diff -r 7f3760f39bdc -r f8845fc8f38d doc-isac/jrocnik/FFT.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc-isac/jrocnik/FFT.thy Tue Sep 17 09:50:52 2013 +0200 @@ -0,0 +1,532 @@ +(* Title: Fast Fourier Transform + Author: Clemens Ballarin , started 12 April 2005 + Maintainer: Clemens Ballarin +*) + +theory FFT +imports Complex_Main +begin + +text {* We formalise a functional implementation of the FFT algorithm + over the complex numbers, and its inverse. Both are shown + equivalent to the usual definitions + of these operations through Vandermonde matrices. They are also + shown to be inverse to each other, more precisely, that composition + of the inverse and the transformation yield the identity up to a + scalar. + + The presentation closely follows Section 30.2 of Cormen \textit{et + al.}, \emph{Introduction to Algorithms}, 2nd edition, MIT Press, + 2003. *} + + +section {* Preliminaries *} + +lemma of_nat_cplx: + "of_nat n = Complex (of_nat n) 0" + by (induct n) (simp_all add: complex_one_def) + + +text {* The following two lemmas are useful for experimenting with the + transformations, at a vector length of four. *} + +lemma Ivl4: + "{0..<4::nat} = {0, 1, 2, 3}" +proof - + have "{0..<4::nat} = {0..i=0..<4::nat. x i) = x 0 + x 1 + x 2 + x 3" + by (simp add: Ivl4 eval_nat_numeral) + + +text {* A number of specialised lemmas for the summation operator, + where the index set is the natural numbers *} + +lemma setsum_add_nat_ivl_singleton: + assumes less: "m < (n::nat)" + shows "f m + setsum f {m<.. {m<.. g i = f i" + shows "f m + setsum g {m<.. g i = f i" + and h: "!!i. [| k <= i; i < n |] ==> h i = f i" + shows "setsum g {m.. ((%i. Suc (2*i)) ` {0.. ((%i. Suc (2*i)) ` {0..i::nat = 0..<2*n. f i) = (\i = 0..i = 0..i::nat = 0..<2*n. f i) = + setsum f (op * 2 ` {0..i = 0..i = 0.. complex" where + "root n == cis (2*pi/(real (n::nat)))" + +lemma sin_periodic_pi_diff [simp]: "sin (x - pi) = - sin x" + by (simp add: sin_diff) + +lemma sin_cos_between_zero_two_pi: + assumes 0: "0 < x" and pi: "x < 2 * pi" + shows "sin x \ 0 \ cos x \ 1" +proof - + { assume "0 < x" and "x < pi" + then have "sin x \ 0" by (auto dest: sin_gt_zero_pi) } + moreover + { assume "x = pi" + then have "cos x \ 1" by simp } + moreover + { assume pi1: "pi < x" and pi2: "x < 2 * pi" + then have "0 < x - pi" and "x - pi < pi" by arith+ + then have "sin (x - pi) \ 0" by (auto dest: sin_gt_zero_pi) + with pi1 pi2 have "sin x \ 0" by simp } + ultimately show ?thesis using 0 pi by arith +qed + + +subsection {* Basic Lemmas *} + +lemma root_nonzero: + "root n ~= 0" + apply (unfold root_def) + apply (unfold cis_def) + apply auto + apply (drule sin_zero_abs_cos_one) + apply arith + done + +lemma root_unity: + "root n ^ n = 1" + apply (unfold root_def) + apply (simp add: DeMoivre) + apply (simp add: cis_def) + done + +lemma root_cancel: + "0 < d ==> root (d * n) ^ (d * k) = root n ^ k" + apply (unfold root_def) + apply (simp add: DeMoivre) + done + +lemma root_summation: + assumes k: "0 < k" "k < n" + shows "(\i=0..i=0..i=0..i=0.. root (2 * n) ^ n = - 1" + txt {* Note the space between @{text "-"} and @{text "1"}. *} + using root_cancel [where n = 2 and k = 1] + apply (simp only: mult_ac) + apply (simp add: complex_one_def) + done + + +section {* Discrete Fourier Transformation *} + +text {* + We define operations @{text DFT} and @{text IDFT} for the discrete + Fourier Transform and its inverse. Vectors are simply functions of + type @{text "nat => complex"}. *} + +text {* + @{text "DFT n a"} is the transform of vector @{text a} + of length @{text n}, @{text IDFT} its inverse. *} + +definition DFT :: "nat => (nat => complex) => (nat => complex)" where + "DFT n a == (%i. \j=0.. (nat => complex) => (nat => complex)" where + "IDFT n a == (%i. (\k=0..j = 0..