doc-isac/jrocnik/FFT.thy
changeset 52107 f8845fc8f38d
parent 52056 f5d9bceb4dc0
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/doc-isac/jrocnik/FFT.thy	Tue Sep 17 09:50:52 2013 +0200
     1.3 @@ -0,0 +1,532 @@
     1.4 +(*  Title:      Fast Fourier Transform
     1.5 +    Author:     Clemens Ballarin <ballarin at in.tum.de>, started 12 April 2005
     1.6 +    Maintainer: Clemens Ballarin <ballarin at in.tum.de>
     1.7 +*)
     1.8 +
     1.9 +theory FFT
    1.10 +imports Complex_Main
    1.11 +begin
    1.12 +
    1.13 +text {* We formalise a functional implementation of the FFT algorithm
    1.14 +  over the complex numbers, and its inverse.  Both are shown
    1.15 +  equivalent to the usual definitions
    1.16 +  of these operations through Vandermonde matrices.  They are also
    1.17 +  shown to be inverse to each other, more precisely, that composition
    1.18 +  of the inverse and the transformation yield the identity up to a
    1.19 +  scalar.
    1.20 +
    1.21 +  The presentation closely follows Section 30.2 of Cormen \textit{et
    1.22 +  al.}, \emph{Introduction to Algorithms}, 2nd edition, MIT Press,
    1.23 +  2003. *}
    1.24 +
    1.25 +
    1.26 +section {* Preliminaries *}
    1.27 +
    1.28 +lemma of_nat_cplx:
    1.29 +  "of_nat n = Complex (of_nat n) 0"
    1.30 +  by (induct n) (simp_all add: complex_one_def)
    1.31 +
    1.32 +
    1.33 +text {* The following two lemmas are useful for experimenting with the
    1.34 +  transformations, at a vector length of four. *}
    1.35 +
    1.36 +lemma Ivl4:
    1.37 +  "{0..<4::nat} = {0, 1, 2, 3}"
    1.38 +proof -
    1.39 +  have "{0..<4::nat} = {0..<Suc (Suc (Suc (Suc 0)))}" by (simp add: eval_nat_numeral)
    1.40 +  also have "... = {0, 1, 2, 3}"
    1.41 +    by (simp add: atLeastLessThanSuc eval_nat_numeral insert_commute)
    1.42 +  finally show ?thesis .
    1.43 +qed
    1.44 +
    1.45 +lemma Sum4:
    1.46 +  "(\<Sum>i=0..<4::nat. x i) = x 0 + x 1 + x 2 + x 3"
    1.47 +  by (simp add: Ivl4 eval_nat_numeral)
    1.48 +
    1.49 +
    1.50 +text {* A number of specialised lemmas for the summation operator,
    1.51 +  where the index set is the natural numbers *}
    1.52 +
    1.53 +lemma setsum_add_nat_ivl_singleton:
    1.54 +  assumes less: "m < (n::nat)"
    1.55 +  shows "f m + setsum f {m<..<n} = setsum f {m..<n}"
    1.56 +proof -
    1.57 +  have "f m + setsum f {m<..<n} = setsum f ({m} \<union> {m<..<n})"
    1.58 +    by (simp add: setsum_Un_disjoint ivl_disj_int)
    1.59 +  also from less have "... = setsum f {m..<n}"
    1.60 +    by (simp only: ivl_disj_un)
    1.61 +  finally show ?thesis .
