src/HOL/Import/proof_kernel.ML
author wenzelm
Fri, 24 Jul 2009 22:31:27 +0200
changeset 32180 37800cb1d378
parent 32174 9036cc8ae775
child 32445 64f30bdd3ba1
permissions -rw-r--r--
ML_Context.the_local_context;
     1 (*  Title:      HOL/Import/proof_kernel.ML
     2     Author:     Sebastian Skalberg and Steven Obua, TU Muenchen
     3 *)
     4 
     5 signature ProofKernel =
     6 sig
     7     type hol_type
     8     type tag
     9     type term
    10     type thm
    11     type ('a,'b) subst
    12 
    13     type proof_info
    14     datatype proof = Proof of proof_info * proof_content
    15          and proof_content
    16            = PRefl of term
    17            | PInstT of proof * (hol_type,hol_type) subst
    18            | PSubst of proof list * term * proof
    19            | PAbs of proof * term
    20            | PDisch of proof * term
    21            | PMp of proof * proof
    22            | PHyp of term
    23            | PAxm of string * term
    24            | PDef of string * string * term
    25            | PTmSpec of string * string list * proof
    26            | PTyDef of string * string * proof
    27            | PTyIntro of string * string * string * string * term * term * proof
    28            | POracle of tag * term list * term
    29            | PDisk
    30            | PSpec of proof * term
    31            | PInst of proof * (term,term) subst
    32            | PGen of proof * term
    33            | PGenAbs of proof * term option * term list
    34            | PImpAS of proof * proof
    35            | PSym of proof
    36            | PTrans of proof * proof
    37            | PComb of proof * proof
    38            | PEqMp of proof * proof
    39            | PEqImp of proof
    40            | PExists of proof * term * term
    41            | PChoose of term * proof * proof
    42            | PConj of proof * proof
    43            | PConjunct1 of proof
    44            | PConjunct2 of proof
    45            | PDisj1 of proof * term
    46            | PDisj2 of proof * term
    47            | PDisjCases of proof * proof * proof
    48            | PNotI of proof
    49            | PNotE of proof
    50            | PContr of proof * term
    51 
    52     exception PK of string * string
    53 
    54     val get_proof_dir: string -> theory -> string option
    55     val disambiguate_frees : Thm.thm -> Thm.thm
    56     val debug : bool ref
    57     val disk_info_of : proof -> (string * string) option
    58     val set_disk_info_of : proof -> string -> string -> unit
    59     val mk_proof : proof_content -> proof
    60     val content_of : proof -> proof_content
    61     val import_proof : string -> string -> theory -> (theory -> term) option * (theory -> proof)
    62 
    63     val rewrite_hol4_term: Term.term -> theory -> Thm.thm
    64 
    65     val type_of : term -> hol_type
    66 
    67     val get_thm  : string -> string         -> theory -> (theory * thm option)
    68     val get_def  : string -> string -> term -> theory -> (theory * thm option)
    69     val get_axiom: string -> string         -> theory -> (theory * thm option)
    70 
    71     val store_thm : string -> string -> thm -> theory -> theory * thm
    72 
    73     val to_isa_thm : thm -> (term * term) list * Thm.thm
    74     val to_isa_term: term -> Term.term
    75     val to_hol_thm : Thm.thm -> thm
    76 
    77     val REFL : term -> theory -> theory * thm
    78     val ASSUME : term -> theory -> theory * thm
    79     val INST_TYPE : (hol_type,hol_type) subst -> thm -> theory -> theory * thm
    80     val INST : (term,term)subst -> thm -> theory -> theory * thm
    81     val EQ_MP : thm -> thm -> theory -> theory * thm
    82     val EQ_IMP_RULE : thm -> theory -> theory * thm
    83     val SUBST : thm list -> term -> thm -> theory -> theory * thm
    84     val DISJ_CASES : thm -> thm -> thm -> theory -> theory * thm
    85     val DISJ1: thm -> term -> theory -> theory * thm
    86     val DISJ2: term -> thm -> theory -> theory * thm
    87     val IMP_ANTISYM: thm -> thm -> theory -> theory * thm
    88     val SYM : thm -> theory -> theory * thm
    89     val MP : thm -> thm -> theory -> theory * thm
    90     val GEN : term -> thm -> theory -> theory * thm
    91     val CHOOSE : term -> thm -> thm -> theory -> theory * thm
    92     val EXISTS : term -> term -> thm -> theory -> theory * thm
    93     val ABS : term -> thm -> theory -> theory * thm
    94     val GEN_ABS : term option -> term list -> thm -> theory -> theory * thm
    95     val TRANS : thm -> thm -> theory -> theory * thm
    96     val CCONTR : term -> thm -> theory -> theory * thm
    97     val CONJ : thm -> thm -> theory -> theory * thm
    98     val CONJUNCT1: thm -> theory -> theory * thm
    99     val CONJUNCT2: thm -> theory -> theory * thm
   100     val NOT_INTRO: thm -> theory -> theory * thm
   101     val NOT_ELIM : thm -> theory -> theory * thm
   102     val SPEC : term -> thm -> theory -> theory * thm
   103     val COMB : thm -> thm -> theory -> theory * thm
   104     val DISCH: term -> thm -> theory -> theory * thm
   105 
   106     val type_introduction: string -> string -> string -> string -> string -> term * term -> thm -> theory -> theory * thm
   107 
   108     val new_definition : string -> string -> term -> theory -> theory * thm
   109     val new_specification : string -> string -> string list -> thm -> theory -> theory * thm
   110     val new_type_definition : string -> string -> string -> thm -> theory -> theory * thm
   111     val new_axiom : string -> term -> theory -> theory * thm
   112 
   113     val prin : term -> unit
   114     val protect_factname : string -> string
   115     val replay_protect_varname : string -> string -> unit
   116     val replay_add_dump : string -> theory -> theory
   117 end
   118 
   119 structure ProofKernel :> ProofKernel =
   120 struct
   121 type hol_type = Term.typ
   122 type term = Term.term
   123 datatype tag = Tag of string list
   124 type ('a,'b) subst = ('a * 'b) list
   125 datatype thm = HOLThm of (Term.term * Term.term) list * Thm.thm
   126 
   127 fun hthm2thm (HOLThm (_, th)) = th
   128 
   129 fun to_hol_thm th = HOLThm ([], th)
   130 
   131 val replay_add_dump = add_dump
   132 fun add_dump s thy = (ImportRecorder.add_dump s; replay_add_dump s thy)
   133 
   134 datatype proof_info
   135   = Info of {disk_info: (string * string) option ref}
   136 
   137 datatype proof = Proof of proof_info * proof_content
   138      and proof_content
   139        = PRefl of term
   140        | PInstT of proof * (hol_type,hol_type) subst
   141        | PSubst of proof list * term * proof
   142        | PAbs of proof * term
   143        | PDisch of proof * term
   144        | PMp of proof * proof
   145        | PHyp of term
   146        | PAxm of string * term
   147        | PDef of string * string * term
   148        | PTmSpec of string * string list * proof
   149        | PTyDef of string * string * proof
   150        | PTyIntro of string * string * string * string * term * term * proof
   151        | POracle of tag * term list * term
   152        | PDisk
   153        | PSpec of proof * term
   154        | PInst of proof * (term,term) subst
   155        | PGen of proof * term
   156        | PGenAbs of proof * term option * term list
   157        | PImpAS of proof * proof
   158        | PSym of proof
   159        | PTrans of proof * proof
   160        | PComb of proof * proof
   161        | PEqMp of proof * proof
   162        | PEqImp of proof
   163        | PExists of proof * term * term
   164        | PChoose of term * proof * proof
   165        | PConj of proof * proof
   166        | PConjunct1 of proof
   167        | PConjunct2 of proof
   168        | PDisj1 of proof * term
   169        | PDisj2 of proof * term
   170        | PDisjCases of proof * proof * proof
   171        | PNotI of proof
   172        | PNotE of proof
   173        | PContr of proof * term
   174 
   175 exception PK of string * string
   176 fun ERR f mesg = PK (f,mesg)
   177 
   178 fun print_exn e =
   179     case e of
   180         PK (m,s) => (writeln ("PK (" ^ m ^ "): " ^ s); raise e)
   181       | _ => OldGoals.print_exn e
   182 
   183 (* Compatibility. *)
   184 
   185 val string_of_mixfix = Pretty.string_of o Syntax.pretty_mixfix;
   186 
   187 fun mk_syn thy c =
   188   if Syntax.is_identifier c andalso not (Syntax.is_keyword (Sign.syn_of thy) c) then NoSyn
   189   else Syntax.literal c
   190 
   191 fun quotename c =
   192   if Syntax.is_identifier c andalso not (OuterKeyword.is_keyword c) then c else quote c
   193 
   194 fun simple_smart_string_of_cterm ct =
   195     let
   196         val thy = Thm.theory_of_cterm ct;
   197         val {t,T,...} = rep_cterm ct
   198         (* Hack to avoid parse errors with Trueprop *)
   199         val ct  = (cterm_of thy (HOLogic.dest_Trueprop t)
   200                            handle TERM _ => ct)
   201     in
   202         quote(
   203         PrintMode.setmp [] (
   204         Library.setmp show_brackets false (
   205         Library.setmp show_all_types true (
   206         Library.setmp Syntax.ambiguity_is_error false (
   207         Library.setmp show_sorts true Display.string_of_cterm))))
   208         ct)
   209     end
   210 
   211 exception SMART_STRING
   212 
   213 fun smart_string_of_cterm ct =
   214     let
   215         val thy = Thm.theory_of_cterm ct
   216         val ctxt = ProofContext.init thy
   217         val {t,T,...} = rep_cterm ct
   218         (* Hack to avoid parse errors with Trueprop *)
   219         val ct  = (cterm_of thy (HOLogic.dest_Trueprop t)
   220                    handle TERM _ => ct)
   221         fun match u = t aconv u
   222         fun G 0 = Library.setmp show_types true (Library.setmp show_sorts true)
   223           | G 1 = Library.setmp show_brackets true (G 0)
   224           | G 2 = Library.setmp show_all_types true (G 0)
   225           | G 3 = Library.setmp show_brackets true (G 2)
   226           | G _ = raise SMART_STRING
   227         fun F n =
   228             let
   229                 val str = Library.setmp show_brackets false (G n Display.string_of_cterm) ct
   230                 val u = Syntax.parse_term ctxt str
   231                   |> TypeInfer.constrain T |> Syntax.check_term ctxt
   232             in
   233                 if match u
   234                 then quote str
   235                 else F (n+1)
   236             end
   237             handle ERROR mesg => F (n+1)
   238                  | SMART_STRING => error ("smart_string failed for: "^(G 0 Display.string_of_cterm ct))
   239     in
   240       PrintMode.setmp [] (Library.setmp Syntax.ambiguity_is_error true F) 0
   241     end
   242     handle ERROR mesg => simple_smart_string_of_cterm ct
   243 
   244 val smart_string_of_thm = smart_string_of_cterm o cprop_of
   245 
   246 fun prth th = writeln (PrintMode.setmp [] Display.string_of_thm_without_context th)
   247 fun prc ct = writeln (PrintMode.setmp [] Display.string_of_cterm ct)
   248 fun prin t = writeln (PrintMode.setmp []
   249   (fn () => Syntax.string_of_term (ML_Context.the_local_context ()) t) ());
   250 fun pth (HOLThm(ren,thm)) =
   251     let
   252         (*val _ = writeln "Renaming:"
   253         val _ = app (fn(v,w) => (prin v; writeln " -->"; prin w)) ren*)
   254         val _ = prth thm
   255     in
   256         ()
   257     end
   258 
   259 fun disk_info_of (Proof(Info{disk_info,...},_)) = !disk_info
   260 fun mk_proof p = Proof(Info{disk_info = ref NONE},p)
   261 fun content_of (Proof(_,p)) = p
   262 
   263 fun set_disk_info_of (Proof(Info{disk_info,...},_)) thyname thmname =
   264     disk_info := SOME(thyname,thmname)
   265 
   266 structure Lib =
   267 struct
   268 
   269 fun assoc x =
   270     let
   271         fun F [] = raise PK("Lib.assoc","Not found")
   272           | F ((x',y)::rest) = if x = x'
   273                                then y
   274                                else F rest
   275     in
   276         F
   277     end
   278 fun i mem L =
   279     let fun itr [] = false
   280           | itr (a::rst) = i=a orelse itr rst
   281     in itr L end;
   282 
   283 fun [] union S = S
   284   | S union [] = S
   285   | (a::rst) union S2 = rst union (insert (op =) a S2)
   286 
   287 fun implode_subst [] = []
   288   | implode_subst (x::r::rest) = ((x,r)::(implode_subst rest))
   289   | implode_subst _ = raise ERR "implode_subst" "malformed substitution list"
   290 
   291 end
   292 open Lib
   293 
   294 structure Tag =
   295 struct
   296 val empty_tag = Tag []
   297 fun read name = Tag [name]
   298 fun merge (Tag tag1) (Tag tag2) = Tag (Lib.union(tag1,tag2))
   299 end
   300 
   301 (* Actual code. *)
   302 
   303 fun get_segment thyname l = (Lib.assoc "s" l
   304                              handle PK _ => thyname)
   305 val get_name : (string * string) list -> string = Lib.assoc "n"
   306 
   307 local
   308     open LazyScan
   309     infix 7 |-- --|
   310     infix 5 :-- -- ^^
   311     infix 3 >>
   312     infix 0 ||
   313 in
   314 exception XML of string
   315 
