
   985   apply (insert less_imp_inverse_less [of "-b" "-a"])
   986   apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
   987   done
   988 
   989 lemma inverse_less_imp_less_neg:
   990    "[|inverse a < inverse b; b < 0|] ==> b < (a::'a::ordered_field)"
   991   apply (rule classical) 
   992   apply (subgoal_tac "a < 0") 
   993    prefer 2
   994    apply (force simp add: linorder_not_less intro: order_le_less_trans) 
   995   apply (insert inverse_less_imp_less [of "-b" "-a"])
   996   apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
   997   done
   998 
   999 lemma inverse_less_iff_less_neg [simp]:
  1000      "[|a < 0; b < 0|] 
  1001       ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
  1002   apply (insert inverse_less_iff_less [of "-b" "-a"])
  1003   apply (simp del: inverse_less_iff_less 
  1004 	      add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
  1005   done
  1006 
  1007 lemma le_imp_inverse_le_neg:
  1008    "[|a \<le> b; b < 0|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
  1009   by (force simp add: order_le_less less_imp_inverse_less_neg)
  1010 
  1011 lemma inverse_le_iff_le_neg [simp]:
  1012      "[|a < 0; b < 0|] 
  1013       ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
  1014 by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) 
  1015 
  1016 
  1017 subsection{*Inverses and the Number One*}
  1018 
  1019 lemma one_less_inverse_iff:
  1020     "(1 < inverse x) = (0 < x & x < (1::'a::{ordered_field,division_by_zero}))"proof cases
  1021   assume "0 < x"
  1022     with inverse_less_iff_less [OF zero_less_one, of x]
  1023     show ?thesis by simp
  1024 next
  1025   assume notless: "~ (0 < x)"
  1026   have "~ (1 < inverse x)"
  1027   proof
  1028     assume "1 < inverse x"
  1029     also with notless have "... \<le> 0" by (simp add: linorder_not_less)
  1030     also have "... < 1" by (rule zero_less_one) 
  1031     finally show False by auto
  1032   qed
  1033   with notless show ?thesis by simp
  1034 qed
  1035 
  1036 lemma inverse_eq_1_iff [simp]:
  1037     "(inverse x = 1) = (x = (1::'a::{field,division_by_zero}))"
  1038 by (insert inverse_eq_iff_eq [of x 1], simp) 
  1039 
  1040 lemma one_le_inverse_iff:
  1041    "(1 \<le> inverse x) = (0 < x & x \<le> (1::'a::{ordered_field,division_by_zero}))"
  1042 by (force simp add: order_le_less one_less_inverse_iff zero_less_one 
  1043                     eq_commute [of 1]) 
  1044 
  1045 lemma inverse_less_1_iff:
  1046    "(inverse x < 1) = (x \<le> 0 | 1 < (x::'a::{ordered_field,division_by_zero}))"
  1047 by (simp add: linorder_not_le [symmetric] one_le_inverse_iff) 
  1048 
  1049 lemma inverse_le_1_iff:
  1050    "(inverse x \<le> 1) = (x \<le> 0 | 1 \<le> (x::'a::{ordered_field,division_by_zero}))"
  1051 by (simp add: linorder_not_less [symmetric] one_less_inverse_iff) 
  1052 
  1053 
  1054 subsection{*Division and Signs*}
  1055 
  1056 lemma zero_less_divide_iff:
  1057      "((0::'a::{ordered_field,division_by_zero}) < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
  1058 by (simp add: divide_inverse zero_less_mult_iff)
  1059 
  1060 lemma divide_less_0_iff:
  1061      "(a/b < (0::'a::{ordered_field,division_by_zero})) = 
  1062       (0 < a & b < 0 | a < 0 & 0 < b)"
  1063 by (simp add: divide_inverse mult_less_0_iff)
  1064 
  1065 lemma zero_le_divide_iff:
  1066      "((0::'a::{ordered_field,division_by_zero}) \<le> a/b) =
  1067       (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
  1068 by (simp add: divide_inverse zero_le_mult_iff)
  1069 
  1070 lemma divide_le_0_iff:
  1071      "(a/b \<le> (0::'a::{ordered_field,division_by_zero})) =
  1072       (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
  1073 by (simp add: divide_inverse mult_le_0_iff)
  1074 
  1075 lemma divide_eq_0_iff [simp]:
  1076      "(a/b = 0) = (a=0 | b=(0::'a::{field,division_by_zero}))"
  1077 by (simp add: divide_inverse field_mult_eq_0_iff)
  1078 
  1079 
  1080 subsection{*Simplification of Inequalities Involving Literal Divisors*}
  1081 
  1082 lemma pos_le_divide_eq: "0 < (c::'a::ordered_field) ==> (a \<le> b/c) = (a*c \<le> b)"
  1083 proof -
  1084   assume less: "0<c"
  1085   hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)"
  1086     by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
  1087   also have "... = (a*c \<le> b)"
  1088     by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
  1089   finally show ?thesis .
