src/HOL/OrderedGroup.thy
author obua
Tue, 11 May 2004 20:11:08 +0200
changeset 14738 83f1a514dcb4
child 14754 a080eeeaec14
permissions -rw-r--r--
changes made due to new Ring_and_Field theory
     1 (*  Title:   HOL/Group.thy
     2     ID:      $Id$
     3     Author:  Gertrud Bauer and Markus Wenzel, TU Muenchen
     4              Lawrence C Paulson, University of Cambridge
     5              Revised and decoupled from Ring_and_Field.thy 
     6              by Steven Obua, TU Muenchen, in May 2004
     7     License: GPL (GNU GENERAL PUBLIC LICENSE)
     8 *)
     9 
    10 header {* Ordered Groups *}
    11 
    12 theory OrderedGroup = Inductive + LOrder:
    13 
    14 text {*
    15   The theory of partially ordered groups is taken from the books:
    16   \begin{itemize}
    17   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
    18   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
    19   \end{itemize}
    20   Most of the used notions can also be looked up in 
    21   \begin{itemize}
    22   \item \emph{www.mathworld.com} by Eric Weisstein et. al.
    23   \item \emph{Algebra I} by van der Waerden, Springer.
    24   \end{itemize}
    25 *}
    26 
    27 subsection {* Semigroups, Groups *}
    28  
    29 axclass semigroup_add \<subseteq> plus
    30   add_assoc: "(a + b) + c = a + (b + c)"
    31 
    32 axclass ab_semigroup_add \<subseteq> semigroup_add
    33   add_commute: "a + b = b + a"
    34 
    35 lemma add_left_commute: "a + (b + c) = b + (a + (c::'a::ab_semigroup_add))"
    36   by (rule mk_left_commute [of "op +", OF add_assoc add_commute])
    37 
    38 theorems add_ac = add_assoc add_commute add_left_commute
    39 
    40 axclass semigroup_mult \<subseteq> times
    41   mult_assoc: "(a * b) * c = a * (b * c)"
    42 
    43 axclass ab_semigroup_mult \<subseteq> semigroup_mult
    44   mult_commute: "a * b = b * a"
    45 
    46 lemma mult_left_commute: "a * (b * c) = b * (a * (c::'a::ab_semigroup_mult))"
    47   by (rule mk_left_commute [of "op *", OF mult_assoc mult_commute])
    48 
    49 theorems mult_ac = mult_assoc mult_commute mult_left_commute
    50 
    51 axclass comm_monoid_add \<subseteq> zero, ab_semigroup_add
    52   add_0[simp]: "0 + a = a"
    53 
    54 axclass monoid_mult \<subseteq> one, semigroup_mult
    55   mult_1_left[simp]: "1 * a  = a"
    56   mult_1_right[simp]: "a * 1 = a"
    57 
    58 axclass comm_monoid_mult \<subseteq> one, ab_semigroup_mult
    59   mult_1: "1 * a = a"
    60 
    61 instance comm_monoid_mult \<subseteq> monoid_mult
    62 by (intro_classes, insert mult_1, simp_all add: mult_commute, auto)
    63 
    64 axclass cancel_semigroup_add \<subseteq> semigroup_add
    65   add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
    66   add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c"
    67 
    68 axclass cancel_ab_semigroup_add \<subseteq> ab_semigroup_add
    69   add_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
    70 
    71 instance cancel_ab_semigroup_add \<subseteq> cancel_semigroup_add
    72 proof
    73   {
    74     fix a b c :: 'a
    75     assume "a + b = a + c"
    76     thus "b = c" by (rule add_imp_eq)
    77   }
    78   note f = this
    79   fix a b c :: 'a
    80   assume "b + a = c + a"
    81   hence "a + b = a + c" by (simp only: add_commute)
    82   thus "b = c" by (rule f)
    83 qed
    84 
    85 axclass ab_group_add \<subseteq> minus, comm_monoid_add
    86   left_minus[simp]: " - a + a = 0"
    87   diff_minus: "a - b = a + (-b)"
    88 
    89 instance ab_group_add \<subseteq> cancel_ab_semigroup_add
    90 proof 
    91   fix a b c :: 'a
    92   assume "a + b = a + c"
    93   hence "-a + a + b = -a + a + c" by (simp only: add_assoc)
    94   thus "b = c" by simp 
    95 qed
    96 
    97 lemma add_0_right [simp]: "a + 0 = (a::'a::comm_monoid_add)"
    98 proof -
    99   have "a + 0 = 0 + a" by (simp only: add_commute)
   100   also have "... = a" by simp
   101   finally show ?thesis .
   102 qed
   103 
   104 lemma add_left_cancel [simp]:
   105      "(a + b = a + c) = (b = (c::'a::cancel_semigroup_add))"
   106 by (blast dest: add_left_imp_eq) 
   107 
   108 lemma add_right_cancel [simp]:
   109      "(b + a = c + a) = (b = (c::'a::cancel_semigroup_add))"
   110   by (blast dest: add_right_imp_eq)
   111 
   112 lemma right_minus [simp]: "a + -(a::'a::ab_group_add) = 0"
   113 proof -
   114   have "a + -a = -a + a" by (simp add: add_ac)
   115   also have "... = 0" by simp
   116   finally show ?thesis .
