src/HOL/Ring_and_Field.thy
changeset 14738 83f1a514dcb4
parent 14603 985eb6708207
child 14754 a080eeeaec14
equal deleted inserted replaced
14737:77ea79aed99d 14738:83f1a514dcb4
     1 (*  Title:   HOL/Ring_and_Field.thy
     1 (*  Title:   HOL/Ring_and_Field.thy
     2     ID:      $Id$
     2     ID:      $Id$
     3     Author:  Gertrud Bauer and Markus Wenzel, TU Muenchen
     3     Author:  Gertrud Bauer and Markus Wenzel, TU Muenchen
     4              Lawrence C Paulson, University of Cambridge
     4              Lawrence C Paulson, University of Cambridge
       
     5              Revised and splitted into Ring_and_Field.thy and Group.thy 
       
     6              by Steven Obua, TU Muenchen, in May 2004
     5     License: GPL (GNU GENERAL PUBLIC LICENSE)
     7     License: GPL (GNU GENERAL PUBLIC LICENSE)
     6 *)
     8 *)
     7 
     9 
     8 header {* Ring and field structures *}
    10 header {* (Ordered) Rings and Fields *}
     9 
    11 
    10 theory Ring_and_Field = Inductive:
    12 theory Ring_and_Field = OrderedGroup:
    11 
    13 
    12 subsection {* Abstract algebraic structures *}
    14 text {*
    13 
    15   The theory of partially ordered rings is taken from the books:
    14 subsection {* Types Classes @{text plus_ac0} and @{text times_ac1} *}
    16   \begin{itemize}
    15 
    17   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
    16 axclass plus_ac0 \<subseteq> plus, zero
    18   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
    17   commute:     "x + y = y + x"
    19   \end{itemize}
    18   assoc:       "(x + y) + z = x + (y + z)"
    20   Most of the used notions can also be looked up in 
    19   zero [simp]: "0 + x = x"
    21   \begin{itemize}
    20 
    22   \item \emph{www.mathworld.com} by Eric Weisstein et. al.
    21 lemma plus_ac0_left_commute: "x + (y+z) = y + ((x+z)::'a::plus_ac0)"
    23   \item \emph{Algebra I} by van der Waerden, Springer.
    22 by(rule mk_left_commute[of "op +",OF plus_ac0.assoc plus_ac0.commute])
    24   \end{itemize}
    23 
    25 *}
    24 lemma plus_ac0_zero_right [simp]: "x + 0 = (x ::'a::plus_ac0)"
    26 
    25 apply (rule plus_ac0.commute [THEN trans])
    27 axclass semiring \<subseteq> ab_semigroup_add, semigroup_mult
    26 apply (rule plus_ac0.zero)
    28   left_distrib: "(a + b) * c = a * c + b * c"
    27 done
    29   right_distrib: "a * (b + c) = a * b + a * c"
    28 
    30 
    29 lemmas plus_ac0 = plus_ac0.assoc plus_ac0.commute plus_ac0_left_commute
    31 axclass semiring_0 \<subseteq> semiring, comm_monoid_add
    30                   plus_ac0.zero plus_ac0_zero_right
    32 
    31 
    33 axclass comm_semiring \<subseteq> ab_semigroup_add, ab_semigroup_mult  
    32 axclass times_ac1 \<subseteq> times, one
       
    33   commute:     "x * y = y * x"
       
    34   assoc:       "(x * y) * z = x * (y * z)"
       
    35   one [simp]:  "1 * x = x"
       
    36 
       
    37 theorem times_ac1_left_commute: "(x::'a::times_ac1) * ((y::'a) * z) =
       
    38   y * (x * z)"
       
    39 by(rule mk_left_commute[of "op *",OF times_ac1.assoc times_ac1.commute])
       
    40 
       
    41 theorem times_ac1_one_right [simp]: "(x::'a::times_ac1) * 1 = x"
       
    42 proof -
       
    43   have "x * 1 = 1 * x"
       
    44     by (rule times_ac1.commute)
       
    45   also have "... = x"
       
    46     by (rule times_ac1.one)
       
    47   finally show ?thesis .
       
    48 qed
       
    49 
       
    50 theorems times_ac1 = times_ac1.assoc times_ac1.commute times_ac1_left_commute
       
    51   times_ac1.one times_ac1_one_right
       
    52 
       
    53 
       
    54 text{*This class is the same as @{text plus_ac0}, while using the same axiom
       
    55 names as the other axclasses.*}
       
    56 axclass abelian_semigroup \<subseteq> zero, plus
       
    57   add_assoc: "(a + b) + c = a + (b + c)"
       
    58   add_commute: "a + b = b + a"
       
    59   add_0 [simp]: "0 + a = a"
       
    60 
       
    61 text{*This class underlies both @{text semiring} and @{text ring}*}
       
    62 axclass almost_semiring \<subseteq> abelian_semigroup, one, times
       
    63   mult_assoc: "(a * b) * c = a * (b * c)"
       
    64   mult_commute: "a * b = b * a"
    34   mult_commute: "a * b = b * a"
    65   mult_1 [simp]: "1 * a = a"
    35   distrib: "(a + b) * c = a * c + b * c"
    66 
    36 
    67   left_distrib: "(a + b) * c = a * c + b * c"
    37 instance comm_semiring \<subseteq> semiring
    68   zero_neq_one [simp]: "0 \<noteq> 1"
       
    69 
       
    70 
       
    71 axclass semiring \<subseteq> almost_semiring
       
    72   add_left_imp_eq: "a + b = a + c ==> b=c"
       
    73     --{*This axiom is needed for semirings only: for rings, etc., it is
       
    74         redundant. Including it allows many more of the following results
       
    75         to be proved for semirings too.*}
       
    76 
       
    77 instance abelian_semigroup \<subseteq> plus_ac0
       
    78 proof
       
    79   fix x y z :: 'a
       
    80   show "x + y = y + x" by (rule add_commute)
       
    81   show "x + y + z = x + (y + z)" by (rule add_assoc)
       
    82   show "0+x = x" by (rule add_0)
       
    83 qed
       
    84 
       
    85 instance almost_semiring \<subseteq> times_ac1
       
    86 proof
       
    87   fix x y z :: 'a
       
    88   show "x * y = y * x" by (rule mult_commute)
       
    89   show "x * y * z = x * (y * z)" by (rule mult_assoc)
       
    90   show "1*x = x" by simp
       
    91 qed
       
    92 
       
    93 axclass abelian_group \<subseteq> abelian_semigroup, minus
       
    94    left_minus [simp]: "-a + a = 0"
       
    95    diff_minus: "a - b = a + -b"
       
    96 
       
    97 axclass ring \<subseteq> almost_semiring, abelian_group
       
    98 
       
    99 text{*Proving axiom @{text add_left_imp_eq} makes all @{text semiring}
       
   100       theorems available to members of @{term ring} *}
       
   101 instance ring \<subseteq> semiring
       
   102 proof
    38 proof
   103   fix a b c :: 'a
    39   fix a b c :: 'a
   104   assume "a + b = a + c"
    40   show "(a + b) * c = a * c + b * c" by (simp add: distrib)
   105   hence  "-a + a + b = -a + a + c" by (simp only: add_assoc)
    41   have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
   106   thus "b = c" by simp
    42   also have "... = b * a + c * a" by (simp only: distrib)
   107 qed
    43   also have "... = a * b + a * c" by (simp add: mult_ac)
   108 
    44   finally show "a * (b + c) = a * b + a * c" by blast
   109 text{*This class underlies @{text ordered_semiring} and @{text ordered_ring}*}
    45 qed
   110 axclass almost_ordered_semiring \<subseteq> semiring, linorder
    46 
   111   add_left_mono: "a \<le> b ==> c + a \<le> c + b"
    47 axclass comm_semiring_0 \<subseteq> comm_semiring, comm_monoid_add
   112   mult_strict_left_mono: "a < b ==> 0 < c ==> c * a < c * b"
    48 
   113 
    49 instance comm_semiring_0 \<subseteq> semiring_0 ..
   114 axclass ordered_semiring \<subseteq> almost_ordered_semiring
    50 
   115   zero_less_one [simp]: "0 < 1" --{*This too is needed for semirings only.*}
    51 axclass axclass_0_neq_1 \<subseteq> zero, one
   116 
    52   zero_neq_one [simp]: "0 \<noteq> 1"
   117 axclass ordered_ring \<subseteq> almost_ordered_semiring, ring
    53 
   118   abs_if: "\<bar>a\<bar> = (if a < 0 then -a else a)"
    54 axclass semiring_1 \<subseteq> axclass_0_neq_1, semiring_0, monoid_mult
   119 
    55 
   120 axclass field \<subseteq> ring, inverse
    56 axclass comm_semiring_1 \<subseteq> axclass_0_neq_1, comm_semiring_0, comm_monoid_mult (* previously almost_semiring *)
       
    57 
       
    58 instance comm_semiring_1 \<subseteq> semiring_1 ..
       
    59 
       
    60 axclass axclass_no_zero_divisors \<subseteq> zero, times
       
    61   no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0"
       
    62 
       
    63 axclass comm_semiring_1_cancel \<subseteq> comm_semiring_1, cancel_ab_semigroup_add (* previously semiring *)
       
    64 
       
    65 axclass ring \<subseteq> semiring, ab_group_add
       
    66 
       
    67 instance ring \<subseteq> semiring_0 ..
       
    68 
       
    69 axclass comm_ring \<subseteq> comm_semiring_0, ab_group_add
       
    70 
       
    71 instance comm_ring \<subseteq> ring ..
       
    72 
       
    73 instance comm_ring \<subseteq> comm_semiring_0 ..
       
    74 
       
    75 axclass ring_1 \<subseteq> ring, semiring_1
       
    76 
       
    77 axclass comm_ring_1 \<subseteq> comm_ring, comm_semiring_1 (* previously ring *)
       
    78 
       
    79 instance comm_ring_1 \<subseteq> ring_1 ..
       
    80 
       
    81 instance comm_ring_1 \<subseteq> comm_semiring_1_cancel ..
       
    82 
       
    83 axclass idom \<subseteq> comm_ring_1, axclass_no_zero_divisors
       
    84 
       
    85 axclass field \<subseteq> comm_ring_1, inverse
   121   left_inverse [simp]: "a \<noteq> 0 ==> inverse a * a = 1"
    86   left_inverse [simp]: "a \<noteq> 0 ==> inverse a * a = 1"
   122   divide_inverse:      "a / b = a * inverse b"
    87   divide_inverse:      "a / b = a * inverse b"
   123 
    88 
   124 axclass ordered_field \<subseteq> ordered_ring, field
    89 lemma mult_zero_left [simp]: "0 * a = (0::'a::{semiring_0, cancel_semigroup_add})"
   125 
    90 proof -
       
    91   have "0*a + 0*a = 0*a + 0"
       
    92     by (simp add: left_distrib [symmetric])
       
    93   thus ?thesis 
       
    94     by (simp only: add_left_cancel)
       
    95 qed
       
    96 
       
    97 lemma mult_zero_right [simp]: "a * 0 = (0::'a::{semiring_0, cancel_semigroup_add})"
       
    98 proof -
       
    99   have "a*0 + a*0 = a*0 + 0"
       
   100     by (simp add: right_distrib [symmetric])
       
   101   thus ?thesis 
       
   102     by (simp only: add_left_cancel)
       
   103 qed
       
   104 
       
   105 lemma field_mult_eq_0_iff [simp]: "(a*b = (0::'a::field)) = (a = 0 | b = 0)"
       
   106 proof cases
       
   107   assume "a=0" thus ?thesis by simp
       
   108 next
       
   109   assume anz [simp]: "a\<noteq>0"
       
   110   { assume "a * b = 0"
       
   111     hence "inverse a * (a * b) = 0" by simp
       
   112     hence "b = 0"  by (simp (no_asm_use) add: mult_assoc [symmetric])}
       
   113   thus ?thesis by force
       
   114 qed
       
   115 
       
   116 instance field \<subseteq> idom
       
   117 by (intro_classes, simp)
       
   118   
   126 axclass division_by_zero \<subseteq> zero, inverse
   119 axclass division_by_zero \<subseteq> zero, inverse
   127   inverse_zero [simp]: "inverse 0 = 0"
   120   inverse_zero [simp]: "inverse 0 = 0"
   128 
   121 
   129 
       
   130 subsection {* Derived Rules for Addition *}
       
   131 
       
   132 lemma add_0_right [simp]: "a + 0 = (a::'a::plus_ac0)"
       
   133 proof -
       
   134   have "a + 0 = 0 + a" by (rule plus_ac0.commute)
       
   135   also have "... = a" by simp
       
   136   finally show ?thesis .
       
   137 qed
       
   138 
       
   139 lemma add_left_commute: "a + (b + c) = b + (a + (c::'a::plus_ac0))"
       
   140   by (rule mk_left_commute [of "op +", OF plus_ac0.assoc plus_ac0.commute])
       
   141 
       
   142 theorems add_ac = add_assoc add_commute add_left_commute
       
   143 
       
   144 lemma right_minus [simp]: "a + -(a::'a::abelian_group) = 0"
       
   145 proof -
       
   146   have "a + -a = -a + a" by (simp add: add_ac)
       
   147   also have "... = 0" by simp
       
   148   finally show ?thesis .
       