  1090 qed
  1091 
  1092 
  1093 lemma neg_le_divide_eq: "c < (0::'a::ordered_field) ==> (a \<le> b/c) = (b \<le> a*c)"
  1094 proof -
  1095   assume less: "c<0"
  1096   hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)"
  1097     by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
  1098   also have "... = (b \<le> a*c)"
  1099     by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
  1100   finally show ?thesis .
  1101 qed
  1102 
  1103 lemma le_divide_eq:
  1104   "(a \<le> b/c) = 
  1105    (if 0 < c then a*c \<le> b
  1106              else if c < 0 then b \<le> a*c
  1107              else  a \<le> (0::'a::{ordered_field,division_by_zero}))"
  1108 apply (case_tac "c=0", simp) 
  1109 apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) 
  1110 done
  1111 
  1112 lemma pos_divide_le_eq: "0 < (c::'a::ordered_field) ==> (b/c \<le> a) = (b \<le> a*c)"
  1113 proof -
  1114   assume less: "0<c"
  1115   hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)"
  1116     by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
  1117   also have "... = (b \<le> a*c)"
  1118     by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
  1119   finally show ?thesis .
  1120 qed
  1121 
  1122 lemma neg_divide_le_eq: "c < (0::'a::ordered_field) ==> (b/c \<le> a) = (a*c \<le> b)"
  1123 proof -
  1124   assume less: "c<0"
  1125   hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)"
  1126     by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
  1127   also have "... = (a*c \<le> b)"
  1128     by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
  1129   finally show ?thesis .
  1130 qed
  1131 
  1132 lemma divide_le_eq:
  1133   "(b/c \<le> a) = 
  1134    (if 0 < c then b \<le> a*c
  1135              else if c < 0 then a*c \<le> b
  1136              else 0 \<le> (a::'a::{ordered_field,division_by_zero}))"
  1137 apply (case_tac "c=0", simp) 
  1138 apply (force simp add: pos_divide_le_eq neg_divide_le_eq linorder_neq_iff) 
  1139 done
  1140 
  1141 
  1142 lemma pos_less_divide_eq:
  1143      "0 < (c::'a::ordered_field) ==> (a < b/c) = (a*c < b)"
  1144 proof -
  1145   assume less: "0<c"
  1146   hence "(a < b/c) = (a*c < (b/c)*c)"
  1147     by (simp add: mult_less_cancel_right order_less_not_sym [OF less])
  1148   also have "... = (a*c < b)"
  1149     by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
  1150   finally show ?thesis .
  1151 qed
  1152 
  1153 lemma neg_less_divide_eq:
  1154  "c < (0::'a::ordered_field) ==> (a < b/c) = (b < a*c)"
  1155 proof -
  1156   assume less: "c<0"
  1157   hence "(a < b/c) = ((b/c)*c < a*c)"
  1158     by (simp add: mult_less_cancel_right order_less_not_sym [OF less])
  1159   also have "... = (b < a*c)"
  1160     by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
  1161   finally show ?thesis .
  1162 qed
  1163 
  1164 lemma less_divide_eq:
  1165   "(a < b/c) = 
  1166    (if 0 < c then a*c < b
  1167              else if c < 0 then b < a*c
  1168              else  a < (0::'a::{ordered_field,division_by_zero}))"
  1169 apply (case_tac "c=0", simp) 
  1170 apply (force simp add: pos_less_divide_eq neg_less_divide_eq linorder_neq_iff) 
  1171 done
  1172 
  1173 lemma pos_divide_less_eq:
  1174      "0 < (c::'a::ordered_field) ==> (b/c < a) = (b < a*c)"
  1175 proof -
  1176   assume less: "0<c"
  1177   hence "(b/c < a) = ((b/c)*c < a*c)"
  1178     by (simp add: mult_less_cancel_right order_less_not_sym [OF less])
  1179   also have "... = (b < a*c)"
  1180     by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
  1181   finally show ?thesis .
  1182 qed
  1183 
  1184 lemma neg_divide_less_eq:
  1185  "c < (0::'a::ordered_field) ==> (b/c < a) = (a*c < b)"
  1186 proof -
  1187   assume less: "c<0"
  1188   hence "(b/c < a) = (a*c < (b/c)*c)"
  1189     by (simp add: mult_less_cancel_right order_less_not_sym [OF less])
  1190   also have "... = (a*c < b)"
  1191     by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
  1192   finally show ?thesis .