   117 qed
   118 
   119 lemma right_minus_eq: "(a - b = 0) = (a = (b::'a::ab_group_add))"
   120 proof
   121   have "a = a - b + b" by (simp add: diff_minus add_ac)
   122   also assume "a - b = 0"
   123   finally show "a = b" by simp
   124 next
   125   assume "a = b"
   126   thus "a - b = 0" by (simp add: diff_minus)
   127 qed
   128 
   129 lemma minus_minus [simp]: "- (- (a::'a::ab_group_add)) = a"
   130 proof (rule add_left_cancel [of "-a", THEN iffD1])
   131   show "(-a + -(-a) = -a + a)"
   132   by simp
   133 qed
   134 
   135 lemma equals_zero_I: "a+b = 0 ==> -a = (b::'a::ab_group_add)"
   136 apply (rule right_minus_eq [THEN iffD1, symmetric])
   137 apply (simp add: diff_minus add_commute) 
   138 done
   139 
   140 lemma minus_zero [simp]: "- 0 = (0::'a::ab_group_add)"
   141 by (simp add: equals_zero_I)
   142 
   143 lemma diff_self [simp]: "a - (a::'a::ab_group_add) = 0"
   144   by (simp add: diff_minus)
   145 
   146 lemma diff_0 [simp]: "(0::'a::ab_group_add) - a = -a"
   147 by (simp add: diff_minus)
   148 
   149 lemma diff_0_right [simp]: "a - (0::'a::ab_group_add) = a" 
   150 by (simp add: diff_minus)
   151 
   152 lemma diff_minus_eq_add [simp]: "a - - b = a + (b::'a::ab_group_add)"
   153 by (simp add: diff_minus)
   154 
   155 lemma neg_equal_iff_equal [simp]: "(-a = -b) = (a = (b::'a::ab_group_add))" 
   156 proof 
   157   assume "- a = - b"
   158   hence "- (- a) = - (- b)"
   159     by simp
   160   thus "a=b" by simp
   161 next
   162   assume "a=b"
   163   thus "-a = -b" by simp
   164 qed
   165 
   166 lemma neg_equal_0_iff_equal [simp]: "(-a = 0) = (a = (0::'a::ab_group_add))"
   167 by (subst neg_equal_iff_equal [symmetric], simp)
   168 
   169 lemma neg_0_equal_iff_equal [simp]: "(0 = -a) = (0 = (a::'a::ab_group_add))"
   170 by (subst neg_equal_iff_equal [symmetric], simp)
   171 
   172 text{*The next two equations can make the simplifier loop!*}
   173 
   174 lemma equation_minus_iff: "(a = - b) = (b = - (a::'a::ab_group_add))"
   175 proof -
   176   have "(- (-a) = - b) = (- a = b)" by (rule neg_equal_iff_equal)
   177   thus ?thesis by (simp add: eq_commute)
   178 qed
   179 
   180 lemma minus_equation_iff: "(- a = b) = (- (b::'a::ab_group_add) = a)"
   181 proof -
   182   have "(- a = - (-b)) = (a = -b)" by (rule neg_equal_iff_equal)
   183   thus ?thesis by (simp add: eq_commute)
   184 qed
   185 
   186 lemma minus_add_distrib [simp]: "- (a + b) = -a + -(b::'a::ab_group_add)"
   187 apply (rule equals_zero_I)
   188 apply (simp add: add_ac) 
   189 done
   190 
   191 lemma minus_diff_eq [simp]: "- (a - b) = b - (a::'a::ab_group_add)"
   192 by (simp add: diff_minus add_commute)
   193 
   194 subsection {* (Partially) Ordered Groups *} 
   195 
   196 axclass pordered_ab_semigroup_add \<subseteq> order, ab_semigroup_add
   197   add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b"
   198 
   199 axclass pordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add, cancel_ab_semigroup_add
   200 
   201 instance pordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add ..
   202 
   203 axclass pordered_ab_semigroup_add_imp_le \<subseteq> pordered_cancel_ab_semigroup_add
   204   add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b"
   205 
   206 axclass pordered_ab_group_add \<subseteq> ab_group_add, pordered_ab_semigroup_add
   207 
   208 instance pordered_ab_group_add \<subseteq> pordered_ab_semigroup_add_imp_le
   209 proof
   210   fix a b c :: 'a
   211   assume "c + a \<le> c + b"
   212   hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)
   213   hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc)
   214   thus "a \<le> b" by simp
   215 qed
   216 
   217 axclass ordered_cancel_ab_semigroup_add \<subseteq> pordered_cancel_ab_semigroup_add, linorder
   218 
   219 instance ordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add_imp_le
   220 proof
   221   fix a b c :: 'a
   222   assume le: "c + a <= c + b"  
   223   show "a <= b"
   224   proof (rule ccontr)
   225     assume w: "~ a \<le> b"
   226     hence "b <= a" by (simp add: linorder_not_le)
   227     hence le2: "c+b <= c+a" by (rule add_left_mono)
   228     have "a = b" 
   229       apply (insert le)
   230       apply (insert le2)
   231       apply (drule order_antisym, simp_all)
   232       done
   233     with w  show False 
   234       by (simp add: linorder_not_le [symmetric])
   235   qed
   236 qed
   237 
   238 lemma add_right_mono: "a \<le> (b::'a::pordered_ab_semigroup_add) ==> a + c \<le> b + c"
   239 by (simp add: add_commute[of _ c] add_left_mono)
   240 
   241 text {* non-strict, in both arguments *}
   242 lemma add_mono:
   243      "[|a \<le> b;  c \<le> d|] ==> a + c \<le> b + (d::'a::pordered_ab_semigroup_add)"
   244   apply (erule add_right_mono [THEN order_trans])
   245   apply (simp add: add_commute add_left_mono)
   246   done
   247 
   248 lemma add_strict_left_mono:
   249      "a < b ==> c + a < c + (b::'a::pordered_cancel_ab_semigroup_add)"
   250  by (simp add: order_less_le add_left_mono) 
   251 
   252 lemma add_strict_right_mono:
   253      "a < b ==> a + c < b + (c::'a::pordered_cancel_ab_semigroup_add)"
   254  by (simp add: add_commute [of _ c] add_strict_left_mono)
   255 
   256 text{*Strict monotonicity in both arguments*}
   257 lemma add_strict_mono: "[|a<b; c<d|] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"
   258 apply (erule add_strict_right_mono [THEN order_less_trans])
   259 apply (erule add_strict_left_mono)
   260 done
   261 
   262 lemma add_less_le_mono:
   263      "[| a<b; c\<le>d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"
   264 apply (erule add_strict_right_mono [THEN order_less_le_trans])
   265 apply (erule add_left_mono) 
   266 done
   267 
   268 lemma add_le_less_mono:
   269      "[| a\<le>b; c<d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"
   270 apply (erule add_right_mono [THEN order_le_less_trans])
   271 apply (erule add_strict_left_mono) 
   272 done
   273 
   274 lemma add_less_imp_less_left:
   275       assumes less: "c + a < c + b"  shows "a < (b::'a::pordered_ab_semigroup_add_imp_le)"
   276 proof -
   277   from less have le: "c + a <= c + b" by (simp add: order_le_less)
   278   have "a <= b" 
   279     apply (insert le)
   280     apply (drule add_le_imp_le_left)
   281     by (insert le, drule add_le_imp_le_left, assumption)
   282   moreover have "a \<noteq> b"
   283   proof (rule ccontr)
   284     assume "~(a \<noteq> b)"
   285     then have "a = b" by simp
   286     then have "c + a = c + b" by simp
   287     with less show "False"by simp
   288   qed
   289   ultimately show "a < b" by (simp add: order_le_less)
   290 qed
   291 
   292 lemma add_less_imp_less_right:
   293       "a + c < b + c ==> a < (b::'a::pordered_ab_semigroup_add_imp_le)"
   294 apply (rule add_less_imp_less_left [of c])
   295 apply (simp add: add_commute)  
   296 done
   297 
   298 lemma add_less_cancel_left [simp]:
   299     "(c+a < c+b) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))"
   300 by (blast intro: add_less_imp_less_left add_strict_left_mono) 
   301 
   302 lemma add_less_cancel_right [simp]:
   303     "(a+c < b+c) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))"
   304 by (blast intro: add_less_imp_less_right add_strict_right_mono)
   305 
   306 lemma add_le_cancel_left [simp]:
   307     "(c+a \<le> c+b) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))"
   308 by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) 
   309 
   310 lemma add_le_cancel_right [simp]:
   311     "(a+c \<le> b+c) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))"
   312 by (simp add: add_commute[of a c] add_commute[of b c])
   313 
   314 lemma add_le_imp_le_right:
   315       "a + c \<le> b + c ==> a \<le> (b::'a::pordered_ab_semigroup_add_imp_le)"
   316 by simp
   317 
   318 lemma add_increasing: "[|0\<le>a; b\<le>c|] ==> b \<le> a + (c::'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add})"
   319 by (insert add_mono [of 0 a b c], simp)
   320 
   321 subsection {* Ordering Rules for Unary Minus *}
   322 
   323 lemma le_imp_neg_le:
   324       assumes "a \<le> (b::'a::{pordered_ab_semigroup_add_imp_le, ab_group_add})" shows "-b \<le> -a"
   325 proof -
   326   have "-a+a \<le> -a+b"
   327     by (rule add_left_mono) 
   328   hence "0 \<le> -a+b"
   329     by simp
   330   hence "0 + (-b) \<le> (-a + b) + (-b)"
   331     by (rule add_right_mono) 
   332   thus ?thesis
   333     by (simp add: add_assoc)
   334 qed
   335 
   336 lemma neg_le_iff_le [simp]: "(-b \<le> -a) = (a \<le> (b::'a::pordered_ab_group_add))"
   337 proof 
   338   assume "- b \<le> - a"
   339   hence "- (- a) \<le> - (- b)"
   340     by (rule le_imp_neg_le)
   341   thus "a\<le>b" by simp
   342 next
   343   assume "a\<le>b"
   344   thus "-b \<le> -a" by (rule le_imp_neg_le)
   345 qed
   346 
   347 lemma neg_le_0_iff_le [simp]: "(-a \<le> 0) = (0 \<le> (a::'a::pordered_ab_group_add))"
   348 by (subst neg_le_iff_le [symmetric], simp)
   349 
   350 lemma neg_0_le_iff_le [simp]: "(0 \<le> -a) = (a \<le> (0::'a::pordered_ab_group_add))"
   351 by (subst neg_le_iff_le [symmetric], simp)
   352 
   353 lemma neg_less_iff_less [simp]: "(-b < -a) = (a < (b::'a::pordered_ab_group_add))"
   354 by (force simp add: order_less_le) 
   355 
   356 lemma neg_less_0_iff_less [simp]: "(-a < 0) = (0 < (a::'a::pordered_ab_group_add))"
   357 by (subst neg_less_iff_less [symmetric], simp)
   358 
   359 lemma neg_0_less_iff_less [simp]: "(0 < -a) = (a < (0::'a::pordered_ab_group_add))"
   360 by (subst neg_less_iff_less [symmetric], simp)
   361 
   362 text{*The next several equations can make the simplifier loop!*}
   363 
   364 lemma less_minus_iff: "(a < - b) = (b < - (a::'a::pordered_ab_group_add))"
   365 proof -
   366   have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
   367   thus ?thesis by simp
   368 qed
   369 
   370 lemma minus_less_iff: "(- a < b) = (- b < (a::'a::pordered_ab_group_add))"
   371 proof -
   372   have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
   373   thus ?thesis by simp
   374 qed
   375 
   376 lemma le_minus_iff: "(a \<le> - b) = (b \<le> - (a::'a::pordered_ab_group_add))"
   377 proof -
   378   have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)
   379   have "(- (- a) <= -b) = (b <= - a)" 
   380     apply (auto simp only: order_le_less)
   381     apply (drule mm)
   382     apply (simp_all)
   383     apply (drule mm[simplified], assumption)
   384     done
   385   then show ?thesis by simp
   386 qed
   387 
   388 lemma minus_le_iff: "(- a \<le> b) = (- b \<le> (a::'a::pordered_ab_group_add))"
   389 by (auto simp add: order_le_less minus_less_iff)
   390 
   391 lemma add_diff_eq: "a + (b - c) = (a + b) - (c::'a::ab_group_add)"
   392 by (simp add: diff_minus add_ac)
   393 
   394 lemma diff_add_eq: "(a - b) + c = (a + c) - (b::'a::ab_group_add)"
   395 by (simp add: diff_minus add_ac)
   396 
   397 lemma diff_eq_eq: "(a-b = c) = (a = c + (b::'a::ab_group_add))"
   398 by (auto simp add: diff_minus add_assoc)
   399 
   400 lemma eq_diff_eq: "(a = c-b) = (a + (b::'a::ab_group_add) = c)"
   401 by (auto simp add: diff_minus add_assoc)
   402 
   403 lemma diff_diff_eq: "(a - b) - c = a - (b + (c::'a::ab_group_add))"
   404 by (simp add: diff_minus add_ac)
   405 
   406 lemma diff_diff_eq2: "a - (b - c) = (a + c) - (b::'a::ab_group_add)"
   407 by (simp add: diff_minus add_ac)
   408 
   409 lemma diff_add_cancel: "a - b + b = (a::'a::ab_group_add)"
   410 by (simp add: diff_minus add_ac)
   411 
   412 lemma add_diff_cancel: "a + b - b = (a::'a::ab_group_add)"
   413 by (simp add: diff_minus add_ac)
   414 
   415 text{*Further subtraction laws for ordered rings*}
   416 
   417 lemma less_iff_diff_less_0: "(a < b) = (a - b < (0::'a::pordered_ab_group_add))"
   418 proof -
   419   have  "(a < b) = (a + (- b) < b + (-b))"  
   420     by (simp only: add_less_cancel_right)
   421   also have "... =  (a - b < 0)" by (simp add: diff_minus)
   422   finally show ?thesis .