   149 qed
       
   150 
       
   151 lemma right_minus_eq: "(a - b = 0) = (a = (b::'a::abelian_group))"
       
   152 proof
       
   153   have "a = a - b + b" by (simp add: diff_minus add_ac)
       
   154   also assume "a - b = 0"
       
   155   finally show "a = b" by simp
       
   156 next
       
   157   assume "a = b"
       
   158   thus "a - b = 0" by (simp add: diff_minus)
       
   159 qed
       
   160 
       
   161 lemma add_left_cancel [simp]:
       
   162      "(a + b = a + c) = (b = (c::'a::semiring))"
       
   163 by (blast dest: add_left_imp_eq) 
       
   164 
       
   165 lemma add_right_cancel [simp]:
       
   166      "(b + a = c + a) = (b = (c::'a::semiring))"
       
   167   by (simp add: add_commute)
       
   168 
       
   169 lemma minus_minus [simp]: "- (- (a::'a::abelian_group)) = a" 
       
   170 apply (rule right_minus_eq [THEN iffD1]) 
       
   171 apply (simp add: diff_minus) 
       
   172 done
       
   173 
       
   174 lemma equals_zero_I: "a+b = 0 ==> -a = (b::'a::abelian_group)"
       
   175 apply (rule right_minus_eq [THEN iffD1, symmetric])
       
   176 apply (simp add: diff_minus add_commute) 
       
   177 done
       
   178 
       
   179 lemma minus_zero [simp]: "- 0 = (0::'a::abelian_group)"
       
   180 by (simp add: equals_zero_I)
       
   181 
       
   182 lemma diff_self [simp]: "a - (a::'a::abelian_group) = 0"
       
   183   by (simp add: diff_minus)
       
   184 
       
   185 lemma diff_0 [simp]: "(0::'a::abelian_group) - a = -a"
       
   186 by (simp add: diff_minus)
       
   187 
       
   188 lemma diff_0_right [simp]: "a - (0::'a::abelian_group) = a" 
       
   189 by (simp add: diff_minus)
       
   190 
       
   191 lemma diff_minus_eq_add [simp]: "a - - b = a + (b::'a::abelian_group)"
       
   192 by (simp add: diff_minus)
       
   193 
       
   194 lemma neg_equal_iff_equal [simp]: "(-a = -b) = (a = (b::'a::abelian_group))" 
       
   195 proof 
       
   196   assume "- a = - b"
       
   197   hence "- (- a) = - (- b)"
       
   198     by simp
       
   199   thus "a=b" by simp
       
   200 next
       
   201   assume "a=b"
       
   202   thus "-a = -b" by simp
       
   203 qed
       
   204 
       
   205 lemma neg_equal_0_iff_equal [simp]: "(-a = 0) = (a = (0::'a::abelian_group))"
       
   206 by (subst neg_equal_iff_equal [symmetric], simp)
       
   207 
       
   208 lemma neg_0_equal_iff_equal [simp]: "(0 = -a) = (0 = (a::'a::abelian_group))"
       
   209 by (subst neg_equal_iff_equal [symmetric], simp)
       
   210 
       
   211 lemma add_minus_self [simp]: "a + b - b = (a::'a::abelian_group)"; 
       
   212   by (simp add: diff_minus add_assoc)
       
   213 
       
   214 lemma add_minus_self_left [simp]:  "a + (b - a)  = (b::'a::abelian_group)";
       
   215 by (simp add: diff_minus add_left_commute [of a]) 
       
   216 
       
   217 lemma add_minus_self_right  [simp]:  "a + b - a  = (b::'a::abelian_group)";
       
   218 by (simp add: diff_minus add_left_commute [of a] add_assoc) 
       
   219 
       
   220 lemma minus_add_self [simp]: "a - b + b = (a::'a::abelian_group)"; 
       
   221 by (simp add: diff_minus add_assoc) 
       
   222 
       
   223 text{*The next two equations can make the simplifier loop!*}
       
   224 
       
   225 lemma equation_minus_iff: "(a = - b) = (b = - (a::'a::abelian_group))"
       
   226 proof -
       
   227   have "(- (-a) = - b) = (- a = b)" by (rule neg_equal_iff_equal)
       
   228   thus ?thesis by (simp add: eq_commute)
       
   229 qed
       
   230 
       
   231 lemma minus_equation_iff: "(- a = b) = (- (b::'a::abelian_group) = a)"
       
   232 proof -
       
   233   have "(- a = - (-b)) = (a = -b)" by (rule neg_equal_iff_equal)
       
   234   thus ?thesis by (simp add: eq_commute)
       
   235 qed
       
   236 
       
   237 
       
   238 subsection {* Derived rules for multiplication *}
       
   239 
       
   240 lemma mult_1_right [simp]: "a * (1::'a::almost_semiring) = a"
       
   241 proof -
       
   242   have "a * 1 = 1 * a" by (simp add: mult_commute)
       
   243   also have "... = a" by simp
       
   244   finally show ?thesis .
       
   245 qed
       
   246 
       
   247 lemma mult_left_commute: "a * (b * c) = b * (a * (c::'a::almost_semiring))"
       
   248   by (rule mk_left_commute [of "op *", OF mult_assoc mult_commute])
       
   249 
       
   250 theorems mult_ac = mult_assoc mult_commute mult_left_commute
       
   251 
       
   252 lemma mult_zero_left [simp]: "0 * a = (0::'a::semiring)"
       
   253 proof -
       
   254   have "0*a + 0*a = 0*a + 0"
       
   255     by (simp add: left_distrib [symmetric])
       
   256   thus ?thesis by (simp only: add_left_cancel)
       
   257 qed
       
   258 
       
   259 lemma mult_zero_right [simp]: "a * 0 = (0::'a::semiring)"
       
   260   by (simp add: mult_commute)
       
   261 
       
   262 
       
   263 subsection {* Distribution rules *}
   122 subsection {* Distribution rules *}
   264 
       
   265 lemma right_distrib: "a * (b + c) = a * b + a * (c::'a::almost_semiring)"
       
   266 proof -
       
   267   have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
       
   268   also have "... = b * a + c * a" by (simp only: left_distrib)
       
   269   also have "... = a * b + a * c" by (simp add: mult_ac)
       
   270   finally show ?thesis .
       
   271 qed
       
   272 
   123 
   273 theorems ring_distrib = right_distrib left_distrib
   124 theorems ring_distrib = right_distrib left_distrib
   274 
   125 
   275 text{*For the @{text combine_numerals} simproc*}
   126 text{*For the @{text combine_numerals} simproc*}
   276 lemma combine_common_factor:
   127 lemma combine_common_factor:
   277      "a*e + (b*e + c) = (a+b)*e + (c::'a::almost_semiring)"
   128      "a*e + (b*e + c) = (a+b)*e + (c::'a::semiring)"
   278 by (simp add: left_distrib add_ac)
   129 by (simp add: left_distrib add_ac)
   279 
       
   280 lemma minus_add_distrib [simp]: "- (a + b) = -a + -(b::'a::abelian_group)"
       
   281 apply (rule equals_zero_I)
       
   282 apply (simp add: plus_ac0) 
       
   283 done
       
   284 
   130 
   285 lemma minus_mult_left: "- (a * b) = (-a) * (b::'a::ring)"
   131 lemma minus_mult_left: "- (a * b) = (-a) * (b::'a::ring)"
   286 apply (rule equals_zero_I)
   132 apply (rule equals_zero_I)
   287 apply (simp add: left_distrib [symmetric]) 
   133 apply (simp add: left_distrib [symmetric]) 
   288 done
   134 done
   301 lemma right_diff_distrib: "a * (b - c) = a * b - a * (c::'a::ring)"
   147 lemma right_diff_distrib: "a * (b - c) = a * b - a * (c::'a::ring)"
   302 by (simp add: right_distrib diff_minus 
   148 by (simp add: right_distrib diff_minus 
   303               minus_mult_left [symmetric] minus_mult_right [symmetric]) 
   149               minus_mult_left [symmetric] minus_mult_right [symmetric]) 
   304 
   150 
   305 lemma left_diff_distrib: "(a - b) * c = a * c - b * (c::'a::ring)"
   151 lemma left_diff_distrib: "(a - b) * c = a * c - b * (c::'a::ring)"
   306 by (simp add: mult_commute [of _ c] right_diff_distrib) 
   152 by (simp add: left_distrib diff_minus 
   307 
   153               minus_mult_left [symmetric] minus_mult_right [symmetric]) 
   308 lemma minus_diff_eq [simp]: "- (a - b) = b - (a::'a::ring)"
   154 
   309 by (simp add: diff_minus add_commute) 
   155 axclass pordered_semiring \<subseteq> semiring_0, pordered_ab_semigroup_add 
   310 
   156   mult_left_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> c * a <= c * b"
   311 
   157   mult_right_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> a * c <= b * c"
   312 subsection {* Ordering Rules for Addition *}
   158 
   313 
   159 axclass pordered_cancel_semiring \<subseteq> pordered_semiring, cancel_ab_semigroup_add
   314 lemma add_right_mono: "a \<le> (b::'a::almost_ordered_semiring) ==> a + c \<le> b + c"
   160 
   315 by (simp add: add_commute [of _ c] add_left_mono)
   161 axclass ordered_semiring_strict \<subseteq> semiring_0, ordered_cancel_ab_semigroup_add
   316 
   162   mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
   317 text {* non-strict, in both arguments *}
   163   mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c"
   318 lemma add_mono:
   164 
   319      "[|a \<le> b;  c \<le> d|] ==> a + c \<le> b + (d::'a::almost_ordered_semiring)"
   165 instance ordered_semiring_strict \<subseteq> pordered_cancel_semiring
   320   apply (erule add_right_mono [THEN order_trans])
   166 apply intro_classes
   321   apply (simp add: add_commute add_left_mono)
   167 apply (case_tac "a < b & 0 < c")
   322   done
   168 apply (auto simp add: mult_strict_left_mono order_less_le)
   323 
   169 apply (auto simp add: mult_strict_left_mono order_le_less)
   324 lemma add_strict_left_mono:
   170 apply (simp add: mult_strict_right_mono)
   325      "a < b ==> c + a < c + (b::'a::almost_ordered_semiring)"
   171 done
   326  by (simp add: order_less_le add_left_mono) 
   172 
   327 
   173 axclass pordered_comm_semiring \<subseteq> comm_semiring_0, pordered_ab_semigroup_add
   328 lemma add_strict_right_mono:
   174   mult_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> c * a <= c * b"
   329      "a < b ==> a + c < b + (c::'a::almost_ordered_semiring)"
   175 
   330  by (simp add: add_commute [of _ c] add_strict_left_mono)
   176 axclass pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring, cancel_ab_semigroup_add
   331 
   177 
   332 text{*Strict monotonicity in both arguments*}
   178 instance pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring ..
   333 lemma add_strict_mono: "[|a<b; c<d|] ==> a + c < b + (d::'a::almost_ordered_semiring)"
   179 
   334 apply (erule add_strict_right_mono [THEN order_less_trans])
   180 axclass ordered_comm_semiring_strict \<subseteq> comm_semiring_0, ordered_cancel_ab_semigroup_add
   335 apply (erule add_strict_left_mono)
   181   mult_strict_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
   336 done
   182 
   337 
   183 instance pordered_comm_semiring \<subseteq> pordered_semiring
   338 lemma add_less_le_mono:
   184 by (intro_classes, insert mult_mono, simp_all add: mult_commute, blast+)
   339      "[| a<b; c\<le>d |] ==> a + c < b + (d::'a::almost_ordered_semiring)"
   185 
   340 apply (erule add_strict_right_mono [THEN order_less_le_trans])
   186 instance pordered_cancel_comm_semiring \<subseteq> pordered_cancel_semiring ..
   341 apply (erule add_left_mono) 
   187 
   342 done
   188 instance ordered_comm_semiring_strict \<subseteq> ordered_semiring_strict
   343 
   189 by (intro_classes, insert mult_strict_mono, simp_all add: mult_commute, blast+)
   344 lemma add_le_less_mono:
   190 
   345      "[| a\<le>b; c<d |] ==> a + c < b + (d::'a::almost_ordered_semiring)"
   191 instance ordered_comm_semiring_strict \<subseteq> pordered_cancel_comm_semiring
   346 apply (erule add_right_mono [THEN order_le_less_trans])
   192 apply (intro_classes)
   347 apply (erule add_strict_left_mono) 
   193 apply (case_tac "a < b & 0 < c")
   348 done
   194 apply (auto simp add: mult_strict_left_mono order_less_le)
   349 
   195 apply (auto simp add: mult_strict_left_mono order_le_less)
   350 lemma add_less_imp_less_left:
   196 done
   351       assumes less: "c + a < c + b"  shows "a < (b::'a::almost_ordered_semiring)"
   197 
   352 proof (rule ccontr)
   198 axclass pordered_ring \<subseteq> ring, pordered_semiring 
   353   assume "~ a < b"
   199 
   354   hence "b \<le> a" by (simp add: linorder_not_less)
   200 instance pordered_ring \<subseteq> pordered_ab_group_add ..
   355   hence "c+b \<le> c+a" by (rule add_left_mono)
   201 
   356   with this and less show False 
   202 instance pordered_ring \<subseteq> pordered_cancel_semiring ..
   357     by (simp add: linorder_not_less [symmetric])
   203 
   358 qed
   204 axclass lordered_ring \<subseteq> pordered_ring, lordered_ab_group_abs
   359 
   205 
   360 lemma add_less_imp_less_right:
   206 axclass axclass_abs_if \<subseteq> minus, ord, zero
   361       "a + c < b + c ==> a < (b::'a::almost_ordered_semiring)"
   207   abs_if: "abs a = (if (a < 0) then (-a) else a)"
   362 apply (rule add_less_imp_less_left [of c])
   208 
   363 apply (simp add: add_commute)  
   209 axclass ordered_ring_strict \<subseteq> ring, ordered_semiring_strict, axclass_abs_if
   364 done
   210 
   365 
   211 instance ordered_ring_strict \<subseteq> lordered_ab_group ..
   366 lemma add_less_cancel_left [simp]:
   212 
   367     "(c+a < c+b) = (a < (b::'a::almost_ordered_semiring))"
   213 instance ordered_ring_strict \<subseteq> lordered_ring
   368 by (blast intro: add_less_imp_less_left add_strict_left_mono) 
   214 by (intro_classes, simp add: abs_if join_eq_if)
   369 
   215 
   370 lemma add_less_cancel_right [simp]:
   216 axclass pordered_comm_ring \<subseteq> comm_ring, pordered_comm_semiring
   371     "(a+c < b+c) = (a < (b::'a::almost_ordered_semiring))"
   217 
   372 by (blast intro: add_less_imp_less_right add_strict_right_mono)
   218 axclass ordered_semidom \<subseteq> comm_semiring_1_cancel, ordered_comm_semiring_strict (* previously ordered_semiring *)
   373 
   219   zero_less_one [simp]: "0 < 1"
   374 lemma add_le_cancel_left [simp]:
   220 
   375     "(c+a \<le> c+b) = (a \<le> (b::'a::almost_ordered_semiring))"
   221 axclass ordered_idom \<subseteq> comm_ring_1, ordered_comm_semiring_strict, axclass_abs_if (* previously ordered_ring *)
   376 by (simp add: linorder_not_less [symmetric]) 
   222 
   377 
   223 instance ordered_idom \<subseteq> ordered_ring_strict ..
   378 lemma add_le_cancel_right [simp]:
   224 
   379     "(a+c \<le> b+c) = (a \<le> (b::'a::almost_ordered_semiring))"
   225 axclass ordered_field \<subseteq> field, ordered_idom
   380 by (simp add: linorder_not_less [symmetric]) 
       