  1193 qed
  1194 
  1195 lemma divide_less_eq:
  1196   "(b/c < a) = 
  1197    (if 0 < c then b < a*c
  1198              else if c < 0 then a*c < b
  1199              else 0 < (a::'a::{ordered_field,division_by_zero}))"
  1200 apply (case_tac "c=0", simp) 
  1201 apply (force simp add: pos_divide_less_eq neg_divide_less_eq linorder_neq_iff) 
  1202 done
  1203 
  1204 lemma nonzero_eq_divide_eq: "c\<noteq>0 ==> ((a::'a::field) = b/c) = (a*c = b)"
  1205 proof -
  1206   assume [simp]: "c\<noteq>0"
  1207   have "(a = b/c) = (a*c = (b/c)*c)"
  1208     by (simp add: field_mult_cancel_right)
  1209   also have "... = (a*c = b)"
  1210     by (simp add: divide_inverse mult_assoc) 
  1211   finally show ?thesis .
  1212 qed
  1213 
  1214 lemma eq_divide_eq:
  1215   "((a::'a::{field,division_by_zero}) = b/c) = (if c\<noteq>0 then a*c = b else a=0)"
  1216 by (simp add: nonzero_eq_divide_eq) 
  1217 
  1218 lemma nonzero_divide_eq_eq: "c\<noteq>0 ==> (b/c = (a::'a::field)) = (b = a*c)"
  1219 proof -
  1220   assume [simp]: "c\<noteq>0"
  1221   have "(b/c = a) = ((b/c)*c = a*c)"
  1222     by (simp add: field_mult_cancel_right)
  1223   also have "... = (b = a*c)"
  1224     by (simp add: divide_inverse mult_assoc) 
  1225   finally show ?thesis .
  1226 qed
  1227 
  1228 lemma divide_eq_eq:
  1229   "(b/c = (a::'a::{field,division_by_zero})) = (if c\<noteq>0 then b = a*c else a=0)"
  1230 by (force simp add: nonzero_divide_eq_eq) 
  1231 
  1232 subsection{*Cancellation Laws for Division*}
  1233 
  1234 lemma divide_cancel_right [simp]:
  1235      "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))"
  1236 apply (case_tac "c=0", simp) 
  1237 apply (simp add: divide_inverse field_mult_cancel_right) 
  1238 done
  1239 
  1240 lemma divide_cancel_left [simp]:
  1241      "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" 
  1242 apply (case_tac "c=0", simp) 
  1243 apply (simp add: divide_inverse field_mult_cancel_left) 
  1244 done
  1245 
  1246 subsection {* Division and the Number One *}
  1247 
  1248 text{*Simplify expressions equated with 1*}
  1249 lemma divide_eq_1_iff [simp]:
  1250      "(a/b = 1) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
  1251 apply (case_tac "b=0", simp) 
  1252 apply (simp add: right_inverse_eq) 
  1253 done
  1254 
  1255 
  1256 lemma one_eq_divide_iff [simp]:
  1257      "(1 = a/b) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
  1258 by (simp add: eq_commute [of 1])  
  1259 
  1260 lemma zero_eq_1_divide_iff [simp]:
  1261      "((0::'a::{ordered_field,division_by_zero}) = 1/a) = (a = 0)"
  1262 apply (case_tac "a=0", simp) 
  1263 apply (auto simp add: nonzero_eq_divide_eq) 
  1264 done
  1265 
  1266 lemma one_divide_eq_0_iff [simp]:
  1267      "(1/a = (0::'a::{ordered_field,division_by_zero})) = (a = 0)"
  1268 apply (case_tac "a=0", simp) 
  1269 apply (insert zero_neq_one [THEN not_sym]) 
  1270 apply (auto simp add: nonzero_divide_eq_eq) 
  1271 done
  1272 
  1273 text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
  1274 declare zero_less_divide_iff [of "1", simp]
  1275 declare divide_less_0_iff [of "1", simp]
  1276 declare zero_le_divide_iff [of "1", simp]
  1277 declare divide_le_0_iff [of "1", simp]
  1278 
  1279 
  1280 subsection {* Ordering Rules for Division *}
  1281 
  1282 lemma divide_strict_right_mono:
  1283      "[|a < b; 0 < c|] ==> a / c < b / (c::'a::ordered_field)"
  1284 by (simp add: order_less_imp_not_eq2 divide_inverse mult_strict_right_mono 
  1285               positive_imp_inverse_positive) 
  1286 
  1287 lemma divide_right_mono:
  1288      "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/(c::'a::{ordered_field,division_by_zero})"
  1289   by (force simp add: divide_strict_right_mono order_le_less) 
  1290 
  1291 
  1292 text{*The last premise ensures that @{term a} and @{term b} 
  1293       have the same sign*}
  1294 lemma divide_strict_left_mono:
  1295        "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
