src/HOL/OrderedGroup.thy
changeset 14738 83f1a514dcb4
child 14754 a080eeeaec14
equal deleted inserted replaced
14737:77ea79aed99d 14738:83f1a514dcb4
       
     1 (*  Title:   HOL/Group.thy
       
     2     ID:      $Id$
       
     3     Author:  Gertrud Bauer and Markus Wenzel, TU Muenchen
       
     4              Lawrence C Paulson, University of Cambridge
       
     5              Revised and decoupled from Ring_and_Field.thy 
       
     6              by Steven Obua, TU Muenchen, in May 2004
       
     7     License: GPL (GNU GENERAL PUBLIC LICENSE)
       
     8 *)
       
     9 
       
    10 header {* Ordered Groups *}
       
    11 
       
    12 theory OrderedGroup = Inductive + LOrder:
       
    13 
       
    14 text {*
       
    15   The theory of partially ordered groups is taken from the books:
       
    16   \begin{itemize}
       
    17   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
       
    18   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
       
    19   \end{itemize}
       
    20   Most of the used notions can also be looked up in 
       
    21   \begin{itemize}
       
    22   \item \emph{www.mathworld.com} by Eric Weisstein et. al.
       
    23   \item \emph{Algebra I} by van der Waerden, Springer.
       
    24   \end{itemize}
       
    25 *}
       
    26 
       
    27 subsection {* Semigroups, Groups *}
       
    28  
       
    29 axclass semigroup_add \<subseteq> plus
       
    30   add_assoc: "(a + b) + c = a + (b + c)"
       
    31 
       
    32 axclass ab_semigroup_add \<subseteq> semigroup_add
       
    33   add_commute: "a + b = b + a"
       
    34 
       
    35 lemma add_left_commute: "a + (b + c) = b + (a + (c::'a::ab_semigroup_add))"
       
    36   by (rule mk_left_commute [of "op +", OF add_assoc add_commute])
       
    37 
       
    38 theorems add_ac = add_assoc add_commute add_left_commute
       
    39 
       
    40 axclass semigroup_mult \<subseteq> times
       
    41   mult_assoc: "(a * b) * c = a * (b * c)"
       
    42 
       
    43 axclass ab_semigroup_mult \<subseteq> semigroup_mult
       
    44   mult_commute: "a * b = b * a"
       
    45 
       
    46 lemma mult_left_commute: "a * (b * c) = b * (a * (c::'a::ab_semigroup_mult))"
       
    47   by (rule mk_left_commute [of "op *", OF mult_assoc mult_commute])
       
    48 
       
    49 theorems mult_ac = mult_assoc mult_commute mult_left_commute
       
    50 
       
    51 axclass comm_monoid_add \<subseteq> zero, ab_semigroup_add
       
    52   add_0[simp]: "0 + a = a"
       
    53 
       
    54 axclass monoid_mult \<subseteq> one, semigroup_mult
       
    55   mult_1_left[simp]: "1 * a  = a"
       
    56   mult_1_right[simp]: "a * 1 = a"
       
    57 
       
    58 axclass comm_monoid_mult \<subseteq> one, ab_semigroup_mult
       
    59   mult_1: "1 * a = a"
       
    60 
       
    61 instance comm_monoid_mult \<subseteq> monoid_mult
       
    62 by (intro_classes, insert mult_1, simp_all add: mult_commute, auto)
       
    63 
       
    64 axclass cancel_semigroup_add \<subseteq> semigroup_add
       
    65   add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
       
    66   add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c"
       
    67 
       
    68 axclass cancel_ab_semigroup_add \<subseteq> ab_semigroup_add
       
    69   add_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
       
    70 
       
    71 instance cancel_ab_semigroup_add \<subseteq> cancel_semigroup_add
       
    72 proof
       
    73   {
       
    74     fix a b c :: 'a
       
    75     assume "a + b = a + c"
       
    76     thus "b = c" by (rule add_imp_eq)
       
    77   }
       
    78   note f = this
       
    79   fix a b c :: 'a
       
    80   assume "b + a = c + a"
       
    81   hence "a + b = a + c" by (simp only: add_commute)
       
    82   thus "b = c" by (rule f)
       
    83 qed
       
    84 
       
    85 axclass ab_group_add \<subseteq> minus, comm_monoid_add
       
    86   left_minus[simp]: " - a + a = 0"
       
    87   diff_minus: "a - b = a + (-b)"
       
    88 
       
    89 instance ab_group_add \<subseteq> cancel_ab_semigroup_add
       
    90 proof 
       
    91   fix a b c :: 'a
       
    92   assume "a + b = a + c"
       
    93   hence "-a + a + b = -a + a + c" by (simp only: add_assoc)
       
    94   thus "b = c" by simp 
       
    95 qed
       
    96 
       
    97 lemma add_0_right [simp]: "a + 0 = (a::'a::comm_monoid_add)"
       
    98 proof -
       
    99   have "a + 0 = 0 + a" by (simp only: add_commute)
       
   100   also have "... = a" by simp
       
   101   finally show ?thesis .
       
   102 qed
       
   103 
       
   104 lemma add_left_cancel [simp]:
       
   105      "(a + b = a + c) = (b = (c::'a::cancel_semigroup_add))"
       
   106 by (blast dest: add_left_imp_eq) 
       
   107 
       
   108 lemma add_right_cancel [simp]:
       
   109      "(b + a = c + a) = (b = (c::'a::cancel_semigroup_add))"
       
   110   by (blast dest: add_right_imp_eq)
       
   111 
       
   112 lemma right_minus [simp]: "a + -(a::'a::ab_group_add) = 0"
       
   113 proof -
       
   114   have "a + -a = -a + a" by (simp add: add_ac)
       
   115   also have "... = 0" by simp
       
   116   finally show ?thesis .
       
   117 qed
       
   118 
       
   119 lemma right_minus_eq: "(a - b = 0) = (a = (b::'a::ab_group_add))"
       
   120 proof
       
   121   have "a = a - b + b" by (simp add: diff_minus add_ac)
       
   122   also assume "a - b = 0"
       
   123   finally show "a = b" by simp
       
   124 next
       
   125   assume "a = b"
       
   126   thus "a - b = 0" by (simp add: diff_minus)
       
   127 qed
       
   128 
       
   129 lemma minus_minus [simp]: "- (- (a::'a::ab_group_add)) = a"
       
   130 proof (rule add_left_cancel [of "-a", THEN iffD1])
       
   131   show "(-a + -(-a) = -a + a)"
       
   132   by simp
       
   133 qed
       
   134 
       
   135 lemma equals_zero_I: "a+b = 0 ==> -a = (b::'a::ab_group_add)"
       
   136 apply (rule right_minus_eq [THEN iffD1, symmetric])
       
   137 apply (simp add: diff_minus add_commute) 
       