    1.62 +qed
    1.63 +
    1.64 +lemma setsum_add_split_nat_ivl_singleton:
    1.65 +  assumes less: "m < (n::nat)"
    1.66 +    and g: "!!i. [| m < i; i < n |] ==> g i = f i"
    1.67 +  shows "f m + setsum g {m<..<n} = setsum f {m..<n}"
    1.68 +  using less g
    1.69 +  by(simp add: setsum_add_nat_ivl_singleton cong: strong_setsum_cong)
    1.70 +
    1.71 +lemma setsum_add_split_nat_ivl:
    1.72 +  assumes le: "m <= (k::nat)" "k <= n"
    1.73 +    and g: "!!i. [| m <= i; i < k |] ==> g i = f i"
    1.74 +    and h: "!!i. [| k <= i; i < n |] ==> h i = f i"
    1.75 +  shows "setsum g {m..<k} + setsum h {k..<n} = setsum f {m..<n}"
    1.76 +  using le g h by (simp add: setsum_add_nat_ivl cong: strong_setsum_cong)
    1.77 +
    1.78 +lemma ivl_splice_Un:
    1.79 +  "{0..<2*n::nat} = (op * 2 ` {0..<n}) \<union> ((%i. Suc (2*i)) ` {0..<n})"
    1.80 +  apply (unfold image_def Bex_def)
    1.81 +  apply auto
    1.82 +  apply arith
    1.83 +  done
    1.84 +
    1.85 +lemma ivl_splice_Int:
    1.86 +  "(op * 2 ` {0..<n}) \<inter> ((%i. Suc (2*i)) ` {0..<n}) = {}"
    1.87 +  by auto arith
    1.88 +
    1.89 +lemma double_inj_on:
    1.90 +  "inj_on (%i. 2*i::nat) A"
    1.91 +  by (simp add: inj_onI)
    1.92 +
    1.93 +lemma Suc_double_inj_on:
    1.94 +  "inj_on (%i. Suc (2*i)) A"
    1.95 +  by (rule inj_onI) simp
    1.96 +
    1.97 +lemma setsum_splice:
    1.98 +  "(\<Sum>i::nat = 0..<2*n. f i) = (\<Sum>i = 0..<n. f (2*i)) + (\<Sum>i = 0..<n. f (2*i+1))"
    1.99 +proof -
   1.100 +  have "(\<Sum>i::nat = 0..<2*n. f i) =
   1.101 +    setsum f (op * 2 ` {0..<n}) + setsum f ((%i. 2*i+1) ` {0..<n})"
   1.102 +    by (simp add: ivl_splice_Un ivl_splice_Int setsum_Un_disjoint)
   1.103 +  also have "... = (\<Sum>i = 0..<n. f (2*i)) + (\<Sum>i = 0..<n. f (2*i+1))"
   1.104 +    by (simp add: setsum_reindex [OF double_inj_on]
   1.105 +      setsum_reindex [OF Suc_double_inj_on])
   1.106 +  finally show ?thesis .
   1.107 +qed
   1.108 +
   1.109 +
   1.110 +section {* Complex Roots of Unity *}
   1.111 +
   1.112 +text {* The function @{term cis} from the complex library returns the
   1.113 +  point on the unity circle corresponding to the argument angle.  It
   1.114 +  is the base for our definition of @{text root}.  The main property,
   1.115 +  De Moirve's formula is already there in the library. *}
   1.116 +
   1.117 +definition root :: "nat => complex" where
   1.118 +  "root n == cis (2*pi/(real (n::nat)))"
   1.119 +
   1.120 +lemma sin_periodic_pi_diff [simp]: "sin (x - pi) = - sin x"
   1.121 +  by (simp add: sin_diff)
   1.122 +
   1.123 +lemma sin_cos_between_zero_two_pi:
   1.124 +  assumes 0: "0 < x" and pi: "x < 2 * pi"
   1.125 +  shows "sin x \<noteq> 0 \<or> cos x \<noteq> 1"
   1.126 +proof -
   1.127 +  { assume "0 < x" and "x < pi"
   1.128 +    then have "sin x \<noteq> 0" by (auto dest: sin_gt_zero_pi) }
   1.129 +  moreover
   1.130 +  { assume "x = pi"
   1.131 +    then have "cos x \<noteq> 1" by simp }
   1.132 +  moreover
   1.133 +  { assume pi1: "pi < x" and pi2: "x < 2 * pi"
   1.134 +    then have "0 < x - pi" and "x - pi < pi" by arith+
   1.135 +    then have "sin (x - pi) \<noteq> 0" by (auto dest: sin_gt_zero_pi)
   1.136 +    with pi1 pi2 have "sin x \<noteq> 0" by simp }
   1.137 +  ultimately show ?thesis using 0 pi by arith