   423 qed
   424 
   425 lemma diff_less_eq: "(a-b < c) = (a < c + (b::'a::pordered_ab_group_add))"
   426 apply (subst less_iff_diff_less_0)
   427 apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
   428 apply (simp add: diff_minus add_ac)
   429 done
   430 
   431 lemma less_diff_eq: "(a < c-b) = (a + (b::'a::pordered_ab_group_add) < c)"
   432 apply (subst less_iff_diff_less_0)
   433 apply (rule less_iff_diff_less_0 [of _ "c-b", THEN ssubst])
   434 apply (simp add: diff_minus add_ac)
   435 done
   436 
   437 lemma diff_le_eq: "(a-b \<le> c) = (a \<le> c + (b::'a::pordered_ab_group_add))"
   438 by (auto simp add: order_le_less diff_less_eq diff_add_cancel add_diff_cancel)
   439 
   440 lemma le_diff_eq: "(a \<le> c-b) = (a + (b::'a::pordered_ab_group_add) \<le> c)"
   441 by (auto simp add: order_le_less less_diff_eq diff_add_cancel add_diff_cancel)
   442 
   443 text{*This list of rewrites simplifies (in)equalities by bringing subtractions
   444   to the top and then moving negative terms to the other side.
   445   Use with @{text add_ac}*}
   446 lemmas compare_rls =
   447        diff_minus [symmetric]
   448        add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
   449        diff_less_eq less_diff_eq diff_le_eq le_diff_eq
   450        diff_eq_eq eq_diff_eq
   451 
   452 
   453 subsection{*Lemmas for the @{text cancel_numerals} simproc*}
   454 
   455 lemma eq_iff_diff_eq_0: "(a = b) = (a-b = (0::'a::ab_group_add))"
   456 by (simp add: compare_rls)
   457 
   458 lemma le_iff_diff_le_0: "(a \<le> b) = (a-b \<le> (0::'a::pordered_ab_group_add))"
   459 by (simp add: compare_rls)
   460 
   461 subsection {* Lattice Ordered (Abelian) Groups *}
   462 
   463 axclass lordered_ab_group_meet < pordered_ab_group_add, meet_semilorder
   464 
   465 axclass lordered_ab_group_join < pordered_ab_group_add, join_semilorder
   466 
   467 lemma add_meet_distrib_left: "a + (meet b c) = meet (a + b) (a + (c::'a::{pordered_ab_group_add, meet_semilorder}))"
   468 apply (rule order_antisym)
   469 apply (rule meet_imp_le, simp_all add: meet_join_le)
   470 apply (rule add_le_imp_le_left [of "-a"])
   471 apply (simp only: add_assoc[symmetric], simp)
   472 apply (rule meet_imp_le)
   473 apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp add: meet_join_le)+
   474 done
   475 
   476 lemma add_join_distrib_left: "a + (join b c) = join (a + b) (a+ (c::'a::{pordered_ab_group_add, join_semilorder}))" 
   477 apply (rule order_antisym)
   478 apply (rule add_le_imp_le_left [of "-a"])
   479 apply (simp only: add_assoc[symmetric], simp)
   480 apply (rule join_imp_le)
   481 apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp add: meet_join_le)+
   482 apply (rule join_imp_le)
   483 apply (simp_all add: meet_join_le)
   484 done
   485 
   486 lemma is_join_neg_meet: "is_join (% (a::'a::{pordered_ab_group_add, meet_semilorder}) b. - (meet (-a) (-b)))"
   487 apply (auto simp add: is_join_def)
   488 apply (rule_tac c="meet (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_meet_distrib_left meet_join_le)
   489 apply (rule_tac c="meet (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_meet_distrib_left meet_join_le)
   490 apply (subst neg_le_iff_le[symmetric]) 
   491 apply (simp add: meet_imp_le)
   492 done
   493 
   494 lemma is_meet_neg_join: "is_meet (% (a::'a::{pordered_ab_group_add, join_semilorder}) b. - (join (-a) (-b)))"
   495 apply (auto simp add: is_meet_def)
   496 apply (rule_tac c="join (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_join_distrib_left meet_join_le)
   497 apply (rule_tac c="join (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_join_distrib_left meet_join_le)
   498 apply (subst neg_le_iff_le[symmetric]) 
   499 apply (simp add: join_imp_le)
   500 done
   501 
   502 axclass lordered_ab_group \<subseteq> pordered_ab_group_add, lorder
   503 
   504 instance lordered_ab_group_meet \<subseteq> lordered_ab_group
   505 proof 
   506   show "? j. is_join (j::'a\<Rightarrow>'a\<Rightarrow>('a::lordered_ab_group_meet))" by (blast intro: is_join_neg_meet)
   507 qed
   508 
   509 instance lordered_ab_group_join \<subseteq> lordered_ab_group
   510 proof
   511   show "? m. is_meet (m::'a\<Rightarrow>'a\<Rightarrow>('a::lordered_ab_group_join))" by (blast intro: is_meet_neg_join)
   512 qed
   513 
   514 lemma add_join_distrib_right: "(join a b) + (c::'a::lordered_ab_group) = join (a+c) (b+c)"
   515 proof -
   516   have "c + (join a b) = join (c+a) (c+b)" by (simp add: add_join_distrib_left)
   517   thus ?thesis by (simp add: add_commute)
   518 qed
   519 
   520 lemma add_meet_distrib_right: "(meet a b) + (c::'a::lordered_ab_group) = meet (a+c) (b+c)"
   521 proof -
   522   have "c + (meet a b) = meet (c+a) (c+b)" by (simp add: add_meet_distrib_left)