   381 
       
   382 lemma add_le_imp_le_left:
       
   383       "c + a \<le> c + b ==> a \<le> (b::'a::almost_ordered_semiring)"
       
   384 by simp
       
   385 
       
   386 lemma add_le_imp_le_right:
       
   387       "a + c \<le> b + c ==> a \<le> (b::'a::almost_ordered_semiring)"
       
   388 by simp
       
   389 
       
   390 lemma add_increasing: "[|0\<le>a; b\<le>c|] ==> b \<le> a + (c::'a::almost_ordered_semiring)"
       
   391 by (insert add_mono [of 0 a b c], simp)
       
   392 
       
   393 
       
   394 subsection {* Ordering Rules for Unary Minus *}
       
   395 
       
   396 lemma le_imp_neg_le:
       
   397       assumes "a \<le> (b::'a::ordered_ring)" shows "-b \<le> -a"
       
   398 proof -
       
   399   have "-a+a \<le> -a+b"
       
   400     by (rule add_left_mono) 
       
   401   hence "0 \<le> -a+b"
       
   402     by simp
       
   403   hence "0 + (-b) \<le> (-a + b) + (-b)"
       
   404     by (rule add_right_mono) 
       
   405   thus ?thesis
       
   406     by (simp add: add_assoc)
       
   407 qed
       
   408 
       
   409 lemma neg_le_iff_le [simp]: "(-b \<le> -a) = (a \<le> (b::'a::ordered_ring))"
       
   410 proof 
       
   411   assume "- b \<le> - a"
       
   412   hence "- (- a) \<le> - (- b)"
       
   413     by (rule le_imp_neg_le)
       
   414   thus "a\<le>b" by simp
       
   415 next
       
   416   assume "a\<le>b"
       
   417   thus "-b \<le> -a" by (rule le_imp_neg_le)
       
   418 qed
       
   419 
       
   420 lemma neg_le_0_iff_le [simp]: "(-a \<le> 0) = (0 \<le> (a::'a::ordered_ring))"
       
   421 by (subst neg_le_iff_le [symmetric], simp)
       
   422 
       
   423 lemma neg_0_le_iff_le [simp]: "(0 \<le> -a) = (a \<le> (0::'a::ordered_ring))"
       
   424 by (subst neg_le_iff_le [symmetric], simp)
       
   425 
       
   426 lemma neg_less_iff_less [simp]: "(-b < -a) = (a < (b::'a::ordered_ring))"
       
   427 by (force simp add: order_less_le) 
       
   428 
       
   429 lemma neg_less_0_iff_less [simp]: "(-a < 0) = (0 < (a::'a::ordered_ring))"
       
   430 by (subst neg_less_iff_less [symmetric], simp)
       
   431 
       
   432 lemma neg_0_less_iff_less [simp]: "(0 < -a) = (a < (0::'a::ordered_ring))"
       
   433 by (subst neg_less_iff_less [symmetric], simp)
       
   434 
       
   435 text{*The next several equations can make the simplifier loop!*}
       
   436 
       
   437 lemma less_minus_iff: "(a < - b) = (b < - (a::'a::ordered_ring))"
       
   438 proof -
       
   439   have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
       
   440   thus ?thesis by simp
       
   441 qed
       
   442 
       
   443 lemma minus_less_iff: "(- a < b) = (- b < (a::'a::ordered_ring))"
       
   444 proof -
       
   445   have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
       
   446   thus ?thesis by simp
       
   447 qed
       
   448 
       
   449 lemma le_minus_iff: "(a \<le> - b) = (b \<le> - (a::'a::ordered_ring))"
       
   450 apply (simp add: linorder_not_less [symmetric])
       
   451 apply (rule minus_less_iff) 
       
   452 done
       
   453 
       
   454 lemma minus_le_iff: "(- a \<le> b) = (- b \<le> (a::'a::ordered_ring))"
       
   455 apply (simp add: linorder_not_less [symmetric])
       
   456 apply (rule less_minus_iff) 
       
   457 done
       
   458 
       
   459 
       
   460 subsection{*Subtraction Laws*}
       
   461 
       
   462 lemma add_diff_eq: "a + (b - c) = (a + b) - (c::'a::abelian_group)"
       
   463 by (simp add: diff_minus plus_ac0)
       
   464 
       
   465 lemma diff_add_eq: "(a - b) + c = (a + c) - (b::'a::abelian_group)"
       
   466 by (simp add: diff_minus plus_ac0)
       
   467 
       
   468 lemma diff_eq_eq: "(a-b = c) = (a = c + (b::'a::abelian_group))"
       
   469 by (auto simp add: diff_minus add_assoc)
       
   470 
       
   471 lemma eq_diff_eq: "(a = c-b) = (a + (b::'a::abelian_group) = c)"
       
   472 by (auto simp add: diff_minus add_assoc)
       
   473 
       
   474 lemma diff_diff_eq: "(a - b) - c = a - (b + (c::'a::abelian_group))"
       
   475 by (simp add: diff_minus plus_ac0)
       
   476 
       
   477 lemma diff_diff_eq2: "a - (b - c) = (a + c) - (b::'a::abelian_group)"
       
   478 by (simp add: diff_minus plus_ac0)
       
   479 
       
   480 text{*Further subtraction laws for ordered rings*}
       
   481 
       
   482 lemma less_iff_diff_less_0: "(a < b) = (a - b < (0::'a::ordered_ring))"
       
   483 proof -
       
   484   have  "(a < b) = (a + (- b) < b + (-b))"  
       
   485     by (simp only: add_less_cancel_right)
       
   486   also have "... =  (a - b < 0)" by (simp add: diff_minus)
       
   487   finally show ?thesis .
       
   488 qed
       
   489 
       
   490 lemma diff_less_eq: "(a-b < c) = (a < c + (b::'a::ordered_ring))"
       
   491 apply (subst less_iff_diff_less_0)
       
   492 apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
       
   493 apply (simp add: diff_minus add_ac)
       
   494 done
       
   495 
       
   496 lemma less_diff_eq: "(a < c-b) = (a + (b::'a::ordered_ring) < c)"
       
   497 apply (subst less_iff_diff_less_0)
       
   498 apply (rule less_iff_diff_less_0 [of _ "c-b", THEN ssubst])
       
   499 apply (simp add: diff_minus add_ac)
       
   500 done
       
   501 
       
   502 lemma diff_le_eq: "(a-b \<le> c) = (a \<le> c + (b::'a::ordered_ring))"
       
   503 by (simp add: linorder_not_less [symmetric] less_diff_eq)
       
   504 
       
   505 lemma le_diff_eq: "(a \<le> c-b) = (a + (b::'a::ordered_ring) \<le> c)"
       
   506 by (simp add: linorder_not_less [symmetric] diff_less_eq)
       
   507 
       
   508 text{*This list of rewrites simplifies (in)equalities by bringing subtractions
       
   509   to the top and then moving negative terms to the other side.
       
   510   Use with @{text add_ac}*}
       
   511 lemmas compare_rls =
       
   512        diff_minus [symmetric]
       
   513        add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
       
   514        diff_less_eq less_diff_eq diff_le_eq le_diff_eq
       
   515        diff_eq_eq eq_diff_eq
       
   516 
       
   517 text{*This list of rewrites decides ring equalities by ordered rewriting.*}
       
   518 lemmas ring_eq_simps =
       
   519   times_ac1.assoc times_ac1.commute times_ac1_left_commute
       
   520   left_distrib right_distrib left_diff_distrib right_diff_distrib
       
   521   plus_ac0.assoc plus_ac0.commute plus_ac0_left_commute
       
   522   add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
       
   523   diff_eq_eq eq_diff_eq
       
   524 
       
   525 subsection{*Lemmas for the @{text cancel_numerals} simproc*}
       
   526 
       
   527 lemma eq_iff_diff_eq_0: "(a = b) = (a-b = (0::'a::abelian_group))"
       
   528 by (simp add: compare_rls)
       
   529 
       
   530 lemma le_iff_diff_le_0: "(a \<le> b) = (a-b \<le> (0::'a::ordered_ring))"
       
   531 by (simp add: compare_rls)
       
   532 
   226 
   533 lemma eq_add_iff1:
   227 lemma eq_add_iff1:
   534      "(a*e + c = b*e + d) = ((a-b)*e + c = (d::'a::ring))"
   228      "(a*e + c = b*e + d) = ((a-b)*e + c = (d::'a::ring))"
       
   229 apply (simp add: diff_minus left_distrib)
   535 apply (simp add: diff_minus left_distrib add_ac)
   230 apply (simp add: diff_minus left_distrib add_ac)
   536 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   231 apply (simp add: compare_rls minus_mult_left [symmetric])
   537 done
   232 done
   538 
   233 
   539 lemma eq_add_iff2:
   234 lemma eq_add_iff2:
   540      "(a*e + c = b*e + d) = (c = (b-a)*e + (d::'a::ring))"
   235      "(a*e + c = b*e + d) = (c = (b-a)*e + (d::'a::ring))"
   541 apply (simp add: diff_minus left_distrib add_ac)
   236 apply (simp add: diff_minus left_distrib add_ac)
   542 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   237 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   543 done
   238 done
   544 
   239 
   545 lemma less_add_iff1:
   240 lemma less_add_iff1:
   546      "(a*e + c < b*e + d) = ((a-b)*e + c < (d::'a::ordered_ring))"
   241      "(a*e + c < b*e + d) = ((a-b)*e + c < (d::'a::pordered_ring))"
   547 apply (simp add: diff_minus left_distrib add_ac)
   242 apply (simp add: diff_minus left_distrib add_ac)
   548 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   243 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   549 done
   244 done
   550 
   245 
   551 lemma less_add_iff2:
   246 lemma less_add_iff2:
   552      "(a*e + c < b*e + d) = (c < (b-a)*e + (d::'a::ordered_ring))"
   247      "(a*e + c < b*e + d) = (c < (b-a)*e + (d::'a::pordered_ring))"
   553 apply (simp add: diff_minus left_distrib add_ac)
   248 apply (simp add: diff_minus left_distrib add_ac)
   554 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   249 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   555 done
   250 done
   556 
   251 
   557 lemma le_add_iff1:
   252 lemma le_add_iff1:
   558      "(a*e + c \<le> b*e + d) = ((a-b)*e + c \<le> (d::'a::ordered_ring))"
   253      "(a*e + c \<le> b*e + d) = ((a-b)*e + c \<le> (d::'a::pordered_ring))"
   559 apply (simp add: diff_minus left_distrib add_ac)
   254 apply (simp add: diff_minus left_distrib add_ac)
   560 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   255 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   561 done
   256 done
   562 
   257 
   563 lemma le_add_iff2:
   258 lemma le_add_iff2:
   564      "(a*e + c \<le> b*e + d) = (c \<le> (b-a)*e + (d::'a::ordered_ring))"
   259      "(a*e + c \<le> b*e + d) = (c \<le> (b-a)*e + (d::'a::pordered_ring))"
   565 apply (simp add: diff_minus left_distrib add_ac)
   260 apply (simp add: diff_minus left_distrib add_ac)
   566 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   261 apply (simp add: compare_rls minus_mult_left [symmetric]) 
   567 done
   262 done
   568 
   263 
   569 
       
   570 subsection {* Ordering Rules for Multiplication *}
   264 subsection {* Ordering Rules for Multiplication *}
   571 
   265 
   572 lemma mult_strict_right_mono:
       
   573      "[|a < b; 0 < c|] ==> a * c < b * (c::'a::almost_ordered_semiring)"
       
   574 by (simp add: mult_commute [of _ c] mult_strict_left_mono)
       
   575 
       
   576 lemma mult_left_mono:
       
   577      "[|a \<le> b; 0 \<le> c|] ==> c * a \<le> c * (b::'a::almost_ordered_semiring)"
       
   578   apply (case_tac "c=0", simp)
       
   579   apply (force simp add: mult_strict_left_mono order_le_less) 
       
   580   done
       
   581 
       
   582 lemma mult_right_mono:
       
   583      "[|a \<le> b; 0 \<le> c|] ==> a*c \<le> b * (c::'a::almost_ordered_semiring)"
       
   584   by (simp add: mult_left_mono mult_commute [of _ c]) 
       
   585 
       
   586 lemma mult_left_le_imp_le:
   266 lemma mult_left_le_imp_le:
   587      "[|c*a \<le> c*b; 0 < c|] ==> a \<le> (b::'a::almost_ordered_semiring)"
   267      "[|c*a \<le> c*b; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
   588   by (force simp add: mult_strict_left_mono linorder_not_less [symmetric])
   268   by (force simp add: mult_strict_left_mono linorder_not_less [symmetric])
   589  
   269  
   590 lemma mult_right_le_imp_le:
   270 lemma mult_right_le_imp_le:
   591      "[|a*c \<le> b*c; 0 < c|] ==> a \<le> (b::'a::almost_ordered_semiring)"
   271      "[|a*c \<le> b*c; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
   592   by (force simp add: mult_strict_right_mono linorder_not_less [symmetric])
   272   by (force simp add: mult_strict_right_mono linorder_not_less [symmetric])
   593 
   273 
   594 lemma mult_left_less_imp_less:
   274 lemma mult_left_less_imp_less:
   595      "[|c*a < c*b; 0 \<le> c|] ==> a < (b::'a::almost_ordered_semiring)"
   275      "[|c*a < c*b; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
   596   by (force simp add: mult_left_mono linorder_not_le [symmetric])
   276   by (force simp add: mult_left_mono linorder_not_le [symmetric])
   597  
   277  
   598 lemma mult_right_less_imp_less:
   278 lemma mult_right_less_imp_less:
   599      "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::almost_ordered_semiring)"
   279      "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
   600   by (force simp add: mult_right_mono linorder_not_le [symmetric])
   280   by (force simp add: mult_right_mono linorder_not_le [symmetric])
   601 
   281 
   602 lemma mult_strict_left_mono_neg:
   282 lemma mult_strict_left_mono_neg:
   603      "[|b < a; c < 0|] ==> c * a < c * (b::'a::ordered_ring)"
   283      "[|b < a; c < 0|] ==> c * a < c * (b::'a::ordered_ring_strict)"
   604 apply (drule mult_strict_left_mono [of _ _ "-c"])
   284 apply (drule mult_strict_left_mono [of _ _ "-c"])
   605 apply (simp_all add: minus_mult_left [symmetric]) 
   285 apply (simp_all add: minus_mult_left [symmetric]) 
   606 done
   286 done
   607 
   287 
       