   138 done
       
   139 
       
   140 lemma minus_zero [simp]: "- 0 = (0::'a::ab_group_add)"
       
   141 by (simp add: equals_zero_I)
       
   142 
       
   143 lemma diff_self [simp]: "a - (a::'a::ab_group_add) = 0"
       
   144   by (simp add: diff_minus)
       
   145 
       
   146 lemma diff_0 [simp]: "(0::'a::ab_group_add) - a = -a"
       
   147 by (simp add: diff_minus)
       
   148 
       
   149 lemma diff_0_right [simp]: "a - (0::'a::ab_group_add) = a" 
       
   150 by (simp add: diff_minus)
       
   151 
       
   152 lemma diff_minus_eq_add [simp]: "a - - b = a + (b::'a::ab_group_add)"
       
   153 by (simp add: diff_minus)
       
   154 
       
   155 lemma neg_equal_iff_equal [simp]: "(-a = -b) = (a = (b::'a::ab_group_add))" 
       
   156 proof 
       
   157   assume "- a = - b"
       
   158   hence "- (- a) = - (- b)"
       
   159     by simp
       
   160   thus "a=b" by simp
       
   161 next
       
   162   assume "a=b"
       
   163   thus "-a = -b" by simp
       
   164 qed
       
   165 
       
   166 lemma neg_equal_0_iff_equal [simp]: "(-a = 0) = (a = (0::'a::ab_group_add))"
       
   167 by (subst neg_equal_iff_equal [symmetric], simp)
       
   168 
       
   169 lemma neg_0_equal_iff_equal [simp]: "(0 = -a) = (0 = (a::'a::ab_group_add))"
       
   170 by (subst neg_equal_iff_equal [symmetric], simp)
       
   171 
       
   172 text{*The next two equations can make the simplifier loop!*}
       
   173 
       
   174 lemma equation_minus_iff: "(a = - b) = (b = - (a::'a::ab_group_add))"
       
   175 proof -
       
   176   have "(- (-a) = - b) = (- a = b)" by (rule neg_equal_iff_equal)
       
   177   thus ?thesis by (simp add: eq_commute)
       
   178 qed
       
   179 
       
   180 lemma minus_equation_iff: "(- a = b) = (- (b::'a::ab_group_add) = a)"
       
   181 proof -
       
   182   have "(- a = - (-b)) = (a = -b)" by (rule neg_equal_iff_equal)
       
   183   thus ?thesis by (simp add: eq_commute)
       
   184 qed
       
   185 
       
   186 lemma minus_add_distrib [simp]: "- (a + b) = -a + -(b::'a::ab_group_add)"
       
   187 apply (rule equals_zero_I)
       
   188 apply (simp add: add_ac) 
       
   189 done
       
   190 
       
   191 lemma minus_diff_eq [simp]: "- (a - b) = b - (a::'a::ab_group_add)"
       
   192 by (simp add: diff_minus add_commute)
       
   193 
       
   194 subsection {* (Partially) Ordered Groups *} 
       
   195 
       
   196 axclass pordered_ab_semigroup_add \<subseteq> order, ab_semigroup_add
       
   197   add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b"
       
   198 
       
   199 axclass pordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add, cancel_ab_semigroup_add
       
   200 
       
   201 instance pordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add ..
       
   202 
       
   203 axclass pordered_ab_semigroup_add_imp_le \<subseteq> pordered_cancel_ab_semigroup_add
       
   204   add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b"
       
   205 
       
   206 axclass pordered_ab_group_add \<subseteq> ab_group_add, pordered_ab_semigroup_add
       
   207 
       
   208 instance pordered_ab_group_add \<subseteq> pordered_ab_semigroup_add_imp_le
       
   209 proof
       
   210   fix a b c :: 'a
       
   211   assume "c + a \<le> c + b"
       
   212   hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)
       
   213   hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc)
       
   214   thus "a \<le> b" by simp
       
   215 qed
       
   216 
       
   217 axclass ordered_cancel_ab_semigroup_add \<subseteq> pordered_cancel_ab_semigroup_add, linorder
       
   218 
       
   219 instance ordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add_imp_le
       
   220 proof
       
   221   fix a b c :: 'a
       
   222   assume le: "c + a <= c + b"  
       
   223   show "a <= b"
       
   224   proof (rule ccontr)
       
   225     assume w: "~ a \<le> b"
       
   226     hence "b <= a" by (simp add: linorder_not_le)
       
   227     hence le2: "c+b <= c+a" by (rule add_left_mono)
       
   228     have "a = b" 
       
   229       apply (insert le)
       
   230       apply (insert le2)
       
   231       apply (drule order_antisym, simp_all)
       
   232       done
       
   233     with w  show False 
       
   234       by (simp add: linorder_not_le [symmetric])
       
   235   qed
       
   236 qed
       
   237 
       
   238 lemma add_right_mono: "a \<le> (b::'a::pordered_ab_semigroup_add) ==> a + c \<le> b + c"
       
   239 by (simp add: add_commute[of _ c] add_left_mono)
       
   240 
       
   241 text {* non-strict, in both arguments *}
       
   242 lemma add_mono:
       
   243      "[|a \<le> b;  c \<le> d|] ==> a + c \<le> b + (d::'a::pordered_ab_semigroup_add)"
       
   244   apply (erule add_right_mono [THEN order_trans])
       
   245   apply (simp add: add_commute add_left_mono)
       
   246   done
       
   247 
       
   248 lemma add_strict_left_mono:
       
   249      "a < b ==> c + a < c + (b::'a::pordered_cancel_ab_semigroup_add)"
       
   250  by (simp add: order_less_le add_left_mono) 
       
   251 
       
   252 lemma add_strict_right_mono:
       
   253      "a < b ==> a + c < b + (c::'a::pordered_cancel_ab_semigroup_add)"
       
   254  by (simp add: add_commute [of _ c] add_strict_left_mono)
       
   255 
       
   256 text{*Strict monotonicity in both arguments*}
       
   257 lemma add_strict_mono: "[|a<b; c<d|] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"
       
   258 apply (erule add_strict_right_mono [THEN order_less_trans])
       
   259 apply (erule add_strict_left_mono)
       
   260 done
       
   261 
       
   262 lemma add_less_le_mono:
       
   263      "[| a<b; c\<le>d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"
       
   264 apply (erule add_strict_right_mono [THEN order_less_le_trans])
       
   265 apply (erule add_left_mono) 
       
   266 done
       
   267 
       
   268 lemma add_le_less_mono:
       
   269      "[| a\<le>b; c<d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"
       
   270 apply (erule add_right_mono [THEN order_le_less_trans])
       
   271 apply (erule add_strict_left_mono) 
       
   272 done
       
   273 
       
   274 lemma add_less_imp_less_left:
       
   275       assumes less: "c + a < c + b"  shows "a < (b::'a::pordered_ab_semigroup_add_imp_le)"
       