   523   thus ?thesis by (simp add: add_commute)
   524 qed
   525 
   526 lemmas add_meet_join_distribs = add_meet_distrib_right add_meet_distrib_left add_join_distrib_right add_join_distrib_left
   527 
   528 lemma join_eq_neg_meet: "join a (b::'a::lordered_ab_group) = - meet (-a) (-b)"
   529 by (simp add: is_join_unique[OF is_join_join is_join_neg_meet])
   530 
   531 lemma meet_eq_neg_join: "meet a (b::'a::lordered_ab_group) = - join (-a) (-b)"
   532 by (simp add: is_meet_unique[OF is_meet_meet is_meet_neg_join])
   533 
   534 lemma add_eq_meet_join: "a + b = (join a b) + (meet a (b::'a::lordered_ab_group))"
   535 proof -
   536   have "0 = - meet 0 (a-b) + meet (a-b) 0" by (simp add: meet_comm)
   537   hence "0 = join 0 (b-a) + meet (a-b) 0" by (simp add: meet_eq_neg_join)
   538   hence "0 = (-a + join a b) + (meet a b + (-b))"
   539     apply (simp add: add_join_distrib_left add_meet_distrib_right)
   540     by (simp add: diff_minus add_commute)
   541   thus ?thesis
   542     apply (simp add: compare_rls)
   543     apply (subst add_left_cancel[symmetric, of "a+b" "join a b + meet a b" "-a"])
   544     apply (simp only: add_assoc, simp add: add_assoc[symmetric])
   545     done
   546 qed
   547 
   548 subsection {* Positive Part, Negative Part, Absolute Value *}
   549 
   550 constdefs
   551   pprt :: "'a \<Rightarrow> ('a::lordered_ab_group)"
   552   "pprt x == join x 0"
   553   nprt :: "'a \<Rightarrow> ('a::lordered_ab_group)"
   554   "nprt x == meet x 0"
   555 
   556 lemma prts: "a = pprt a + nprt a"
   557 by (simp add: pprt_def nprt_def add_eq_meet_join[symmetric])
   558 
   559 lemma zero_le_pprt[simp]: "0 \<le> pprt a"
   560 by (simp add: pprt_def meet_join_le)
   561 
   562 lemma nprt_le_zero[simp]: "nprt a \<le> 0"
   563 by (simp add: nprt_def meet_join_le)
   564 
   565 lemma le_eq_neg: "(a \<le> -b) = (a + b \<le> (0::_::lordered_ab_group))" (is "?l = ?r")
   566 proof -
   567   have a: "?l \<longrightarrow> ?r"
   568     apply (auto)
   569     apply (rule add_le_imp_le_right[of _ "-b" _])
   570     apply (simp add: add_assoc)
   571     done
   572   have b: "?r \<longrightarrow> ?l"
   573     apply (auto)
   574     apply (rule add_le_imp_le_right[of _ "b" _])
   575     apply (simp)
   576     done
   577   from a b show ?thesis by blast
   578 qed
   579 
   580 lemma join_0_imp_0: "join a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)"
   581 proof -
   582   {
   583     fix a::'a
   584     assume hyp: "join a (-a) = 0"
   585     hence "join a (-a) + a = a" by (simp)
   586     hence "join (a+a) 0 = a" by (simp add: add_join_distrib_right) 
   587     hence "join (a+a) 0 <= a" by (simp)
   588     hence "0 <= a" by (blast intro: order_trans meet_join_le)
   589   }
   590   note p = this
   591   thm p
   592   assume hyp:"join a (-a) = 0"
   593   hence hyp2:"join (-a) (-(-a)) = 0" by (simp add: join_comm)
   594   from p[OF hyp] p[OF hyp2] show "a = 0" by simp
   595 qed
   596 
   597 lemma meet_0_imp_0: "meet a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)"
   598 apply (simp add: meet_eq_neg_join)
   599 apply (simp add: join_comm)
   600 apply (subst join_0_imp_0)
   601 by auto
   602 
   603 lemma join_0_eq_0[simp]: "(join a (-a) = 0) = (a = (0::'a::lordered_ab_group))"
   604 by (auto, erule join_0_imp_0)
   605 
   606 lemma meet_0_eq_0[simp]: "(meet a (-a) = 0) = (a = (0::'a::lordered_ab_group))"
   607 by (auto, erule meet_0_imp_0)
   608 
   609 lemma zero_le_double_add_iff_zero_le_single_add[simp]: "(0 \<le> a + a) = (0 \<le> (a::'a::lordered_ab_group))"
   610 proof
   611   assume "0 <= a + a"
   612   hence a:"meet (a+a) 0 = 0" by (simp add: le_def_meet meet_comm)
   613   have "(meet a 0)+(meet a 0) = meet (meet (a+a) 0) a" (is "?l=_") by (simp add: add_meet_join_distribs meet_aci)
   614   hence "?l = 0 + meet a 0" by (simp add: a, simp add: meet_comm)
   615   hence "meet a 0 = 0" by (simp only: add_right_cancel)
   616   then show "0 <= a" by (simp add: le_def_meet meet_comm)    
   617 next  
   618   assume a: "0 <= a"
   619   show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])
   620 qed
   621 
   622 lemma double_add_le_zero_iff_single_add_le_zero[simp]: "(a + a <= 0) = ((a::'a::lordered_ab_group) <= 0)" 
   623 proof -
   624   have "(a + a <= 0) = (0 <= -(a+a))" by (subst le_minus_iff, simp)
   625   moreover have "\<dots> = (a <= 0)" by (simp add: zero_le_double_add_iff_zero_le_single_add)
   626   ultimately show ?thesis by blast
   627 qed
   628 
   629 lemma double_add_less_zero_iff_single_less_zero[simp]: "(a+a<0) = ((a::'a::{pordered_ab_group_add,linorder}) < 0)" (is ?s)
   630 proof cases
   631   assume a: "a < 0"
   632   thus ?s by (simp add:  add_strict_mono[OF a a, simplified])
   633 next
   634   assume "~(a < 0)" 
   635   hence a:"0 <= a" by (simp)