   288 lemma mult_left_mono_neg:
       
   289      "[|b \<le> a; c \<le> 0|] ==> c * a \<le>  c * (b::'a::pordered_ring)"
       
   290 apply (drule mult_left_mono [of _ _ "-c"])
       
   291 apply (simp_all add: minus_mult_left [symmetric]) 
       
   292 done
       
   293 
   608 lemma mult_strict_right_mono_neg:
   294 lemma mult_strict_right_mono_neg:
   609      "[|b < a; c < 0|] ==> a * c < b * (c::'a::ordered_ring)"
   295      "[|b < a; c < 0|] ==> a * c < b * (c::'a::ordered_ring_strict)"
   610 apply (drule mult_strict_right_mono [of _ _ "-c"])
   296 apply (drule mult_strict_right_mono [of _ _ "-c"])
   611 apply (simp_all add: minus_mult_right [symmetric]) 
   297 apply (simp_all add: minus_mult_right [symmetric]) 
   612 done
   298 done
   613 
   299 
       
   300 lemma mult_right_mono_neg:
       
   301      "[|b \<le> a; c \<le> 0|] ==> a * c \<le>  (b::'a::pordered_ring) * c"
       
   302 apply (drule mult_right_mono [of _ _ "-c"])
       
   303 apply (simp)
       
   304 apply (simp_all add: minus_mult_right [symmetric]) 
       
   305 done
   614 
   306 
   615 subsection{* Products of Signs *}
   307 subsection{* Products of Signs *}
   616 
   308 
   617 lemma mult_pos: "[| (0::'a::almost_ordered_semiring) < a; 0 < b |] ==> 0 < a*b"
   309 lemma mult_pos: "[| (0::'a::ordered_semiring_strict) < a; 0 < b |] ==> 0 < a*b"
   618 by (drule mult_strict_left_mono [of 0 b], auto)
   310 by (drule mult_strict_left_mono [of 0 b], auto)
   619 
   311 
   620 lemma mult_pos_neg: "[| (0::'a::almost_ordered_semiring) < a; b < 0 |] ==> a*b < 0"
   312 lemma mult_pos_le: "[| (0::'a::pordered_cancel_semiring) \<le> a; 0 \<le> b |] ==> 0 \<le> a*b"
       
   313 by (drule mult_left_mono [of 0 b], auto)
       
   314 
       
   315 lemma mult_pos_neg: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> a*b < 0"
   621 by (drule mult_strict_left_mono [of b 0], auto)
   316 by (drule mult_strict_left_mono [of b 0], auto)
   622 
   317 
   623 lemma mult_neg: "[| a < (0::'a::ordered_ring); b < 0 |] ==> 0 < a*b"
   318 lemma mult_pos_neg_le: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> a*b \<le> 0"
       
   319 by (drule mult_left_mono [of b 0], auto)
       
   320 
       
   321 lemma mult_pos_neg2: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> b*a < 0" 
       
   322 by (drule mult_strict_right_mono[of b 0], auto)
       
   323 
       
   324 lemma mult_pos_neg2_le: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> b*a \<le> 0" 
       
   325 by (drule mult_right_mono[of b 0], auto)
       
   326 
       
   327 lemma mult_neg: "[| a < (0::'a::ordered_ring_strict); b < 0 |] ==> 0 < a*b"
   624 by (drule mult_strict_right_mono_neg, auto)
   328 by (drule mult_strict_right_mono_neg, auto)
   625 
   329 
       
   330 lemma mult_neg_le: "[| a \<le> (0::'a::pordered_ring); b \<le> 0 |] ==> 0 \<le> a*b"
       
   331 by (drule mult_right_mono_neg[of a 0 b ], auto)
       
   332 
   626 lemma zero_less_mult_pos:
   333 lemma zero_less_mult_pos:
   627      "[| 0 < a*b; 0 < a|] ==> 0 < (b::'a::almost_ordered_semiring)"
   334      "[| 0 < a*b; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
   628 apply (case_tac "b\<le>0") 
   335 apply (case_tac "b\<le>0") 
   629  apply (auto simp add: order_le_less linorder_not_less)
   336  apply (auto simp add: order_le_less linorder_not_less)
   630 apply (drule_tac mult_pos_neg [of a b]) 
   337 apply (drule_tac mult_pos_neg [of a b]) 
   631  apply (auto dest: order_less_not_sym)
   338  apply (auto dest: order_less_not_sym)
   632 done
   339 done
   633 
   340 
       
   341 lemma zero_less_mult_pos2:
       
   342      "[| 0 < b*a; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
       
   343 apply (case_tac "b\<le>0") 
       
   344  apply (auto simp add: order_le_less linorder_not_less)
       
   345 apply (drule_tac mult_pos_neg2 [of a b]) 
       
   346  apply (auto dest: order_less_not_sym)
       
   347 done
       
   348 
   634 lemma zero_less_mult_iff:
   349 lemma zero_less_mult_iff:
   635      "((0::'a::ordered_ring) < a*b) = (0 < a & 0 < b | a < 0 & b < 0)"
   350      "((0::'a::ordered_ring_strict) < a*b) = (0 < a & 0 < b | a < 0 & b < 0)"
   636 apply (auto simp add: order_le_less linorder_not_less mult_pos mult_neg)
   351 apply (auto simp add: order_le_less linorder_not_less mult_pos mult_neg)
   637 apply (blast dest: zero_less_mult_pos) 
   352 apply (blast dest: zero_less_mult_pos) 
   638 apply (simp add: mult_commute [of a b]) 
   353 apply (blast dest: zero_less_mult_pos2)
   639 apply (blast dest: zero_less_mult_pos) 
       
   640 done
   354 done
   641 
   355 
   642 text{*A field has no "zero divisors", and this theorem holds without the
   356 text{*A field has no "zero divisors", and this theorem holds without the
   643       assumption of an ordering.  See @{text field_mult_eq_0_iff} below.*}
   357       assumption of an ordering.  See @{text field_mult_eq_0_iff} below.*}
   644 lemma mult_eq_0_iff [simp]: "(a*b = (0::'a::ordered_ring)) = (a = 0 | b = 0)"
   358 lemma mult_eq_0_iff [simp]: "(a*b = (0::'a::ordered_ring_strict)) = (a = 0 | b = 0)"
   645 apply (case_tac "a < 0")
   359 apply (case_tac "a < 0")
   646 apply (auto simp add: linorder_not_less order_le_less linorder_neq_iff)
   360 apply (auto simp add: linorder_not_less order_le_less linorder_neq_iff)
   647 apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono)+
   361 apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono)+
   648 done
   362 done
   649 
   363 
   650 lemma zero_le_mult_iff:
   364 lemma zero_le_mult_iff:
   651      "((0::'a::ordered_ring) \<le> a*b) = (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
   365      "((0::'a::ordered_ring_strict) \<le> a*b) = (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
   652 by (auto simp add: eq_commute [of 0] order_le_less linorder_not_less
   366 by (auto simp add: eq_commute [of 0] order_le_less linorder_not_less
   653                    zero_less_mult_iff)
   367                    zero_less_mult_iff)
   654 
   368 
   655 lemma mult_less_0_iff:
   369 lemma mult_less_0_iff:
   656      "(a*b < (0::'a::ordered_ring)) = (0 < a & b < 0 | a < 0 & 0 < b)"
   370      "(a*b < (0::'a::ordered_ring_strict)) = (0 < a & b < 0 | a < 0 & 0 < b)"
   657 apply (insert zero_less_mult_iff [of "-a" b]) 
   371 apply (insert zero_less_mult_iff [of "-a" b]) 
   658 apply (force simp add: minus_mult_left[symmetric]) 
   372 apply (force simp add: minus_mult_left[symmetric]) 
   659 done
   373 done
   660 
   374 
   661 lemma mult_le_0_iff:
   375 lemma mult_le_0_iff:
   662      "(a*b \<le> (0::'a::ordered_ring)) = (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
   376      "(a*b \<le> (0::'a::ordered_ring_strict)) = (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
   663 apply (insert zero_le_mult_iff [of "-a" b]) 
   377 apply (insert zero_le_mult_iff [of "-a" b]) 
   664 apply (force simp add: minus_mult_left[symmetric]) 
   378 apply (force simp add: minus_mult_left[symmetric]) 
   665 done
   379 done
   666 
   380 
   667 lemma zero_le_square: "(0::'a::ordered_ring) \<le> a*a"
   381 lemma split_mult_pos_le: "(0 \<le> a & 0 \<le> b) | (a \<le> 0 & b \<le> 0) \<Longrightarrow> 0 \<le> a * (b::_::pordered_ring)"
       
   382 by (auto simp add: mult_pos_le mult_neg_le)
       
   383 
       
   384 lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> (0::_::pordered_cancel_semiring)" 
       
   385 by (auto simp add: mult_pos_neg_le mult_pos_neg2_le)
       
   386 
       
   387 lemma zero_le_square: "(0::'a::ordered_ring_strict) \<le> a*a"
   668 by (simp add: zero_le_mult_iff linorder_linear) 
   388 by (simp add: zero_le_mult_iff linorder_linear) 
   669 
   389 
   670 text{*Proving axiom @{text zero_less_one} makes all @{text ordered_semiring}
   390 text{*Proving axiom @{text zero_less_one} makes all @{text ordered_semidom}
   671       theorems available to members of @{term ordered_ring} *}
   391       theorems available to members of @{term ordered_idom} *}
   672 instance ordered_ring \<subseteq> ordered_semiring
   392 
       
   393 instance ordered_idom \<subseteq> ordered_semidom
   673 proof
   394 proof
   674   have "(0::'a) \<le> 1*1" by (rule zero_le_square)
   395   have "(0::'a) \<le> 1*1" by (rule zero_le_square)
   675   thus "(0::'a) < 1" by (simp add: order_le_less) 
   396   thus "(0::'a) < 1" by (simp add: order_le_less) 
   676 qed
   397 qed
   677 
   398 
       
   399 instance ordered_ring_strict \<subseteq> axclass_no_zero_divisors 
       
   400 by (intro_classes, simp)
       
   401 
       
   402 instance ordered_idom \<subseteq> idom ..
       
   403 
   678 text{*All three types of comparision involving 0 and 1 are covered.*}
   404 text{*All three types of comparision involving 0 and 1 are covered.*}
   679 
   405 
   680 declare zero_neq_one [THEN not_sym, simp]
   406 declare zero_neq_one [THEN not_sym, simp]
   681 
   407 
   682 lemma zero_le_one [simp]: "(0::'a::ordered_semiring) \<le> 1"
   408 lemma zero_le_one [simp]: "(0::'a::ordered_semidom) \<le> 1"
   683   by (rule zero_less_one [THEN order_less_imp_le]) 
   409   by (rule zero_less_one [THEN order_less_imp_le]) 
   684 
   410 
   685 lemma not_one_le_zero [simp]: "~ (1::'a::ordered_semiring) \<le> 0"
   411 lemma not_one_le_zero [simp]: "~ (1::'a::ordered_semidom) \<le> 0"
   686 by (simp add: linorder_not_le zero_less_one) 
   412 by (simp add: linorder_not_le) 
   687 
   413 
   688 lemma not_one_less_zero [simp]: "~ (1::'a::ordered_semiring) < 0"
   414 lemma not_one_less_zero [simp]: "~ (1::'a::ordered_semidom) < 0"
   689 by (simp add: linorder_not_less zero_le_one) 
   415 by (simp add: linorder_not_less) 
   690 
       
   691 
   416 
   692 subsection{*More Monotonicity*}
   417 subsection{*More Monotonicity*}
   693 
   418 
   694 lemma mult_left_mono_neg:
   419 lemma mult_left_mono_neg:
   695      "[|b \<le> a; c \<le> 0|] ==> c * a \<le> c * (b::'a::ordered_ring)"
   420      "[|b \<le> a; c \<le> 0|] ==> c * a \<le> c * (b::'a::pordered_ring)"
   696 apply (drule mult_left_mono [of _ _ "-c"]) 
   421 apply (drule mult_left_mono [of _ _ "-c"]) 
   697 apply (simp_all add: minus_mult_left [symmetric]) 
   422 apply (simp_all add: minus_mult_left [symmetric]) 
   698 done
   423 done
   699 
   424 
   700 lemma mult_right_mono_neg:
   425 lemma mult_right_mono_neg:
   701      "[|b \<le> a; c \<le> 0|] ==> a * c \<le> b * (c::'a::ordered_ring)"
   426      "[|b \<le> a; c \<le> 0|] ==> a * c \<le> b * (c::'a::pordered_ring)"
   702   by (simp add: mult_left_mono_neg mult_commute [of _ c]) 
   427 apply (drule mult_right_mono [of _ _ "-c"]) 
       
   428 apply (simp_all add: minus_mult_right [symmetric]) 
       
   429 done  
   703 
   430 
   704 text{*Strict monotonicity in both arguments*}
   431 text{*Strict monotonicity in both arguments*}
   705 lemma mult_strict_mono:
   432 lemma mult_strict_mono:
   706      "[|a<b; c<d; 0<b; 0\<le>c|] ==> a * c < b * (d::'a::ordered_semiring)"
   433      "[|a<b; c<d; 0<b; 0\<le>c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
   707 apply (case_tac "c=0")
   434 apply (case_tac "c=0")
   708  apply (simp add: mult_pos) 
   435  apply (simp add: mult_pos) 
   709 apply (erule mult_strict_right_mono [THEN order_less_trans])
   436 apply (erule mult_strict_right_mono [THEN order_less_trans])
   710  apply (force simp add: order_le_less) 
   437  apply (force simp add: order_le_less) 
   711 apply (erule mult_strict_left_mono, assumption)
   438 apply (erule mult_strict_left_mono, assumption)
   712 done
   439 done
   713 
   440 
   714 text{*This weaker variant has more natural premises*}
   441 text{*This weaker variant has more natural premises*}
   715 lemma mult_strict_mono':
   442 lemma mult_strict_mono':
   716      "[| a<b; c<d; 0 \<le> a; 0 \<le> c|] ==> a * c < b * (d::'a::ordered_semiring)"
   443      "[| a<b; c<d; 0 \<le> a; 0 \<le> c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
   717 apply (rule mult_strict_mono)
   444 apply (rule mult_strict_mono)
   718 apply (blast intro: order_le_less_trans)+
   445 apply (blast intro: order_le_less_trans)+
   719 done
   446 done
   720 
   447 
   721 lemma mult_mono:
   448 lemma mult_mono:
   722      "[|a \<le> b; c \<le> d; 0 \<le> b; 0 \<le> c|] 
   449      "[|a \<le> b; c \<le> d; 0 \<le> b; 0 \<le> c|] 
   723       ==> a * c  \<le>  b * (d::'a::ordered_semiring)"
   450       ==> a * c  \<le>  b * (d::'a::pordered_semiring)"
   724 apply (erule mult_right_mono [THEN order_trans], assumption)
   451 apply (erule mult_right_mono [THEN order_trans], assumption)
   725 apply (erule mult_left_mono, assumption)
   452 apply (erule mult_left_mono, assumption)
   726 done
   453 done
   727 
   454 
   728 lemma less_1_mult: "[| 1 < m; 1 < n |] ==> 1 < m*(n::'a::ordered_semiring)"
   455 lemma less_1_mult: "[| 1 < m; 1 < n |] ==> 1 < m*(n::'a::ordered_semidom)"
   729 apply (insert mult_strict_mono [of 1 m 1 n]) 
   456 apply (insert mult_strict_mono [of 1 m 1 n]) 
   730 apply (simp add:  order_less_trans [OF zero_less_one]) 
   457 apply (simp add:  order_less_trans [OF zero_less_one]) 
   731 done
   458 done
   732 
   459 
   733 
       