  1296 by (force simp add: zero_less_mult_iff divide_inverse mult_strict_left_mono 
  1297       order_less_imp_not_eq order_less_imp_not_eq2  
  1298       less_imp_inverse_less less_imp_inverse_less_neg) 
  1299 
  1300 lemma divide_left_mono:
  1301      "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / (b::'a::ordered_field)"
  1302   apply (subgoal_tac "a \<noteq> 0 & b \<noteq> 0") 
  1303    prefer 2 
  1304    apply (force simp add: zero_less_mult_iff order_less_imp_not_eq) 
  1305   apply (case_tac "c=0", simp add: divide_inverse)
  1306   apply (force simp add: divide_strict_left_mono order_le_less) 
  1307   done
  1308 
  1309 lemma divide_strict_left_mono_neg:
  1310      "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
  1311   apply (subgoal_tac "a \<noteq> 0 & b \<noteq> 0") 
  1312    prefer 2 
  1313    apply (force simp add: zero_less_mult_iff order_less_imp_not_eq) 
  1314   apply (drule divide_strict_left_mono [of _ _ "-c"]) 
  1315    apply (simp_all add: mult_commute nonzero_minus_divide_left [symmetric]) 
  1316   done
  1317 
  1318 lemma divide_strict_right_mono_neg:
  1319      "[|b < a; c < 0|] ==> a / c < b / (c::'a::ordered_field)"
  1320 apply (drule divide_strict_right_mono [of _ _ "-c"], simp) 
  1321 apply (simp add: order_less_imp_not_eq nonzero_minus_divide_right [symmetric]) 
  1322 done
  1323 
  1324 
  1325 subsection {* Ordered Fields are Dense *}
  1326 
  1327 lemma less_add_one: "a < (a+1::'a::ordered_semidom)"
  1328 proof -
  1329   have "a+0 < (a+1::'a::ordered_semidom)"
  1330     by (blast intro: zero_less_one add_strict_left_mono) 
  1331   thus ?thesis by simp
  1332 qed
  1333 
  1334 lemma zero_less_two: "0 < (1+1::'a::ordered_semidom)"
  1335   by (blast intro: order_less_trans zero_less_one less_add_one) 
  1336 
  1337 lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
  1338 by (simp add: zero_less_two pos_less_divide_eq right_distrib) 
  1339 
  1340 lemma gt_half_sum: "a < b ==> (a+b)/(1+1::'a::ordered_field) < b"
  1341 by (simp add: zero_less_two pos_divide_less_eq right_distrib) 
  1342 
  1343 lemma dense: "a < b ==> \<exists>r::'a::ordered_field. a < r & r < b"
  1344 by (blast intro!: less_half_sum gt_half_sum)
  1345 
  1346 subsection {* Absolute Value *}
  1347 
  1348 lemma abs_one [simp]: "abs 1 = (1::'a::ordered_idom)"
  1349   by (simp add: abs_if zero_less_one [THEN order_less_not_sym]) 
  1350 
  1351 lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lordered_ring))" 
  1352 proof -
  1353   let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b"
  1354   let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
  1355   have a: "(abs a) * (abs b) = ?x"
  1356     by (simp only: abs_prts[of a] abs_prts[of b] ring_eq_simps)
  1357   {
  1358     fix u v :: 'a
  1359     have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> u * v = ?y"
  1360       apply (subst prts[of u], subst prts[of v])
  1361       apply (simp add: left_distrib right_distrib add_ac) 
  1362       done
  1363   }
  1364   note b = this[OF refl[of a] refl[of b]]
  1365   note addm = add_mono[of "0::'a" _ "0::'a", simplified]
  1366   note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified]
  1367   have xy: "- ?x <= ?y"
  1368     apply (simp add: compare_rls)
  1369     apply (rule add_le_imp_le_left[of "-(pprt a * nprt b + nprt a * pprt b)"])
  1370     apply (simp add: add_ac)
  1371     proof -
  1372       let ?r = "nprt a * nprt b +(nprt a * nprt b + (nprt a * pprt b + (pprt a * nprt b + (pprt a * pprt b + (pprt a * pprt b +
  1373 	(- (nprt a * pprt b) + - (pprt a * nprt b)))))))"
  1374       let ?rr = "nprt a * nprt b + nprt a * nprt b + ((nprt a * pprt b) + (- (nprt a * pprt b))) + ((pprt a * nprt b) + - (pprt a * nprt b))
  1375 	+ pprt a * pprt b + pprt a * pprt b"
  1376       have a:"?r = ?rr" by (simp only: add_ac)      
  1377       have "0 <= ?rr"
  1378 	apply (simp)
  1379 	apply (rule addm)+