   1.138 +qed
   1.139 +
   1.140 +
   1.141 +subsection {* Basic Lemmas *}
   1.142 +
   1.143 +lemma root_nonzero:
   1.144 +  "root n ~= 0"
   1.145 +  apply (unfold root_def)
   1.146 +  apply (unfold cis_def)
   1.147 +  apply auto
   1.148 +  apply (drule sin_zero_abs_cos_one)
   1.149 +  apply arith
   1.150 +  done
   1.151 +
   1.152 +lemma root_unity:
   1.153 +  "root n ^ n = 1"
   1.154 +  apply (unfold root_def)
   1.155 +  apply (simp add: DeMoivre)
   1.156 +  apply (simp add: cis_def)
   1.157 +  done
   1.158 +
   1.159 +lemma root_cancel:
   1.160 +  "0 < d ==> root (d * n) ^ (d * k) = root n ^ k"
   1.161 +  apply (unfold root_def)
   1.162 +  apply (simp add: DeMoivre)
   1.163 +  done
   1.164 +
   1.165 +lemma root_summation:
   1.166 +  assumes k: "0 < k" "k < n"
   1.167 +  shows "(\<Sum>i=0..<n. (root n ^ k) ^ i) = 0"
   1.168 +proof -
   1.169 +  from k have real0: "0 < real k * (2 * pi) / real n"
   1.170 +    by (simp add: zero_less_divide_iff
   1.171 +      mult_strict_right_mono [where a = 0, simplified])
   1.172 +  from k mult_strict_right_mono [where a = "real k" and
   1.173 +    b = "real n" and c = "2 * pi / real n", simplified]
   1.174 +  have realk: "real k * (2 * pi) / real n < 2 * pi"
   1.175 +    by (simp add: zero_less_divide_iff)
   1.176 +  txt {* Main part of the proof *}
   1.177 +  have "(\<Sum>i=0..<n. (root n ^ k) ^ i) =
   1.178 +    ((root n ^ k) ^ n - 1) / (root n ^ k - 1)"
   1.179 +    apply (rule geometric_sum)
   1.180 +    apply (unfold root_def)
   1.181 +    apply (simp add: DeMoivre)
   1.182 +    using real0 realk sin_cos_between_zero_two_pi 
   1.183 +    apply (auto simp add: cis_def complex_one_def)
   1.184 +    done
   1.185 +  also have "... = ((root n ^ n) ^ k - 1) / (root n ^ k - 1)"
   1.186 +    by (simp add: power_mult [THEN sym] mult_ac)
   1.187 +  also have "... = 0"
   1.188 +    by (simp add: root_unity)
   1.189 +  finally show ?thesis .
   1.190 +qed
   1.191 +
   1.192 +lemma root_summation_inv:
   1.193 +  assumes k: "0 < k" "k < n"
   1.194 +  shows "(\<Sum>i=0..<n. ((1 / root n) ^ k) ^ i) = 0"
   1.195 +proof -
   1.196 +  from k have real0: "0 < real k * (2 * pi) / real n"
   1.197 +    by (simp add: zero_less_divide_iff
   1.198 +      mult_strict_right_mono [where a = 0, simplified])
   1.199 +  from k mult_strict_right_mono [where a = "real k" and
   1.200 +    b = "real n" and c = "2 * pi / real n", simplified]
   1.201 +  have realk: "real k * (2 * pi) / real n < 2 * pi"
   1.202 +    by (simp add: zero_less_divide_iff)
   1.203 +  txt {* Main part of the proof *}
   1.204 +  have "(\<Sum>i=0..<n. ((1 / root n) ^ k) ^ i) =
   1.205 +    (((1 / root n) ^ k) ^ n - 1) / ((1 / root n) ^ k - 1)"
   1.206 +    apply (rule geometric_sum)
   1.207 +    apply (simp add: nonzero_inverse_eq_divide [THEN sym] root_nonzero)
   1.208 +    apply (unfold root_def)
   1.209 +    apply (simp add: DeMoivre)
   1.210 +    using real0 realk sin_cos_between_zero_two_pi
   1.211 +    apply (auto simp add: cis_def complex_one_def)
   1.212 +    done
   1.213 +  also have "... = (((1 / root n) ^ n) ^ k - 1) / ((1 / root n) ^ k - 1)"
   1.214 +    by (simp add: power_mult [THEN sym] mult_ac)
   1.215 +  also have "... = 0"
   1.216 +    by (simp add: power_divide root_unity)
   1.217 +  finally show ?thesis .