   636   hence "0 <= a+a" by (simp add: add_mono[OF a a, simplified])
   637   hence "~(a+a < 0)" by simp
   638   with a show ?thesis by simp 
   639 qed
   640 
   641 axclass lordered_ab_group_abs \<subseteq> lordered_ab_group
   642   abs_lattice: "abs x = join x (-x)"
   643 
   644 lemma abs_zero[simp]: "abs 0 = (0::'a::lordered_ab_group_abs)"
   645 by (simp add: abs_lattice)
   646 
   647 lemma abs_eq_0[simp]: "(abs a = 0) = (a = (0::'a::lordered_ab_group_abs))"
   648 by (simp add: abs_lattice)
   649 
   650 lemma abs_0_eq[simp]: "(0 = abs a) = (a = (0::'a::lordered_ab_group_abs))"
   651 proof -
   652   have "(0 = abs a) = (abs a = 0)" by (simp only: eq_ac)
   653   thus ?thesis by simp
   654 qed
   655 
   656 lemma neg_meet_eq_join[simp]: "- meet a (b::_::lordered_ab_group) = join (-a) (-b)"
   657 by (simp add: meet_eq_neg_join)
   658 
   659 lemma neg_join_eq_meet[simp]: "- join a (b::_::lordered_ab_group) = meet (-a) (-b)"
   660 by (simp del: neg_meet_eq_join add: join_eq_neg_meet)
   661 
   662 lemma join_eq_if: "join a (-a) = (if a < 0 then -a else (a::'a::{lordered_ab_group, linorder}))"
   663 proof -
   664   note b = add_le_cancel_right[of a a "-a",symmetric,simplified]
   665   have c: "a + a = 0 \<Longrightarrow> -a = a" by (rule add_right_imp_eq[of _ a], simp)
   666   show ?thesis
   667     apply (auto simp add: join_max max_def b linorder_not_less)
   668     apply (drule order_antisym, auto)
   669     done
   670 qed
   671 
   672 lemma abs_if_lattice: "\<bar>a\<bar> = (if a < 0 then -a else (a::'a::{lordered_ab_group_abs, linorder}))"
   673 proof -
   674   show ?thesis by (simp add: abs_lattice join_eq_if)
   675 qed
   676 
   677 lemma abs_ge_zero[simp]: "0 \<le> abs (a::'a::lordered_ab_group_abs)"
   678 proof -
   679   have a:"a <= abs a" and b:"-a <= abs a" by (auto simp add: abs_lattice meet_join_le)
   680   show ?thesis by (rule add_mono[OF a b, simplified])
   681 qed
   682   
   683 lemma abs_le_zero_iff [simp]: "(abs a \<le> (0::'a::lordered_ab_group_abs)) = (a = 0)" 
   684 proof
   685   assume "abs a <= 0"
   686   hence "abs a = 0" by (auto dest: order_antisym)
   687   thus "a = 0" by simp
   688 next
   689   assume "a = 0"
   690   thus "abs a <= 0" by simp
   691 qed
   692 
   693 lemma zero_less_abs_iff [simp]: "(0 < abs a) = (a \<noteq> (0::'a::lordered_ab_group_abs))"
   694 by (simp add: order_less_le)
   695 
   696 lemma abs_not_less_zero [simp]: "~ abs a < (0::'a::lordered_ab_group_abs)"
   697 proof -
   698   have a:"!! x (y::_::order). x <= y \<Longrightarrow> ~(y < x)" by auto
   699   show ?thesis by (simp add: a)
   700 qed
   701 
   702 lemma abs_ge_self: "a \<le> abs (a::'a::lordered_ab_group_abs)"
   703 by (simp add: abs_lattice meet_join_le)
   704 
   705 lemma abs_ge_minus_self: "-a \<le> abs (a::'a::lordered_ab_group_abs)"
   706 by (simp add: abs_lattice meet_join_le)
   707 
   708 lemma le_imp_join_eq: "a \<le> b \<Longrightarrow> join a b = b" 
   709 by (simp add: le_def_join)
   710 
   711 lemma ge_imp_join_eq: "b \<le> a \<Longrightarrow> join a b = a"
   712 by (simp add: le_def_join join_aci)
   713 
   714 lemma le_imp_meet_eq: "a \<le> b \<Longrightarrow> meet a b = a"
   715 by (simp add: le_def_meet)
   716 
   717 lemma ge_imp_meet_eq: "b \<le> a \<Longrightarrow> meet a b = b"
   718 by (simp add: le_def_meet meet_aci)
   719 
   720 lemma abs_prts: "abs (a::_::lordered_ab_group_abs) = pprt a - nprt a"
   721 apply (simp add: pprt_def nprt_def diff_minus)
   722 apply (simp add: add_meet_join_distribs join_aci abs_lattice[symmetric])
   723 apply (subst le_imp_join_eq, auto)
   724 done
   725 
   726 lemma abs_minus_cancel [simp]: "abs (-a) = abs(a::'a::lordered_ab_group_abs)"
   727 by (simp add: abs_lattice join_comm)
   728 
   729 lemma abs_idempotent [simp]: "abs (abs a) = abs (a::'a::lordered_ab_group_abs)"
   730 apply (simp add: abs_lattice[of "abs a"])
   731 apply (subst ge_imp_join_eq)
   732 apply (rule order_trans[of _ 0])
   733 by auto
   734 
   735 lemma zero_le_iff_zero_nprt: "(0 \<le> a) = (nprt a = 0)"
   736 by (simp add: le_def_meet nprt_def meet_comm)
   737 
   738 lemma le_zero_iff_zero_pprt: "(a \<le> 0) = (pprt a = 0)"
   739 by (simp add: le_def_join pprt_def join_comm)
   740 
   741 lemma le_zero_iff_pprt_id: "(0 \<le> a) = (pprt a = a)"
   742 by (simp add: le_def_join pprt_def join_comm)
   743 
   744 lemma zero_le_iff_nprt_id: "(a \<le> 0) = (nprt a = a)"
   745 by (simp add: le_def_meet nprt_def meet_comm)
   746 
   747 lemma iff2imp: "(A=B) \<Longrightarrow> (A \<Longrightarrow> B)"
   748 by (simp)
   749 
   750 lemma imp_abs_id: "0 \<le> a \<Longrightarrow> abs a = (a::'a::lordered_ab_group_abs)"
   751 by (simp add: iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_pprt_id] abs_prts)
   752 