   734 subsection{*Cancellation Laws for Relationships With a Common Factor*}
   460 subsection{*Cancellation Laws for Relationships With a Common Factor*}
   735 
   461 
   736 text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
   462 text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
   737    also with the relations @{text "\<le>"} and equality.*}
   463    also with the relations @{text "\<le>"} and equality.*}
   738 
   464 
   739 lemma mult_less_cancel_right:
   465 lemma mult_less_cancel_right:
   740     "(a*c < b*c) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring)))"
   466     "(a*c < b*c) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
   741 apply (case_tac "c = 0")
   467 apply (case_tac "c = 0")
   742 apply (auto simp add: linorder_neq_iff mult_strict_right_mono 
   468 apply (auto simp add: linorder_neq_iff mult_strict_right_mono 
   743                       mult_strict_right_mono_neg)
   469                       mult_strict_right_mono_neg)
   744 apply (auto simp add: linorder_not_less 
   470 apply (auto simp add: linorder_not_less 
   745                       linorder_not_le [symmetric, of "a*c"]
   471                       linorder_not_le [symmetric, of "a*c"]
   748 apply (auto simp add: order_less_imp_le mult_right_mono 
   474 apply (auto simp add: order_less_imp_le mult_right_mono 
   749                       mult_right_mono_neg)
   475                       mult_right_mono_neg)
   750 done
   476 done
   751 
   477 
   752 lemma mult_less_cancel_left:
   478 lemma mult_less_cancel_left:
   753     "(c*a < c*b) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring)))"
   479     "(c*a < c*b) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
   754 by (simp add: mult_commute [of c] mult_less_cancel_right)
   480 apply (case_tac "c = 0")
       
   481 apply (auto simp add: linorder_neq_iff mult_strict_left_mono 
       
   482                       mult_strict_left_mono_neg)
       
   483 apply (auto simp add: linorder_not_less 
       
   484                       linorder_not_le [symmetric, of "c*a"]
       
   485                       linorder_not_le [symmetric, of a])
       
   486 apply (erule_tac [!] notE)
       
   487 apply (auto simp add: order_less_imp_le mult_left_mono 
       
   488                       mult_left_mono_neg)
       
   489 done
   755 
   490 
   756 lemma mult_le_cancel_right:
   491 lemma mult_le_cancel_right:
   757      "(a*c \<le> b*c) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring)))"
   492      "(a*c \<le> b*c) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
   758 by (simp add: linorder_not_less [symmetric] mult_less_cancel_right)
   493 by (simp add: linorder_not_less [symmetric] mult_less_cancel_right)
   759 
   494 
   760 lemma mult_le_cancel_left:
   495 lemma mult_le_cancel_left:
   761      "(c*a \<le> c*b) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring)))"
   496      "(c*a \<le> c*b) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
   762 by (simp add: mult_commute [of c] mult_le_cancel_right)
   497 by (simp add: linorder_not_less [symmetric] mult_less_cancel_left)
   763 
   498 
   764 lemma mult_less_imp_less_left:
   499 lemma mult_less_imp_less_left:
   765       assumes less: "c*a < c*b" and nonneg: "0 \<le> c"
   500       assumes less: "c*a < c*b" and nonneg: "0 \<le> c"
   766       shows "a < (b::'a::ordered_semiring)"
   501       shows "a < (b::'a::ordered_semiring_strict)"
   767 proof (rule ccontr)
   502 proof (rule ccontr)
   768   assume "~ a < b"
   503   assume "~ a < b"
   769   hence "b \<le> a" by (simp add: linorder_not_less)
   504   hence "b \<le> a" by (simp add: linorder_not_less)
   770   hence "c*b \<le> c*a" by (rule mult_left_mono)
   505   hence "c*b \<le> c*a" by (rule mult_left_mono)
   771   with this and less show False 
   506   with this and less show False 
   772     by (simp add: linorder_not_less [symmetric])
   507     by (simp add: linorder_not_less [symmetric])
   773 qed
   508 qed
   774 
   509 
   775 lemma mult_less_imp_less_right:
   510 lemma mult_less_imp_less_right:
   776     "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::ordered_semiring)"
   511   assumes less: "a*c < b*c" and nonneg: "0 <= c"
   777   by (rule mult_less_imp_less_left, simp add: mult_commute)
   512   shows "a < (b::'a::ordered_semiring_strict)"
       
   513 proof (rule ccontr)
       
   514   assume "~ a < b"
       
   515   hence "b \<le> a" by (simp add: linorder_not_less)
       
   516   hence "b*c \<le> a*c" by (rule mult_right_mono)
       
   517   with this and less show False 
       
   518     by (simp add: linorder_not_less [symmetric])
       
   519 qed  
   778 
   520 
   779 text{*Cancellation of equalities with a common factor*}
   521 text{*Cancellation of equalities with a common factor*}
   780 lemma mult_cancel_right [simp]:
   522 lemma mult_cancel_right [simp]:
   781      "(a*c = b*c) = (c = (0::'a::ordered_ring) | a=b)"
   523      "(a*c = b*c) = (c = (0::'a::ordered_ring_strict) | a=b)"
   782 apply (cut_tac linorder_less_linear [of 0 c])
   524 apply (cut_tac linorder_less_linear [of 0 c])
   783 apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono
   525 apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono
   784              simp add: linorder_neq_iff)
   526              simp add: linorder_neq_iff)
   785 done
   527 done
   786 
   528 
   787 text{*These cancellation theorems require an ordering. Versions are proved
   529 text{*These cancellation theorems require an ordering. Versions are proved
   788       below that work for fields without an ordering.*}
   530       below that work for fields without an ordering.*}
   789 lemma mult_cancel_left [simp]:
   531 lemma mult_cancel_left [simp]:
   790      "(c*a = c*b) = (c = (0::'a::ordered_ring) | a=b)"
   532      "(c*a = c*b) = (c = (0::'a::ordered_ring_strict) | a=b)"
   791 by (simp add: mult_commute [of c] mult_cancel_right)
   533 apply (cut_tac linorder_less_linear [of 0 c])
   792 
   534 apply (force dest: mult_strict_left_mono_neg mult_strict_left_mono
   793 
   535              simp add: linorder_neq_iff)
       
   536 done
       
   537 
       
   538 text{*This list of rewrites decides ring equalities by ordered rewriting.*}
       
   539 lemmas ring_eq_simps =
       
   540   mult_ac
       
   541   left_distrib right_distrib left_diff_distrib right_diff_distrib
       
   542   add_ac
       
   543   add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
       
   544   diff_eq_eq eq_diff_eq
       
   545     
       
   546 thm ring_eq_simps
   794 subsection {* Fields *}
   547 subsection {* Fields *}
   795 
   548 
   796 lemma right_inverse [simp]:
   549 lemma right_inverse [simp]:
   797       assumes not0: "a \<noteq> 0" shows "a * inverse (a::'a::field) = 1"
   550       assumes not0: "a \<noteq> 0" shows "a * inverse (a::'a::field) = 1"
   798 proof -
   551 proof -
  1569 done
  1322 done
  1570 
  1323 
  1571 
  1324 
  1572 subsection {* Ordered Fields are Dense *}
  1325 subsection {* Ordered Fields are Dense *}
  1573 
  1326 
  1574 lemma less_add_one: "a < (a+1::'a::ordered_semiring)"
  1327 lemma less_add_one: "a < (a+1::'a::ordered_semidom)"
  1575 proof -
  1328 proof -
  1576   have "a+0 < (a+1::'a::ordered_semiring)"
  1329   have "a+0 < (a+1::'a::ordered_semidom)"
  1577     by (blast intro: zero_less_one add_strict_left_mono) 
  1330     by (blast intro: zero_less_one add_strict_left_mono) 
  1578   thus ?thesis by simp
  1331   thus ?thesis by simp
  1579 qed
  1332 qed
  1580 
  1333 
  1581 lemma zero_less_two: "0 < (1+1::'a::ordered_semiring)"
  1334 lemma zero_less_two: "0 < (1+1::'a::ordered_semidom)"
  1582   by (blast intro: order_less_trans zero_less_one less_add_one) 
  1335   by (blast intro: order_less_trans zero_less_one less_add_one) 
  1583 
  1336 
  1584 lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
  1337 lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
  1585 by (simp add: zero_less_two pos_less_divide_eq right_distrib) 
  1338 by (simp add: zero_less_two pos_less_divide_eq right_distrib) 
  1586 
  1339 
  1588 by (simp add: zero_less_two pos_divide_less_eq right_distrib) 
  1341 by (simp add: zero_less_two pos_divide_less_eq right_distrib) 
  1589 
  1342 
  1590 lemma dense: "a < b ==> \<exists>r::'a::ordered_field. a < r & r < b"
  1343 lemma dense: "a < b ==> \<exists>r::'a::ordered_field. a < r & r < b"
  1591 by (blast intro!: less_half_sum gt_half_sum)
  1344 by (blast intro!: less_half_sum gt_half_sum)
  1592 
  1345 
  1593 
       
  1594 subsection {* Absolute Value *}
  1346 subsection {* Absolute Value *}
  1595 
  1347 
  1596 lemma abs_zero [simp]: "abs 0 = (0::'a::ordered_ring)"
  1348 lemma abs_one [simp]: "abs 1 = (1::'a::ordered_idom)"
  1597 by (simp add: abs_if)
       
  1598 
       
  1599 lemma abs_one [simp]: "abs 1 = (1::'a::ordered_ring)"
       
  1600   by (simp add: abs_if zero_less_one [THEN order_less_not_sym]) 
  1349   by (simp add: abs_if zero_less_one [THEN order_less_not_sym]) 
  1601 
  1350 
  1602 lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_ring)" 
  1351 lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lordered_ring))" 
  1603 apply (case_tac "a=0 | b=0", force) 
  1352 proof -
  1604 apply (auto elim: order_less_asym
  1353   let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b"
  1605             simp add: abs_if mult_less_0_iff linorder_neq_iff
  1354   let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
  1606                   minus_mult_left [symmetric] minus_mult_right [symmetric])  
  1355   have a: "(abs a) * (abs b) = ?x"
  1607 done
  1356     by (simp only: abs_prts[of a] abs_prts[of b] ring_eq_simps)
  1608 
  1357   {
  1609 lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_ring)"
  1358     fix u v :: 'a
       
  1359     have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> u * v = ?y"
       
  1360       apply (subst prts[of u], subst prts[of v])
       
  1361       apply (simp add: left_distrib right_distrib add_ac) 
       
  1362       done
       
  1363   }
       
  1364   note b = this[OF refl[of a] refl[of b]]
       
  1365   note addm = add_mono[of "0::'a" _ "0::'a", simplified]
       
  1366   note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified]
       
  1367   have xy: "- ?x <= ?y"
       
  1368     apply (simp add: compare_rls)
       
  1369     apply (rule add_le_imp_le_left[of "-(pprt a * nprt b + nprt a * pprt b)"])
       
  1370     apply (simp add: add_ac)
       
  1371     proof -
       
  1372       let ?r = "nprt a * nprt b +(nprt a * nprt b + (nprt a * pprt b + (pprt a * nprt b + (pprt a * pprt b + (pprt a * pprt b +
       
  1373 	(- (nprt a * pprt b) + - (pprt a * nprt b)))))))"
       
  1374       let ?rr = "nprt a * nprt b + nprt a * nprt b + ((nprt a * pprt b) + (- (nprt a * pprt b))) + ((pprt a * nprt b) + - (pprt a * nprt b))
       
  1375 	+ pprt a * pprt b + pprt a * pprt b"
       
  1376       have a:"?r = ?rr" by (simp only: add_ac)      
       
  1377       have "0 <= ?rr"
       
  1378 	apply (simp)
       
  1379 	apply (rule addm)+
       
  1380 	apply (simp_all add: mult_neg_le mult_pos_le)
       
  1381 	done
       
  1382       with a show "0 <= ?r" by simp
       
  1383     qed
       
  1384   have yx: "?y <= ?x"
       
  1385     apply (simp add: add_ac)
       
  1386     apply (simp add: compare_rls)
       
  1387     apply (rule add_le_imp_le_right[of _ "-(pprt a * pprt b)"])
       
  1388     apply (simp add: add_ac)
       
  1389     apply (rule addm2, (simp add: mult_pos_neg_le mult_pos_neg2_le)+)+
       
  1390     done
       
  1391   have i1: "a*b <= abs a * abs b" by (simp only: a b yx)
       
  1392   have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy)
       
  1393   show ?thesis
       
  1394     apply (rule abs_leI)
       
  1395     apply (simp add: i1)
       
  1396     apply (simp add: i2[simplified minus_le_iff])
       
  1397     done
       
  1398 qed
       
  1399 
       
  1400 lemma abs_eq_mult: 
       
  1401   assumes "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
       
  1402   shows "abs (a*b) = abs a * abs (b::'a::lordered_ring)"
       
  1403 proof -
       
  1404   have s: "(0 <= a*b) | (a*b <= 0)"
       
  1405     apply (auto)    
       
  1406     apply (rule_tac split_mult_pos_le)
       