   276 proof -
       
   277   from less have le: "c + a <= c + b" by (simp add: order_le_less)
       
   278   have "a <= b" 
       
   279     apply (insert le)
       
   280     apply (drule add_le_imp_le_left)
       
   281     by (insert le, drule add_le_imp_le_left, assumption)
       
   282   moreover have "a \<noteq> b"
       
   283   proof (rule ccontr)
       
   284     assume "~(a \<noteq> b)"
       
   285     then have "a = b" by simp
       
   286     then have "c + a = c + b" by simp
       
   287     with less show "False"by simp
       
   288   qed
       
   289   ultimately show "a < b" by (simp add: order_le_less)
       
   290 qed
       
   291 
       
   292 lemma add_less_imp_less_right:
       
   293       "a + c < b + c ==> a < (b::'a::pordered_ab_semigroup_add_imp_le)"
       
   294 apply (rule add_less_imp_less_left [of c])
       
   295 apply (simp add: add_commute)  
       
   296 done
       
   297 
       
   298 lemma add_less_cancel_left [simp]:
       
   299     "(c+a < c+b) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))"
       
   300 by (blast intro: add_less_imp_less_left add_strict_left_mono) 
       
   301 
       
   302 lemma add_less_cancel_right [simp]:
       
   303     "(a+c < b+c) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))"
       
   304 by (blast intro: add_less_imp_less_right add_strict_right_mono)
       
   305 
       
   306 lemma add_le_cancel_left [simp]:
       
   307     "(c+a \<le> c+b) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))"
       
   308 by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) 
       
   309 
       
   310 lemma add_le_cancel_right [simp]:
       
   311     "(a+c \<le> b+c) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))"
       
   312 by (simp add: add_commute[of a c] add_commute[of b c])
       
   313 
       
   314 lemma add_le_imp_le_right:
       
   315       "a + c \<le> b + c ==> a \<le> (b::'a::pordered_ab_semigroup_add_imp_le)"
       
   316 by simp
       
   317 
       
   318 lemma add_increasing: "[|0\<le>a; b\<le>c|] ==> b \<le> a + (c::'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add})"
       
   319 by (insert add_mono [of 0 a b c], simp)
       
   320 
       
   321 subsection {* Ordering Rules for Unary Minus *}
       
   322 
       
   323 lemma le_imp_neg_le:
       
   324       assumes "a \<le> (b::'a::{pordered_ab_semigroup_add_imp_le, ab_group_add})" shows "-b \<le> -a"
       
   325 proof -
       
   326   have "-a+a \<le> -a+b"
       
   327     by (rule add_left_mono) 
       
   328   hence "0 \<le> -a+b"
       
   329     by simp
       
   330   hence "0 + (-b) \<le> (-a + b) + (-b)"
       
   331     by (rule add_right_mono) 
       
   332   thus ?thesis
       
   333     by (simp add: add_assoc)
       
   334 qed
       
   335 
       
   336 lemma neg_le_iff_le [simp]: "(-b \<le> -a) = (a \<le> (b::'a::pordered_ab_group_add))"
       
   337 proof 
       
   338   assume "- b \<le> - a"
       
   339   hence "- (- a) \<le> - (- b)"
       
   340     by (rule le_imp_neg_le)
       
   341   thus "a\<le>b" by simp
       
   342 next
       
   343   assume "a\<le>b"
       
   344   thus "-b \<le> -a" by (rule le_imp_neg_le)
       
   345 qed
       
   346 
       
   347 lemma neg_le_0_iff_le [simp]: "(-a \<le> 0) = (0 \<le> (a::'a::pordered_ab_group_add))"
       
   348 by (subst neg_le_iff_le [symmetric], simp)
       
   349 
       
   350 lemma neg_0_le_iff_le [simp]: "(0 \<le> -a) = (a \<le> (0::'a::pordered_ab_group_add))"
       
   351 by (subst neg_le_iff_le [symmetric], simp)
       
   352 
       
   353 lemma neg_less_iff_less [simp]: "(-b < -a) = (a < (b::'a::pordered_ab_group_add))"
       
   354 by (force simp add: order_less_le) 
       
   355 
       
   356 lemma neg_less_0_iff_less [simp]: "(-a < 0) = (0 < (a::'a::pordered_ab_group_add))"
       
   357 by (subst neg_less_iff_less [symmetric], simp)
       
   358 
       
   359 lemma neg_0_less_iff_less [simp]: "(0 < -a) = (a < (0::'a::pordered_ab_group_add))"
       
   360 by (subst neg_less_iff_less [symmetric], simp)
       
   361 
       
   362 text{*The next several equations can make the simplifier loop!*}
       
   363 
       
   364 lemma less_minus_iff: "(a < - b) = (b < - (a::'a::pordered_ab_group_add))"
       
   365 proof -
       
   366   have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
       
   367   thus ?thesis by simp
       
   368 qed
       
   369 
       
   370 lemma minus_less_iff: "(- a < b) = (- b < (a::'a::pordered_ab_group_add))"
       
   371 proof -
       
   372   have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
       
   373   thus ?thesis by simp
       
   374 qed
       
   375 
       
   376 lemma le_minus_iff: "(a \<le> - b) = (b \<le> - (a::'a::pordered_ab_group_add))"
       
   377 proof -
       
   378   have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)
       
   379   have "(- (- a) <= -b) = (b <= - a)" 
       
   380     apply (auto simp only: order_le_less)
       
   381     apply (drule mm)
       
   382     apply (simp_all)
       
   383     apply (drule mm[simplified], assumption)
       
   384     done
       
   385   then show ?thesis by simp
       
   386 qed
       
   387 
       
   388 lemma minus_le_iff: "(- a \<le> b) = (- b \<le> (a::'a::pordered_ab_group_add))"
       
   389 by (auto simp add: order_le_less minus_less_iff)
       
   390 
       
   391 lemma add_diff_eq: "a + (b - c) = (a + b) - (c::'a::ab_group_add)"
       
   392 by (simp add: diff_minus add_ac)
       
   393 
       
   394 lemma diff_add_eq: "(a - b) + c = (a + c) - (b::'a::ab_group_add)"
       
   395 by (simp add: diff_minus add_ac)
       
   396 
       
   397 lemma diff_eq_eq: "(a-b = c) = (a = c + (b::'a::ab_group_add))"
       
   398 by (auto simp add: diff_minus add_assoc)
       
   399 
       
   400 lemma eq_diff_eq: "(a = c-b) = (a + (b::'a::ab_group_add) = c)"
       
   401 by (auto simp add: diff_minus add_assoc)
       
   402 
       
   403 lemma diff_diff_eq: "(a - b) - c = a - (b + (c::'a::ab_group_add))"
       
   404 by (simp add: diff_minus add_ac)
       
   405 
       
   406 lemma diff_diff_eq2: "a - (b - c) = (a + c) - (b::'a::ab_group_add)"
       
   407 by (simp add: diff_minus add_ac)
       
   408 
       
   409 lemma diff_add_cancel: "a - b + b = (a::'a::ab_group_add)"
       
   410 by (simp add: diff_minus add_ac)
       
   411 
       
   412 lemma add_diff_cancel: "a + b - b = (a::'a::ab_group_add)"
       
   413 by (simp add: diff_minus add_ac)
       
   414 
       
   415 text{*Further subtraction laws for ordered rings*}
       
   416 
       
   417 lemma less_iff_diff_less_0: "(a < b) = (a - b < (0::'a::pordered_ab_group_add))"
       
   418 proof -
       
   419   have  "(a < b) = (a + (- b) < b + (-b))"  
       
   420     by (simp only: add_less_cancel_right)
       
   421   also have "... =  (a - b < 0)" by (simp add: diff_minus)
       
   422   finally show ?thesis .
       