   753 lemma imp_abs_neg_id: "a \<le> 0 \<Longrightarrow> abs a = -(a::'a::lordered_ab_group_abs)"
   754 by (simp add: iff2imp[OF le_zero_iff_zero_pprt] iff2imp[OF zero_le_iff_nprt_id] abs_prts)
   755 
   756 lemma abs_leI: "[|a \<le> b; -a \<le> b|] ==> abs a \<le> (b::'a::lordered_ab_group_abs)"
   757 by (simp add: abs_lattice join_imp_le)
   758 
   759 lemma le_minus_self_iff: "(a \<le> -a) = (a \<le> (0::'a::lordered_ab_group))"
   760 proof -
   761   from add_le_cancel_left[of "-a" "a+a" "0"] have "(a <= -a) = (a+a <= 0)" 
   762     by (simp add: add_assoc[symmetric])
   763   thus ?thesis by simp
   764 qed
   765 
   766 lemma minus_le_self_iff: "(-a \<le> a) = (0 \<le> (a::'a::lordered_ab_group))"
   767 proof -
   768   from add_le_cancel_left[of "-a" "0" "a+a"] have "(-a <= a) = (0 <= a+a)" 
   769     by (simp add: add_assoc[symmetric])
   770   thus ?thesis by simp
   771 qed
   772 
   773 lemma abs_le_D1: "abs a \<le> b ==> a \<le> (b::'a::lordered_ab_group_abs)"
   774 by (insert abs_ge_self, blast intro: order_trans)
   775 
   776 lemma abs_le_D2: "abs a \<le> b ==> -a \<le> (b::'a::lordered_ab_group_abs)"
   777 by (insert abs_le_D1 [of "-a"], simp)
   778 
   779 lemma abs_le_iff: "(abs a \<le> b) = (a \<le> b & -a \<le> (b::'a::lordered_ab_group_abs))"
   780 by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
   781 
   782 lemma abs_triangle_ineq: "abs (a+b) \<le> abs a + abs (b::'a::lordered_ab_group_abs)"
   783 proof -
   784   have g:"abs a + abs b = join (a+b) (join (-a-b) (join (-a+b) (a + (-b))))" (is "_=join ?m ?n")
   785     apply (simp add: abs_lattice add_meet_join_distribs join_aci)
   786     by (simp only: diff_minus)
   787   have a:"a+b <= join ?m ?n" by (simp add: meet_join_le)
   788   have b:"-a-b <= ?n" by (simp add: meet_join_le) 
   789   have c:"?n <= join ?m ?n" by (simp add: meet_join_le)
   790   from b c have d: "-a-b <= join ?m ?n" by simp
   791   have e:"-a-b = -(a+b)" by (simp add: diff_minus)
   792   from a d e have "abs(a+b) <= join ?m ?n" 
   793     by (drule_tac abs_leI, auto)
   794   with g[symmetric] show ?thesis by simp
   795 qed
   796 
   797 lemma abs_diff_triangle_ineq:
   798      "\<bar>(a::'a::lordered_ab_group_abs) + b - (c+d)\<bar> \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>"
   799 proof -
   800   have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
   801   also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
   802   finally show ?thesis .
   803 qed
   804 
   805 ML {*
   806 val add_zero_left = thm"add_0";
   807 val add_zero_right = thm"add_0_right";
   808 *}
   809 
   810 ML {*
   811 val add_assoc = thm "add_assoc";
   812 val add_commute = thm "add_commute";
   813 val add_left_commute = thm "add_left_commute";
   814 val add_ac = thms "add_ac";
   815 val mult_assoc = thm "mult_assoc";
   816 val mult_commute = thm "mult_commute";
   817 val mult_left_commute = thm "mult_left_commute";
   818 val mult_ac = thms "mult_ac";
   819 val add_0 = thm "add_0";
   820 val mult_1_left = thm "mult_1_left";
   821 val mult_1_right = thm "mult_1_right";
   822 val mult_1 = thm "mult_1";
   823 val add_left_imp_eq = thm "add_left_imp_eq";
   824 val add_right_imp_eq = thm "add_right_imp_eq";
   825 val add_imp_eq = thm "add_imp_eq";
   826 val left_minus = thm "left_minus";
   827 val diff_minus = thm "diff_minus";
   828 val add_0_right = thm "add_0_right";
   829 val add_left_cancel = thm "add_left_cancel";
   830 val add_right_cancel = thm "add_right_cancel";
   831 val right_minus = thm "right_minus";
   832 val right_minus_eq = thm "right_minus_eq";
   833 val minus_minus = thm "minus_minus";
   834 val equals_zero_I = thm "equals_zero_I";
   835 val minus_zero = thm "minus_zero";
   836 val diff_self = thm "diff_self";
   837 val diff_0 = thm "diff_0";
   838 val diff_0_right = thm "diff_0_right";
   839 val diff_minus_eq_add = thm "diff_minus_eq_add";
   840 val neg_equal_iff_equal = thm "neg_equal_iff_equal";
   841 val neg_equal_0_iff_equal = thm "neg_equal_0_iff_equal";
   842 val neg_0_equal_iff_equal = thm "neg_0_equal_iff_equal";
   843 val equation_minus_iff = thm "equation_minus_iff";
   844 val minus_equation_iff = thm "minus_equation_iff";
   845 val minus_add_distrib = thm "minus_add_distrib";
   846 val minus_diff_eq = thm "minus_diff_eq";
   847 val add_left_mono = thm "add_left_mono";
   848 val add_le_imp_le_left = thm "add_le_imp_le_left";
   849 val add_right_mono = thm "add_right_mono";
   850 val add_mono = thm "add_mono";
   851 val add_strict_left_mono = thm "add_strict_left_mono";
   852 val add_strict_right_mono = thm "add_strict_right_mono";
   853 val add_strict_mono = thm "add_strict_mono";
   854 val add_less_le_mono = thm "add_less_le_mono";
   855 val add_le_less_mono = thm "add_le_less_mono";