   316 datatype xml = Elem of string * (string * string) list * xml list
   317 datatype XMLtype = XMLty of xml | FullType of hol_type
   318 datatype XMLterm = XMLtm of xml | FullTerm of term
   319 
   320 fun pair x y = (x,y)
   321 
   322 fun scan_id toks =
   323     let
   324         val (x,toks2) = one Char.isAlpha toks
   325         val (xs,toks3) = any Char.isAlphaNum toks2
   326     in
   327         (String.implode (x::xs),toks3)
   328     end
   329 
   330 fun scan_string str c =
   331     let
   332         fun F [] toks = (c,toks)
   333           | F (c::cs) toks =
   334             case LazySeq.getItem toks of
   335                 SOME(c',toks') =>
   336                 if c = c'
   337                 then F cs toks'
   338                 else raise SyntaxError
   339               | NONE => raise SyntaxError
   340     in
   341         F (String.explode str)
   342     end
   343 
   344 local
   345     val scan_entity =
   346         (scan_string "amp;" #"&")
   347             || scan_string "quot;" #"\""
   348             || scan_string "gt;" #">"
   349             || scan_string "lt;" #"<"
   350             || scan_string "apos;" #"'"
   351 in
   352 fun scan_nonquote toks =
   353     case LazySeq.getItem toks of
   354         SOME (c,toks') =>
   355         (case c of
   356              #"\"" => raise SyntaxError
   357            | #"&" => scan_entity toks'
   358            | c => (c,toks'))
   359       | NONE => raise SyntaxError
   360 end
   361 
   362 val scan_string = $$ #"\"" |-- repeat scan_nonquote --| $$ #"\"" >>
   363                      String.implode
   364 
   365 val scan_attribute = scan_id -- $$ #"=" |-- scan_string
   366 
   367 val scan_start_of_tag = $$ #"<" |-- scan_id --
   368                            repeat ($$ #" " |-- scan_attribute)
   369 
   370 (* The evaluation delay introduced through the 'toks' argument is needed
   371 for the sake of the SML/NJ (110.9.1) compiler.  Either that or an explicit
   372 type :-( *)
   373 fun scan_end_of_tag toks = ($$ #"/" |-- $$ #">" |-- succeed []) toks
   374 
   375 val scan_end_tag = $$ #"<" |-- $$ #"/" |-- scan_id --| $$ #">"
   376 
   377 fun scan_children id = $$ #">" |-- repeat scan_tag -- scan_end_tag >>
   378                        (fn (chldr,id') => if id = id'
   379                                           then chldr
   380                                           else raise XML "Tag mismatch")
   381 and scan_tag toks =
   382     let
   383         val ((id,atts),toks2) = scan_start_of_tag toks
   384         val (chldr,toks3) = (scan_children id || scan_end_of_tag) toks2
   385     in
   386         (Elem (id,atts,chldr),toks3)
   387     end
   388 end
   389 
   390 val type_of = Term.type_of
   391 
   392 val boolT = Type("bool",[])
   393 val propT = Type("prop",[])
   394 
   395 fun mk_defeq name rhs thy =
   396     let
   397         val ty = type_of rhs
   398     in
   399         Logic.mk_equals (Const(Sign.intern_const thy name,ty),rhs)
   400     end
   401 
   402 fun mk_teq name rhs thy =
   403     let
   404         val ty = type_of rhs
   405     in
   406         HOLogic.mk_eq (Const(Sign.intern_const thy name,ty),rhs)
   407     end
   408 
   409 fun intern_const_name thyname const thy =
   410     case get_hol4_const_mapping thyname const thy of
   411         SOME (_,cname,_) => cname
   412       | NONE => (case get_hol4_const_renaming thyname const thy of
   413                      SOME cname => Sign.intern_const thy (thyname ^ "." ^ cname)
   414                    | NONE => Sign.intern_const thy (thyname ^ "." ^ const))
   415 
   416 fun intern_type_name thyname const thy =
   417     case get_hol4_type_mapping thyname const thy of
   418         SOME (_,cname) => cname
   419       | NONE => Sign.intern_const thy (thyname ^ "." ^ const)
   420 
   421 fun mk_vartype name = TFree(name,["HOL.type"])
   422 fun mk_thy_type thy Thy Tyop Args = Type(intern_type_name Thy Tyop thy,Args)
   423 
   424 val mk_var = Free
   425 
   426 fun dom_rng (Type("fun",[dom,rng])) = (dom,rng)
   427   | dom_rng _ = raise ERR "dom_rng" "Not a functional type"
   428 
   429 fun mk_thy_const thy Thy Nam Ty = Const(intern_const_name Thy Nam thy,Ty)
   430 
   431 local
   432   fun get_const sg thyname name =
   433     (case Sign.const_type sg name of
   434       SOME ty => Const (name, ty)
   435     | NONE => raise ERR "get_type" (name ^ ": No such constant"))
   436 in
   437 fun prim_mk_const thy Thy Nam =
   438     let
   439       val name = intern_const_name Thy Nam thy
   440       val cmaps = HOL4ConstMaps.get thy
   441     in
   442       case StringPair.lookup cmaps (Thy,Nam) of
   443         SOME(_,_,SOME ty) => Const(name,ty)
   444       | _ => get_const thy Thy name
   445     end
   446 end
   447 
   448 fun mk_comb(f,a) = f $ a
   449 
   450 (* Needed for HOL Light *)
   451 fun protect_tyvarname s =
   452     let
   453         fun no_quest s =
   454             if Char.contains s #"?"
   455             then String.translate (fn #"?" => "q_" | c => Char.toString c) s
   456             else s
   457         fun beg_prime s =
   458             if String.isPrefix "'" s
   459             then s
   460             else "'" ^ s
   461     in
   462         s |> no_quest |> beg_prime
   463     end
   464 
   465 val protected_varnames = ref (Symtab.empty:string Symtab.table)
   466 val invented_isavar = ref 0
   467 
   468 fun innocent_varname s = Syntax.is_identifier s andalso not (String.isPrefix "u_" s)
   469 
   470 val check_name_thy = theory "Main"
   471 
   472 fun valid_boundvarname s =
   473   can (fn () => Syntax.read_term_global check_name_thy ("SOME "^s^". True")) ();
   474 
   475 fun valid_varname s =
   476   can (fn () => Syntax.read_term_global check_name_thy s) ();
   477 
   478 fun protect_varname s =
   479     if innocent_varname s andalso valid_varname s then s else
   480     case Symtab.lookup (!protected_varnames) s of
   481       SOME t => t
   482     | NONE =>
   483       let
   484           val _ = inc invented_isavar
   485           val t = "u_" ^ string_of_int (!invented_isavar)
   486           val _ = ImportRecorder.protect_varname s t
   487           val _ = protected_varnames := Symtab.update (s, t) (!protected_varnames)
   488       in
   489           t
   490       end
   491 
   492 exception REPLAY_PROTECT_VARNAME of string*string*string
   493 
   494 fun replay_protect_varname s t =
   495         case Symtab.lookup (!protected_varnames) s of
   496           SOME t' => raise REPLAY_PROTECT_VARNAME (s, t, t')
   497         | NONE =>
   498           let
   499               val _ = inc invented_isavar
   500               val t = "u_" ^ string_of_int (!invented_isavar)
   501               val _ = protected_varnames := Symtab.update (s, t) (!protected_varnames)
   502           in
   503               ()
   504           end
   505 
   506 fun protect_boundvarname s = if innocent_varname s andalso valid_boundvarname s then s else "u"
   507 
   508 fun mk_lambda (v as Free (x, T)) t = Abs (protect_boundvarname x, T, abstract_over (v, t))
   509   | mk_lambda (v as Var ((x, _), T)) t = Abs (protect_boundvarname x, T, abstract_over (v, t))
   510   | mk_lambda v t = raise TERM ("lambda", [v, t]);
   511 
   512 fun replacestr x y s =
   513 let
   514   val xl = explode x
   515   val yl = explode y
   516   fun isprefix [] ys = true
   517     | isprefix (x::xs) (y::ys) = if x = y then isprefix xs ys else false
   518     | isprefix _ _ = false
   519   fun isp s = isprefix xl s
   520   fun chg s = yl@(List.drop (s, List.length xl))
   521   fun r [] = []
   522     | r (S as (s::ss)) = if isp S then r (chg S) else s::(r ss)
   523 in
   524   implode(r (explode s))
   525 end
   526 
   527 fun protect_factname s = replacestr "." "_dot_" s
   528 fun unprotect_factname s = replacestr "_dot_" "." s
   529 
   530 val ty_num_prefix = "N_"
   531 
   532 fun startsWithDigit s = Char.isDigit (hd (String.explode s))
   533 
   534 fun protect_tyname tyn =
   535   let
   536     val tyn' =
   537       if String.isPrefix ty_num_prefix tyn then raise (ERR "protect_ty_name" ("type name '"^tyn^"' is reserved")) else
   538       (if startsWithDigit tyn then ty_num_prefix^tyn else tyn)
   539   in
   540     tyn'
   541   end
   542 
   543 fun protect_constname tcn = tcn
   544  (* if tcn = ".." then "dotdot"
   545   else if tcn = "==" then "eqeq"
   546   else tcn*)
   547 
   548 structure TypeNet =
   549 struct
   550 
   551 fun get_type_from_index thy thyname types is =
   552     case Int.fromString is of
   553         SOME i => (case Array.sub(types,i) of
   554                        FullType ty => ty
   555                      | XMLty xty =>
   556                        let
   557                            val ty = get_type_from_xml thy thyname types xty
   558                            val _  = Array.update(types,i,FullType ty)
   559                        in
   560                            ty
   561                        end)
   562       | NONE => raise ERR "get_type_from_index" "Bad index"
   563 and get_type_from_xml thy thyname types =
   564     let
   565         fun gtfx (Elem("tyi",[("i",iS)],[])) =
   566                  get_type_from_index thy thyname types iS
   567           | gtfx (Elem("tyc",atts,[])) =
   568             mk_thy_type thy
   569                         (get_segment thyname atts)
   570                         (protect_tyname (get_name atts))
   571                         []
   572           | gtfx (Elem("tyv",[("n",s)],[])) = mk_vartype (protect_tyvarname s)
   573           | gtfx (Elem("tya",[],(Elem("tyc",atts,[]))::tys)) =
   574             mk_thy_type thy
   575                         (get_segment thyname atts)
   576                         (protect_tyname (get_name atts))
   577                         (map gtfx tys)
   578           | gtfx _ = raise ERR "get_type" "Bad type"
   579     in
   580         gtfx
   581     end
   582 
   583 fun input_types thyname (Elem("tylist",[("i",i)],xtys)) =
   584     let
   585         val types = Array.array(valOf (Int.fromString i),XMLty (Elem("",[],[])))
   586         fun IT _ [] = ()
   587           | IT n (xty::xtys) =
   588             (Array.update(types,n,XMLty xty);
   589              IT (n+1) xtys)
   590         val _ = IT 0 xtys
   591     in
   592         types
   593     end
   594   | input_types _ _ = raise ERR "input_types" "Bad type list"
   595 end
   596 
   597 structure TermNet =
   598 struct
   599 
   600 fun get_term_from_index thy thyname types terms is =
   601     case Int.fromString is of
   602         SOME i => (case Array.sub(terms,i) of
   603                        FullTerm tm => tm
   604                      | XMLtm xtm =>
   605                        let
   606                            val tm = get_term_from_xml thy thyname types terms xtm
   607                            val _  = Array.update(terms,i,FullTerm tm)
   608                        in
   609                            tm
   610                        end)
   611       | NONE => raise ERR "get_term_from_index" "Bad index"
   612 and get_term_from_xml thy thyname types terms =
   613     let
   614         fun get_type [] = NONE
   615           | get_type [ty] = SOME (TypeNet.get_type_from_xml thy thyname types ty)
   616           | get_type _ = raise ERR "get_term" "Bad type"
   617 
   618         fun gtfx (Elem("tmv",[("n",name),("t",tyi)],[])) =
   619             mk_var(protect_varname name,TypeNet.get_type_from_index thy thyname types tyi)
   620           | gtfx (Elem("tmc",atts,[])) =
   621             let
   622                 val segment = get_segment thyname atts
   623                 val name = protect_constname(get_name atts)
   624             in
   625                 mk_thy_const thy segment name (TypeNet.get_type_from_index thy thyname types (Lib.assoc "t" atts))
   626                 handle PK _ => prim_mk_const thy segment name
   627             end
   628           | gtfx (Elem("tma",[("f",tmf),("a",tma)],[])) =
   629             let
   630                 val f = get_term_from_index thy thyname types terms tmf
   631                 val a = get_term_from_index thy thyname types terms tma
   632             in
   633                 mk_comb(f,a)
   634             end
   635           | gtfx (Elem("tml",[("x",tmx),("a",tma)],[])) =
   636             let
   637                 val x = get_term_from_index thy thyname types terms tmx
   638                 val a = get_term_from_index thy thyname types terms tma
   639             in
   640                 mk_lambda x a
   641             end
   642           | gtfx (Elem("tmi",[("i",iS)],[])) =
   643             get_term_from_index thy thyname types terms iS
   644           | gtfx (Elem(tag,_,_)) =
   645             raise ERR "get_term" ("Not a term: "^tag)
   646     in
   647         gtfx
   648     end
   649 
   650 fun input_terms thyname types (Elem("tmlist",[("i",i)],xtms)) =
   651     let
   652         val terms = Array.array(valOf(Int.fromString i),XMLtm (Elem("",[],[])))
   653 
   654         fun IT _ [] = ()
   655           | IT n (xtm::xtms) =
   656             (Array.update(terms,n,XMLtm xtm);