  1380 	apply (simp_all add: mult_neg_le mult_pos_le)
  1381 	done
  1382       with a show "0 <= ?r" by simp
  1383     qed
  1384   have yx: "?y <= ?x"
  1385     apply (simp add: add_ac)
  1386     apply (simp add: compare_rls)
  1387     apply (rule add_le_imp_le_right[of _ "-(pprt a * pprt b)"])
  1388     apply (simp add: add_ac)
  1389     apply (rule addm2, (simp add: mult_pos_neg_le mult_pos_neg2_le)+)+
  1390     done
  1391   have i1: "a*b <= abs a * abs b" by (simp only: a b yx)
  1392   have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy)
  1393   show ?thesis
  1394     apply (rule abs_leI)
  1395     apply (simp add: i1)
  1396     apply (simp add: i2[simplified minus_le_iff])
  1397     done
  1398 qed
  1399 
  1400 lemma abs_eq_mult: 
  1401   assumes "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
  1402   shows "abs (a*b) = abs a * abs (b::'a::lordered_ring)"
  1403 proof -
  1404   have s: "(0 <= a*b) | (a*b <= 0)"
  1405     apply (auto)    
  1406     apply (rule_tac split_mult_pos_le)
  1407     apply (rule_tac contrapos_np[of "a*b <= 0"])
  1408     apply (simp)
  1409     apply (rule_tac split_mult_neg_le)
  1410     apply (insert prems)
  1411     apply (blast)
  1412     done
  1413   have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
  1414     by (simp add: prts[symmetric])
  1415   show ?thesis
  1416   proof cases
  1417     assume "0 <= a * b"
  1418     then show ?thesis
  1419       apply (simp_all add: mulprts abs_prts)
  1420       apply (insert prems)
  1421       apply (auto simp add: ring_eq_simps iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_zero_pprt]
  1422 	iff2imp[OF le_zero_iff_pprt_id] iff2imp[OF zero_le_iff_nprt_id] order_antisym mult_pos_neg_le[of a b] mult_pos_neg2_le[of b a])
  1423       done
  1424   next
  1425     assume "~(0 <= a*b)"
  1426     with s have "a*b <= 0" by simp
  1427     then show ?thesis
  1428       apply (simp_all add: mulprts abs_prts)
  1429       apply (insert prems)
  1430       apply (auto simp add: ring_eq_simps iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_zero_pprt]
  1431 	iff2imp[OF le_zero_iff_pprt_id] iff2imp[OF zero_le_iff_nprt_id] order_antisym mult_pos_le[of a b] mult_neg_le[of a b])
  1432       done
  1433   qed
  1434 qed
  1435 
  1436 lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_idom)" 
  1437 by (simp add: abs_eq_mult linorder_linear)
  1438 
  1439 lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_idom)"
  1440 by (simp add: abs_if) 
  1441 
  1442 lemma nonzero_abs_inverse:
  1443      "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)"
  1444 apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq 
  1445                       negative_imp_inverse_negative)
  1446 apply (blast intro: positive_imp_inverse_positive elim: order_less_asym) 
  1447 done
  1448 
  1449 lemma abs_inverse [simp]:
  1450      "abs (inverse (a::'a::{ordered_field,division_by_zero})) = 
  1451       inverse (abs a)"
  1452 apply (case_tac "a=0", simp) 
  1453 apply (simp add: nonzero_abs_inverse) 
  1454 done
  1455 
  1456 lemma nonzero_abs_divide:
  1457      "b \<noteq> 0 ==> abs (a / (b::'a::ordered_field)) = abs a / abs b"
  1458 by (simp add: divide_inverse abs_mult nonzero_abs_inverse) 
  1459 
  1460 lemma abs_divide:
  1461      "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
  1462 apply (case_tac "b=0", simp) 
  1463 apply (simp add: nonzero_abs_divide) 
  1464 done
  1465 
  1466 lemma abs_mult_less:
  1467      "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_idom)"
  1468 proof -
  1469   assume ac: "abs a < c"
  1470   hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
  1471   assume "abs b < d"
  1472   thus ?thesis by (simp add: ac cpos mult_strict_mono) 
  1473 qed
  1474 
  1475 lemma eq_minus_self_iff: "(a = -a) = (a = (0::'a::ordered_idom))"
  1476 by (force simp add: order_eq_iff le_minus_self_iff minus_le_self_iff)
  1477 
  1478 lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_idom))"