   1.218 +qed
   1.219 +
   1.220 +lemma root0 [simp]:
   1.221 +  "root 0 = 1"
   1.222 +  by (simp add: root_def cis_def)
   1.223 +
   1.224 +lemma root1 [simp]:
   1.225 +  "root 1 = 1"
   1.226 +  by (simp add: root_def cis_def)
   1.227 +
   1.228 +lemma root2 [simp]:
   1.229 +  "root 2 = Complex -1 0"
   1.230 +  by (simp add: root_def cis_def)
   1.231 +
   1.232 +lemma root4 [simp]:
   1.233 +  "root 4 = ii"
   1.234 +  by (simp add: root_def cis_def)
   1.235 +
   1.236 +
   1.237 +subsection {* Derived Lemmas *}
   1.238 +
   1.239 +lemma root_cancel1:
   1.240 +  "root (2 * m) ^ (i * (2 * j)) = root m ^ (i * j)"
   1.241 +proof -
   1.242 +  have "root (2 * m) ^ (i * (2 * j)) = root (2 * m) ^ (2 * (i * j))"
   1.243 +    by (simp add: mult_ac)
   1.244 +  also have "... = root m ^ (i * j)"
   1.245 +    by (simp add: root_cancel)
   1.246 +  finally show ?thesis .
   1.247 +qed
   1.248 +
   1.249 +lemma root_cancel2:
   1.250 +  "0 < n ==> root (2 * n) ^ n = - 1"
   1.251 +  txt {* Note the space between @{text "-"} and @{text "1"}. *}
   1.252 +  using root_cancel [where n = 2 and k = 1]
   1.253 +  apply (simp only: mult_ac)
   1.254 +  apply (simp add: complex_one_def)
   1.255 +  done
   1.256 +
   1.257 +
   1.258 +section {* Discrete Fourier Transformation *}
   1.259 +
   1.260 +text {*
   1.261 +  We define operations  @{text DFT} and @{text IDFT} for the discrete
   1.262 +  Fourier Transform and its inverse.  Vectors are simply functions of
   1.263 +  type @{text "nat => complex"}. *}
   1.264 +
   1.265 +text {*
   1.266 +  @{text "DFT n a"} is the transform of vector @{text a}
   1.267 +  of length @{text n}, @{text IDFT} its inverse. *}
   1.268 +
   1.269 +definition DFT :: "nat => (nat => complex) => (nat => complex)" where
   1.270 +  "DFT n a == (%i. \<Sum>j=0..<n. (root n) ^ (i * j) * (a j))"
   1.271 +
   1.272 +definition IDFT :: "nat => (nat => complex) => (nat => complex)" where
   1.273 +  "IDFT n a == (%i. (\<Sum>k=0..<n. (a k) / (root n) ^ (i * k)))"
   1.274 +
   1.275 +schematic_lemma "map (DFT 4 a) [0, 1, 2, 3] = ?x"
   1.276 +  by(simp add: DFT_def Sum4)
   1.277 +
   1.278 +text {* Lemmas for the correctness proof. *}
   1.279 +
   1.280 +lemma DFT_lower:
   1.281 +  "DFT (2 * m) a i =
   1.282 +  DFT m (%i. a (2 * i)) i +