   657              IT (n+1) xtms)
   658         val _ = IT 0 xtms
   659     in
   660         terms
   661     end
   662   | input_terms _ _ _ = raise ERR "input_terms" "Bad term list"
   663 end
   664 
   665 fun get_proof_dir (thyname:string) thy =
   666     let
   667         val import_segment =
   668             case get_segment2 thyname thy of
   669                 SOME seg => seg
   670               | NONE => get_import_segment thy
   671         val path = space_explode ":" (getenv "HOL4_PROOFS")
   672         fun find [] = NONE
   673           | find (p::ps) =
   674             (let
   675                  val dir = OS.Path.joinDirFile {dir = p,file=import_segment}
   676              in
   677                  if OS.FileSys.isDir dir
   678                  then SOME dir
   679                  else find ps
   680              end) handle OS.SysErr _ => find ps
   681     in
   682         Option.map (fn p => OS.Path.joinDirFile {dir = p, file = thyname}) (find path)
   683     end
   684 
   685 fun proof_file_name thyname thmname thy =
   686     let
   687         val path = case get_proof_dir thyname thy of
   688                        SOME p => p
   689                      | NONE => error "Cannot find proof files"
   690         val _ = OS.FileSys.mkDir path handle OS.SysErr _ => ()
   691     in
   692         OS.Path.joinDirFile {dir = path, file = OS.Path.joinBaseExt {base = (unprotect_factname thmname), ext = SOME "prf"}}
   693     end
   694 
   695 fun xml_to_proof thyname types terms prf thy =
   696     let
   697         val xml_to_hol_type = TypeNet.get_type_from_xml thy thyname types
   698         val xml_to_term = TermNet.get_term_from_xml thy thyname types terms
   699 
   700         fun index_to_term is =
   701             TermNet.get_term_from_index thy thyname types terms is
   702 
   703         fun x2p (Elem("prefl",[("i",is)],[])) = mk_proof (PRefl (index_to_term is))
   704           | x2p (Elem("pinstt",[],p::lambda)) =
   705             let
   706                 val p = x2p p
   707                 val lambda = implode_subst (map xml_to_hol_type lambda)
   708             in
   709                 mk_proof (PInstT(p,lambda))
   710             end
   711           | x2p (Elem("psubst",[("i",is)],prf::prfs)) =
   712             let
   713                 val tm = index_to_term is
   714                 val prf = x2p prf
   715                 val prfs = map x2p prfs
   716             in
   717                 mk_proof (PSubst(prfs,tm,prf))
   718             end
   719           | x2p (Elem("pabs",[("i",is)],[prf])) =
   720             let
   721                 val p = x2p prf
   722                 val t = index_to_term is
   723             in
   724                 mk_proof (PAbs (p,t))
   725             end
   726           | x2p (Elem("pdisch",[("i",is)],[prf])) =
   727             let
   728                 val p = x2p prf
   729                 val t = index_to_term is
   730             in
   731                 mk_proof (PDisch (p,t))
   732             end
   733           | x2p (Elem("pmp",[],[prf1,prf2])) =
   734             let
   735                 val p1 = x2p prf1
   736                 val p2 = x2p prf2
   737             in
   738                 mk_proof (PMp(p1,p2))
   739             end
   740           | x2p (Elem("phyp",[("i",is)],[])) = mk_proof (PHyp (index_to_term is))
   741           | x2p (Elem("paxiom",[("n",n),("i",is)],[])) =
   742             mk_proof (PAxm(n,index_to_term is))
   743           | x2p (Elem("pfact",atts,[])) =
   744             let
   745                 val thyname = get_segment thyname atts
   746                 val thmname = protect_factname (get_name atts)
   747                 val p = mk_proof PDisk
   748                 val _  = set_disk_info_of p thyname thmname
   749             in
   750                 p
   751             end
   752           | x2p (Elem("pdef",[("s",seg),("n",name),("i",is)],[])) =
   753             mk_proof (PDef(seg,protect_constname name,index_to_term is))
   754           | x2p (Elem("ptmspec",[("s",seg)],p::names)) =
   755             let
   756                 val names = map (fn Elem("name",[("n",name)],[]) => name
   757                                   | _ => raise ERR "x2p" "Bad proof (ptmspec)") names
   758             in
   759                 mk_proof (PTmSpec(seg,names,x2p p))
   760             end
   761           | x2p (Elem("ptyintro",[("s",seg),("n",name),("a",abs_name),("r",rep_name)],[xP,xt,p])) =
   762             let
   763                 val P = xml_to_term xP
   764                 val t = xml_to_term xt
   765             in
   766                 mk_proof (PTyIntro(seg,protect_tyname name,protect_constname abs_name,protect_constname rep_name,P,t,x2p p))
   767             end
   768           | x2p (Elem("ptydef",[("s",seg),("n",name)],[p])) =
   769             mk_proof (PTyDef(seg,protect_tyname name,x2p p))
   770           | x2p (xml as Elem("poracle",[],chldr)) =
   771             let
   772                 val (oracles,terms) = List.partition (fn (Elem("oracle",_,_)) => true | _ => false) chldr
   773                 val ors = map (fn (Elem("oracle",[("n",name)],[])) => name | xml => raise ERR "x2p" "bad oracle") oracles
   774                 val (c,asl) = case terms of
   775                                   [] => raise ERR "x2p" "Bad oracle description"
   776                                 | (hd::tl) => (hd,tl)
   777                 val tg = List.foldr (fn (oracle,tg) => Tag.merge (Tag.read oracle) tg) Tag.empty_tag ors
   778             in
   779                 mk_proof (POracle(tg,map xml_to_term asl,xml_to_term c))
   780             end
   781           | x2p (Elem("pspec",[("i",is)],[prf])) =
   782             let
   783                 val p = x2p prf
   784                 val tm = index_to_term is
   785             in
   786                 mk_proof (PSpec(p,tm))
   787             end
   788           | x2p (Elem("pinst",[],p::theta)) =
   789             let
   790                 val p = x2p p
   791                 val theta = implode_subst (map xml_to_term theta)
   792             in
   793                 mk_proof (PInst(p,theta))
   794             end
   795           | x2p (Elem("pgen",[("i",is)],[prf])) =
   796             let
   797                 val p = x2p prf
   798                 val tm = index_to_term is
   799             in
   800                 mk_proof (PGen(p,tm))
   801             end
   802           | x2p (Elem("pgenabs",[],prf::tms)) =
   803             let
   804                 val p = x2p prf
   805                 val tml = map xml_to_term tms
   806             in
   807                 mk_proof (PGenAbs(p,NONE,tml))
   808             end
   809           | x2p (Elem("pgenabs",[("i",is)],prf::tms)) =
   810             let
   811                 val p = x2p prf
   812                 val tml = map xml_to_term tms
   813             in
   814                 mk_proof (PGenAbs(p,SOME (index_to_term is),tml))
   815             end
   816           | x2p (Elem("pimpas",[],[prf1,prf2])) =
   817             let
   818                 val p1 = x2p prf1
   819                 val p2 = x2p prf2
   820             in
   821                 mk_proof (PImpAS(p1,p2))
   822             end
   823           | x2p (Elem("psym",[],[prf])) =
   824             let
   825                 val p = x2p prf
   826             in
   827                 mk_proof (PSym p)
   828             end
   829           | x2p (Elem("ptrans",[],[prf1,prf2])) =
   830             let
   831                 val p1 = x2p prf1
   832                 val p2 = x2p prf2
   833             in
   834                 mk_proof (PTrans(p1,p2))
   835             end
   836           | x2p (Elem("pcomb",[],[prf1,prf2])) =
   837             let
   838                 val p1 = x2p prf1
   839                 val p2 = x2p prf2
   840             in
   841                 mk_proof (PComb(p1,p2))
   842             end
   843           | x2p (Elem("peqmp",[],[prf1,prf2])) =
   844             let
   845                 val p1 = x2p prf1
   846                 val p2 = x2p prf2
   847             in
   848                 mk_proof (PEqMp(p1,p2))
   849             end
   850           | x2p (Elem("peqimp",[],[prf])) =
   851             let
   852                 val p = x2p prf
   853             in
   854                 mk_proof (PEqImp p)
   855             end
   856           | x2p (Elem("pexists",[("e",ise),("w",isw)],[prf])) =
   857             let
   858                 val p = x2p prf
   859                 val ex = index_to_term ise
   860                 val w = index_to_term isw
   861             in
   862                 mk_proof (PExists(p,ex,w))
   863             end
   864           | x2p (Elem("pchoose",[("i",is)],[prf1,prf2])) =
   865             let
   866                 val v  = index_to_term is
   867                 val p1 = x2p prf1
   868                 val p2 = x2p prf2
   869             in
   870                 mk_proof (PChoose(v,p1,p2))
   871             end
   872           | x2p (Elem("pconj",[],[prf1,prf2])) =
   873             let
   874                 val p1 = x2p prf1
   875                 val p2 = x2p prf2
   876             in
   877                 mk_proof (PConj(p1,p2))
   878             end
   879           | x2p (Elem("pconjunct1",[],[prf])) =
   880             let
   881                 val p = x2p prf
   882             in
   883                 mk_proof (PConjunct1 p)
   884             end
   885           | x2p (Elem("pconjunct2",[],[prf])) =
   886             let
   887                 val p = x2p prf
   888             in
   889                 mk_proof (PConjunct2 p)
   890             end
   891           | x2p (Elem("pdisj1",[("i",is)],[prf])) =
   892             let
   893                 val p = x2p prf
   894                 val t = index_to_term is
   895             in
   896                 mk_proof (PDisj1 (p,t))
   897             end
   898           | x2p (Elem("pdisj2",[("i",is)],[prf])) =
   899             let
   900                 val p = x2p prf
   901                 val t = index_to_term is
   902             in
   903                 mk_proof (PDisj2 (p,t))
   904             end
   905           | x2p (Elem("pdisjcases",[],[prf1,prf2,prf3])) =
   906             let
   907                 val p1 = x2p prf1
   908                 val p2 = x2p prf2
   909                 val p3 = x2p prf3
   910             in
   911                 mk_proof (PDisjCases(p1,p2,p3))
   912             end
   913           | x2p (Elem("pnoti",[],[prf])) =
   914             let
   915                 val p = x2p prf
   916             in
   917                 mk_proof (PNotI p)
   918             end
   919           | x2p (Elem("pnote",[],[prf])) =
   920             let
   921                 val p = x2p prf
   922             in
   923                 mk_proof (PNotE p)
   924             end
   925           | x2p (Elem("pcontr",[("i",is)],[prf])) =
   926             let
   927                 val p = x2p prf
   928                 val t = index_to_term is
   929             in
   930                 mk_proof (PContr (p,t))
   931             end
   932           | x2p xml = raise ERR "x2p" "Bad proof"
   933     in
   934         x2p prf
   935     end
   936 
   937 fun import_proof_concl thyname thmname thy =
   938     let
   939         val is = TextIO.openIn(proof_file_name thyname thmname thy)
   940         val (proof_xml,_) = scan_tag (LazySeq.of_instream is)
   941         val _ = TextIO.closeIn is
   942     in
   943         case proof_xml of
   944             Elem("proof",[],xtypes::xterms::prf::rest) =>
   945             let
   946                 val types = TypeNet.input_types thyname xtypes
   947                 val terms = TermNet.input_terms thyname types xterms
   948                 fun f xtm thy = TermNet.get_term_from_xml thy thyname types terms xtm
   949             in
   950                 case rest of
   951                     [] => NONE
   952                   | [xtm] => SOME (f xtm)
   953                   | _ => raise ERR "import_proof" "Bad argument list"
   954             end
   955           | _ => raise ERR "import_proof" "Bad proof"
   956     end
   957 
   958 fun import_proof thyname thmname thy =
   959     let
   960         val is = TextIO.openIn(proof_file_name thyname thmname thy)
   961         val (proof_xml,_) = scan_tag (LazySeq.of_instream is)
   962         val _ = TextIO.closeIn is
   963     in
   964         case proof_xml of
   965             Elem("proof",[],xtypes::xterms::prf::rest) =>
   966             let
   967                 val types = TypeNet.input_types thyname xtypes
   968                 val terms = TermNet.input_terms thyname types xterms
   969             in
   970                 (case rest of
   971                      [] => NONE
   972                    | [xtm] => SOME (fn thy => TermNet.get_term_from_xml thy thyname types terms xtm)
   973                    | _ => raise ERR "import_proof" "Bad argument list",
   974                  xml_to_proof thyname types terms prf)
   975             end
   976           | _ => raise ERR "import_proof" "Bad proof"