   423 qed
       
   424 
       
   425 lemma diff_less_eq: "(a-b < c) = (a < c + (b::'a::pordered_ab_group_add))"
       
   426 apply (subst less_iff_diff_less_0)
       
   427 apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
       
   428 apply (simp add: diff_minus add_ac)
       
   429 done
       
   430 
       
   431 lemma less_diff_eq: "(a < c-b) = (a + (b::'a::pordered_ab_group_add) < c)"
       
   432 apply (subst less_iff_diff_less_0)
       
   433 apply (rule less_iff_diff_less_0 [of _ "c-b", THEN ssubst])
       
   434 apply (simp add: diff_minus add_ac)
       
   435 done
       
   436 
       
   437 lemma diff_le_eq: "(a-b \<le> c) = (a \<le> c + (b::'a::pordered_ab_group_add))"
       
   438 by (auto simp add: order_le_less diff_less_eq diff_add_cancel add_diff_cancel)
       
   439 
       
   440 lemma le_diff_eq: "(a \<le> c-b) = (a + (b::'a::pordered_ab_group_add) \<le> c)"
       
   441 by (auto simp add: order_le_less less_diff_eq diff_add_cancel add_diff_cancel)
       
   442 
       
   443 text{*This list of rewrites simplifies (in)equalities by bringing subtractions
       
   444   to the top and then moving negative terms to the other side.
       
   445   Use with @{text add_ac}*}
       
   446 lemmas compare_rls =
       
   447        diff_minus [symmetric]
       
   448        add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
       
   449        diff_less_eq less_diff_eq diff_le_eq le_diff_eq
       
   450        diff_eq_eq eq_diff_eq
       
   451 
       
   452 
       
   453 subsection{*Lemmas for the @{text cancel_numerals} simproc*}
       
   454 
       
   455 lemma eq_iff_diff_eq_0: "(a = b) = (a-b = (0::'a::ab_group_add))"
       
   456 by (simp add: compare_rls)
       
   457 
       
   458 lemma le_iff_diff_le_0: "(a \<le> b) = (a-b \<le> (0::'a::pordered_ab_group_add))"
       
   459 by (simp add: compare_rls)
       
   460 
       
   461 subsection {* Lattice Ordered (Abelian) Groups *}
       
   462 
       
   463 axclass lordered_ab_group_meet < pordered_ab_group_add, meet_semilorder
       
   464 
       
   465 axclass lordered_ab_group_join < pordered_ab_group_add, join_semilorder
       
   466 
       
   467 lemma add_meet_distrib_left: "a + (meet b c) = meet (a + b) (a + (c::'a::{pordered_ab_group_add, meet_semilorder}))"
       
   468 apply (rule order_antisym)
       
   469 apply (rule meet_imp_le, simp_all add: meet_join_le)
       
   470 apply (rule add_le_imp_le_left [of "-a"])
       
   471 apply (simp only: add_assoc[symmetric], simp)
       
   472 apply (rule meet_imp_le)
       
   473 apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp add: meet_join_le)+
       
   474 done
       
   475 
       
   476 lemma add_join_distrib_left: "a + (join b c) = join (a + b) (a+ (c::'a::{pordered_ab_group_add, join_semilorder}))" 
       
   477 apply (rule order_antisym)
       
   478 apply (rule add_le_imp_le_left [of "-a"])
       
   479 apply (simp only: add_assoc[symmetric], simp)
       
   480 apply (rule join_imp_le)
       
   481 apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp add: meet_join_le)+
       
   482 apply (rule join_imp_le)
       
   483 apply (simp_all add: meet_join_le)
       
   484 done
       
   485 
       
   486 lemma is_join_neg_meet: "is_join (% (a::'a::{pordered_ab_group_add, meet_semilorder}) b. - (meet (-a) (-b)))"
       
   487 apply (auto simp add: is_join_def)
       
   488 apply (rule_tac c="meet (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_meet_distrib_left meet_join_le)
       
   489 apply (rule_tac c="meet (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_meet_distrib_left meet_join_le)
       
   490 apply (subst neg_le_iff_le[symmetric]) 
       
   491 apply (simp add: meet_imp_le)
       
   492 done
       
   493 
       
   494 lemma is_meet_neg_join: "is_meet (% (a::'a::{pordered_ab_group_add, join_semilorder}) b. - (join (-a) (-b)))"
       
   495 apply (auto simp add: is_meet_def)
       
   496 apply (rule_tac c="join (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_join_distrib_left meet_join_le)
       
   497 apply (rule_tac c="join (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_join_distrib_left meet_join_le)
       
   498 apply (subst neg_le_iff_le[symmetric]) 
       
   499 apply (simp add: join_imp_le)
       
   500 done
       
   501 
       
   502 axclass lordered_ab_group \<subseteq> pordered_ab_group_add, lorder
       
   503 
       
   504 instance lordered_ab_group_meet \<subseteq> lordered_ab_group
       
   505 proof 
       
   506   show "? j. is_join (j::'a\<Rightarrow>'a\<Rightarrow>('a::lordered_ab_group_meet))" by (blast intro: is_join_neg_meet)
       
   507 qed
       
   508 
       
   509 instance lordered_ab_group_join \<subseteq> lordered_ab_group
       
   510 proof
       
   511   show "? m. is_meet (m::'a\<Rightarrow>'a\<Rightarrow>('a::lordered_ab_group_join))" by (blast intro: is_meet_neg_join)
       
   512 qed
       
   513 
       
   514 lemma add_join_distrib_right: "(join a b) + (c::'a::lordered_ab_group) = join (a+c) (b+c)"
       
   515 proof -
       
   516   have "c + (join a b) = join (c+a) (c+b)" by (simp add: add_join_distrib_left)
       
   517   thus ?thesis by (simp add: add_commute)
       