  1479 by (simp add: order_less_le le_minus_self_iff eq_minus_self_iff)
  1480 
  1481 lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_idom))" 
  1482 apply (simp add: order_less_le abs_le_iff)  
  1483 apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff)
  1484 apply (simp add: le_minus_self_iff linorder_neq_iff) 
  1485 done
  1486 
  1487 text{*Moving this up spoils many proofs using @{text mult_le_cancel_right}*}
  1488 declare times_divide_eq_left [simp]
  1489 
  1490 ML {*
  1491 val left_distrib = thm "left_distrib";
  1492 val right_distrib = thm "right_distrib";
  1493 val mult_commute = thm "mult_commute";
  1494 val distrib = thm "distrib";
  1495 val zero_neq_one = thm "zero_neq_one";
  1496 val no_zero_divisors = thm "no_zero_divisors";
  1497 val left_inverse = thm "left_inverse";
  1498 val divide_inverse = thm "divide_inverse";
  1499 val mult_zero_left = thm "mult_zero_left";
  1500 val mult_zero_right = thm "mult_zero_right";
  1501 val field_mult_eq_0_iff = thm "field_mult_eq_0_iff";
  1502 val inverse_zero = thm "inverse_zero";
  1503 val ring_distrib = thms "ring_distrib";
  1504 val combine_common_factor = thm "combine_common_factor";
  1505 val minus_mult_left = thm "minus_mult_left";
  1506 val minus_mult_right = thm "minus_mult_right";
  1507 val minus_mult_minus = thm "minus_mult_minus";
  1508 val minus_mult_commute = thm "minus_mult_commute";
  1509 val right_diff_distrib = thm "right_diff_distrib";
  1510 val left_diff_distrib = thm "left_diff_distrib";
  1511 val mult_left_mono = thm "mult_left_mono";
  1512 val mult_right_mono = thm "mult_right_mono";
  1513 val mult_strict_left_mono = thm "mult_strict_left_mono";
  1514 val mult_strict_right_mono = thm "mult_strict_right_mono";
  1515 val mult_mono = thm "mult_mono";
  1516 val mult_strict_mono = thm "mult_strict_mono";
  1517 val abs_if = thm "abs_if";
  1518 val zero_less_one = thm "zero_less_one";
  1519 val eq_add_iff1 = thm "eq_add_iff1";
  1520 val eq_add_iff2 = thm "eq_add_iff2";
  1521 val less_add_iff1 = thm "less_add_iff1";
  1522 val less_add_iff2 = thm "less_add_iff2";
  1523 val le_add_iff1 = thm "le_add_iff1";
  1524 val le_add_iff2 = thm "le_add_iff2";
  1525 val mult_left_le_imp_le = thm "mult_left_le_imp_le";
  1526 val mult_right_le_imp_le = thm "mult_right_le_imp_le";
  1527 val mult_left_less_imp_less = thm "mult_left_less_imp_less";
  1528 val mult_right_less_imp_less = thm "mult_right_less_imp_less";
  1529 val mult_strict_left_mono_neg = thm "mult_strict_left_mono_neg";
  1530 val mult_left_mono_neg = thm "mult_left_mono_neg";
  1531 val mult_strict_right_mono_neg = thm "mult_strict_right_mono_neg";
  1532 val mult_right_mono_neg = thm "mult_right_mono_neg";
  1533 val mult_pos = thm "mult_pos";
  1534 val mult_pos_le = thm "mult_pos_le";
  1535 val mult_pos_neg = thm "mult_pos_neg";
  1536 val mult_pos_neg_le = thm "mult_pos_neg_le";
  1537 val mult_pos_neg2 = thm "mult_pos_neg2";
  1538 val mult_pos_neg2_le = thm "mult_pos_neg2_le";
  1539 val mult_neg = thm "mult_neg";
  1540 val mult_neg_le = thm "mult_neg_le";
  1541 val zero_less_mult_pos = thm "zero_less_mult_pos";
  1542 val zero_less_mult_pos2 = thm "zero_less_mult_pos2";
  1543 val zero_less_mult_iff = thm "zero_less_mult_iff";
  1544 val mult_eq_0_iff = thm "mult_eq_0_iff";
  1545 val zero_le_mult_iff = thm "zero_le_mult_iff";
  1546 val mult_less_0_iff = thm "mult_less_0_iff";
  1547 val mult_le_0_iff = thm "mult_le_0_iff";
  1548 val split_mult_pos_le = thm "split_mult_pos_le";
  1549 val split_mult_neg_le = thm "split_mult_neg_le";
  1550 val zero_le_square = thm "zero_le_square";
  1551 val zero_le_one = thm "zero_le_one";
  1552 val not_one_le_zero = thm "not_one_le_zero";
  1553 val not_one_less_zero = thm "not_one_less_zero";
  1554 val mult_left_mono_neg = thm "mult_left_mono_neg";
  1555 val mult_right_mono_neg = thm "mult_right_mono_neg";
  1556 val mult_strict_mono = thm "mult_strict_mono";