   1.283 +  (root (2 * m)) ^ i * DFT m (%i. a (2 * i + 1)) i"
   1.284 +proof (unfold DFT_def)
   1.285 +  have "(\<Sum>j = 0..<2 * m. root (2 * m) ^ (i * j) * a j) =
   1.286 +    (\<Sum>j = 0..<m. root (2 * m) ^ (i * (2 * j)) * a (2 * j)) +
   1.287 +    (\<Sum>j = 0..<m. root (2 * m) ^ (i * (2 * j + 1)) * a (2 * j + 1))"
   1.288 +    (is "?s = _")
   1.289 +    by (simp add: setsum_splice)
   1.290 +  also have "... = (\<Sum>j = 0..<m. root m ^ (i * j) * a (2 * j)) +
   1.291 +    root (2 * m) ^ i *
   1.292 +    (\<Sum>j = 0..<m. root m ^ (i * j) * a (2 * j + 1))"
   1.293 +    (is "_ = ?t")
   1.294 +    txt {* First pair of sums *}
   1.295 +    apply (simp add: root_cancel1)
   1.296 +    txt {* Second pair of sums *}
   1.297 +    apply (simp add: setsum_right_distrib)
   1.298 +    apply (simp add: power_add)
   1.299 +    apply (simp add: root_cancel1)
   1.300 +    apply (simp add: mult_ac)
   1.301 +    done
   1.302 +  finally show "?s = ?t" .
   1.303 +qed
   1.304 +
   1.305 +lemma DFT_upper:
   1.306 +  assumes mbound: "0 < m" and ibound: "m <= i"
   1.307 +  shows "DFT (2 * m) a i =
   1.308 +    DFT m (%i. a (2 * i)) (i - m) -
   1.309 +    root (2 * m) ^ (i - m) * DFT m (%i. a (2 * i + 1)) (i - m)"
   1.310 +proof (unfold DFT_def)
   1.311 +  have "(\<Sum>j = 0..<2 * m. root (2 * m) ^ (i * j) * a j) =
   1.312 +    (\<Sum>j = 0..<m. root (2 * m) ^ (i * (2 * j)) * a (2 * j)) +
   1.313 +    (\<Sum>j = 0..<m. root (2 * m) ^ (i * (2 * j + 1)) * a (2 * j + 1))"
   1.314 +    (is "?s = _")
   1.315 +    by (simp add: setsum_splice)
   1.316 +  also have "... =
   1.317 +    (\<Sum>j = 0..<m. root m ^ ((i - m) * j) * a (2 * j)) -
   1.318 +    root (2 * m) ^ (i - m) *
   1.319 +    (\<Sum>j = 0..<m. root m ^ ((i - m) * j) * a (2 * j + 1))"
   1.320 +    (is "_ = ?t")
   1.321 +    txt {* First pair of sums *}
   1.322 +    apply (simp add: root_cancel1)
   1.323 +    apply (simp add: root_unity ibound root_nonzero power_diff power_mult)
   1.324 +    txt {* Second pair of sums *}
   1.325 +    apply (simp add: mbound root_cancel2)
   1.326 +    apply (simp add: setsum_right_distrib)
   1.327 +    apply (simp add: power_add)
   1.328 +    apply (simp add: root_cancel1)
   1.329 +    apply (simp add: power_mult)
   1.330 +    apply (simp add: mult_ac)
   1.331 +    done
   1.332 +  finally show "?s = ?t" .