   977     end
   978 
   979 fun uniq_compose m th i st =
   980     let
   981         val res = Thm.bicompose false (false,th,m) i st
   982     in
   983         case Seq.pull res of
   984             SOME (th,rest) => (case Seq.pull rest of
   985                                    SOME _ => raise ERR "uniq_compose" "Not unique!"
   986                                  | NONE => th)
   987           | NONE => raise ERR "uniq_compose" "No result"
   988     end
   989 
   990 val reflexivity_thm = thm "refl"
   991 val substitution_thm = thm "subst"
   992 val mp_thm = thm "mp"
   993 val imp_antisym_thm = thm "light_imp_as"
   994 val disch_thm = thm "impI"
   995 val ccontr_thm = thm "ccontr"
   996 
   997 val meta_eq_to_obj_eq_thm = thm "meta_eq_to_obj_eq"
   998 
   999 val gen_thm = thm "HOLallI"
  1000 val choose_thm = thm "exE"
  1001 val exists_thm = thm "exI"
  1002 val conj_thm = thm "conjI"
  1003 val conjunct1_thm = thm "conjunct1"
  1004 val conjunct2_thm = thm "conjunct2"
  1005 val spec_thm = thm "spec"
  1006 val disj_cases_thm = thm "disjE"
  1007 val disj1_thm = thm "disjI1"
  1008 val disj2_thm = thm "disjI2"
  1009 
  1010 local
  1011     val th = thm "not_def"
  1012     val thy = theory_of_thm th
  1013     val pp = reflexive (cterm_of thy (Const("Trueprop",boolT-->propT)))
  1014 in
  1015 val not_elim_thm = combination pp th
  1016 end
  1017 
  1018 val not_intro_thm = symmetric not_elim_thm
  1019 val abs_thm = thm "ext"
  1020 val trans_thm = thm "trans"
  1021 val symmetry_thm = thm "sym"
  1022 val transitivity_thm = thm "trans"
  1023 val eqmp_thm = thm "iffD1"
  1024 val eqimp_thm = thm "HOL4Setup.eq_imp"
  1025 val comb_thm = thm "cong"
  1026 
  1027 (* Beta-eta normalizes a theorem (only the conclusion, not the *
  1028 hypotheses!)  *)
  1029 
  1030 fun beta_eta_thm th =
  1031     let
  1032         val th1 = Thm.equal_elim (Thm.beta_conversion true (cprop_of th))  th
  1033         val th2 = Thm.equal_elim (Thm.eta_conversion       (cprop_of th1)) th1
  1034     in
  1035         th2
  1036     end
  1037 
  1038 fun implies_elim_all th =
  1039     Library.foldl (fn (th,p) => implies_elim th (assume p)) (th,cprems_of th)
  1040 
  1041 fun norm_hyps th =
  1042     th |> beta_eta_thm
  1043        |> implies_elim_all
  1044        |> implies_intr_hyps
  1045 
  1046 fun mk_GEN v th sg =
  1047     let
  1048         val c = HOLogic.dest_Trueprop (concl_of th)
  1049         val cv = cterm_of sg v
  1050         val lc = Term.lambda v c
  1051         val clc = Thm.cterm_of sg lc
  1052         val cvty = ctyp_of_term cv
  1053         val th1 = implies_elim_all th
  1054         val th2 = beta_eta_thm (forall_intr cv th1)
  1055         val th3 = th2 COMP (beta_eta_thm (Drule.instantiate' [SOME cvty] [SOME clc] gen_thm))
  1056         val c = prop_of th3
  1057         val vname = fst(dest_Free v)
  1058         val (cold,cnew) = case c of
  1059                               tpc $ (Const("All",allT) $ Abs(oldname,ty,body)) =>
  1060                               (Abs(oldname,dummyT,Bound 0),Abs(vname,dummyT,Bound 0))
  1061                             | tpc $ (Const("All",allT) $ rest) => (tpc,tpc)
  1062                             | _ => raise ERR "mk_GEN" "Unknown conclusion"
  1063         val th4 = Thm.rename_boundvars cold cnew th3
  1064         val res = implies_intr_hyps th4
  1065     in
  1066         res
  1067     end
  1068 
  1069 fun rearrange sg tm th =
  1070     let
  1071         val tm' = Envir.beta_eta_contract tm
  1072         fun find []      n = Thm.permute_prems 0 1 (implies_intr (Thm.cterm_of sg tm) th)
  1073           | find (p::ps) n = if tm' aconv (Envir.beta_eta_contract p)
  1074                              then Thm.permute_prems n 1 th
  1075                              else find ps (n+1)
  1076     in
  1077         find (prems_of th) 0
  1078     end
  1079 
  1080 fun zip (x::xs) (y::ys) = (x,y)::(zip xs ys)
  1081   | zip [] [] = []
  1082   | zip _ _ = raise ERR "zip" "arguments not of same length"
  1083 
  1084 fun mk_INST dom rng th =
  1085     th |> forall_intr_list dom
  1086        |> forall_elim_list rng
  1087 
  1088 val collect_vars =
  1089     let
  1090         fun F vars (Bound _) = vars
  1091           | F vars (tm as Free _) =
  1092             if tm mem vars
  1093             then vars
  1094             else (tm::vars)
  1095           | F vars (Const _) = vars
  1096           | F vars (tm1 $ tm2) = F (F vars tm1) tm2
  1097           | F vars (Abs(_,_,body)) = F vars body
  1098           | F vars (Var _) = raise ERR "collect_vars" "Schematic variable found"
  1099     in
  1100         F []
  1101     end
  1102 
  1103 (* Code for disambiguating variablenames (wrt. types) *)
  1104 
  1105 val disamb_info_empty = {vars=[],rens=[]}
  1106 
  1107 fun rens_of {vars,rens} = rens
  1108 
  1109 fun name_of_var (Free(vname,_)) = vname
  1110   | name_of_var _ = raise ERR "name_of_var" "Not a variable"
  1111 
  1112 fun disamb_term_from info tm = (info, tm)
  1113 
  1114 fun swap (x,y) = (y,x)
  1115 
  1116 fun has_ren (HOLThm _) = false
  1117 
  1118 fun prinfo {vars,rens} = (writeln "Vars:";
  1119                           app prin vars;
  1120                           writeln "Renaming:";
  1121                           app (fn(x,y)=>(prin x; writeln " -->"; prin y)) rens)
  1122 
  1123 fun disamb_thm_from info (HOLThm (_,thm)) = (info, thm)
  1124 
  1125 fun disamb_terms_from info tms = (info, tms)
  1126 
  1127 fun disamb_thms_from info hthms = (info, map hthm2thm hthms)
  1128 
  1129 fun disamb_term tm   = disamb_term_from disamb_info_empty tm
  1130 fun disamb_terms tms = disamb_terms_from disamb_info_empty tms
  1131 fun disamb_thm thm   = disamb_thm_from disamb_info_empty thm
  1132 fun disamb_thms thms = disamb_thms_from disamb_info_empty thms
  1133 
  1134 fun norm_hthm sg (hth as HOLThm _) = hth
  1135 
  1136 (* End of disambiguating code *)
  1137 
  1138 fun disambiguate_frees thm =
  1139     let
  1140       fun ERR s = error ("Drule.disambiguate_frees: "^s)
  1141       val ct = cprop_of thm
  1142       val t = term_of ct
  1143       val thy = theory_of_cterm ct
  1144       val frees = OldTerm.term_frees t
  1145       val freenames = Term.add_free_names t []
  1146       val is_old_name = member (op =) freenames
  1147       fun name_of (Free (n, _)) = n
  1148         | name_of _ = ERR "name_of"
  1149       fun new_name' bump map n =
  1150           let val n' = n^bump in
  1151             if is_old_name n' orelse Symtab.lookup map n' <> NONE then
  1152               new_name' (Symbol.bump_string bump) map n
  1153             else
  1154               n'
  1155           end
  1156       val new_name = new_name' "a"
  1157       fun replace_name n' (Free (n, t)) = Free (n', t)
  1158         | replace_name n' _ = ERR "replace_name"
  1159       (* map: old or fresh name -> old free,
  1160          invmap: old free which has fresh name assigned to it -> fresh name *)
  1161       fun dis (v, mapping as (map,invmap)) =
  1162           let val n = name_of v in
  1163             case Symtab.lookup map n of
  1164               NONE => (Symtab.update (n, v) map, invmap)
  1165             | SOME v' =>
  1166               if v=v' then
  1167                 mapping
  1168               else
  1169                 let val n' = new_name map n in
  1170                   (Symtab.update (n', v) map,
  1171                    Termtab.update (v, n') invmap)
  1172                 end
  1173           end
  1174     in
  1175       if (length freenames = length frees) then
  1176         thm
  1177       else
  1178         let
  1179           val (_, invmap) =
  1180               List.foldl dis (Symtab.empty, Termtab.empty) frees
  1181           fun make_subst ((oldfree, newname), (intros, elims)) =
  1182               (cterm_of thy oldfree :: intros,
  1183                cterm_of thy (replace_name newname oldfree) :: elims)
  1184           val (intros, elims) = List.foldl make_subst ([], []) (Termtab.dest invmap)
  1185         in
  1186           forall_elim_list elims (forall_intr_list intros thm)
  1187         end
  1188     end
  1189 
  1190 val debug = ref false
  1191 
  1192 fun if_debug f x = if !debug then f x else ()
  1193 val message = if_debug writeln
  1194 
  1195 val conjE_helper = Thm.permute_prems 0 1 conjE
  1196 
  1197 fun get_hol4_thm thyname thmname thy =
  1198     case get_hol4_theorem thyname thmname thy of
  1199         SOME hth => SOME (HOLThm hth)
  1200       | NONE =>
  1201         let
  1202             val pending = HOL4Pending.get thy
  1203         in
  1204             case StringPair.lookup pending (thyname,thmname) of
  1205                 SOME hth => SOME (HOLThm hth)
  1206               | NONE => NONE
  1207         end
  1208 
  1209 fun non_trivial_term_consts t = fold_aterms
  1210   (fn Const (c, _) =>
  1211       if c = "Trueprop" orelse c = "All" orelse c = "op -->" orelse c = "op &" orelse c = "op ="
  1212       then I else insert (op =) c
  1213     | _ => I) t [];
  1214 
  1215 fun match_consts t (* th *) =
  1216     let
  1217         fun add_consts (Const (c, _), cs) =
  1218             (case c of
  1219                  "op =" => insert (op =) "==" cs
  1220                | "op -->" => insert (op =) "==>" cs
  1221                | "All" => cs
  1222                | "all" => cs
  1223                | "op &" => cs
  1224                | "Trueprop" => cs
  1225                | _ => insert (op =) c cs)
  1226           | add_consts (t $ u, cs) = add_consts (t, add_consts (u, cs))
  1227           | add_consts (Abs (_, _, t), cs) = add_consts (t, cs)
  1228           | add_consts (_, cs) = cs
  1229         val t_consts = add_consts(t,[])
  1230     in
  1231         fn th => eq_set(t_consts,add_consts(prop_of th,[]))
  1232     end
  1233 
  1234 fun split_name str =
  1235     let
  1236         val sub = Substring.full str
  1237         val (f,idx) = apsnd Substring.string (Substring.splitr Char.isDigit sub)
  1238         val (newstr,u) = pairself Substring.string (Substring.splitr (fn c => c = #"_") f)
  1239     in
  1240         if not (idx = "") andalso u = "_"
  1241         then SOME (newstr,valOf(Int.fromString idx))
  1242         else NONE
  1243     end
  1244     handle _ => NONE  (* FIXME avoid handle _ *)
  1245 
  1246 fun rewrite_hol4_term t thy =
  1247     let
  1248         val hol4rews1 = map (Thm.transfer thy) (HOL4Rewrites.get thy)
  1249         val hol4ss = Simplifier.theory_context thy empty_ss
  1250           setmksimps single addsimps hol4rews1
  1251     in
  1252         Thm.transfer thy (Simplifier.full_rewrite hol4ss (cterm_of thy t))
  1253     end
  1254 
  1255 fun get_isabelle_thm thyname thmname hol4conc thy =
  1256     let
  1257         val (info,hol4conc') = disamb_term hol4conc
  1258         val i2h_conc = symmetric (rewrite_hol4_term (HOLogic.mk_Trueprop hol4conc') thy)
  1259         val isaconc =
  1260             case concl_of i2h_conc of
  1261                 Const("==",_) $ lhs $ _ => lhs
  1262               | _ => error "get_isabelle_thm" "Bad rewrite rule"
  1263         val _ = (message "Original conclusion:";
  1264                  if_debug prin hol4conc';
  1265                  message "Modified conclusion:";
  1266                  if_debug prin isaconc)
  1267 
  1268         fun mk_res th = HOLThm(rens_of info,equal_elim i2h_conc th)
  1269     in
  1270         case get_hol4_mapping thyname thmname thy of
  1271             SOME (SOME thmname) =>