  1557 val mult_strict_mono' = thm "mult_strict_mono'";
  1558 val mult_mono = thm "mult_mono";
  1559 val less_1_mult = thm "less_1_mult";
  1560 val mult_less_cancel_right = thm "mult_less_cancel_right";
  1561 val mult_less_cancel_left = thm "mult_less_cancel_left";
  1562 val mult_le_cancel_right = thm "mult_le_cancel_right";
  1563 val mult_le_cancel_left = thm "mult_le_cancel_left";
  1564 val mult_less_imp_less_left = thm "mult_less_imp_less_left";
  1565 val mult_less_imp_less_right = thm "mult_less_imp_less_right";
  1566 val mult_cancel_right = thm "mult_cancel_right";
  1567 val mult_cancel_left = thm "mult_cancel_left";
  1568 val ring_eq_simps = thms "ring_eq_simps";
  1569 val right_inverse = thm "right_inverse";
  1570 val right_inverse_eq = thm "right_inverse_eq";
  1571 val nonzero_inverse_eq_divide = thm "nonzero_inverse_eq_divide";
  1572 val divide_self = thm "divide_self";
  1573 val divide_zero = thm "divide_zero";
  1574 val divide_zero_left = thm "divide_zero_left";
  1575 val inverse_eq_divide = thm "inverse_eq_divide";
  1576 val add_divide_distrib = thm "add_divide_distrib";
  1577 val field_mult_eq_0_iff = thm "field_mult_eq_0_iff";
  1578 val field_mult_cancel_right_lemma = thm "field_mult_cancel_right_lemma";
  1579 val field_mult_cancel_right = thm "field_mult_cancel_right";
  1580 val field_mult_cancel_left = thm "field_mult_cancel_left";
  1581 val nonzero_imp_inverse_nonzero = thm "nonzero_imp_inverse_nonzero";
  1582 val inverse_zero_imp_zero = thm "inverse_zero_imp_zero";
  1583 val inverse_nonzero_imp_nonzero = thm "inverse_nonzero_imp_nonzero";
  1584 val inverse_nonzero_iff_nonzero = thm "inverse_nonzero_iff_nonzero";
  1585 val nonzero_inverse_minus_eq = thm "nonzero_inverse_minus_eq";
  1586 val inverse_minus_eq = thm "inverse_minus_eq";
  1587 val nonzero_inverse_eq_imp_eq = thm "nonzero_inverse_eq_imp_eq";
  1588 val inverse_eq_imp_eq = thm "inverse_eq_imp_eq";
  1589 val inverse_eq_iff_eq = thm "inverse_eq_iff_eq";
  1590 val nonzero_inverse_inverse_eq = thm "nonzero_inverse_inverse_eq";
  1591 val inverse_inverse_eq = thm "inverse_inverse_eq";
  1592 val inverse_1 = thm "inverse_1";
  1593 val nonzero_inverse_mult_distrib = thm "nonzero_inverse_mult_distrib";
  1594 val inverse_mult_distrib = thm "inverse_mult_distrib";
  1595 val inverse_add = thm "inverse_add";
  1596 val inverse_divide = thm "inverse_divide";
  1597 val nonzero_mult_divide_cancel_left = thm "nonzero_mult_divide_cancel_left";
  1598 val mult_divide_cancel_left = thm "mult_divide_cancel_left";
  1599 val nonzero_mult_divide_cancel_right = thm "nonzero_mult_divide_cancel_right";
  1600 val mult_divide_cancel_right = thm "mult_divide_cancel_right";
  1601 val mult_divide_cancel_eq_if = thm "mult_divide_cancel_eq_if";
  1602 val divide_1 = thm "divide_1";
  1603 val times_divide_eq_right = thm "times_divide_eq_right";
  1604 val times_divide_eq_left = thm "times_divide_eq_left";
  1605 val divide_divide_eq_right = thm "divide_divide_eq_right";
  1606 val divide_divide_eq_left = thm "divide_divide_eq_left";
  1607 val nonzero_minus_divide_left = thm "nonzero_minus_divide_left";
  1608 val nonzero_minus_divide_right = thm "nonzero_minus_divide_right";
  1609 val nonzero_minus_divide_divide = thm "nonzero_minus_divide_divide";
  1610 val minus_divide_left = thm "minus_divide_left";
  1611 val minus_divide_right = thm "minus_divide_right";
  1612 val minus_divide_divide = thm "minus_divide_divide";
  1613 val diff_divide_distrib = thm "diff_divide_distrib";
  1614 val positive_imp_inverse_positive = thm "positive_imp_inverse_positive";
  1615 val negative_imp_inverse_negative = thm "negative_imp_inverse_negative";
  1616 val inverse_le_imp_le = thm "inverse_le_imp_le";
  1617 val inverse_positive_imp_positive = thm "inverse_positive_imp_positive";
  1618 val inverse_positive_iff_positive = thm "inverse_positive_iff_positive";
  1619 val inverse_negative_imp_negative = thm "inverse_negative_imp_negative";