   856 val add_less_imp_less_left = thm "add_less_imp_less_left";
   857 val add_less_imp_less_right = thm "add_less_imp_less_right";
   858 val add_less_cancel_left = thm "add_less_cancel_left";
   859 val add_less_cancel_right = thm "add_less_cancel_right";
   860 val add_le_cancel_left = thm "add_le_cancel_left";
   861 val add_le_cancel_right = thm "add_le_cancel_right";
   862 val add_le_imp_le_right = thm "add_le_imp_le_right";
   863 val add_increasing = thm "add_increasing";
   864 val le_imp_neg_le = thm "le_imp_neg_le";
   865 val neg_le_iff_le = thm "neg_le_iff_le";
   866 val neg_le_0_iff_le = thm "neg_le_0_iff_le";
   867 val neg_0_le_iff_le = thm "neg_0_le_iff_le";
   868 val neg_less_iff_less = thm "neg_less_iff_less";
   869 val neg_less_0_iff_less = thm "neg_less_0_iff_less";
   870 val neg_0_less_iff_less = thm "neg_0_less_iff_less";
   871 val less_minus_iff = thm "less_minus_iff";
   872 val minus_less_iff = thm "minus_less_iff";
   873 val le_minus_iff = thm "le_minus_iff";
   874 val minus_le_iff = thm "minus_le_iff";
   875 val add_diff_eq = thm "add_diff_eq";
   876 val diff_add_eq = thm "diff_add_eq";
   877 val diff_eq_eq = thm "diff_eq_eq";
   878 val eq_diff_eq = thm "eq_diff_eq";
   879 val diff_diff_eq = thm "diff_diff_eq";
   880 val diff_diff_eq2 = thm "diff_diff_eq2";
   881 val diff_add_cancel = thm "diff_add_cancel";
   882 val add_diff_cancel = thm "add_diff_cancel";
   883 val less_iff_diff_less_0 = thm "less_iff_diff_less_0";
   884 val diff_less_eq = thm "diff_less_eq";
   885 val less_diff_eq = thm "less_diff_eq";
   886 val diff_le_eq = thm "diff_le_eq";
   887 val le_diff_eq = thm "le_diff_eq";
   888 val compare_rls = thms "compare_rls";
   889 val eq_iff_diff_eq_0 = thm "eq_iff_diff_eq_0";
   890 val le_iff_diff_le_0 = thm "le_iff_diff_le_0";
   891 val add_meet_distrib_left = thm "add_meet_distrib_left";
   892 val add_join_distrib_left = thm "add_join_distrib_left";
   893 val is_join_neg_meet = thm "is_join_neg_meet";
   894 val is_meet_neg_join = thm "is_meet_neg_join";
   895 val add_join_distrib_right = thm "add_join_distrib_right";
   896 val add_meet_distrib_right = thm "add_meet_distrib_right";
   897 val add_meet_join_distribs = thms "add_meet_join_distribs";
   898 val join_eq_neg_meet = thm "join_eq_neg_meet";
   899 val meet_eq_neg_join = thm "meet_eq_neg_join";
   900 val add_eq_meet_join = thm "add_eq_meet_join";
   901 val prts = thm "prts";
   902 val zero_le_pprt = thm "zero_le_pprt";
   903 val nprt_le_zero = thm "nprt_le_zero";
   904 val le_eq_neg = thm "le_eq_neg";
   905 val join_0_imp_0 = thm "join_0_imp_0";
   906 val meet_0_imp_0 = thm "meet_0_imp_0";
   907 val join_0_eq_0 = thm "join_0_eq_0";
   908 val meet_0_eq_0 = thm "meet_0_eq_0";
   909 val zero_le_double_add_iff_zero_le_single_add = thm "zero_le_double_add_iff_zero_le_single_add";
   910 val double_add_le_zero_iff_single_add_le_zero = thm "double_add_le_zero_iff_single_add_le_zero";
   911 val double_add_less_zero_iff_single_less_zero = thm "double_add_less_zero_iff_single_less_zero";
   912 val abs_lattice = thm "abs_lattice";
   913 val abs_zero = thm "abs_zero";
   914 val abs_eq_0 = thm "abs_eq_0";
   915 val abs_0_eq = thm "abs_0_eq";
   916 val neg_meet_eq_join = thm "neg_meet_eq_join";
   917 val neg_join_eq_meet = thm "neg_join_eq_meet";
   918 val join_eq_if = thm "join_eq_if";
   919 val abs_if_lattice = thm "abs_if_lattice";
   920 val abs_ge_zero = thm "abs_ge_zero";
   921 val abs_le_zero_iff = thm "abs_le_zero_iff";
   922 val zero_less_abs_iff = thm "zero_less_abs_iff";
   923 val abs_not_less_zero = thm "abs_not_less_zero";
   924 val abs_ge_self = thm "abs_ge_self";
   925 val abs_ge_minus_self = thm "abs_ge_minus_self";
   926 val le_imp_join_eq = thm "le_imp_join_eq";
   927 val ge_imp_join_eq = thm "ge_imp_join_eq";
   928 val le_imp_meet_eq = thm "le_imp_meet_eq";
   929 val ge_imp_meet_eq = thm "ge_imp_meet_eq";
   930 val abs_prts = thm "abs_prts";
   931 val abs_minus_cancel = thm "abs_minus_cancel";
   932 val abs_idempotent = thm "abs_idempotent";
   933 val zero_le_iff_zero_nprt = thm "zero_le_iff_zero_nprt";
   934 val le_zero_iff_zero_pprt = thm "le_zero_iff_zero_pprt";
   935 val le_zero_iff_pprt_id = thm "le_zero_iff_pprt_id";
   936 val zero_le_iff_nprt_id = thm "zero_le_iff_nprt_id";
   937 val iff2imp = thm "iff2imp";
   938 val imp_abs_id = thm "imp_abs_id";
   939 val imp_abs_neg_id = thm "imp_abs_neg_id";
   940 val abs_leI = thm "abs_leI";
   941 val le_minus_self_iff = thm "le_minus_self_iff";
   942 val minus_le_self_iff = thm "minus_le_self_iff";
   943 val abs_le_D1 = thm "abs_le_D1";
   944 val abs_le_D2 = thm "abs_le_D2";
   945 val abs_le_iff = thm "abs_le_iff";
   946 val abs_triangle_ineq = thm "abs_triangle_ineq";
   947 val abs_diff_triangle_ineq = thm "abs_diff_triangle_ineq";
   948 *}
   949 
   950 end