   1.333 +qed
   1.334 +
   1.335 +lemma IDFT_lower:
   1.336 +  "IDFT (2 * m) a i =
   1.337 +  IDFT m (%i. a (2 * i)) i +
   1.338 +  (1 / root (2 * m)) ^ i * IDFT m (%i. a (2 * i + 1)) i"
   1.339 +proof (unfold IDFT_def)
   1.340 +  have "(\<Sum>j = 0..<2 * m. a j / root (2 * m) ^ (i * j)) =
   1.341 +    (\<Sum>j = 0..<m. a (2 * j) / root (2 * m) ^ (i * (2 * j))) +
   1.342 +    (\<Sum>j = 0..<m. a (2 * j + 1) / root (2 * m) ^ (i * (2 * j + 1)))"
   1.343 +    (is "?s = _")
   1.344 +    by (simp add: setsum_splice)
   1.345 +  also have "... = (\<Sum>j = 0..<m. a (2 * j) / root m ^ (i * j)) +
   1.346 +    (1 / root (2 * m)) ^ i *
   1.347 +    (\<Sum>j = 0..<m. a (2 * j + 1) / root m ^ (i * j))"
   1.348 +    (is "_ = ?t")
   1.349 +    txt {* First pair of sums *}
   1.350 +    apply (simp add: root_cancel1)
   1.351 +    txt {* Second pair of sums *}
   1.352 +    apply (simp add: setsum_right_distrib)
   1.353 +    apply (simp add: power_add)
   1.354 +    apply (simp add: nonzero_power_divide root_nonzero)
   1.355 +    apply (simp add: root_cancel1)
   1.356 +    done
   1.357 +  finally show "?s = ?t" .
   1.358 +qed
   1.359 +
   1.360 +lemma IDFT_upper:
   1.361 +  assumes mbound: "0 < m" and ibound: "m <= i"
   1.362 +  shows "IDFT (2 * m) a i =
   1.363 +    IDFT m (%i. a (2 * i)) (i - m) -
   1.364 +    (1 / root (2 * m)) ^ (i - m) *
   1.365 +    IDFT m (%i. a (2 * i + 1)) (i - m)"
   1.366 +proof (unfold IDFT_def)
   1.367 +  have "(\<Sum>j = 0..<2 * m. a j / root (2 * m) ^ (i * j)) =
   1.368 +    (\<Sum>j = 0..<m. a (2 * j) / root (2 * m) ^ (i * (2 * j))) +
   1.369 +    (\<Sum>j = 0..<m. a (2 * j + 1) / root (2 * m) ^ (i * (2 * j + 1)))"
   1.370 +    (is "?s = _")
   1.371 +    by (simp add: setsum_splice)
   1.372 +  also have "... =
   1.373 +    (\<Sum>j = 0..<m. a (2 * j) / root m ^ ((i - m) * j)) -
   1.374 +    (1 / root (2 * m)) ^ (i - m) *
   1.375 +    (\<Sum>j = 0..<m. a (2 * j + 1) / root m ^ ((i - m) * j))"
   1.376 +    (is "_ = ?t")
   1.377 +    txt {* First pair of sums *}
   1.378 +    apply (simp add: root_cancel1)
   1.379 +    apply (simp add: root_unity ibound root_nonzero power_diff power_mult)
   1.380 +    txt {* Second pair of sums *}
   1.381 +    apply (simp add: nonzero_power_divide root_nonzero)
   1.382 +    apply (simp add: mbound root_cancel2)
   1.383 +    apply (simp add: setsum_divide_distrib)
   1.384 +    apply (simp add: power_add)
   1.385 +    apply (simp add: root_cancel1)
   1.386 +    apply (simp add: power_mult)
   1.387 +    apply (simp add: mult_ac)
   1.388 +    done
   1.389 +  finally show "?s = ?t" .