  1272             let
  1273                 val th1 = (SOME (PureThy.get_thm thy thmname)
  1274                            handle ERROR _ =>
  1275                                   (case split_name thmname of
  1276                                        SOME (listname,idx) => (SOME (List.nth(PureThy.get_thms thy listname,idx-1))
  1277                                                                handle _ => NONE)  (* FIXME avoid handle _ *)
  1278                                      | NONE => NONE))
  1279             in
  1280                 case th1 of
  1281                     SOME th2 =>
  1282                     (case Shuffler.set_prop thy isaconc [(thmname,th2)] of
  1283                          SOME (_,th) => (message "YES";(thy, SOME (mk_res th)))
  1284                        | NONE => (message "NO2";error "get_isabelle_thm" "Bad mapping"))
  1285                   | NONE => (message "NO1";error "get_isabelle_thm" "Bad mapping")
  1286             end
  1287           | SOME NONE => error ("Trying to access ignored theorem " ^ thmname)
  1288           | NONE =>
  1289             let
  1290                 val _ = (message "Looking for conclusion:";
  1291                          if_debug prin isaconc)
  1292                 val cs = non_trivial_term_consts isaconc;
  1293                 val _ = (message "Looking for consts:";
  1294                          message (commas cs))
  1295                 val pot_thms = Shuffler.find_potential thy isaconc
  1296                 val _ = message ((Int.toString (length pot_thms)) ^ " potential theorems")
  1297             in
  1298                 case Shuffler.set_prop thy isaconc pot_thms of
  1299                     SOME (isaname,th) =>
  1300                     let
  1301                         val hth as HOLThm args = mk_res th
  1302                         val thy' =  thy |> add_hol4_theorem thyname thmname args
  1303                                         |> add_hol4_mapping thyname thmname isaname
  1304                         val _ = ImportRecorder.add_hol_theorem thyname thmname (snd args)
  1305                         val _ = ImportRecorder.add_hol_mapping thyname thmname isaname
  1306                     in
  1307                         (thy',SOME hth)
  1308                     end
  1309                   | NONE => (thy,NONE)
  1310             end
  1311     end
  1312     handle e => (message "Exception in get_isabelle_thm"; if_debug print_exn e handle _ => (); (thy,NONE))
  1313 
  1314 fun get_isabelle_thm_and_warn thyname thmname hol4conc thy =
  1315   let
  1316     val (a, b) = get_isabelle_thm thyname thmname hol4conc thy
  1317     fun warn () =
  1318         let
  1319             val (info,hol4conc') = disamb_term hol4conc
  1320             val i2h_conc = symmetric (rewrite_hol4_term (HOLogic.mk_Trueprop hol4conc') thy)
  1321         in
  1322             case concl_of i2h_conc of
  1323                 Const("==",_) $ lhs $ _ =>
  1324                 (warning ("Failed lookup of theorem '"^thmname^"':");
  1325                  writeln "Original conclusion:";
  1326                  prin hol4conc';
  1327                  writeln "Modified conclusion:";
  1328                  prin lhs)
  1329               | _ => ()
  1330         end
  1331   in
  1332       case b of
  1333           NONE => (warn () handle _ => (); (a,b)) (* FIXME avoid handle _ *)
  1334         | _ => (a, b)
  1335   end
  1336 
  1337 fun get_thm thyname thmname thy =
  1338     case get_hol4_thm thyname thmname thy of
  1339         SOME hth => (thy,SOME hth)
  1340       | NONE => ((case import_proof_concl thyname thmname thy of
  1341                       SOME f => get_isabelle_thm_and_warn thyname thmname (f thy) thy
  1342                     | NONE => (message "No conclusion"; (thy,NONE)))
  1343                  handle e as IO.Io _ => (message "IO exception"; (thy,NONE))
  1344                       | e as PK _ => (message "PK exception"; (thy,NONE)))
  1345 
  1346 fun rename_const thyname thy name =
  1347     case get_hol4_const_renaming thyname name thy of
  1348         SOME cname => cname
  1349       | NONE => name
  1350 
  1351 fun get_def thyname constname rhs thy =
  1352     let
  1353         val constname = rename_const thyname thy constname
  1354         val (thmname,thy') = get_defname thyname constname thy
  1355         val _ = message ("Looking for definition " ^ thyname ^ "." ^ thmname)
  1356     in
  1357         get_isabelle_thm_and_warn thyname thmname (mk_teq (thyname ^ "." ^ constname) rhs thy') thy'
  1358     end
  1359 
  1360 fun get_axiom thyname axname thy =
  1361     case get_thm thyname axname thy of
  1362         arg as (_,SOME _) => arg
  1363       | _ => raise ERR "get_axiom" ("Trying to retrieve axiom (" ^ axname ^ ")")
  1364 
  1365 fun intern_store_thm gen_output thyname thmname hth thy =
  1366     let
  1367         val (hth' as HOLThm (args as (_,th))) = norm_hthm thy hth
  1368         val rew = rewrite_hol4_term (concl_of th) thy
  1369         val th  = equal_elim rew th
  1370         val thy' = add_hol4_pending thyname thmname args thy
  1371         val _ = ImportRecorder.add_hol_pending thyname thmname (hthm2thm hth')
  1372         val th = disambiguate_frees th
  1373         val thy2 = if gen_output
  1374                    then add_dump ("lemma " ^ (quotename thmname) ^ ": " ^
  1375                                   (smart_string_of_thm th) ^ "\n  by (import " ^
  1376                                   thyname ^ " " ^ (quotename thmname) ^ ")") thy'
  1377                    else thy'
  1378     in
  1379         (thy2,hth')
  1380     end
  1381 
  1382 val store_thm = intern_store_thm true
  1383 
  1384 fun mk_REFL ctm =
  1385     let
  1386         val cty = Thm.ctyp_of_term ctm
  1387     in
  1388         Drule.instantiate' [SOME cty] [SOME ctm] reflexivity_thm
  1389     end
  1390 
  1391 fun REFL tm thy =
  1392     let
  1393         val _ = message "REFL:"
  1394         val (info,tm') = disamb_term tm
  1395         val ctm = Thm.cterm_of thy tm'
  1396         val res = HOLThm(rens_of info,mk_REFL ctm)
  1397         val _ = if_debug pth res
  1398     in
  1399         (thy,res)
  1400     end
  1401 
  1402 fun ASSUME tm thy =
  1403     let
  1404         val _ = message "ASSUME:"
  1405         val (info,tm') = disamb_term tm
  1406         val ctm = Thm.cterm_of thy (HOLogic.mk_Trueprop tm')
  1407         val th = Thm.trivial ctm
  1408         val res = HOLThm(rens_of info,th)
  1409         val _ = if_debug pth res
  1410     in
  1411         (thy,res)
  1412     end
  1413 
  1414 fun INST_TYPE lambda (hth as HOLThm(rens,th)) thy =
  1415     let
  1416         val _ = message "INST_TYPE:"
  1417         val _ = if_debug pth hth
  1418         val tys_before = OldTerm.add_term_tfrees (prop_of th,[])
  1419         val th1 = Thm.varifyT th
  1420         val tys_after = OldTerm.add_term_tvars (prop_of th1,[])
  1421         val tyinst = map (fn (bef, iS) =>
  1422                              (case try (Lib.assoc (TFree bef)) lambda of
  1423                                   SOME ty => (ctyp_of thy (TVar iS), ctyp_of thy ty)
  1424                                 | NONE => (ctyp_of thy (TVar iS), ctyp_of thy (TFree bef))
  1425                              ))
  1426                          (zip tys_before tys_after)
  1427         val res = Drule.instantiate (tyinst,[]) th1
  1428         val hth = HOLThm([],res)
  1429         val res = norm_hthm thy hth
  1430         val _ = message "RESULT:"
  1431         val _ = if_debug pth res
  1432     in
  1433         (thy,res)
  1434     end
  1435 
  1436 fun INST sigma hth thy =
  1437     let
  1438         val _ = message "INST:"
  1439         val _ = if_debug (app (fn (x,y) => (prin x; prin y))) sigma
  1440         val _ = if_debug pth hth
  1441         val (sdom,srng) = ListPair.unzip (rev sigma)
  1442         val th = hthm2thm hth
  1443         val th1 = mk_INST (map (cterm_of thy) sdom) (map (cterm_of thy) srng) th
  1444         val res = HOLThm([],th1)
  1445         val _ = message "RESULT:"
  1446         val _ = if_debug pth res
  1447     in
  1448         (thy,res)
  1449     end
  1450 
  1451 fun EQ_IMP_RULE (hth as HOLThm(rens,th)) thy =
  1452     let
  1453         val _ = message "EQ_IMP_RULE:"
  1454         val _ = if_debug pth hth
  1455         val res = HOLThm(rens,th RS eqimp_thm)
  1456         val _ = message "RESULT:"
  1457         val _ = if_debug pth res
  1458     in
  1459         (thy,res)
  1460     end
  1461 
  1462 fun mk_EQ_MP th1 th2 = [beta_eta_thm th1, beta_eta_thm th2] MRS eqmp_thm
  1463 
  1464 fun EQ_MP hth1 hth2 thy =
  1465     let
  1466         val _ = message "EQ_MP:"
  1467         val _ = if_debug pth hth1
  1468         val _ = if_debug pth hth2
  1469         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1470         val res = HOLThm(rens_of info,mk_EQ_MP th1 th2)
  1471         val _ = message "RESULT:"
  1472         val _ = if_debug pth res
  1473     in
  1474         (thy,res)
  1475     end
  1476 
  1477 fun mk_COMB th1 th2 thy =
  1478     let
  1479         val (f,g) = case concl_of th1 of
  1480                         _ $ (Const("op =",_) $ f $ g) => (f,g)
  1481                       | _ => raise ERR "mk_COMB" "First theorem not an equality"
  1482         val (x,y) = case concl_of th2 of
  1483                         _ $ (Const("op =",_) $ x $ y) => (x,y)
  1484                       | _ => raise ERR "mk_COMB" "Second theorem not an equality"
  1485         val fty = type_of f
  1486         val (fd,fr) = dom_rng fty
  1487         val comb_thm' = Drule.instantiate'
  1488                             [SOME (ctyp_of thy fd),SOME (ctyp_of thy fr)]
  1489                             [SOME (cterm_of thy f),SOME (cterm_of thy g),
  1490                              SOME (cterm_of thy x),SOME (cterm_of thy y)] comb_thm
  1491     in
  1492         [th1,th2] MRS comb_thm'
  1493     end
  1494 
  1495 fun SUBST rews ctxt hth thy =
  1496     let
  1497         val _ = message "SUBST:"
  1498         val _ = if_debug (app pth) rews
  1499         val _ = if_debug prin ctxt
  1500         val _ = if_debug pth hth
  1501         val (info,th) = disamb_thm hth
  1502         val (info1,ctxt') = disamb_term_from info ctxt
  1503         val (info2,rews') = disamb_thms_from info1 rews
  1504 
  1505         val cctxt = cterm_of thy ctxt'
  1506         fun subst th [] = th
  1507           | subst th (rew::rews) = subst (mk_COMB th rew thy) rews
  1508         val res = HOLThm(rens_of info2,mk_EQ_MP (subst (mk_REFL cctxt) rews') th)
  1509         val _ = message "RESULT:"
  1510         val _ = if_debug pth res
  1511     in
  1512         (thy,res)
  1513     end
  1514 
  1515 fun DISJ_CASES hth hth1 hth2 thy =
  1516     let
  1517         val _ = message "DISJ_CASES:"
  1518         val _ = if_debug (app pth) [hth,hth1,hth2]
  1519         val (info,th) = disamb_thm hth
  1520         val (info1,th1) = disamb_thm_from info hth1
  1521         val (info2,th2) = disamb_thm_from info1 hth2
  1522         val th1 = norm_hyps th1
  1523         val th2 = norm_hyps th2
  1524         val (l,r) = case concl_of th of
  1525                         _ $ (Const("op |",_) $ l $ r) => (l,r)
  1526                       | _ => raise ERR "DISJ_CASES" "Conclusion not a disjunction"
  1527         val th1' = rearrange thy (HOLogic.mk_Trueprop l) th1
  1528         val th2' = rearrange thy (HOLogic.mk_Trueprop r) th2
  1529         val res1 = th RS disj_cases_thm