   518 qed
       
   519 
       
   520 lemma add_meet_distrib_right: "(meet a b) + (c::'a::lordered_ab_group) = meet (a+c) (b+c)"
       
   521 proof -
       
   522   have "c + (meet a b) = meet (c+a) (c+b)" by (simp add: add_meet_distrib_left)
       
   523   thus ?thesis by (simp add: add_commute)
       
   524 qed
       
   525 
       
   526 lemmas add_meet_join_distribs = add_meet_distrib_right add_meet_distrib_left add_join_distrib_right add_join_distrib_left
       
   527 
       
   528 lemma join_eq_neg_meet: "join a (b::'a::lordered_ab_group) = - meet (-a) (-b)"
       
   529 by (simp add: is_join_unique[OF is_join_join is_join_neg_meet])
       
   530 
       
   531 lemma meet_eq_neg_join: "meet a (b::'a::lordered_ab_group) = - join (-a) (-b)"
       
   532 by (simp add: is_meet_unique[OF is_meet_meet is_meet_neg_join])
       
   533 
       
   534 lemma add_eq_meet_join: "a + b = (join a b) + (meet a (b::'a::lordered_ab_group))"
       
   535 proof -
       
   536   have "0 = - meet 0 (a-b) + meet (a-b) 0" by (simp add: meet_comm)
       
   537   hence "0 = join 0 (b-a) + meet (a-b) 0" by (simp add: meet_eq_neg_join)
       
   538   hence "0 = (-a + join a b) + (meet a b + (-b))"
       
   539     apply (simp add: add_join_distrib_left add_meet_distrib_right)
       
   540     by (simp add: diff_minus add_commute)
       
   541   thus ?thesis
       
   542     apply (simp add: compare_rls)
       
   543     apply (subst add_left_cancel[symmetric, of "a+b" "join a b + meet a b" "-a"])
       
   544     apply (simp only: add_assoc, simp add: add_assoc[symmetric])
       
   545     done
       
   546 qed
       
   547 
       
   548 subsection {* Positive Part, Negative Part, Absolute Value *}
       
   549 
       
   550 constdefs
       
   551   pprt :: "'a \<Rightarrow> ('a::lordered_ab_group)"
       
   552   "pprt x == join x 0"
       
   553   nprt :: "'a \<Rightarrow> ('a::lordered_ab_group)"
       
   554   "nprt x == meet x 0"
       
   555 
       
   556 lemma prts: "a = pprt a + nprt a"
       
   557 by (simp add: pprt_def nprt_def add_eq_meet_join[symmetric])
       
   558 
       
   559 lemma zero_le_pprt[simp]: "0 \<le> pprt a"
       
   560 by (simp add: pprt_def meet_join_le)
       
   561 
       
   562 lemma nprt_le_zero[simp]: "nprt a \<le> 0"
       
   563 by (simp add: nprt_def meet_join_le)
       
   564 
       
   565 lemma le_eq_neg: "(a \<le> -b) = (a + b \<le> (0::_::lordered_ab_group))" (is "?l = ?r")
       
   566 proof -
       
   567   have a: "?l \<longrightarrow> ?r"
       
   568     apply (auto)
       
   569     apply (rule add_le_imp_le_right[of _ "-b" _])
       
   570     apply (simp add: add_assoc)
       
   571     done
       
   572   have b: "?r \<longrightarrow> ?l"
       
   573     apply (auto)
       
   574     apply (rule add_le_imp_le_right[of _ "b" _])
       
   575     apply (simp)
       
   576     done
       
   577   from a b show ?thesis by blast
       
   578 qed
       
   579 
       
   580 lemma join_0_imp_0: "join a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)"
       
   581 proof -
       
   582   {
       
   583     fix a::'a
       
   584     assume hyp: "join a (-a) = 0"
       
   585     hence "join a (-a) + a = a" by (simp)
       
   586     hence "join (a+a) 0 = a" by (simp add: add_join_distrib_right) 
       
   587     hence "join (a+a) 0 <= a" by (simp)
       
   588     hence "0 <= a" by (blast intro: order_trans meet_join_le)
       
   589   }
       
   590   note p = this
       
   591   thm p
       
   592   assume hyp:"join a (-a) = 0"
       
   593   hence hyp2:"join (-a) (-(-a)) = 0" by (simp add: join_comm)
       
   594   from p[OF hyp] p[OF hyp2] show "a = 0" by simp
       
   595 qed
       
   596 
       
   597 lemma meet_0_imp_0: "meet a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)"
       
   598 apply (simp add: meet_eq_neg_join)
       
   599 apply (simp add: join_comm)
       
   600 apply (subst join_0_imp_0)
       
   601 by auto
       
   602 
       
   603 lemma join_0_eq_0[simp]: "(join a (-a) = 0) = (a = (0::'a::lordered_ab_group))"
       
   604 by (auto, erule join_0_imp_0)
       
   605 
       
   606 lemma meet_0_eq_0[simp]: "(meet a (-a) = 0) = (a = (0::'a::lordered_ab_group))"
       
   607 by (auto, erule meet_0_imp_0)
       
   608 
       
   609 lemma zero_le_double_add_iff_zero_le_single_add[simp]: "(0 \<le> a + a) = (0 \<le> (a::'a::lordered_ab_group))"
       
   610 proof
       
   611   assume "0 <= a + a"
       
   612   hence a:"meet (a+a) 0 = 0" by (simp add: le_def_meet meet_comm)
       
   613   have "(meet a 0)+(meet a 0) = meet (meet (a+a) 0) a" (is "?l=_") by (simp add: add_meet_join_distribs meet_aci)
       
   614   hence "?l = 0 + meet a 0" by (simp add: a, simp add: meet_comm)
       
   615   hence "meet a 0 = 0" by (simp only: add_right_cancel)
       
   616   then show "0 <= a" by (simp add: le_def_meet meet_comm)    
       
   617 next  
       
   618   assume a: "0 <= a"
       
   619   show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])
       
   620 qed
       
   621 
       
   622 lemma double_add_le_zero_iff_single_add_le_zero[simp]: "(a + a <= 0) = ((a::'a::lordered_ab_group) <= 0)" 
       
   623 proof -
       
   624   have "(a + a <= 0) = (0 <= -(a+a))" by (subst le_minus_iff, simp)
       
   625   moreover have "\<dots> = (a <= 0)" by (simp add: zero_le_double_add_iff_zero_le_single_add)
       
   626   ultimately show ?thesis by blast
       
   627 qed
       
   628 
       
   629 lemma double_add_less_zero_iff_single_less_zero[simp]: "(a+a<0) = ((a::'a::{pordered_ab_group_add,linorder}) < 0)" (is ?s)
       
   630 proof cases
       
   631   assume a: "a < 0"
       
   632   thus ?s by (simp add:  add_strict_mono[OF a a, simplified])
       
   633 next
       
   634   assume "~(a < 0)" 
       