  1620 val inverse_negative_iff_negative = thm "inverse_negative_iff_negative";
  1621 val inverse_nonnegative_iff_nonnegative = thm "inverse_nonnegative_iff_nonnegative";
  1622 val inverse_nonpositive_iff_nonpositive = thm "inverse_nonpositive_iff_nonpositive";
  1623 val less_imp_inverse_less = thm "less_imp_inverse_less";
  1624 val inverse_less_imp_less = thm "inverse_less_imp_less";
  1625 val inverse_less_iff_less = thm "inverse_less_iff_less";
  1626 val le_imp_inverse_le = thm "le_imp_inverse_le";
  1627 val inverse_le_iff_le = thm "inverse_le_iff_le";
  1628 val inverse_le_imp_le_neg = thm "inverse_le_imp_le_neg";
  1629 val less_imp_inverse_less_neg = thm "less_imp_inverse_less_neg";
  1630 val inverse_less_imp_less_neg = thm "inverse_less_imp_less_neg";
  1631 val inverse_less_iff_less_neg = thm "inverse_less_iff_less_neg";
  1632 val le_imp_inverse_le_neg = thm "le_imp_inverse_le_neg";
  1633 val inverse_le_iff_le_neg = thm "inverse_le_iff_le_neg";
  1634 val one_less_inverse_iff = thm "one_less_inverse_iff";
  1635 val inverse_eq_1_iff = thm "inverse_eq_1_iff";
  1636 val one_le_inverse_iff = thm "one_le_inverse_iff";
  1637 val inverse_less_1_iff = thm "inverse_less_1_iff";
  1638 val inverse_le_1_iff = thm "inverse_le_1_iff";
  1639 val zero_less_divide_iff = thm "zero_less_divide_iff";
  1640 val divide_less_0_iff = thm "divide_less_0_iff";
  1641 val zero_le_divide_iff = thm "zero_le_divide_iff";
  1642 val divide_le_0_iff = thm "divide_le_0_iff";
  1643 val divide_eq_0_iff = thm "divide_eq_0_iff";
  1644 val pos_le_divide_eq = thm "pos_le_divide_eq";
  1645 val neg_le_divide_eq = thm "neg_le_divide_eq";
  1646 val le_divide_eq = thm "le_divide_eq";
  1647 val pos_divide_le_eq = thm "pos_divide_le_eq";
  1648 val neg_divide_le_eq = thm "neg_divide_le_eq";
  1649 val divide_le_eq = thm "divide_le_eq";
  1650 val pos_less_divide_eq = thm "pos_less_divide_eq";
  1651 val neg_less_divide_eq = thm "neg_less_divide_eq";
  1652 val less_divide_eq = thm "less_divide_eq";
  1653 val pos_divide_less_eq = thm "pos_divide_less_eq";
  1654 val neg_divide_less_eq = thm "neg_divide_less_eq";
  1655 val divide_less_eq = thm "divide_less_eq";
  1656 val nonzero_eq_divide_eq = thm "nonzero_eq_divide_eq";
  1657 val eq_divide_eq = thm "eq_divide_eq";
  1658 val nonzero_divide_eq_eq = thm "nonzero_divide_eq_eq";
  1659 val divide_eq_eq = thm "divide_eq_eq";
  1660 val divide_cancel_right = thm "divide_cancel_right";
  1661 val divide_cancel_left = thm "divide_cancel_left";
  1662 val divide_eq_1_iff = thm "divide_eq_1_iff";
  1663 val one_eq_divide_iff = thm "one_eq_divide_iff";
  1664 val zero_eq_1_divide_iff = thm "zero_eq_1_divide_iff";
  1665 val one_divide_eq_0_iff = thm "one_divide_eq_0_iff";
  1666 val divide_strict_right_mono = thm "divide_strict_right_mono";
  1667 val divide_right_mono = thm "divide_right_mono";
  1668 val divide_strict_left_mono = thm "divide_strict_left_mono";
  1669 val divide_left_mono = thm "divide_left_mono";
  1670 val divide_strict_left_mono_neg = thm "divide_strict_left_mono_neg";
  1671 val divide_strict_right_mono_neg = thm "divide_strict_right_mono_neg";
  1672 val less_add_one = thm "less_add_one";
  1673 val zero_less_two = thm "zero_less_two";
  1674 val less_half_sum = thm "less_half_sum";
  1675 val gt_half_sum = thm "gt_half_sum";
  1676 val dense = thm "dense";
  1677 val abs_one = thm "abs_one";
  1678 val abs_le_mult = thm "abs_le_mult";
  1679 val abs_eq_mult = thm "abs_eq_mult";
  1680 val abs_mult = thm "abs_mult";
  1681 val abs_mult_self = thm "abs_mult_self";
  1682 val nonzero_abs_inverse = thm "nonzero_abs_inverse";
  1683 val abs_inverse = thm "abs_inverse";
  1684 val nonzero_abs_divide = thm "nonzero_abs_divide";
  1685 val abs_divide = thm "abs_divide";
  1686 val abs_mult_less = thm "abs_mult_less";
  1687 val eq_minus_self_iff = thm "eq_minus_self_iff";
  1688 val less_minus_self_iff = thm "less_minus_self_iff";
  1689 val abs_less_iff = thm "abs_less_iff";
  1690 *}
  1691 
  1692 end