  1530         val res2 = uniq_compose ((nprems_of th1')-1) th1' ((nprems_of th)+1) res1
  1531         val res3 = uniq_compose ((nprems_of th2')-1) th2' (nprems_of res2) res2
  1532         val res  = HOLThm(rens_of info2,res3)
  1533         val _ = message "RESULT:"
  1534         val _ = if_debug pth res
  1535     in
  1536         (thy,res)
  1537     end
  1538 
  1539 fun DISJ1 hth tm thy =
  1540     let
  1541         val _ = message "DISJ1:"
  1542         val _ = if_debug pth hth
  1543         val _ = if_debug prin tm
  1544         val (info,th) = disamb_thm hth
  1545         val (info',tm') = disamb_term_from info tm
  1546         val ct = Thm.cterm_of thy tm'
  1547         val disj1_thm' = Drule.instantiate' [] [NONE,SOME ct] disj1_thm
  1548         val res = HOLThm(rens_of info',th RS disj1_thm')
  1549         val _ = message "RESULT:"
  1550         val _ = if_debug pth res
  1551     in
  1552         (thy,res)
  1553     end
  1554 
  1555 fun DISJ2 tm hth thy =
  1556     let
  1557         val _ = message "DISJ1:"
  1558         val _ = if_debug prin tm
  1559         val _ = if_debug pth hth
  1560         val (info,th) = disamb_thm hth
  1561         val (info',tm') = disamb_term_from info tm
  1562         val ct = Thm.cterm_of thy tm'
  1563         val disj2_thm' = Drule.instantiate' [] [NONE,SOME ct] disj2_thm
  1564         val res = HOLThm(rens_of info',th RS disj2_thm')
  1565         val _ = message "RESULT:"
  1566         val _ = if_debug pth res
  1567     in
  1568         (thy,res)
  1569     end
  1570 
  1571 fun IMP_ANTISYM hth1 hth2 thy =
  1572     let
  1573         val _ = message "IMP_ANTISYM:"
  1574         val _ = if_debug pth hth1
  1575         val _ = if_debug pth hth2
  1576         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1577         val th = [beta_eta_thm th1,beta_eta_thm th2] MRS imp_antisym_thm
  1578         val res = HOLThm(rens_of info,th)
  1579         val _ = message "RESULT:"
  1580         val _ = if_debug pth res
  1581     in
  1582         (thy,res)
  1583     end
  1584 
  1585 fun SYM (hth as HOLThm(rens,th)) thy =
  1586     let
  1587         val _ = message "SYM:"
  1588         val _ = if_debug pth hth
  1589         val th = th RS symmetry_thm
  1590         val res = HOLThm(rens,th)
  1591         val _ = message "RESULT:"
  1592         val _ = if_debug pth res
  1593     in
  1594         (thy,res)
  1595     end
  1596 
  1597 fun MP hth1 hth2 thy =
  1598     let
  1599         val _ = message "MP:"
  1600         val _ = if_debug pth hth1
  1601         val _ = if_debug pth hth2
  1602         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1603         val th = [beta_eta_thm th1,beta_eta_thm th2] MRS mp_thm
  1604         val res = HOLThm(rens_of info,th)
  1605         val _ = message "RESULT:"
  1606         val _ = if_debug pth res
  1607     in
  1608         (thy,res)
  1609     end
  1610 
  1611 fun CONJ hth1 hth2 thy =
  1612     let
  1613         val _ = message "CONJ:"
  1614         val _ = if_debug pth hth1
  1615         val _ = if_debug pth hth2
  1616         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1617         val th = [th1,th2] MRS conj_thm
  1618         val res = HOLThm(rens_of info,th)
  1619         val _ = message "RESULT:"
  1620         val _ = if_debug pth res
  1621     in
  1622         (thy,res)
  1623     end
  1624 
  1625 fun CONJUNCT1 (hth as HOLThm(rens,th)) thy =
  1626     let
  1627         val _ = message "CONJUNCT1:"
  1628         val _ = if_debug pth hth
  1629         val res = HOLThm(rens,th RS conjunct1_thm)
  1630         val _ = message "RESULT:"
  1631         val _ = if_debug pth res
  1632     in
  1633         (thy,res)
  1634     end
  1635 
  1636 fun CONJUNCT2 (hth as HOLThm(rens,th)) thy =
  1637     let
  1638         val _ = message "CONJUNCT1:"
  1639         val _ = if_debug pth hth
  1640         val res = HOLThm(rens,th RS conjunct2_thm)
  1641         val _ = message "RESULT:"
  1642         val _ = if_debug pth res
  1643     in
  1644         (thy,res)
  1645     end
  1646 
  1647 fun EXISTS ex wit hth thy =
  1648     let
  1649         val _ = message "EXISTS:"
  1650         val _ = if_debug prin ex
  1651         val _ = if_debug prin wit
  1652         val _ = if_debug pth hth
  1653         val (info,th) = disamb_thm hth
  1654         val (info',[ex',wit']) = disamb_terms_from info [ex,wit]
  1655         val cwit = cterm_of thy wit'
  1656         val cty = ctyp_of_term cwit
  1657         val a = case ex' of
  1658                     (Const("Ex",_) $ a) => a
  1659                   | _ => raise ERR "EXISTS" "Argument not existential"
  1660         val ca = cterm_of thy a
  1661         val exists_thm' = beta_eta_thm (Drule.instantiate' [SOME cty] [SOME ca,SOME cwit] exists_thm)
  1662         val th1 = beta_eta_thm th
  1663         val th2 = implies_elim_all th1
  1664         val th3 = th2 COMP exists_thm'
  1665         val th  = implies_intr_hyps th3
  1666         val res = HOLThm(rens_of info',th)
  1667         val _   = message "RESULT:"
  1668         val _   = if_debug pth res
  1669     in
  1670         (thy,res)
  1671     end
  1672 
  1673 fun CHOOSE v hth1 hth2 thy =
  1674     let
  1675         val _ = message "CHOOSE:"
  1676         val _ = if_debug prin v
  1677         val _ = if_debug pth hth1
  1678         val _ = if_debug pth hth2
  1679         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1680         val (info',v') = disamb_term_from info v
  1681         fun strip 0 _ th = th
  1682           | strip n (p::ps) th =
  1683             strip (n-1) ps (implies_elim th (assume p))
  1684           | strip _ _ _ = raise ERR "CHOOSE" "strip error"
  1685         val cv = cterm_of thy v'
  1686         val th2 = norm_hyps th2
  1687         val cvty = ctyp_of_term cv
  1688         val c = HOLogic.dest_Trueprop (concl_of th2)
  1689         val cc = cterm_of thy c
  1690         val a = case concl_of th1 of
  1691                     _ $ (Const("Ex",_) $ a) => a
  1692                   | _ => raise ERR "CHOOSE" "Conclusion not existential"
  1693         val ca = cterm_of (theory_of_thm th1) a
  1694         val choose_thm' = beta_eta_thm (Drule.instantiate' [SOME cvty] [SOME ca,SOME cc] choose_thm)
  1695         val th21 = rearrange thy (HOLogic.mk_Trueprop (a $ v')) th2
  1696         val th22 = strip ((nprems_of th21)-1) (cprems_of th21) th21
  1697         val th23 = beta_eta_thm (forall_intr cv th22)
  1698         val th11 = implies_elim_all (beta_eta_thm th1)
  1699         val th' = th23 COMP (th11 COMP choose_thm')
  1700         val th = implies_intr_hyps th'
  1701         val res = HOLThm(rens_of info',th)
  1702         val _   = message "RESULT:"
  1703         val _   = if_debug pth res
  1704     in
  1705         (thy,res)
  1706     end
  1707 
  1708 fun GEN v hth thy =
  1709     let
  1710       val _ = message "GEN:"
  1711         val _ = if_debug prin v
  1712         val _ = if_debug pth hth
  1713         val (info,th) = disamb_thm hth
  1714         val (info',v') = disamb_term_from info v
  1715         val res = HOLThm(rens_of info',mk_GEN v' th thy)
  1716         val _ = message "RESULT:"
  1717         val _ = if_debug pth res
  1718     in
  1719         (thy,res)
  1720     end
  1721 
  1722 fun SPEC tm hth thy =
  1723     let
  1724         val _ = message "SPEC:"
  1725         val _ = if_debug prin tm
  1726         val _ = if_debug pth hth
  1727         val (info,th) = disamb_thm hth
  1728         val (info',tm') = disamb_term_from info tm
  1729         val ctm = Thm.cterm_of thy tm'
  1730         val cty = Thm.ctyp_of_term ctm
  1731         val spec' = Drule.instantiate' [SOME cty] [NONE,SOME ctm] spec_thm
  1732         val th = th RS spec'
  1733         val res = HOLThm(rens_of info',th)
  1734         val _ = message "RESULT:"
  1735         val _ = if_debug pth res
  1736     in
  1737         (thy,res)
  1738     end
  1739 
  1740 fun COMB hth1 hth2 thy =
  1741     let
  1742         val _ = message "COMB:"
  1743         val _ = if_debug pth hth1
  1744         val _ = if_debug pth hth2
  1745         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1746         val res = HOLThm(rens_of info,mk_COMB th1 th2 thy)
  1747         val _ = message "RESULT:"
  1748         val _ = if_debug pth res
  1749     in
  1750         (thy,res)
  1751     end
  1752 
  1753 fun TRANS hth1 hth2 thy =
  1754     let
  1755         val _ = message "TRANS:"
  1756         val _ = if_debug pth hth1
  1757         val _ = if_debug pth hth2
  1758         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1759         val th = [th1,th2] MRS trans_thm
  1760         val res = HOLThm(rens_of info,th)
  1761         val _ = message "RESULT:"
  1762         val _ = if_debug pth res
  1763     in
  1764         (thy,res)
  1765     end
  1766 
  1767 
  1768 fun CCONTR tm hth thy =
  1769     let
  1770         val _ = message "SPEC:"
  1771         val _ = if_debug prin tm
  1772         val _ = if_debug pth hth
  1773         val (info,th) = disamb_thm hth
  1774         val (info',tm') = disamb_term_from info tm
  1775         val th = norm_hyps th
  1776         val ct = cterm_of thy tm'
  1777         val th1 = rearrange thy (HOLogic.mk_Trueprop (Const("Not",boolT-->boolT) $ tm')) th
  1778         val ccontr_thm' = Drule.instantiate' [] [SOME ct] ccontr_thm
  1779         val res1 = uniq_compose ((nprems_of th1) - 1) th1 1 ccontr_thm'
  1780         val res = HOLThm(rens_of info',res1)
  1781         val _ = message "RESULT:"
  1782         val _ = if_debug pth res
  1783     in
  1784         (thy,res)
  1785     end
  1786 
  1787 fun mk_ABS v th thy =
  1788     let
  1789         val cv = cterm_of thy v
  1790         val th1 = implies_elim_all (beta_eta_thm th)
  1791         val (f,g) = case concl_of th1 of
  1792                         _ $ (Const("op =",_) $ f $ g) => (Term.lambda v f,Term.lambda v g)
  1793                       | _ => raise ERR "mk_ABS" "Bad conclusion"
  1794         val (fd,fr) = dom_rng (type_of f)
  1795         val abs_thm' = Drule.instantiate' [SOME (ctyp_of thy fd), SOME (ctyp_of thy fr)] [SOME (cterm_of thy f), SOME (cterm_of thy g)] abs_thm
  1796         val th2 = forall_intr cv th1
  1797         val th3 = th2 COMP abs_thm'
  1798         val res = implies_intr_hyps th3
  1799     in
  1800         res
  1801     end
  1802 
  1803 fun ABS v hth thy =
  1804     let
  1805         val _ = message "ABS:"
  1806         val _ = if_debug prin v
  1807         val _ = if_debug pth hth
  1808         val (info,th) = disamb_thm hth
  1809         val (info',v') = disamb_term_from info v
  1810         val res = HOLThm(rens_of info',mk_ABS v' th thy)
  1811         val _ = message "RESULT:"
  1812         val _ = if_debug pth res
  1813     in
  1814         (thy,res)
  1815     end
  1816 
  1817 fun GEN_ABS copt vlist hth thy =
  1818     let
  1819         val _ = message "GEN_ABS:"
  1820         val _ = case copt of
  1821                     SOME c => if_debug prin c
  1822                   | NONE => ()
  1823         val _ = if_debug (app prin) vlist
  1824         val _ = if_debug pth hth
  1825         val (info,th) = disamb_thm hth
  1826         val (info',vlist') = disamb_terms_from info vlist
  1827         val th1 =
  1828             case copt of
  1829                 SOME (c as Const(cname,cty)) =>
  1830                 let
  1831                     fun inst_type ty1 ty2 (TVar _) = raise ERR "GEN_ABS" "Type variable found!"