  1407     apply (rule_tac contrapos_np[of "a*b <= 0"])
       
  1408     apply (simp)
       
  1409     apply (rule_tac split_mult_neg_le)
       
  1410     apply (insert prems)
       
  1411     apply (blast)
       
  1412     done
       
  1413   have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
       
  1414     by (simp add: prts[symmetric])
       
  1415   show ?thesis
       
  1416   proof cases
       
  1417     assume "0 <= a * b"
       
  1418     then show ?thesis
       
  1419       apply (simp_all add: mulprts abs_prts)
       
  1420       apply (insert prems)
       
  1421       apply (auto simp add: ring_eq_simps iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_zero_pprt]
       
  1422 	iff2imp[OF le_zero_iff_pprt_id] iff2imp[OF zero_le_iff_nprt_id] order_antisym mult_pos_neg_le[of a b] mult_pos_neg2_le[of b a])
       
  1423       done
       
  1424   next
       
  1425     assume "~(0 <= a*b)"
       
  1426     with s have "a*b <= 0" by simp
       
  1427     then show ?thesis
       
  1428       apply (simp_all add: mulprts abs_prts)
       
  1429       apply (insert prems)
       
  1430       apply (auto simp add: ring_eq_simps iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_zero_pprt]
       
  1431 	iff2imp[OF le_zero_iff_pprt_id] iff2imp[OF zero_le_iff_nprt_id] order_antisym mult_pos_le[of a b] mult_neg_le[of a b])
       
  1432       done
       
  1433   qed
       
  1434 qed
       
  1435 
       
  1436 lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_idom)" 
       
  1437 by (simp add: abs_eq_mult linorder_linear)
       
  1438 
       
  1439 lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_idom)"
  1610 by (simp add: abs_if) 
  1440 by (simp add: abs_if) 
  1611 
       
  1612 lemma abs_eq_0 [simp]: "(abs a = 0) = (a = (0::'a::ordered_ring))"
       
  1613 by (simp add: abs_if)
       
  1614 
       
  1615 lemma zero_less_abs_iff [simp]: "(0 < abs a) = (a \<noteq> (0::'a::ordered_ring))"
       
  1616 by (simp add: abs_if linorder_neq_iff)
       
  1617 
       
  1618 lemma abs_not_less_zero [simp]: "~ abs a < (0::'a::ordered_ring)"
       
  1619 apply (simp add: abs_if)
       
  1620 by (simp add: abs_if  order_less_not_sym [of a 0])
       
  1621 
       
  1622 lemma abs_le_zero_iff [simp]: "(abs a \<le> (0::'a::ordered_ring)) = (a = 0)" 
       
  1623 by (simp add: order_le_less) 
       
  1624 
       
  1625 lemma abs_minus_cancel [simp]: "abs (-a) = abs(a::'a::ordered_ring)"
       
  1626 apply (auto simp add: abs_if linorder_not_less order_less_not_sym [of 0 a])  
       
  1627 apply (drule order_antisym, assumption, simp) 
       
  1628 done
       
  1629 
       
  1630 lemma abs_ge_zero [simp]: "(0::'a::ordered_ring) \<le> abs a"
       
  1631 apply (simp add: abs_if order_less_imp_le)
       
  1632 apply (simp add: linorder_not_less) 
       
  1633 done
       
  1634 
       
  1635 lemma abs_idempotent [simp]: "abs (abs a) = abs (a::'a::ordered_ring)"
       
  1636   by (force elim: order_less_asym simp add: abs_if)
       
  1637 
       
  1638 lemma abs_zero_iff [simp]: "(abs a = 0) = (a = (0::'a::ordered_ring))"
       
  1639 by (simp add: abs_if)
       
  1640 
       
  1641 lemma abs_ge_self: "a \<le> abs (a::'a::ordered_ring)"
       
  1642 apply (simp add: abs_if)
       
  1643 apply (simp add: order_less_imp_le order_trans [of _ 0])
       
  1644 done
       
  1645 
       
  1646 lemma abs_ge_minus_self: "-a \<le> abs (a::'a::ordered_ring)"
       
  1647 by (insert abs_ge_self [of "-a"], simp)
       
  1648 
  1441 
  1649 lemma nonzero_abs_inverse:
  1442 lemma nonzero_abs_inverse:
  1650      "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)"
  1443      "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)"
  1651 apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq 
  1444 apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq 
  1652                       negative_imp_inverse_negative)
  1445                       negative_imp_inverse_negative)
  1668      "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
  1461      "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
  1669 apply (case_tac "b=0", simp) 
  1462 apply (case_tac "b=0", simp) 
  1670 apply (simp add: nonzero_abs_divide) 
  1463 apply (simp add: nonzero_abs_divide) 
  1671 done
  1464 done
  1672 
  1465 
  1673 lemma abs_leI: "[|a \<le> b; -a \<le> b|] ==> abs a \<le> (b::'a::ordered_ring)"
       
  1674 by (simp add: abs_if)
       
  1675 
       
  1676 lemma le_minus_self_iff: "(a \<le> -a) = (a \<le> (0::'a::ordered_ring))"
       
  1677 proof 
       
  1678   assume ale: "a \<le> -a"
       
  1679   show "a\<le>0"
       
  1680     apply (rule classical) 
       
  1681     apply (simp add: linorder_not_le) 
       
  1682     apply (blast intro: ale order_trans order_less_imp_le
       
  1683                         neg_0_le_iff_le [THEN iffD1]) 
       
  1684     done
       
  1685 next
       
  1686   assume "a\<le>0"
       
  1687   hence "0 \<le> -a" by (simp only: neg_0_le_iff_le)
       
  1688   thus "a \<le> -a"  by (blast intro: prems order_trans) 
       
  1689 qed
       
  1690 
       
  1691 lemma minus_le_self_iff: "(-a \<le> a) = (0 \<le> (a::'a::ordered_ring))"
       
  1692 by (insert le_minus_self_iff [of "-a"], simp)
       
  1693 
       
  1694 lemma eq_minus_self_iff: "(a = -a) = (a = (0::'a::ordered_ring))"
       
  1695 by (force simp add: order_eq_iff le_minus_self_iff minus_le_self_iff)
       
  1696 
       
  1697 lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_ring))"
       
  1698 by (simp add: order_less_le le_minus_self_iff eq_minus_self_iff)
       
  1699 
       
  1700 lemma abs_le_D1: "abs a \<le> b ==> a \<le> (b::'a::ordered_ring)"
       
  1701 apply (simp add: abs_if split: split_if_asm)
       
  1702 apply (rule order_trans [of _ "-a"]) 
       
  1703  apply (simp add: less_minus_self_iff order_less_imp_le, assumption)
       
  1704 done
       
  1705 
       
  1706 lemma abs_le_D2: "abs a \<le> b ==> -a \<le> (b::'a::ordered_ring)"
       
  1707 by (insert abs_le_D1 [of "-a"], simp)
       
  1708 
       
  1709 lemma abs_le_iff: "(abs a \<le> b) = (a \<le> b & -a \<le> (b::'a::ordered_ring))"
       
  1710 by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
       
  1711 
       
  1712 lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_ring))" 
       
  1713 apply (simp add: order_less_le abs_le_iff)  
       
  1714 apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff)
       
  1715 apply (simp add: le_minus_self_iff linorder_neq_iff) 
       
  1716 done
       
  1717 (*
       
  1718 apply (simp add: order_less_le abs_le_iff)  
       
  1719 apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff) 
       
  1720  apply (simp add:  linorder_not_less [symmetric])
       
  1721 apply (simp add: le_minus_self_iff linorder_neq_iff) 
       
  1722 apply (simp add:  linorder_not_less [symmetric]) 
       
  1723 done
       
  1724 *)
       
  1725 
       
  1726 lemma abs_triangle_ineq: "abs (a+b) \<le> abs a + abs (b::'a::ordered_ring)"
       
  1727 by (force simp add: abs_le_iff abs_ge_self abs_ge_minus_self add_mono)
       
  1728 
       
  1729 lemma abs_diff_triangle_ineq:
       
  1730      "\<bar>(a::'a::ordered_ring) + b - (c+d)\<bar> \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>"
       
  1731 proof -
       
  1732   have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
       
  1733   also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
       
  1734   finally show ?thesis .
       
  1735 qed
       
  1736 
       
  1737 lemma abs_mult_less:
  1466 lemma abs_mult_less:
  1738      "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_ring)"
  1467      "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_idom)"
  1739 proof -
  1468 proof -
  1740   assume ac: "abs a < c"
  1469   assume ac: "abs a < c"
  1741   hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
  1470   hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
  1742   assume "abs b < d"
  1471   assume "abs b < d"
  1743   thus ?thesis by (simp add: ac cpos mult_strict_mono) 
  1472   thus ?thesis by (simp add: ac cpos mult_strict_mono) 
  1744 qed
  1473 qed
  1745 
  1474 
       
  1475 lemma eq_minus_self_iff: "(a = -a) = (a = (0::'a::ordered_idom))"
       
  1476 by (force simp add: order_eq_iff le_minus_self_iff minus_le_self_iff)
       
  1477 
       
  1478 lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_idom))"
       
  1479 by (simp add: order_less_le le_minus_self_iff eq_minus_self_iff)
       
  1480 
       
  1481 lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_idom))" 
       
  1482 apply (simp add: order_less_le abs_le_iff)  
       
  1483 apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff)
       
  1484 apply (simp add: le_minus_self_iff linorder_neq_iff) 
       
  1485 done
       
  1486 
  1746 text{*Moving this up spoils many proofs using @{text mult_le_cancel_right}*}
  1487 text{*Moving this up spoils many proofs using @{text mult_le_cancel_right}*}
  1747 declare times_divide_eq_left [simp]
  1488 declare times_divide_eq_left [simp]
  1748 
  1489 
  1749 ML
  1490 ML {*
  1750 {*
       
  1751 val add_assoc = thm"add_assoc";
       
  1752 val add_commute = thm"add_commute";
       
  1753 val mult_assoc = thm"mult_assoc";
       
  1754 val mult_commute = thm"mult_commute";
       
  1755 val zero_neq_one = thm"zero_neq_one";
       
  1756 val diff_minus = thm"diff_minus";
       
  1757 val abs_if = thm"abs_if";
       
  1758 val divide_inverse = thm"divide_inverse";
       
  1759 val inverse_zero = thm"inverse_zero";
       
  1760 val divide_zero = thm"divide_zero";
       
  1761 
       
  1762 val add_0 = thm"add_0";
       
  1763 val add_0_right = thm"add_0_right";
       
  1764 val add_zero_left = thm"add_0";
       
  1765 val add_zero_right = thm"add_0_right";
       
  1766 
       
  1767 val add_left_commute = thm"add_left_commute";
       
  1768 val left_minus = thm"left_minus";
       
  1769 val right_minus = thm"right_minus";
       
  1770 val right_minus_eq = thm"right_minus_eq";
       
  1771 val add_left_cancel = thm"add_left_cancel";
       
  1772 val add_right_cancel = thm"add_right_cancel";
       
  1773 val minus_minus = thm"minus_minus";
       
  1774 val equals_zero_I = thm"equals_zero_I";
       
  1775 val minus_zero = thm"minus_zero";
       
  1776 val diff_self = thm"diff_self";
       
  1777 val diff_0 = thm"diff_0";
       
  1778 val diff_0_right = thm"diff_0_right";
       
  1779 val diff_minus_eq_add = thm"diff_minus_eq_add";
       
  1780 val neg_equal_iff_equal = thm"neg_equal_iff_equal";
       
  1781 val neg_equal_0_iff_equal = thm"neg_equal_0_iff_equal";
       
  1782 val neg_0_equal_iff_equal = thm"neg_0_equal_iff_equal";
       
  1783 val equation_minus_iff = thm"equation_minus_iff";
       
  1784 val minus_equation_iff = thm"minus_equation_iff";
       
  1785 val mult_1 = thm"mult_1";
       
  1786 val mult_1_right = thm"mult_1_right";
       
  1787 val mult_left_commute = thm"mult_left_commute";
       
  1788 val mult_zero_left = thm"mult_zero_left";
       
  1789 val mult_zero_right = thm"mult_zero_right";
       
  1790 val left_distrib = thm "left_distrib";
  1491 val left_distrib = thm "left_distrib";
  1791 val right_distrib = thm"right_distrib";
  1492 val right_distrib = thm "right_distrib";
  1792 val combine_common_factor = thm"combine_common_factor";
  1493 val mult_commute = thm "mult_commute";
  1793 val minus_add_distrib = thm"minus_add_distrib";
  1494 val distrib = thm "distrib";
  1794 val minus_mult_left = thm"minus_mult_left";
  1495 val zero_neq_one = thm "zero_neq_one";
  1795 val minus_mult_right = thm"minus_mult_right";
  1496 val no_zero_divisors = thm "no_zero_divisors";
  1796 val minus_mult_minus = thm"minus_mult_minus";
       
  1797 val minus_mult_commute = thm"minus_mult_commute";
       
  1798 val right_diff_distrib = thm"right_diff_distrib";
       
  1799 val left_diff_distrib = thm"left_diff_distrib";
       
  1800 val minus_diff_eq = thm"minus_diff_eq";
       
  1801 val add_left_mono = thm"add_left_mono";
       
  1802 val add_right_mono = thm"add_right_mono";
       
  1803 val add_mono = thm"add_mono";
       
  1804 val add_strict_left_mono = thm"add_strict_left_mono";
       
  1805 val add_strict_right_mono = thm"add_strict_right_mono";
       
  1806 val add_strict_mono = thm"add_strict_mono";
       
  1807 val add_less_le_mono = thm"add_less_le_mono";
       
  1808 val add_le_less_mono = thm"add_le_less_mono";
       
  1809 val add_less_imp_less_left = thm"add_less_imp_less_left";
       
  1810 val add_less_imp_less_right = thm"add_less_imp_less_right";
       
  1811 val add_less_cancel_left = thm"add_less_cancel_left";
       
  1812 val add_less_cancel_right = thm"add_less_cancel_right";
       
  1813 val add_le_cancel_left = thm"add_le_cancel_left";
       
  1814 val add_le_cancel_right = thm"add_le_cancel_right";
       
  1815 val add_le_imp_le_left = thm"add_le_imp_le_left";
       
  1816 val add_le_imp_le_right = thm"add_le_imp_le_right";
       
  1817 val le_imp_neg_le = thm"le_imp_neg_le";
       