<2 * m. root (2 * m) ^ (i * j) * a j) = + (\j = 0..j = 0..j = 0..j = 0..j = 0..<2 * m. root (2 * m) ^ (i * j) * a j) = + (\j = 0..j = 0..j = 0..j = 0..j = 0..<2 * m. a j / root (2 * m) ^ (i * j)) = + (\j = 0..j = 0..j = 0..j = 0..j = 0..<2 * m. a j / root (2 * m) ^ (i * j)) = + (\j = 0..j = 0..j = 0..j = 0.. (inverse a) ^ (n-m) = (a^m) / (a^n)" + apply (induct n m rule: diff_induct) + apply (simp add: nonzero_power_inverse + nonzero_inverse_eq_divide [THEN sym] nz) + apply simp + apply (simp add: nz) + done + +lemma power_diff_rev_if: + assumes nz: "(a::'a::field) ~= 0" + shows "(a^m) / (a^n) = (if n <= m then a ^ (m-n) else (1/a) ^ (n-m))" +proof (cases "n <= m") + case True with nz show ?thesis + by (simp add: power_diff) +next + case False with nz show ?thesis + by (simp add: power_diff_inverse nonzero_inverse_eq_divide [THEN sym]) +qed + +lemma power_divides_special: + "(a::'a::field) ~= 0 ==> + a ^ (i * j) / a ^ (k * i) = (a ^ j / a ^ k) ^ i" + by (simp add: nonzero_power_divide power_mult [THEN sym] mult_ac) + +theorem DFT_inverse: + assumes i_less: "i < n" + shows "IDFT n (DFT n a) i = of_nat n * a i" + using [[linarith_split_limit = 0]] + apply (unfold DFT_def IDFT_def) + apply (simp add: setsum_divide_distrib) + apply (subst setsum_commute) + apply (simp only: times_divide_eq_left [THEN sym]) + apply (simp only: power_divides_special [OF root_nonzero]) + apply (simp add: power_diff_rev_if root_nonzero) + apply (simp add: setsum_divide_distrib [THEN sym] + setsum_left_distrib [THEN sym]) + proof - + from i_less have i_diff: "!!k. i - k < n" by arith + have diff_i: "!!k. k < n ==> k - i < n" by arith + + let ?sum = "%i j n. setsum (op ^ (if i <= j then root n ^ (j - i) + else (1 / root n) ^ (i - j))) {0..j = 0..j = 0..j = i..j = i..j\{i} \ {i<..j\{i<.. (nat => complex) => (nat => complex)" where + "FFT 0 a = a" +| "FFT (Suc k) a = + (let (x, y) = (FFT k (%i. a (2*i)), FFT k (%i. a (2*i+1))) + in (%i. if i < 2^k + then x i + (root (2 ^ (Suc k))) ^ i * y i + else x (i- 2^k) - (root (2 ^ (Suc k))) ^ (i- 2^k) * y (i- 2^k)))" + +primrec IFFT :: "nat => (nat => complex) => (nat => complex)" where + "IFFT 0 a = a" +| "IFFT (Suc k) a = + (let (x, y) = (IFFT k (%i. a (2*i)), IFFT k (%i. a (2*i+1))) + in (%i. if i < 2^k + then x i + (1 / root (2 ^ (Suc k))) ^ i * y i + else x (i - 2^k) - + (1 / root (2 ^ (Suc k))) ^ (i - 2^k) * y (i - 2^k)))" + +text {* Finally, for vectors of length @{text "2 ^ k"}, + @{text DFT} and @{text FFT}, and @{text IDFT} and + @{text IFFT} are equivalent. *} + +theorem DFT_FFT: + "!!a i. i < 2 ^ k ==> DFT (2 ^ k) a i = FFT k a i" +proof (induct k) + case 0 + then show ?case by (simp add: DFT_def) +next + case (Suc k) + assume i: "i < 2 ^ Suc k" + show ?case proof (cases "i < 2 ^ k") + case True + then show ?thesis apply simp apply (simp add: DFT_lower) + apply (simp add: Suc) done + next + case False + from i have "i - 2 ^ k < 2 ^ k" by simp + with False i show ?thesis apply simp apply (simp add: DFT_upper) + apply (simp add: Suc) done + qed +qed + +theorem IDFT_IFFT: + "!!a i. i < 2 ^ k ==> IDFT (2 ^ k) a i = IFFT k a i" +proof (induct k) + case 0 + then show ?case by (simp add: IDFT_def) +next + case (Suc k) + assume i: "i < 2 ^ Suc k" + show ?case proof (cases "i < 2 ^ k") + case True + then show ?thesis apply simp apply (simp add: IDFT_lower) + apply (simp add: Suc) done + next + case False + from i have "i - 2 ^ k < 2 ^ k" by simp + with False i show ?thesis apply simp apply (simp add: IDFT_upper) + apply (simp add: Suc) done + qed +qed + +schematic_lemma "map (FFT (Suc (Suc 0)) a) [0, 1, 2, 3] = ?x" + by simp + +end