  1832                       | inst_type ty1 ty2 (ty as TFree _) = if ty1 = ty
  1833                                                             then ty2
  1834                                                             else ty
  1835                       | inst_type ty1 ty2 (ty as Type(name,tys)) =
  1836                         Type(name,map (inst_type ty1 ty2) tys)
  1837                 in
  1838                     List.foldr (fn (v,th) =>
  1839                               let
  1840                                   val cdom = fst (dom_rng (fst (dom_rng cty)))
  1841                                   val vty  = type_of v
  1842                                   val newcty = inst_type cdom vty cty
  1843                                   val cc = cterm_of thy (Const(cname,newcty))
  1844                               in
  1845                                   mk_COMB (mk_REFL cc) (mk_ABS v th thy) thy
  1846                               end) th vlist'
  1847                 end
  1848               | SOME _ => raise ERR "GEN_ABS" "Bad constant"
  1849               | NONE =>
  1850                 List.foldr (fn (v,th) => mk_ABS v th thy) th vlist'
  1851         val res = HOLThm(rens_of info',th1)
  1852         val _ = message "RESULT:"
  1853         val _ = if_debug pth res
  1854     in
  1855         (thy,res)
  1856     end
  1857 
  1858 fun NOT_INTRO (hth as HOLThm(rens,th)) thy =
  1859     let
  1860         val _ = message "NOT_INTRO:"
  1861         val _ = if_debug pth hth
  1862         val th1 = implies_elim_all (beta_eta_thm th)
  1863         val a = case concl_of th1 of
  1864                     _ $ (Const("op -->",_) $ a $ Const("False",_)) => a
  1865                   | _ => raise ERR "NOT_INTRO" "Conclusion of bad form"
  1866         val ca = cterm_of thy a
  1867         val th2 = equal_elim (Drule.instantiate' [] [SOME ca] not_intro_thm) th1
  1868         val res = HOLThm(rens,implies_intr_hyps th2)
  1869         val _ = message "RESULT:"
  1870         val _ = if_debug pth res
  1871     in
  1872         (thy,res)
  1873     end
  1874 
  1875 fun NOT_ELIM (hth as HOLThm(rens,th)) thy =
  1876     let
  1877         val _ = message "NOT_INTRO:"
  1878         val _ = if_debug pth hth
  1879         val th1 = implies_elim_all (beta_eta_thm th)
  1880         val a = case concl_of th1 of
  1881                     _ $ (Const("Not",_) $ a) => a
  1882                   | _ => raise ERR "NOT_ELIM" "Conclusion of bad form"
  1883         val ca = cterm_of thy a
  1884         val th2 = equal_elim (Drule.instantiate' [] [SOME ca] not_elim_thm) th1
  1885         val res = HOLThm(rens,implies_intr_hyps th2)
  1886         val _ = message "RESULT:"
  1887         val _ = if_debug pth res
  1888     in
  1889         (thy,res)
  1890     end
  1891 
  1892 fun DISCH tm hth thy =
  1893     let
  1894         val _ = message "DISCH:"
  1895         val _ = if_debug prin tm
  1896         val _ = if_debug pth hth
  1897         val (info,th) = disamb_thm hth
  1898         val (info',tm') = disamb_term_from info tm
  1899         val prems = prems_of th
  1900         val th1 = beta_eta_thm th
  1901         val th2 = implies_elim_all th1
  1902         val th3 = implies_intr (cterm_of thy (HOLogic.mk_Trueprop tm')) th2
  1903         val th4 = th3 COMP disch_thm
  1904         val res = HOLThm(rens_of info',implies_intr_hyps th4)
  1905         val _ = message "RESULT:"
  1906         val _ = if_debug pth res
  1907     in
  1908         (thy,res)
  1909     end
  1910 
  1911 val spaces = String.concat o separate " "
  1912 
  1913 fun new_definition thyname constname rhs thy =
  1914     let
  1915         val constname = rename_const thyname thy constname
  1916         val redeclared = isSome (Sign.const_type thy (Sign.intern_const thy constname));
  1917         val _ = warning ("Introducing constant " ^ constname)
  1918         val (thmname,thy) = get_defname thyname constname thy
  1919         val (info,rhs') = disamb_term rhs
  1920         val ctype = type_of rhs'
  1921         val csyn = mk_syn thy constname
  1922         val thy1 = case HOL4DefThy.get thy of
  1923                        Replaying _ => thy
  1924                      | _ => (ImportRecorder.add_consts [(constname, ctype, csyn)];
  1925                               Sign.add_consts_i [(Binding.name constname,ctype,csyn)] thy)
  1926         val eq = mk_defeq constname rhs' thy1
  1927         val (thms, thy2) = PureThy.add_defs false [((Binding.name thmname,eq),[])] thy1
  1928         val _ = ImportRecorder.add_defs thmname eq
  1929         val def_thm = hd thms
  1930         val thm' = def_thm RS meta_eq_to_obj_eq_thm
  1931         val (thy',th) = (thy2, thm')
  1932         val fullcname = Sign.intern_const thy' constname
  1933         val thy'' = add_hol4_const_mapping thyname constname true fullcname thy'
  1934         val _ = ImportRecorder.add_hol_const_mapping thyname constname fullcname
  1935         val (linfo,tm24) = disamb_term (mk_teq constname rhs' thy'')
  1936         val rew = rewrite_hol4_term eq thy''
  1937         val crhs = cterm_of thy'' (#2 (Logic.dest_equals (prop_of rew)))
  1938         val thy22 = if Thm.def_name constname = thmname andalso not redeclared andalso csyn = NoSyn
  1939                     then
  1940                         let
  1941                             val p1 = quotename constname
  1942                             val p2 = Display.string_of_ctyp (ctyp_of thy'' ctype)
  1943                             val p3 = string_of_mixfix csyn
  1944                             val p4 = smart_string_of_cterm crhs
  1945                         in
  1946                             add_dump ("constdefs\n  " ^p1^ " :: \"" ^p2^ "\" "^p3^ "\n  " ^p4) thy''
  1947                         end
  1948                     else
  1949                         (add_dump ("consts\n  " ^ (quotename constname) ^ " :: \"" ^ Display.string_of_ctyp (ctyp_of thy'' ctype) ^
  1950                                    "\" " ^ (string_of_mixfix csyn) ^ "\n\ndefs\n  " ^ (quotename thmname) ^ ": " ^ (smart_string_of_cterm crhs))
  1951                                   thy'')
  1952         val hth = case Shuffler.set_prop thy22 (HOLogic.mk_Trueprop tm24) [("",th)] of
  1953                       SOME (_,res) => HOLThm(rens_of linfo,res)
  1954                     | NONE => raise ERR "new_definition" "Bad conclusion"
  1955         val fullname = Sign.full_bname thy22 thmname
  1956         val thy22' = case opt_get_output_thy thy22 of
  1957                          "" => (ImportRecorder.add_hol_mapping thyname thmname fullname;
  1958                                 add_hol4_mapping thyname thmname fullname thy22)
  1959                        | output_thy =>
  1960                          let
  1961                              val moved_thmname = output_thy ^ "." ^ thyname ^ "." ^ thmname
  1962                              val _ = ImportRecorder.add_hol_move fullname moved_thmname
  1963                              val _ = ImportRecorder.add_hol_mapping thyname thmname moved_thmname
  1964                          in
  1965                              thy22 |> add_hol4_move fullname moved_thmname
  1966                                    |> add_hol4_mapping thyname thmname moved_thmname
  1967                          end
  1968         val _ = message "new_definition:"
  1969         val _ = if_debug pth hth
  1970     in
  1971         (thy22',hth)
  1972     end
  1973     handle e => (message "exception in new_definition"; print_exn e)
  1974 
  1975 local
  1976     val helper = thm "termspec_help"
  1977 in
  1978 fun new_specification thyname thmname names hth thy =
  1979     case HOL4DefThy.get thy of
  1980         Replaying _ => (thy,hth)
  1981       | _ =>
  1982         let
  1983             val _ = message "NEW_SPEC:"
  1984             val _ = if_debug pth hth
  1985             val names = map (rename_const thyname thy) names
  1986             val _ = warning ("Introducing constants " ^ commas names)
  1987             val (HOLThm(rens,th)) = norm_hthm thy hth
  1988             val thy1 = case HOL4DefThy.get thy of
  1989                            Replaying _ => thy
  1990                          | _ =>
  1991                            let
  1992                                fun dest_eta_abs (Abs(x,xT,body)) = (x,xT,body)
  1993                                  | dest_eta_abs body =
  1994                                    let
  1995                                        val (dT,rT) = dom_rng (type_of body)
  1996                                    in
  1997                                        ("x",dT,body $ Bound 0)
  1998                                    end
  1999                                    handle TYPE _ => raise ERR "new_specification" "not an abstraction type"
  2000                                fun dest_exists (Const("Ex",_) $ abody) =
  2001                                    dest_eta_abs abody
  2002                                  | dest_exists tm =
  2003                                    raise ERR "new_specification" "Bad existential formula"
  2004 
  2005                                val (consts,_) = Library.foldl (fn ((cs,ex),cname) =>
  2006                                                           let
  2007                                                               val (_,cT,p) = dest_exists ex
  2008                                                           in
  2009                                                               ((cname,cT,mk_syn thy cname)::cs,p)
  2010                                                           end) (([],HOLogic.dest_Trueprop (concl_of th)),names)
  2011                                val str = Library.foldl (fn (acc,(c,T,csyn)) =>
  2012                                                    acc ^ "\n  " ^ (quotename c) ^ " :: \"" ^ Display.string_of_ctyp (ctyp_of thy T) ^ "\" " ^ (string_of_mixfix csyn)) ("consts",consts)
  2013                                val thy' = add_dump str thy
  2014                                val _ = ImportRecorder.add_consts consts
  2015                            in
  2016                                Sign.add_consts_i (map (fn (c, T, mx) => (Binding.name c, T, mx)) consts) thy'
  2017                            end
  2018 
  2019             val thy1 = List.foldr (fn(name,thy)=>
  2020                                 snd (get_defname thyname name thy)) thy1 names
  2021             fun new_name name = fst (get_defname thyname name thy1)
  2022             val names' = map (fn name => (new_name name,name,false)) names
  2023             val (thy',res) = Choice_Specification.add_specification NONE
  2024                                  names'
  2025                                  (thy1,th)
  2026             val _ = ImportRecorder.add_specification names' th
  2027             val res' = Thm.unvarify res
  2028             val hth = HOLThm(rens,res')
  2029             val rew = rewrite_hol4_term (concl_of res') thy'
  2030             val th  = equal_elim rew res'
  2031             fun handle_const (name,thy) =
  2032                 let
  2033                     val defname = Thm.def_name name
  2034                     val (newname,thy') = get_defname thyname name thy
  2035                 in
  2036                     (if defname = newname
  2037                      then quotename name