  1818 val neg_le_iff_le = thm"neg_le_iff_le";
       
  1819 val neg_le_0_iff_le = thm"neg_le_0_iff_le";
       
  1820 val neg_0_le_iff_le = thm"neg_0_le_iff_le";
       
  1821 val neg_less_iff_less = thm"neg_less_iff_less";
       
  1822 val neg_less_0_iff_less = thm"neg_less_0_iff_less";
       
  1823 val neg_0_less_iff_less = thm"neg_0_less_iff_less";
       
  1824 val less_minus_iff = thm"less_minus_iff";
       
  1825 val minus_less_iff = thm"minus_less_iff";
       
  1826 val le_minus_iff = thm"le_minus_iff";
       
  1827 val minus_le_iff = thm"minus_le_iff";
       
  1828 val add_diff_eq = thm"add_diff_eq";
       
  1829 val diff_add_eq = thm"diff_add_eq";
       
  1830 val diff_eq_eq = thm"diff_eq_eq";
       
  1831 val eq_diff_eq = thm"eq_diff_eq";
       
  1832 val diff_diff_eq = thm"diff_diff_eq";
       
  1833 val diff_diff_eq2 = thm"diff_diff_eq2";
       
  1834 val less_iff_diff_less_0 = thm"less_iff_diff_less_0";
       
  1835 val diff_less_eq = thm"diff_less_eq";
       
  1836 val less_diff_eq = thm"less_diff_eq";
       
  1837 val diff_le_eq = thm"diff_le_eq";
       
  1838 val le_diff_eq = thm"le_diff_eq";
       
  1839 val eq_iff_diff_eq_0 = thm"eq_iff_diff_eq_0";
       
  1840 val le_iff_diff_le_0 = thm"le_iff_diff_le_0";
       
  1841 val eq_add_iff1 = thm"eq_add_iff1";
       
  1842 val eq_add_iff2 = thm"eq_add_iff2";
       
  1843 val less_add_iff1 = thm"less_add_iff1";
       
  1844 val less_add_iff2 = thm"less_add_iff2";
       
  1845 val le_add_iff1 = thm"le_add_iff1";
       
  1846 val le_add_iff2 = thm"le_add_iff2";
       
  1847 val mult_strict_left_mono = thm"mult_strict_left_mono";
       
  1848 val mult_strict_right_mono = thm"mult_strict_right_mono";
       
  1849 val mult_left_mono = thm"mult_left_mono";
       
  1850 val mult_right_mono = thm"mult_right_mono";
       
  1851 val mult_left_le_imp_le = thm"mult_left_le_imp_le";
       
  1852 val mult_right_le_imp_le = thm"mult_right_le_imp_le";
       
  1853 val mult_left_less_imp_less = thm"mult_left_less_imp_less";
       
  1854 val mult_right_less_imp_less = thm"mult_right_less_imp_less";
       
  1855 val mult_strict_left_mono_neg = thm"mult_strict_left_mono_neg";
       
  1856 val mult_strict_right_mono_neg = thm"mult_strict_right_mono_neg";
       
  1857 val mult_pos = thm"mult_pos";
       
  1858 val mult_pos_neg = thm"mult_pos_neg";
       
  1859 val mult_neg = thm"mult_neg";
       
  1860 val zero_less_mult_pos = thm"zero_less_mult_pos";
       
  1861 val zero_less_mult_iff = thm"zero_less_mult_iff";
       
  1862 val mult_eq_0_iff = thm"mult_eq_0_iff";
       
  1863 val zero_le_mult_iff = thm"zero_le_mult_iff";
       
  1864 val mult_less_0_iff = thm"mult_less_0_iff";
       
  1865 val mult_le_0_iff = thm"mult_le_0_iff";
       
  1866 val zero_le_square = thm"zero_le_square";
       
  1867 val zero_less_one = thm"zero_less_one";
       
  1868 val zero_le_one = thm"zero_le_one";
       
  1869 val not_one_less_zero = thm"not_one_less_zero";
       
  1870 val not_one_le_zero = thm"not_one_le_zero";
       
  1871 val mult_left_mono_neg = thm"mult_left_mono_neg";
       
  1872 val mult_right_mono_neg = thm"mult_right_mono_neg";
       
  1873 val mult_strict_mono = thm"mult_strict_mono";
       
  1874 val mult_strict_mono' = thm"mult_strict_mono'";
       
  1875 val mult_mono = thm"mult_mono";
       
  1876 val mult_less_cancel_right = thm"mult_less_cancel_right";
       
  1877 val mult_less_cancel_left = thm"mult_less_cancel_left";
       
  1878 val mult_le_cancel_right = thm"mult_le_cancel_right";
       
  1879 val mult_le_cancel_left = thm"mult_le_cancel_left";
       
  1880 val mult_less_imp_less_left = thm"mult_less_imp_less_left";
       
  1881 val mult_less_imp_less_right = thm"mult_less_imp_less_right";
       
  1882 val mult_cancel_right = thm"mult_cancel_right";
       
  1883 val mult_cancel_left = thm"mult_cancel_left";
       
  1884 val left_inverse = thm "left_inverse";
  1497 val left_inverse = thm "left_inverse";
  1885 val right_inverse = thm"right_inverse";
  1498 val divide_inverse = thm "divide_inverse";
  1886 val right_inverse_eq = thm"right_inverse_eq";
  1499 val mult_zero_left = thm "mult_zero_left";
  1887 val nonzero_inverse_eq_divide = thm"nonzero_inverse_eq_divide";
  1500 val mult_zero_right = thm "mult_zero_right";
  1888 val divide_self = thm"divide_self";
  1501 val field_mult_eq_0_iff = thm "field_mult_eq_0_iff";
  1889 val inverse_divide = thm"inverse_divide";
  1502 val inverse_zero = thm "inverse_zero";
  1890 val divide_zero_left = thm"divide_zero_left";
  1503 val ring_distrib = thms "ring_distrib";
  1891 val inverse_eq_divide = thm"inverse_eq_divide";
  1504 val combine_common_factor = thm "combine_common_factor";
  1892 val add_divide_distrib = thm"add_divide_distrib";
  1505 val minus_mult_left = thm "minus_mult_left";
  1893 val field_mult_eq_0_iff = thm"field_mult_eq_0_iff";
  1506 val minus_mult_right = thm "minus_mult_right";
  1894 val field_mult_cancel_right = thm"field_mult_cancel_right";
  1507 val minus_mult_minus = thm "minus_mult_minus";
  1895 val field_mult_cancel_left = thm"field_mult_cancel_left";
  1508 val minus_mult_commute = thm "minus_mult_commute";
  1896 val nonzero_imp_inverse_nonzero = thm"nonzero_imp_inverse_nonzero";
  1509 val right_diff_distrib = thm "right_diff_distrib";
  1897 val inverse_zero_imp_zero = thm"inverse_zero_imp_zero";
  1510 val left_diff_distrib = thm "left_diff_distrib";
  1898 val inverse_nonzero_imp_nonzero = thm"inverse_nonzero_imp_nonzero";
  1511 val mult_left_mono = thm "mult_left_mono";
  1899 val inverse_nonzero_iff_nonzero = thm"inverse_nonzero_iff_nonzero";
  1512 val mult_right_mono = thm "mult_right_mono";
  1900 val nonzero_inverse_minus_eq = thm"nonzero_inverse_minus_eq";
  1513 val mult_strict_left_mono = thm "mult_strict_left_mono";
  1901 val inverse_minus_eq = thm"inverse_minus_eq";
  1514 val mult_strict_right_mono = thm "mult_strict_right_mono";
  1902 val nonzero_inverse_eq_imp_eq = thm"nonzero_inverse_eq_imp_eq";
  1515 val mult_mono = thm "mult_mono";
  1903 val inverse_eq_imp_eq = thm"inverse_eq_imp_eq";
  1516 val mult_strict_mono = thm "mult_strict_mono";
  1904 val inverse_eq_iff_eq = thm"inverse_eq_iff_eq";
  1517 val abs_if = thm "abs_if";
  1905 val nonzero_inverse_inverse_eq = thm"nonzero_inverse_inverse_eq";
  1518 val zero_less_one = thm "zero_less_one";
  1906 val inverse_inverse_eq = thm"inverse_inverse_eq";
  1519 val eq_add_iff1 = thm "eq_add_iff1";
  1907 val inverse_1 = thm"inverse_1";
  1520 val eq_add_iff2 = thm "eq_add_iff2";
  1908 val nonzero_inverse_mult_distrib = thm"nonzero_inverse_mult_distrib";
  1521 val less_add_iff1 = thm "less_add_iff1";
  1909 val inverse_mult_distrib = thm"inverse_mult_distrib";
  1522 val less_add_iff2 = thm "less_add_iff2";
  1910 val inverse_add = thm"inverse_add";
  1523 val le_add_iff1 = thm "le_add_iff1";
  1911 val nonzero_mult_divide_cancel_left = thm"nonzero_mult_divide_cancel_left";
  1524 val le_add_iff2 = thm "le_add_iff2";
  1912 val mult_divide_cancel_left = thm"mult_divide_cancel_left";
  1525 val mult_left_le_imp_le = thm "mult_left_le_imp_le";
  1913 val nonzero_mult_divide_cancel_right = thm"nonzero_mult_divide_cancel_right";
  1526 val mult_right_le_imp_le = thm "mult_right_le_imp_le";
  1914 val mult_divide_cancel_right = thm"mult_divide_cancel_right";
  1527 val mult_left_less_imp_less = thm "mult_left_less_imp_less";
  1915 val mult_divide_cancel_eq_if = thm"mult_divide_cancel_eq_if";
  1528 val mult_right_less_imp_less = thm "mult_right_less_imp_less";
  1916 val divide_1 = thm"divide_1";
  1529 val mult_strict_left_mono_neg = thm "mult_strict_left_mono_neg";
  1917 val times_divide_eq_right = thm"times_divide_eq_right";
  1530 val mult_left_mono_neg = thm "mult_left_mono_neg";
  1918 val times_divide_eq_left = thm"times_divide_eq_left";
  1531 val mult_strict_right_mono_neg = thm "mult_strict_right_mono_neg";
  1919 val divide_divide_eq_right = thm"divide_divide_eq_right";
  1532 val mult_right_mono_neg = thm "mult_right_mono_neg";
  1920 val divide_divide_eq_left = thm"divide_divide_eq_left";
  1533 val mult_pos = thm "mult_pos";
  1921 val nonzero_minus_divide_left = thm"nonzero_minus_divide_left";
  1534 val mult_pos_le = thm "mult_pos_le";
  1922 val nonzero_minus_divide_right = thm"nonzero_minus_divide_right";
  1535 val mult_pos_neg = thm "mult_pos_neg";
  1923 val nonzero_minus_divide_divide = thm"nonzero_minus_divide_divide";
  1536 val mult_pos_neg_le = thm "mult_pos_neg_le";
  1924 val minus_divide_left = thm"minus_divide_left";
  1537 val mult_pos_neg2 = thm "mult_pos_neg2";
  1925 val minus_divide_right = thm"minus_divide_right";
  1538 val mult_pos_neg2_le = thm "mult_pos_neg2_le";
  1926 val minus_divide_divide = thm"minus_divide_divide";
  1539 val mult_neg = thm "mult_neg";
  1927 val positive_imp_inverse_positive = thm"positive_imp_inverse_positive";
  1540 val mult_neg_le = thm "mult_neg_le";
  1928 val negative_imp_inverse_negative = thm"negative_imp_inverse_negative";
  1541 val zero_less_mult_pos = thm "zero_less_mult_pos";
  1929 val inverse_le_imp_le = thm"inverse_le_imp_le";
  1542 val zero_less_mult_pos2 = thm "zero_less_mult_pos2";
  1930 val inverse_positive_imp_positive = thm"inverse_positive_imp_positive";
  1543 val zero_less_mult_iff = thm "zero_less_mult_iff";
  1931 val inverse_positive_iff_positive = thm"inverse_positive_iff_positive";
  1544 val mult_eq_0_iff = thm "mult_eq_0_iff";
  1932 val inverse_negative_imp_negative = thm"inverse_negative_imp_negative";
  1545 val zero_le_mult_iff = thm "zero_le_mult_iff";
  1933 val inverse_negative_iff_negative = thm"inverse_negative_iff_negative";
  1546 val mult_less_0_iff = thm "mult_less_0_iff";
  1934 val inverse_nonnegative_iff_nonnegative = thm"inverse_nonnegative_iff_nonnegative";
  1547 val mult_le_0_iff = thm "mult_le_0_iff";
  1935 val inverse_nonpositive_iff_nonpositive = thm"inverse_nonpositive_iff_nonpositive";
  1548 val split_mult_pos_le = thm "split_mult_pos_le";
  1936 val less_imp_inverse_less = thm"less_imp_inverse_less";
  1549 val split_mult_neg_le = thm "split_mult_neg_le";
  1937 val inverse_less_imp_less = thm"inverse_less_imp_less";
  1550 val zero_le_square = thm "zero_le_square";
  1938 val inverse_less_iff_less = thm"inverse_less_iff_less";
  1551 val zero_le_one = thm "zero_le_one";
  1939 val le_imp_inverse_le = thm"le_imp_inverse_le";
  1552 val not_one_le_zero = thm "not_one_le_zero";
  1940 val inverse_le_iff_le = thm"inverse_le_iff_le";
  1553 val not_one_less_zero = thm "not_one_less_zero";
  1941 val inverse_le_imp_le_neg = thm"inverse_le_imp_le_neg";
  1554 val mult_left_mono_neg = thm "mult_left_mono_neg";
  1942 val less_imp_inverse_less_neg = thm"less_imp_inverse_less_neg";
  1555 val mult_right_mono_neg = thm "mult_right_mono_neg";
  1943 val inverse_less_imp_less_neg = thm"inverse_less_imp_less_neg";
  1556 val mult_strict_mono = thm "mult_strict_mono";
  1944 val inverse_less_iff_less_neg = thm"inverse_less_iff_less_neg";
  1557 val mult_strict_mono' = thm "mult_strict_mono'";
  1945 val le_imp_inverse_le_neg = thm"le_imp_inverse_le_neg";
  1558 val mult_mono = thm "mult_mono";
  1946 val inverse_le_iff_le_neg = thm"inverse_le_iff_le_neg";
  1559 val less_1_mult = thm "less_1_mult";
  1947 val zero_less_divide_iff = thm"zero_less_divide_iff";
  1560 val mult_less_cancel_right = thm "mult_less_cancel_right";
  1948 val divide_less_0_iff = thm"divide_less_0_iff";
  1561 val mult_less_cancel_left = thm "mult_less_cancel_left";
  1949 val zero_le_divide_iff = thm"zero_le_divide_iff";
  1562 val mult_le_cancel_right = thm "mult_le_cancel_right";
  1950 val divide_le_0_iff = thm"divide_le_0_iff";
  1563 val mult_le_cancel_left = thm "mult_le_cancel_left";
  1951 val divide_eq_0_iff = thm"divide_eq_0_iff";
  1564 val mult_less_imp_less_left = thm "mult_less_imp_less_left";
  1952 val pos_le_divide_eq = thm"pos_le_divide_eq";
  1565 val mult_less_imp_less_right = thm "mult_less_imp_less_right";
  1953 val neg_le_divide_eq = thm"neg_le_divide_eq";
  1566 val mult_cancel_right = thm "mult_cancel_right";
  1954 val le_divide_eq = thm"le_divide_eq";
  1567 val mult_cancel_left = thm "mult_cancel_left";
  1955 val pos_divide_le_eq = thm"pos_divide_le_eq";
  1568 val ring_eq_simps = thms "ring_eq_simps";
  1956 val neg_divide_le_eq = thm"neg_divide_le_eq";
  1569 val right_inverse = thm "right_inverse";
  1957 val divide_le_eq = thm"divide_le_eq";
  1570 val right_inverse_eq = thm "right_inverse_eq";
  1958 val pos_less_divide_eq = thm"pos_less_divide_eq";
  1571 val nonzero_inverse_eq_divide = thm "nonzero_inverse_eq_divide";
  1959 val neg_less_divide_eq = thm"neg_less_divide_eq";
  1572 val divide_self = thm "divide_self";
  1960 val less_divide_eq = thm"less_divide_eq";
  1573 val divide_zero = thm "divide_zero";
  1961 val pos_divide_less_eq = thm"pos_divide_less_eq";
  1574 val divide_zero_left = thm "divide_zero_left";
  1962 val neg_divide_less_eq = thm"neg_divide_less_eq";
  1575 val inverse_eq_divide = thm "inverse_eq_divide";
  1963 val divide_less_eq = thm"divide_less_eq";
  1576 val add_divide_distrib = thm "add_divide_distrib";
  1964 val nonzero_eq_divide_eq = thm"nonzero_eq_divide_eq";
  1577 val field_mult_eq_0_iff = thm "field_mult_eq_0_iff";
  1965 val eq_divide_eq = thm"eq_divide_eq";
  1578 val field_mult_cancel_right_lemma = thm "field_mult_cancel_right_lemma";
  1966 val nonzero_divide_eq_eq = thm"nonzero_divide_eq_eq";
  1579 val field_mult_cancel_right = thm "field_mult_cancel_right";
  1967 val divide_eq_eq = thm"divide_eq_eq";
  1580 val field_mult_cancel_left = thm "field_mult_cancel_left";
  1968 val divide_cancel_right = thm"divide_cancel_right";
  1581 val nonzero_imp_inverse_nonzero = thm "nonzero_imp_inverse_nonzero";
  1969 val divide_cancel_left = thm"divide_cancel_left";
  1582 val inverse_zero_imp_zero = thm "inverse_zero_imp_zero";
  1970 val divide_strict_right_mono = thm"divide_strict_right_mono";
  1583 val inverse_nonzero_imp_nonzero = thm "inverse_nonzero_imp_nonzero";
  1971 val divide_right_mono = thm"divide_right_mono";
  1584 val inverse_nonzero_iff_nonzero = thm "inverse_nonzero_iff_nonzero";
  1972 val divide_strict_left_mono = thm"divide_strict_left_mono";
  1585 val nonzero_inverse_minus_eq = thm "nonzero_inverse_minus_eq";
  1973 val divide_left_mono = thm"divide_left_mono";
  1586 val inverse_minus_eq = thm "inverse_minus_eq";
  1974 val divide_strict_left_mono_neg = thm"divide_strict_left_mono_neg";
  1587 val nonzero_inverse_eq_imp_eq = thm "nonzero_inverse_eq_imp_eq";
  1975 val divide_strict_right_mono_neg = thm"divide_strict_right_mono_neg";
  1588 val inverse_eq_imp_eq = thm "inverse_eq_imp_eq";
  1976 val zero_less_two = thm"zero_less_two";
  1589 val inverse_eq_iff_eq = thm "inverse_eq_iff_eq";
  1977 val less_half_sum = thm"less_half_sum";
  1590 val nonzero_inverse_inverse_eq = thm "nonzero_inverse_inverse_eq";
  1978 val gt_half_sum = thm"gt_half_sum";
  1591 val inverse_inverse_eq = thm "inverse_inverse_eq";
  1979 val dense = thm"dense";
  1592 val inverse_1 = thm "inverse_1";
  1980 val abs_zero = thm"abs_zero";
  1593 val nonzero_inverse_mult_distrib = thm "nonzero_inverse_mult_distrib";
  1981 val abs_one = thm"abs_one";
  1594 val inverse_mult_distrib = thm "inverse_mult_distrib";
  1982 val abs_mult = thm"abs_mult";
  1595 val inverse_add = thm "inverse_add";
  1983 val abs_mult_self = thm"abs_mult_self";
  1596 val inverse_divide = thm "inverse_divide";
  1984 val abs_eq_0 = thm"abs_eq_0";
  1597 val nonzero_mult_divide_cancel_left = thm "nonzero_mult_divide_cancel_left";
  1985 val zero_less_abs_iff = thm"zero_less_abs_iff";
  1598 val mult_divide_cancel_left = thm "mult_divide_cancel_left";
  1986 val abs_not_less_zero = thm"abs_not_less_zero";
  1599 val nonzero_mult_divide_cancel_right = thm "nonzero_mult_divide_cancel_right";
  1987 val abs_le_zero_iff = thm"abs_le_zero_iff";
  1600 val mult_divide_cancel_right = thm "mult_divide_cancel_right";
  1988 val abs_minus_cancel = thm"abs_minus_cancel";
  1601 val mult_divide_cancel_eq_if = thm "mult_divide_cancel_eq_if";
  1989 val abs_ge_zero = thm"abs_ge_zero";
  1602 val divide_1 = thm "divide_1";
  1990 val abs_idempotent = thm"abs_idempotent";
  1603 val times_divide_eq_right = thm "times_divide_eq_right";
  1991 val abs_zero_iff = thm"abs_zero_iff";
  1604 val times_divide_eq_left = thm "times_divide_eq_left";
  1992 val abs_ge_self = thm"abs_ge_self";
  1605 val divide_divide_eq_right = thm "divide_divide_eq_right";
  1993 val abs_ge_minus_self = thm"abs_ge_minus_self";
  1606 val divide_divide_eq_left = thm "divide_divide_eq_left";
  1994 val nonzero_abs_inverse = thm"nonzero_abs_inverse";
  1607 val nonzero_minus_divide_left = thm "nonzero_minus_divide_left";
  1995 val abs_inverse = thm"abs_inverse";
  1608 val nonzero_minus_divide_right = thm "nonzero_minus_divide_right";
  1996 val nonzero_abs_divide = thm"nonzero_abs_divide";
  1609 val nonzero_minus_divide_divide = thm "nonzero_minus_divide_divide";
  1997 val abs_divide = thm"abs_divide";
  1610 val minus_divide_left = thm "minus_divide_left";
  1998 val abs_leI = thm"abs_leI";
  1611 val minus_divide_right = thm "minus_divide_right";
  1999 val le_minus_self_iff = thm"le_minus_self_iff";
  1612 val minus_divide_divide = thm "minus_divide_divide";
  2000 val minus_le_self_iff = thm"minus_le_self_iff";
  1613 val diff_divide_distrib = thm "diff_divide_distrib";
  2001 val eq_minus_self_iff = thm"eq_minus_self_iff";
  1614 val positive_imp_inverse_positive = thm "positive_imp_inverse_positive";
  2002 val less_minus_self_iff = thm"less_minus_self_iff";
  1615 val negative_imp_inverse_negative = thm "negative_imp_inverse_negative";
  2003 val abs_le_D1 = thm"abs_le_D1";
  1616 val inverse_le_imp_le = thm "inverse_le_imp_le";
  2004 val abs_le_D2 = thm"abs_le_D2";
  1617 val inverse_positive_imp_positive = thm "inverse_positive_imp_positive";
  2005 val abs_le_iff = thm"abs_le_iff";
  1618 val inverse_positive_iff_positive = thm "inverse_positive_iff_positive";
  2006 val abs_less_iff = thm"abs_less_iff";
  1619 val inverse_negative_imp_negative = thm "inverse_negative_imp_negative";
  2007 val abs_triangle_ineq = thm"abs_triangle_ineq";
  1620 val inverse_negative_iff_negative = thm "inverse_negative_iff_negative";
  2008 val abs_mult_less = thm"abs_mult_less";
  1621 val inverse_nonnegative_iff_nonnegative = thm "inverse_nonnegative_iff_nonnegative";
  2009 
  1622 val inverse_nonpositive_iff_nonpositive = thm "inverse_nonpositive_iff_nonpositive";
  2010 val compare_rls = thms"compare_rls";
  1623 val less_imp_inverse_less = thm "less_imp_inverse_less";
       