   635   hence a:"0 <= a" by (simp)
       
   636   hence "0 <= a+a" by (simp add: add_mono[OF a a, simplified])
       
   637   hence "~(a+a < 0)" by simp
       
   638   with a show ?thesis by simp 
       
   639 qed
       
   640 
       
   641 axclass lordered_ab_group_abs \<subseteq> lordered_ab_group
       
   642   abs_lattice: "abs x = join x (-x)"
       
   643 
       
   644 lemma abs_zero[simp]: "abs 0 = (0::'a::lordered_ab_group_abs)"
       
   645 by (simp add: abs_lattice)
       
   646 
       
   647 lemma abs_eq_0[simp]: "(abs a = 0) = (a = (0::'a::lordered_ab_group_abs))"
       
   648 by (simp add: abs_lattice)
       
   649 
       
   650 lemma abs_0_eq[simp]: "(0 = abs a) = (a = (0::'a::lordered_ab_group_abs))"
       
   651 proof -
       
   652   have "(0 = abs a) = (abs a = 0)" by (simp only: eq_ac)
       
   653   thus ?thesis by simp
       
   654 qed
       
   655 
       
   656 lemma neg_meet_eq_join[simp]: "- meet a (b::_::lordered_ab_group) = join (-a) (-b)"
       
   657 by (simp add: meet_eq_neg_join)
       
   658 
       
   659 lemma neg_join_eq_meet[simp]: "- join a (b::_::lordered_ab_group) = meet (-a) (-b)"
       
   660 by (simp del: neg_meet_eq_join add: join_eq_neg_meet)
       
   661 
       
   662 lemma join_eq_if: "join a (-a) = (if a < 0 then -a else (a::'a::{lordered_ab_group, linorder}))"
       
   663 proof -
       
   664   note b = add_le_cancel_right[of a a "-a",symmetric,simplified]
       
   665   have c: "a + a = 0 \<Longrightarrow> -a = a" by (rule add_right_imp_eq[of _ a], simp)
       
   666   show ?thesis
       
   667     apply (auto simp add: join_max max_def b linorder_not_less)
       
   668     apply (drule order_antisym, auto)
       
   669     done
       
   670 qed
       
   671 
       
   672 lemma abs_if_lattice: "\<bar>a\<bar> = (if a < 0 then -a else (a::'a::{lordered_ab_group_abs, linorder}))"
       
   673 proof -
       
   674   show ?thesis by (simp add: abs_lattice join_eq_if)
       
   675 qed
       
   676 
       
   677 lemma abs_ge_zero[simp]: "0 \<le> abs (a::'a::lordered_ab_group_abs)"
       
   678 proof -
       
   679   have a:"a <= abs a" and b:"-a <= abs a" by (auto simp add: abs_lattice meet_join_le)
       
   680   show ?thesis by (rule add_mono[OF a b, simplified])
       
   681 qed
       
   682   
       
   683 lemma abs_le_zero_iff [simp]: "(abs a \<le> (0::'a::lordered_ab_group_abs)) = (a = 0)" 
       
   684 proof
       
   685   assume "abs a <= 0"
       
   686   hence "abs a = 0" by (auto dest: order_antisym)
       
   687   thus "a = 0" by simp
       
   688 next
       
   689   assume "a = 0"
       
   690   thus "abs a <= 0" by simp
       
   691 qed
       
   692 
       
   693 lemma zero_less_abs_iff [simp]: "(0 < abs a) = (a \<noteq> (0::'a::lordered_ab_group_abs))"
       
   694 by (simp add: order_less_le)
       
   695 
       
   696 lemma abs_not_less_zero [simp]: "~ abs a < (0::'a::lordered_ab_group_abs)"
       
   697 proof -
       
   698   have a:"!! x (y::_::order). x <= y \<Longrightarrow> ~(y < x)" by auto
       
   699   show ?thesis by (simp add: a)
       
   700 qed
       
   701 
       
   702 lemma abs_ge_self: "a \<le> abs (a::'a::lordered_ab_group_abs)"
       
   703 by (simp add: abs_lattice meet_join_le)
       
   704 
       
   705 lemma abs_ge_minus_self: "-a \<le> abs (a::'a::lordered_ab_group_abs)"
       
   706 by (simp add: abs_lattice meet_join_le)
       
   707 
       
   708 lemma le_imp_join_eq: "a \<le> b \<Longrightarrow> join a b = b" 
       
   709 by (simp add: le_def_join)
       
   710 
       
   711 lemma ge_imp_join_eq: "b \<le> a \<Longrightarrow> join a b = a"
       
   712 by (simp add: le_def_join join_aci)
       
   713 
       
   714 lemma le_imp_meet_eq: "a \<le> b \<Longrightarrow> meet a b = a"
       
   715 by (simp add: le_def_meet)
       
   716 
       
   717 lemma ge_imp_meet_eq: "b \<le> a \<Longrightarrow> meet a b = b"
       
   718 by (simp add: le_def_meet meet_aci)
       
   719 
       
   720 lemma abs_prts: "abs (a::_::lordered_ab_group_abs) = pprt a - nprt a"
       
   721 apply (simp add: pprt_def nprt_def diff_minus)
       
   722 apply (simp add: add_meet_join_distribs join_aci abs_lattice[symmetric])
       
   723 apply (subst le_imp_join_eq, auto)
       
   724 done
       
   725 
       
   726 lemma abs_minus_cancel [simp]: "abs (-a) = abs(a::'a::lordered_ab_group_abs)"
       
   727 by (simp add: abs_lattice join_comm)
       
   728 
       
   729 lemma abs_idempotent [simp]: "abs (abs a) = abs (a::'a::lordered_ab_group_abs)"
       
   730 apply (simp add: abs_lattice[of "abs a"])
       
   731 apply (subst ge_imp_join_eq)
       
   732 apply (rule order_trans[of _ 0])
       
   733 by auto
       
   734 
       
   735 lemma zero_le_iff_zero_nprt: "(0 \<le> a) = (nprt a = 0)"
       
   736 by (simp add: le_def_meet nprt_def meet_comm)
       
   737 
       
   738 lemma le_zero_iff_zero_pprt: "(a \<le> 0) = (pprt a = 0)"
       
   739 by (simp add: le_def_join pprt_def join_comm)
       
   740 
       
   741 lemma le_zero_iff_pprt_id: "(0 \<le> a) = (pprt a = a)"
       
   742 by (simp add: le_def_join pprt_def join_comm)
       
   743 
       
   744 lemma zero_le_iff_nprt_id: "(a \<le> 0) = (nprt a = a)"
       
   745 by (simp add: le_def_meet nprt_def meet_comm)
       
   746 
       
   747 lemma iff2imp: "(A=B) \<Longrightarrow> (A \<Longrightarrow> B)"
       
   748 by (simp)
       