   1.390 +qed
   1.391 +
   1.392 +text {* @{text DFT} und @{text IDFT} are inverses. *}
   1.393 +
   1.394 +declare divide_divide_eq_right [simp del]
   1.395 +  divide_divide_eq_left [simp del]
   1.396 +
   1.397 +lemma power_diff_inverse:
   1.398 +  assumes nz: "(a::'a::field) ~= 0"
   1.399 +  shows "m <= n ==> (inverse a) ^ (n-m) = (a^m) / (a^n)"
   1.400 +  apply (induct n m rule: diff_induct)
   1.401 +    apply (simp add: nonzero_power_inverse
   1.402 +      nonzero_inverse_eq_divide [THEN sym] nz)
   1.403 +   apply simp
   1.404 +  apply (simp add: nz)
   1.405 +  done
   1.406 +
   1.407 +lemma power_diff_rev_if:
   1.408 +  assumes nz: "(a::'a::field) ~= 0"
   1.409 +  shows "(a^m) / (a^n) = (if n <= m then a ^ (m-n) else (1/a) ^ (n-m))"
   1.410 +proof (cases "n <= m")
   1.411 +  case True with nz show ?thesis
   1.412 +    by (simp add: power_diff)
   1.413 +next
   1.414 +  case False with nz show ?thesis
   1.415 +    by (simp add: power_diff_inverse nonzero_inverse_eq_divide [THEN sym])
   1.416 +qed
   1.417 +
   1.418 +lemma power_divides_special:
   1.419 +  "(a::'a::field) ~= 0 ==>
   1.420 +  a ^ (i * j) / a ^ (k * i) = (a ^ j / a ^ k) ^ i"
   1.421 +  by (simp add: nonzero_power_divide power_mult [THEN sym] mult_ac)
   1.422 +
   1.423 +theorem DFT_inverse:
   1.424 +  assumes i_less: "i < n"
   1.425 +  shows  "IDFT n (DFT n a) i = of_nat n * a i"
   1.426 +  using [[linarith_split_limit = 0]]
   1.427 +  apply (unfold DFT_def IDFT_def)
   1.428 +  apply (simp add: setsum_divide_distrib)
   1.429 +  apply (subst setsum_commute)
   1.430 +  apply (simp only: times_divide_eq_left [THEN sym])
   1.431 +  apply (simp only: power_divides_special [OF root_nonzero])
   1.432 +  apply (simp add: power_diff_rev_if root_nonzero)
   1.433 +  apply (simp add: setsum_divide_distrib [THEN sym]
   1.434 +    setsum_left_distrib [THEN sym])
   1.435 +  proof -
   1.436 +    from i_less have i_diff: "!!k. i - k < n" by arith
   1.437 +    have diff_i: "!!k. k < n ==> k - i < n" by arith
   1.438 +
   1.439 +    let ?sum = "%i j n. setsum (op ^ (if i <= j then root n ^ (j - i)
   1.440 +                  else (1 / root n) ^ (i - j))) {0..<n} * a j"
   1.441 +    let ?sum1 = "%i j n. setsum (op ^ (root n ^ (j - i))) {0..<n} * a j"
   1.442 +    let ?sum2 = "%i j n. setsum (op ^ ((1 / root n) ^ (i - j))) {0..<n} * a j"
   1.443 +
   1.444 +    from i_less have "(\<Sum>j = 0..<n. ?sum i j n) =
   1.445 +      (\<Sum>j = 0..<i. ?sum2 i j n) + (\<Sum>j = i..<n. ?sum1 i j n)"
   1.446 +      (is "?s = _")
   1.447 +      by (simp add: root_summation_inv nat_dvd_not_less
   1.448 +        setsum_add_split_nat_ivl [where f = "%j. ?sum i j n"])
   1.449 +    also from i_less i_diff
   1.450 +    have "... = (\<Sum>j = i..<n. ?sum1 i j n)"
   1.451 +      by (simp add: root_summation_inv nat_dvd_not_less)
   1.452 +    also from i_less have "... =
   1.453 +      (\<Sum>j\<in>{i} \<union> {i<..<n}. ?sum1 i j n)"
   1.454 +      by (simp only: ivl_disj_un)
   1.455 +    also have "... =
   1.456 +      (?sum1 i i n + (\<Sum>j\<in>{i<..<n}. ?sum1 i j n))"
   1.457 +      by (simp add: setsum_Un_disjoint ivl_disj_int)
   1.458 +    also from i_less diff_i have "... = ?sum1 i i n"
   1.459 +      by (simp add: root_summation nat_dvd_not_less)
   1.460 +    also from i_less have "... = of_nat n * a i" (is "_ = ?t")
   1.461 +      by (simp add: of_nat_cplx)
   1.462 +    finally show "?s = ?t" .