  1624 val inverse_less_imp_less = thm "inverse_less_imp_less";
       
  1625 val inverse_less_iff_less = thm "inverse_less_iff_less";
       
  1626 val le_imp_inverse_le = thm "le_imp_inverse_le";
       
  1627 val inverse_le_iff_le = thm "inverse_le_iff_le";
       
  1628 val inverse_le_imp_le_neg = thm "inverse_le_imp_le_neg";
       
  1629 val less_imp_inverse_less_neg = thm "less_imp_inverse_less_neg";
       
  1630 val inverse_less_imp_less_neg = thm "inverse_less_imp_less_neg";
       
  1631 val inverse_less_iff_less_neg = thm "inverse_less_iff_less_neg";
       
  1632 val le_imp_inverse_le_neg = thm "le_imp_inverse_le_neg";
       
  1633 val inverse_le_iff_le_neg = thm "inverse_le_iff_le_neg";
       
  1634 val one_less_inverse_iff = thm "one_less_inverse_iff";
       
  1635 val inverse_eq_1_iff = thm "inverse_eq_1_iff";
       
  1636 val one_le_inverse_iff = thm "one_le_inverse_iff";
       
  1637 val inverse_less_1_iff = thm "inverse_less_1_iff";
       
  1638 val inverse_le_1_iff = thm "inverse_le_1_iff";
       
  1639 val zero_less_divide_iff = thm "zero_less_divide_iff";
       
  1640 val divide_less_0_iff = thm "divide_less_0_iff";
       
  1641 val zero_le_divide_iff = thm "zero_le_divide_iff";
       
  1642 val divide_le_0_iff = thm "divide_le_0_iff";
       
  1643 val divide_eq_0_iff = thm "divide_eq_0_iff";
       
  1644 val pos_le_divide_eq = thm "pos_le_divide_eq";
       
  1645 val neg_le_divide_eq = thm "neg_le_divide_eq";
       
  1646 val le_divide_eq = thm "le_divide_eq";
       
  1647 val pos_divide_le_eq = thm "pos_divide_le_eq";
       
  1648 val neg_divide_le_eq = thm "neg_divide_le_eq";
       
  1649 val divide_le_eq = thm "divide_le_eq";
       
  1650 val pos_less_divide_eq = thm "pos_less_divide_eq";
       
  1651 val neg_less_divide_eq = thm "neg_less_divide_eq";
       
  1652 val less_divide_eq = thm "less_divide_eq";
       
  1653 val pos_divide_less_eq = thm "pos_divide_less_eq";
       
  1654 val neg_divide_less_eq = thm "neg_divide_less_eq";
       
  1655 val divide_less_eq = thm "divide_less_eq";
       
  1656 val nonzero_eq_divide_eq = thm "nonzero_eq_divide_eq";
       
  1657 val eq_divide_eq = thm "eq_divide_eq";
       
  1658 val nonzero_divide_eq_eq = thm "nonzero_divide_eq_eq";
       
  1659 val divide_eq_eq = thm "divide_eq_eq";
       
  1660 val divide_cancel_right = thm "divide_cancel_right";
       
  1661 val divide_cancel_left = thm "divide_cancel_left";
       
  1662 val divide_eq_1_iff = thm "divide_eq_1_iff";
       
  1663 val one_eq_divide_iff = thm "one_eq_divide_iff";
       
  1664 val zero_eq_1_divide_iff = thm "zero_eq_1_divide_iff";
       
  1665 val one_divide_eq_0_iff = thm "one_divide_eq_0_iff";
       
  1666 val divide_strict_right_mono = thm "divide_strict_right_mono";
       
  1667 val divide_right_mono = thm "divide_right_mono";
       
  1668 val divide_strict_left_mono = thm "divide_strict_left_mono";
       
  1669 val divide_left_mono = thm "divide_left_mono";
       
  1670 val divide_strict_left_mono_neg = thm "divide_strict_left_mono_neg";
       
  1671 val divide_strict_right_mono_neg = thm "divide_strict_right_mono_neg";
       
  1672 val less_add_one = thm "less_add_one";
       
  1673 val zero_less_two = thm "zero_less_two";
       
  1674 val less_half_sum = thm "less_half_sum";
       
  1675 val gt_half_sum = thm "gt_half_sum";
       
  1676 val dense = thm "dense";
       
  1677 val abs_one = thm "abs_one";
       
  1678 val abs_le_mult = thm "abs_le_mult";
       
  1679 val abs_eq_mult = thm "abs_eq_mult";
       
  1680 val abs_mult = thm "abs_mult";
       
  1681 val abs_mult_self = thm "abs_mult_self";
       
  1682 val nonzero_abs_inverse = thm "nonzero_abs_inverse";
       
  1683 val abs_inverse = thm "abs_inverse";
       
  1684 val nonzero_abs_divide = thm "nonzero_abs_divide";
       
  1685 val abs_divide = thm "abs_divide";
       
  1686 val abs_mult_less = thm "abs_mult_less";
       
  1687 val eq_minus_self_iff = thm "eq_minus_self_iff";
       
  1688 val less_minus_self_iff = thm "less_minus_self_iff";
       
  1689 val abs_less_iff = thm "abs_less_iff";
  2011 *}
  1690 *}
  2012 
  1691 
  2013 
       
  2014 end
  1692 end