   749 
       
   750 lemma imp_abs_id: "0 \<le> a \<Longrightarrow> abs a = (a::'a::lordered_ab_group_abs)"
       
   751 by (simp add: iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_pprt_id] abs_prts)
       
   752 
       
   753 lemma imp_abs_neg_id: "a \<le> 0 \<Longrightarrow> abs a = -(a::'a::lordered_ab_group_abs)"
       
   754 by (simp add: iff2imp[OF le_zero_iff_zero_pprt] iff2imp[OF zero_le_iff_nprt_id] abs_prts)
       
   755 
       
   756 lemma abs_leI: "[|a \<le> b; -a \<le> b|] ==> abs a \<le> (b::'a::lordered_ab_group_abs)"
       
   757 by (simp add: abs_lattice join_imp_le)
       
   758 
       
   759 lemma le_minus_self_iff: "(a \<le> -a) = (a \<le> (0::'a::lordered_ab_group))"
       
   760 proof -
       
   761   from add_le_cancel_left[of "-a" "a+a" "0"] have "(a <= -a) = (a+a <= 0)" 
       
   762     by (simp add: add_assoc[symmetric])
       
   763   thus ?thesis by simp
       
   764 qed
       
   765 
       
   766 lemma minus_le_self_iff: "(-a \<le> a) = (0 \<le> (a::'a::lordered_ab_group))"
       
   767 proof -
       
   768   from add_le_cancel_left[of "-a" "0" "a+a"] have "(-a <= a) = (0 <= a+a)" 
       
   769     by (simp add: add_assoc[symmetric])
       
   770   thus ?thesis by simp
       
   771 qed
       
   772 
       
   773 lemma abs_le_D1: "abs a \<le> b ==> a \<le> (b::'a::lordered_ab_group_abs)"
       
   774 by (insert abs_ge_self, blast intro: order_trans)
       
   775 
       
   776 lemma abs_le_D2: "abs a \<le> b ==> -a \<le> (b::'a::lordered_ab_group_abs)"
       
   777 by (insert abs_le_D1 [of "-a"], simp)
       
   778 
       
   779 lemma abs_le_iff: "(abs a \<le> b) = (a \<le> b & -a \<le> (b::'a::lordered_ab_group_abs))"
       
   780 by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
       
   781 
       
   782 lemma abs_triangle_ineq: "abs (a+b) \<le> abs a + abs (b::'a::lordered_ab_group_abs)"
       
   783 proof -
       
   784   have g:"abs a + abs b = join (a+b) (join (-a-b) (join (-a+b) (a + (-b))))" (is "_=join ?m ?n")
       
   785     apply (simp add: abs_lattice add_meet_join_distribs join_aci)
       
   786     by (simp only: diff_minus)
       
   787   have a:"a+b <= join ?m ?n" by (simp add: meet_join_le)
       
   788   have b:"-a-b <= ?n" by (simp add: meet_join_le) 
       
   789   have c:"?n <= join ?m ?n" by (simp add: meet_join_le)
       
   790   from b c have d: "-a-b <= join ?m ?n" by simp
       
   791   have e:"-a-b = -(a+b)" by (simp add: diff_minus)
       
   792   from a d e have "abs(a+b) <= join ?m ?n" 
       
   793     by (drule_tac abs_leI, auto)
       
   794   with g[symmetric] show ?thesis by simp
       
   795 qed
       
   796 
       
   797 lemma abs_diff_triangle_ineq:
       
   798      "\<bar>(a::'a::lordered_ab_group_abs) + b - (c+d)\<bar> \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>"
       
   799 proof -
       
   800   have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
       
   801   also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
       
   802   finally show ?thesis .
       
   803 qed
       
   804 
       
   805 ML {*
       
   806 val add_zero_left = thm"add_0";
       
   807 val add_zero_right = thm"add_0_right";
       
   808 *}
       
   809 
       
   810 ML {*
       
   811 val add_assoc = thm "add_assoc";
       
   812 val add_commute = thm "add_commute";
       
   813 val add_left_commute = thm "add_left_commute";
       
   814 val add_ac = thms "add_ac";
       
   815 val mult_assoc = thm "mult_assoc";
       
   816 val mult_commute = thm "mult_commute";
       
   817 val mult_left_commute = thm "mult_left_commute";
       
   818 val mult_ac = thms "mult_ac";
       
   819 val add_0 = thm "add_0";
       
   820 val mult_1_left = thm "mult_1_left";
       
   821 val mult_1_right = thm "mult_1_right";
       
   822 val mult_1 = thm "mult_1";
       
   823 val add_left_imp_eq = thm "add_left_imp_eq";
       
   824 val add_right_imp_eq = thm "add_right_imp_eq";
       
   825 val add_imp_eq = thm "add_imp_eq";
       
   826 val left_minus = thm "left_minus";
       
   827 val diff_minus = thm "diff_minus";
       
   828 val add_0_right = thm "add_0_right";
       
   829 val add_left_cancel = thm "add_left_cancel";
       
   830 val add_right_cancel = thm "add_right_cancel";
       
   831 val right_minus = thm "right_minus";
       
   832 val right_minus_eq = thm "right_minus_eq";
       
   833 val minus_minus = thm "minus_minus";
       
   834 val equals_zero_I = thm "equals_zero_I";
       
   835 val minus_zero = thm "minus_zero";
       
   836 val diff_self = thm "diff_self";
       
   837 val diff_0 = thm "diff_0";
       
   838 val diff_0_right = thm "diff_0_right";
       
   839 val diff_minus_eq_add = thm "diff_minus_eq_add";
       
   840 val neg_equal_iff_equal = thm "neg_equal_iff_equal";
       
   841 val neg_equal_0_iff_equal = thm "neg_equal_0_iff_equal";
       
   842 val neg_0_equal_iff_equal = thm "neg_0_equal_iff_equal";
       
   843 val equation_minus_iff = thm "equation_minus_iff";
       
   844 val minus_equation_iff = thm "minus_equation_iff";
       
   845 val minus_add_distrib = thm "minus_add_distrib";
       
   846 val minus_diff_eq = thm "minus_diff_eq";
       
   847 val add_left_mono = thm "add_left_mono";
       
   848 val add_le_imp_le_left = thm "add_le_imp_le_left";
       
   849 val add_right_mono = thm "add_right_mono";
       
   850 val add_mono = thm "add_mono";
       
   851 val add_strict_left_mono = thm "add_strict_left_mono";
       
   852 val add_strict_right_mono = thm "add_strict_right_mono";
       
   853 val add_strict_mono = thm "add_strict_mono";
       
   854 val add_less_le_mono = thm "add_less_le_mono";
       
   855 val add_le_less_mono = thm "add_le_less_mono";
       
   856 val add_less_imp_less_left = thm "add_less_imp_less_left";
       
   857 val add_less_imp_less_right = thm "add_less_imp_less_right";
       