  2038                      else (quotename newname) ^ ": " ^ (quotename name),thy')
  2039                 end
  2040             val (new_names,thy') = List.foldr (fn(name,(names,thy)) =>
  2041                                             let
  2042                                                 val (name',thy') = handle_const (name,thy)
  2043                                             in
  2044                                                 (name'::names,thy')
  2045                                             end) ([],thy') names
  2046             val thy'' = add_dump ("specification (" ^ (spaces new_names) ^ ") " ^ thmname ^ ": " ^ (smart_string_of_thm th) ^
  2047                                   "\n  by (import " ^ thyname ^ " " ^ thmname ^ ")")
  2048                                  thy'
  2049             val _ = message "RESULT:"
  2050             val _ = if_debug pth hth
  2051         in
  2052             intern_store_thm false thyname thmname hth thy''
  2053         end
  2054         handle e => (message "exception in new_specification"; print_exn e)
  2055 
  2056 end
  2057 
  2058 fun new_axiom name tm thy = raise ERR "new_axiom" ("Oh, no you don't! (" ^ name ^ ")")
  2059 
  2060 fun to_isa_thm (hth as HOLThm(_,th)) =
  2061     let
  2062         val (HOLThm args) = norm_hthm (theory_of_thm th) hth
  2063     in
  2064         apsnd strip_shyps args
  2065     end
  2066 
  2067 fun to_isa_term tm = tm
  2068 
  2069 local
  2070     val light_nonempty = thm "light_ex_imp_nonempty"
  2071     val ex_imp_nonempty = thm "ex_imp_nonempty"
  2072     val typedef_hol2hol4 = thm "typedef_hol2hol4"
  2073     val typedef_hol2hollight = thm "typedef_hol2hollight"
  2074 in
  2075 fun new_type_definition thyname thmname tycname hth thy =
  2076     case HOL4DefThy.get thy of
  2077         Replaying _ => (thy,hth)
  2078       | _ =>
  2079         let
  2080             val _ = message "TYPE_DEF:"
  2081             val _ = if_debug pth hth
  2082             val _ = warning ("Introducing type " ^ tycname)
  2083             val (HOLThm(rens,td_th)) = norm_hthm thy hth
  2084             val th2 = beta_eta_thm (td_th RS ex_imp_nonempty)
  2085             val c = case concl_of th2 of
  2086                         _ $ (Const("Ex",_) $ Abs(_,_,Const("op :",_) $ _ $ c)) => c
  2087                       | _ => raise ERR "new_type_definition" "Bad type definition theorem"
  2088             val tfrees = OldTerm.term_tfrees c
  2089             val tnames = map fst tfrees
  2090             val tsyn = mk_syn thy tycname
  2091             val typ = (tycname,tnames,tsyn)
  2092             val ((_, typedef_info), thy') =
  2093               Typedef.add_typedef false (SOME (Binding.name thmname))
  2094                 (Binding.name tycname, tnames, tsyn) c NONE (rtac th2 1) thy
  2095             val _ = ImportRecorder.add_typedef (SOME thmname) typ c NONE th2
  2096 
  2097             val th3 = (#type_definition typedef_info) RS typedef_hol2hol4
  2098 
  2099             val fulltyname = Sign.intern_type thy' tycname
  2100             val thy'' = add_hol4_type_mapping thyname tycname true fulltyname thy'
  2101             val _ = ImportRecorder.add_hol_type_mapping thyname tycname fulltyname
  2102 
  2103             val (hth' as HOLThm args) = norm_hthm thy'' (HOLThm(rens,th3))
  2104             val _ = if has_ren hth' then warning ("Theorem " ^ thmname ^ " needs variable-disambiguating")
  2105                     else ()
  2106             val thy4 = add_hol4_pending thyname thmname args thy''
  2107             val _ = ImportRecorder.add_hol_pending thyname thmname (hthm2thm hth')
  2108 
  2109             val rew = rewrite_hol4_term (concl_of td_th) thy4
  2110             val th  = equal_elim rew (Thm.transfer thy4 td_th)
  2111             val c   = case HOLogic.dest_Trueprop (prop_of th) of
  2112                           Const("Ex",exT) $ P =>
  2113                           let
  2114                               val PT = domain_type exT
  2115                           in
  2116                               Const("Collect",PT-->HOLogic.mk_setT (domain_type PT)) $ P
  2117                           end
  2118                         | _ => error "Internal error in ProofKernel.new_typedefinition"
  2119             val tnames_string = if null tnames
  2120                                 then ""
  2121                                 else "(" ^ commas tnames ^ ") "
  2122             val proc_prop = if null tnames
  2123                             then smart_string_of_cterm
  2124                             else Library.setmp show_all_types true smart_string_of_cterm
  2125             val thy5 = add_dump ("typedef (open) " ^ tnames_string ^ (quotename tycname) ^ " = " ^ (proc_prop (cterm_of thy4 c)) ^ " "
  2126                                  ^ (string_of_mixfix tsyn) ^ "\n  by (rule typedef_helper,import " ^ thyname ^ " " ^ thmname ^ ")") thy4
  2127 
  2128             val thy6 = add_dump ("lemmas " ^ thmname ^ " = typedef_hol2hol4 [OF type_definition_" ^ tycname ^ "]") thy5
  2129 
  2130             val _ = message "RESULT:"
  2131             val _ = if_debug pth hth'
  2132         in
  2133             (thy6,hth')
  2134         end
  2135         handle e => (message "exception in new_type_definition"; print_exn e)
  2136 
  2137 fun add_dump_constdefs thy defname constname rhs ty =
  2138     let
  2139         val n = quotename constname
  2140         val t = Display.string_of_ctyp (ctyp_of thy ty)
  2141         val syn = string_of_mixfix (mk_syn thy constname)
  2142         (*val eq = smart_string_of_cterm (cterm_of thy (Const(rhs, ty)))*)
  2143         val eq = quote (constname ^ " == "^rhs)
  2144         val d = case defname of NONE => "" | SOME defname => (quotename defname)^" : "
  2145     in
  2146         add_dump ("constdefs\n  " ^ n ^ " :: \"" ^ t ^ "\" " ^ syn ^ "\n  " ^ d ^ eq) thy
  2147     end
  2148 
  2149 fun add_dump_syntax thy name =
  2150     let
  2151       val n = quotename name
  2152       val syn = string_of_mixfix (mk_syn thy name)
  2153     in
  2154       add_dump ("syntax\n  "^n^" :: _ "^syn) thy
  2155     end
  2156 
  2157 fun type_introduction thyname thmname tycname abs_name rep_name (P,t) hth thy =
  2158     case HOL4DefThy.get thy of
  2159         Replaying _ => (thy,
  2160           HOLThm([], PureThy.get_thm thy (thmname^"_@intern")) handle ERROR _ => hth)
  2161       | _ =>
  2162         let
  2163             val _ = message "TYPE_INTRO:"
  2164             val _ = if_debug pth hth
  2165             val _ = warning ("Introducing type " ^ tycname ^ " (with morphisms " ^ abs_name ^ " and " ^ rep_name ^ ")")
  2166             val (HOLThm(rens,td_th)) = norm_hthm thy hth
  2167             val tT = type_of t
  2168             val light_nonempty' =
  2169                 Drule.instantiate' [SOME (ctyp_of thy tT)]
  2170                                    [SOME (cterm_of thy P),
  2171                                     SOME (cterm_of thy t)] light_nonempty
  2172             val th2 = beta_eta_thm (td_th RS (beta_eta_thm light_nonempty'))
  2173             val c = case concl_of th2 of
  2174                         _ $ (Const("Ex",_) $ Abs(_,_,Const("op :",_) $ _ $ c)) => c
  2175                       | _ => raise ERR "type_introduction" "Bad type definition theorem"
  2176             val tfrees = OldTerm.term_tfrees c
  2177             val tnames = sort string_ord (map fst tfrees)
  2178             val tsyn = mk_syn thy tycname
  2179             val typ = (tycname,tnames,tsyn)
  2180             val ((_, typedef_info), thy') =
  2181               Typedef.add_typedef false NONE (Binding.name tycname,tnames,tsyn) c
  2182                 (SOME(Binding.name rep_name,Binding.name abs_name)) (rtac th2 1) thy
  2183             val _ = ImportRecorder.add_typedef NONE typ c (SOME(rep_name,abs_name)) th2
  2184             val fulltyname = Sign.intern_type thy' tycname
  2185             val aty = Type (fulltyname, map mk_vartype tnames)
  2186             val abs_ty = tT --> aty
  2187             val rep_ty = aty --> tT
  2188             val typedef_hol2hollight' =
  2189                 Drule.instantiate'
  2190                     [SOME (ctyp_of thy' aty), SOME (ctyp_of thy' tT)]
  2191                     [NONE, NONE, NONE, SOME (cterm_of thy' (Free ("a", aty))), SOME (cterm_of thy' (Free ("r", tT)))]
  2192                     typedef_hol2hollight
  2193             val th4 = (#type_definition typedef_info) RS typedef_hol2hollight'
  2194             val _ = null (Thm.fold_terms Term.add_tvars th4 []) orelse
  2195               raise ERR "type_introduction" "no type variables expected any more"
  2196             val _ = null (Thm.fold_terms Term.add_vars th4 []) orelse
  2197               raise ERR "type_introduction" "no term variables expected any more"
  2198             val _ = message ("step 3: thyname="^thyname^", tycname="^tycname^", fulltyname="^fulltyname)
  2199             val thy'' = add_hol4_type_mapping thyname tycname true fulltyname thy'
  2200             val _ = ImportRecorder.add_hol_type_mapping thyname tycname fulltyname
  2201             val _ = message "step 4"
  2202             val (hth' as HOLThm args) = norm_hthm thy'' (HOLThm(rens,th4))
  2203             val thy4 = add_hol4_pending thyname thmname args thy''
  2204             val _ = ImportRecorder.add_hol_pending thyname thmname (hthm2thm hth')
  2205 
  2206             val P' = P (* why !? #2 (Logic.dest_equals (concl_of (rewrite_hol4_term P thy4))) *)
  2207             val c   =
  2208                 let
  2209                     val PT = type_of P'
  2210                 in
  2211                     Const("Collect",PT-->HOLogic.mk_setT (domain_type PT)) $ P'
  2212                 end
  2213 
  2214             val tnames_string = if null tnames
  2215                                 then ""
  2216                                 else "(" ^ commas tnames ^ ") "
  2217             val proc_prop = if null tnames
  2218                             then smart_string_of_cterm
  2219                             else Library.setmp show_all_types true smart_string_of_cterm
  2220             val thy = add_dump ("typedef (open) " ^ tnames_string ^ (quotename tycname) ^
  2221               " = " ^ (proc_prop (cterm_of thy4 c)) ^ " " ^
  2222               (string_of_mixfix tsyn) ^ " morphisms "^
  2223               (quote rep_name)^" "^(quote abs_name)^"\n"^
  2224               ("  apply (rule light_ex_imp_nonempty[where t="^
  2225               (proc_prop (cterm_of thy4 t))^"])\n"^
  2226               ("  by (import " ^ thyname ^ " " ^ (quotename thmname) ^ ")"))) thy4
  2227             val str_aty = Display.string_of_ctyp (ctyp_of thy aty)
  2228             val thy = add_dump_syntax thy rep_name
  2229             val thy = add_dump_syntax thy abs_name
  2230             val thy = add_dump ("lemmas " ^ (quote (thmname^"_@intern")) ^
  2231               " = typedef_hol2hollight \n"^
  2232               "  [where a=\"a :: "^str_aty^"\" and r=r" ^
  2233               " ,\n   OF "^(quotename ("type_definition_" ^ tycname)) ^ "]") thy
  2234             val _ = message "RESULT:"
  2235             val _ = if_debug pth hth'
  2236         in
  2237             (thy,hth')
  2238         end
  2239         handle e => (message "exception in type_introduction"; print_exn e)
  2240 end
  2241 
  2242 val prin = prin
  2243 
  2244 end