   1.463 +  qed
   1.464 +
   1.465 +
   1.466 +section {* Discrete, Fast Fourier Transformation *}
   1.467 +
   1.468 +text {* @{text "FFT k a"} is the transform of vector @{text a}
   1.469 +  of length @{text "2 ^ k"}, @{text IFFT} its inverse. *}
   1.470 +
   1.471 +primrec FFT :: "nat => (nat => complex) => (nat => complex)" where
   1.472 +  "FFT 0 a = a"
   1.473 +| "FFT (Suc k) a =
   1.474 +     (let (x, y) = (FFT k (%i. a (2*i)), FFT k (%i. a (2*i+1)))
   1.475 +      in (%i. if i < 2^k
   1.476 +            then x i + (root (2 ^ (Suc k))) ^ i * y i
   1.477 +            else x (i- 2^k) - (root (2 ^ (Suc k))) ^ (i- 2^k) * y (i- 2^k)))"
   1.478 +
   1.479 +primrec IFFT :: "nat => (nat => complex) => (nat => complex)" where
   1.480 +  "IFFT 0 a = a"
   1.481 +| "IFFT (Suc k) a =
   1.482 +     (let (x, y) = (IFFT k (%i. a (2*i)), IFFT k (%i. a (2*i+1)))
   1.483 +      in (%i. if i < 2^k
   1.484 +            then x i + (1 / root (2 ^ (Suc k))) ^ i * y i
   1.485 +            else x (i - 2^k) -
   1.486 +              (1 / root (2 ^ (Suc k))) ^ (i - 2^k) * y (i - 2^k)))"
   1.487 +
   1.488 +text {* Finally, for vectors of length @{text "2 ^ k"},
   1.489 +  @{text DFT} and @{text FFT}, and @{text IDFT} and
   1.490 +  @{text IFFT} are equivalent. *}
   1.491 +
   1.492 +theorem DFT_FFT:
   1.493 +  "!!a i. i < 2 ^ k ==> DFT (2 ^ k) a i = FFT k a i"
   1.494 +proof (induct k)
   1.495 +  case 0
   1.496 +  then show ?case by (simp add: DFT_def)
   1.497 +next
   1.498 +  case (Suc k)
   1.499 +  assume i: "i < 2 ^ Suc k"
   1.500 +  show ?case proof (cases "i < 2 ^ k")
   1.501 +    case True
   1.502 +    then show ?thesis apply simp apply (simp add: DFT_lower)
   1.503 +      apply (simp add: Suc) done
   1.504 +  next
   1.505 +    case False
   1.506 +    from i have "i - 2 ^ k < 2 ^ k" by simp
   1.507 +    with False i show ?thesis apply simp apply (simp add: DFT_upper)
   1.508 +      apply (simp add: Suc) done
   1.509 +  qed
   1.510 +qed
   1.511 +
   1.512 +theorem IDFT_IFFT:
   1.513 +  "!!a i. i < 2 ^ k ==> IDFT (2 ^ k) a i = IFFT k a i"
   1.514 +proof (induct k)
   1.515 +  case 0
   1.516 +  then show ?case by (simp add: IDFT_def)
   1.517 +next
   1.518 +  case (Suc k)
   1.519 +  assume i: "i < 2 ^ Suc k"
   1.520 +  show ?case proof (cases "i < 2 ^ k")
   1.521 +    case True
   1.522 +    then show ?thesis apply simp apply (simp add: IDFT_lower)
   1.523 +      apply (simp add: Suc) done
   1.524 +  next
   1.525 +    case False
   1.526 +    from i have "i - 2 ^ k < 2 ^ k" by simp
   1.527 +    with False i show ?thesis apply simp apply (simp add: IDFT_upper)
   1.528 +      apply (simp add: Suc) done
   1.529 +  qed
   1.530 +qed
   1.531 +
   1.532 +schematic_lemma "map (FFT (Suc (Suc 0)) a) [0, 1, 2, 3] = ?x"
   1.533 +  by simp
   1.534 +
   1.535 +end