   858 val add_less_cancel_left = thm "add_less_cancel_left";
       
   859 val add_less_cancel_right = thm "add_less_cancel_right";
       
   860 val add_le_cancel_left = thm "add_le_cancel_left";
       
   861 val add_le_cancel_right = thm "add_le_cancel_right";
       
   862 val add_le_imp_le_right = thm "add_le_imp_le_right";
       
   863 val add_increasing = thm "add_increasing";
       
   864 val le_imp_neg_le = thm "le_imp_neg_le";
       
   865 val neg_le_iff_le = thm "neg_le_iff_le";
       
   866 val neg_le_0_iff_le = thm "neg_le_0_iff_le";
       
   867 val neg_0_le_iff_le = thm "neg_0_le_iff_le";
       
   868 val neg_less_iff_less = thm "neg_less_iff_less";
       
   869 val neg_less_0_iff_less = thm "neg_less_0_iff_less";
       
   870 val neg_0_less_iff_less = thm "neg_0_less_iff_less";
       
   871 val less_minus_iff = thm "less_minus_iff";
       
   872 val minus_less_iff = thm "minus_less_iff";
       
   873 val le_minus_iff = thm "le_minus_iff";
       
   874 val minus_le_iff = thm "minus_le_iff";
       
   875 val add_diff_eq = thm "add_diff_eq";
       
   876 val diff_add_eq = thm "diff_add_eq";
       
   877 val diff_eq_eq = thm "diff_eq_eq";
       
   878 val eq_diff_eq = thm "eq_diff_eq";
       
   879 val diff_diff_eq = thm "diff_diff_eq";
       
   880 val diff_diff_eq2 = thm "diff_diff_eq2";
       
   881 val diff_add_cancel = thm "diff_add_cancel";
       
   882 val add_diff_cancel = thm "add_diff_cancel";
       
   883 val less_iff_diff_less_0 = thm "less_iff_diff_less_0";
       
   884 val diff_less_eq = thm "diff_less_eq";
       
   885 val less_diff_eq = thm "less_diff_eq";
       
   886 val diff_le_eq = thm "diff_le_eq";
       
   887 val le_diff_eq = thm "le_diff_eq";
       
   888 val compare_rls = thms "compare_rls";
       
   889 val eq_iff_diff_eq_0 = thm "eq_iff_diff_eq_0";
       
   890 val le_iff_diff_le_0 = thm "le_iff_diff_le_0";
       
   891 val add_meet_distrib_left = thm "add_meet_distrib_left";
       
   892 val add_join_distrib_left = thm "add_join_distrib_left";
       
   893 val is_join_neg_meet = thm "is_join_neg_meet";
       
   894 val is_meet_neg_join = thm "is_meet_neg_join";
       
   895 val add_join_distrib_right = thm "add_join_distrib_right";
       
   896 val add_meet_distrib_right = thm "add_meet_distrib_right";
       
   897 val add_meet_join_distribs = thms "add_meet_join_distribs";
       
   898 val join_eq_neg_meet = thm "join_eq_neg_meet";
       
   899 val meet_eq_neg_join = thm "meet_eq_neg_join";
       
   900 val add_eq_meet_join = thm "add_eq_meet_join";
       
   901 val prts = thm "prts";
       
   902 val zero_le_pprt = thm "zero_le_pprt";
       
   903 val nprt_le_zero = thm "nprt_le_zero";
       
   904 val le_eq_neg = thm "le_eq_neg";
       
   905 val join_0_imp_0 = thm "join_0_imp_0";
       
   906 val meet_0_imp_0 = thm "meet_0_imp_0";
       
   907 val join_0_eq_0 = thm "join_0_eq_0";
       
   908 val meet_0_eq_0 = thm "meet_0_eq_0";
       
   909 val zero_le_double_add_iff_zero_le_single_add = thm "zero_le_double_add_iff_zero_le_single_add";
       
   910 val double_add_le_zero_iff_single_add_le_zero = thm "double_add_le_zero_iff_single_add_le_zero";
       
   911 val double_add_less_zero_iff_single_less_zero = thm "double_add_less_zero_iff_single_less_zero";
       
   912 val abs_lattice = thm "abs_lattice";
       
   913 val abs_zero = thm "abs_zero";
       
   914 val abs_eq_0 = thm "abs_eq_0";
       
   915 val abs_0_eq = thm "abs_0_eq";
       
   916 val neg_meet_eq_join = thm "neg_meet_eq_join";
       
   917 val neg_join_eq_meet = thm "neg_join_eq_meet";
       
   918 val join_eq_if = thm "join_eq_if";
       
   919 val abs_if_lattice = thm "abs_if_lattice";
       
   920 val abs_ge_zero = thm "abs_ge_zero";
       
   921 val abs_le_zero_iff = thm "abs_le_zero_iff";
       
   922 val zero_less_abs_iff = thm "zero_less_abs_iff";
       
   923 val abs_not_less_zero = thm "abs_not_less_zero";
       
   924 val abs_ge_self = thm "abs_ge_self";
       
   925 val abs_ge_minus_self = thm "abs_ge_minus_self";
       
   926 val le_imp_join_eq = thm "le_imp_join_eq";
       
   927 val ge_imp_join_eq = thm "ge_imp_join_eq";
       
   928 val le_imp_meet_eq = thm "le_imp_meet_eq";
       
   929 val ge_imp_meet_eq = thm "ge_imp_meet_eq";
       
   930 val abs_prts = thm "abs_prts";
       
   931 val abs_minus_cancel = thm "abs_minus_cancel";
       
   932 val abs_idempotent = thm "abs_idempotent";
       
   933 val zero_le_iff_zero_nprt = thm "zero_le_iff_zero_nprt";
       
   934 val le_zero_iff_zero_pprt = thm "le_zero_iff_zero_pprt";
       
   935 val le_zero_iff_pprt_id = thm "le_zero_iff_pprt_id";
       
   936 val zero_le_iff_nprt_id = thm "zero_le_iff_nprt_id";
       
   937 val iff2imp = thm "iff2imp";
       
   938 val imp_abs_id = thm "imp_abs_id";
       
   939 val imp_abs_neg_id = thm "imp_abs_neg_id";
       
   940 val abs_leI = thm "abs_leI";
       
   941 val le_minus_self_iff = thm "le_minus_self_iff";
       
   942 val minus_le_self_iff = thm "minus_le_self_iff";
       
   943 val abs_le_D1 = thm "abs_le_D1";
       
   944 val abs_le_D2 = thm "abs_le_D2";
       
   945 val abs_le_iff = thm "abs_le_iff";
       
   946 val abs_triangle_ineq = thm "abs_triangle_ineq";
       
   947 val abs_diff_triangle_ineq = thm "abs_diff_triangle_ineq";
       
   948 *}
       
   949 
       
   950 end