doc-src/isac/jrocnik/present-1.tex
branchdecompose-isar
changeset 42159 9d8a198bb471
parent 42158 27b410571774
child 42163 3bf084f80641
     1.1 --- a/doc-src/isac/jrocnik/present-1.tex	Fri Jul 22 10:17:31 2011 +0200
     1.2 +++ b/doc-src/isac/jrocnik/present-1.tex	Fri Jul 22 10:20:24 2011 +0200
     1.3 @@ -1,5 +1,3 @@
     1.4 -
     1.5 -% test
     1.6  
     1.7  \documentclass{beamer}
     1.8  
     1.9 @@ -128,6 +126,7 @@
    1.10  \begin{frame}\frametitle{Fourier Transform 1: Specification}
    1.11  {\footnotesize\it
    1.12  Fourier Transform
    1.13 +
    1.14  \begin{tabbing}
    1.15  1\=postcond \=: \= \= $\;\;\;\;$\=\kill
    1.16  \>given    \>:\>  Time continiues, not periodic Signal \\
    1.17 @@ -176,15 +175,24 @@
    1.18  
    1.19  \begin{frame}\frametitle{Fourier Transform 2: Specification}
    1.20  {\footnotesize\it
    1.21 -Fourier Transform
    1.22 +
    1.23 +\textbf{(a)} Determine the fourier transform for the given rectangular impulse:
    1.24 +
    1.25 +\begin{center}
    1.26 +$x(t)= \left\{
    1.27 +     \begin{array}{lr}
    1.28 +       1 & -1\leq t\geq1\\
    1.29 +       0 & else
    1.30 +     \end{array}
    1.31 +   \right.$
    1.32 +\end{center}
    1.33 +
    1.34  \begin{tabbing}
    1.35  1\=postcond \=: \= \= $\;\;\;\;$\=\kill
    1.36  \>given    \>:\>  piecewise\_function \\
    1.37  \>         \> \>  \>$(x (t::real), [(0,-\infty<t<1), (1,1\leq t\leq 3), (0, 3<t<\infty)])$\\
    1.38                          %?(iterativer) datentyp in Isabelle/HOL
    1.39  \>         \> \>  translation $T=2$\\
    1.40 -%WN these 2 inputs calculated to [(0,-\infty<t<-1), (1,-1\leq t\leq 1), (0, 1<t<\infty)]
    1.41 -%WN translation helpful only, if solution available from other calculation - DROP T ???
    1.42  \>precond  \>:\>  TODO\\
    1.43  \>find     \>:\>  $X(j\cdot\omega)$\\
    1.44  \>postcond \>:\>  TODO\\
    1.45 @@ -197,40 +205,38 @@
    1.46  %%												Transform expl  2 CALC                 %%
    1.47  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    1.48  
    1.49 -\begin{frame}\frametitle{Fourier Transform 2: Calculation}
    1.50 -\footnotesize{
    1.51 -\begin{tabbing}
    1.52 -000\=\kill
    1.53 -%WN first 
    1.54 -01 \> ${\cal F}\;(x(t-2)) =$\\
    1.55 -      \`${\cal F}\;(x(t-T)) = e^{-j\cdot\omega\cdot T}\cdot X\;j\cdot\omega$\\
    1.56 -02 \> $e^{-j\cdot\omega\cdot 2}\cdot X\;(j\cdot\omega)$\\
    1.57 -      \`definition $X\;(j\cdot\omega)$\\
    1.58 -03 \> $e^{-j\cdot\omega\cdot 2}\cdot \int_{-\infty}^\infty x\;t\;\cdot e^{-j\cdot\omega\cdot t} d t$\\
    1.59 -      \` $x\;t = 1\;{\it for}\;\{x.\;-1\leq t\;\land\;t\leq 1\}\;{\it and}\;x\;t=0\;{\it otherwise}$\\
    1.60 -04 \> $e^{-j\cdot\omega\cdot 2}\cdot \int_{-1}^1 1\cdot e^{-j\cdot\omega\cdot t} d t$\\
    1.61 -      \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\
    1.62 -05 \> $e^{-j\cdot\omega\cdot 2}\cdot \int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{-1}^1$\\
    1.63 -      %\` $\int e^{a\cdot t} = \frac{1}{a}\cdot e^{a\cdot t}$\\
    1.64 -       \` pbl: integration in $\cal C$\\
    1.65 -06 \> $e^{-j\cdot\omega\cdot 2}\cdot (\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot t} \;|_{-1}^1)$\\
    1.66 -      \` $f\;t\;|_a^b = f\;b-f\;a$\\
    1.67 -07 \> $e^{-j\cdot\omega\cdot 2}\cdot (\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 1} -  \frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot -1})$\\
    1.68 -\vdots\` pbl: simplification+factorization in $\cal C$\\
    1.69 -08 \> $e^{-j\cdot\omega\cdot 2}\cdot \frac{1}{-j\cdot\omega}\cdot(e^{j\cdot\omega} - e^{-j\cdot\omega})$\\
    1.70 -      \` trick~!\\
    1.71 -09 \> $e^{-j\cdot\omega\cdot 2}\cdot \frac{1}{\omega}\cdot(\frac{-e^{j\cdot\omega} + e^{-j\cdot\omega}}{j})$\\
    1.72 -      \` table\\
    1.73 -10 \> $e^{-j\cdot\omega\cdot 2}\cdot 2\cdot\frac{\sin\;\omega}{\omega}$
    1.74 -\end{tabbing}
    1.75 -}
    1.76 -\end{frame}
    1.77 +%\begin{frame}\frametitle{Fourier Transform 2: Calculation}
    1.78 +%\footnotesize{
    1.79 +%\begin{tabbing}
    1.80 +%000\=\kill
    1.81 +%01 \> ${\cal F}\;(x(t-2)) =$\\
    1.82 +%      \`${\cal F}\;(x(t-T)) = e^{-j\cdot\omega\cdot T}\cdot X\;j\cdot\omega$\\
    1.83 +%02 \> $e^{-j\cdot\omega\cdot 2}\cdot X\;(j\cdot\omega)$\\
    1.84 +%      \`definition $X\;(j\cdot\omega)$\\
    1.85 +%03 \> $e^{-j\cdot\omega\cdot 2}\cdot \int_{-\infty}^\infty x\;t\;\cdot e^{-j\cdot\omega\cdot t} d t$\\
    1.86 +%      \` $x\;t = 1\;{\it for}\;\{x.\;-1\leq t\;\land\;t\leq 1\}\;{\it and}\;x\;t=0\;{\it otherwise}$\\
    1.87 +%04 \> $e^{-j\cdot\omega\cdot 2}\cdot \int_{-1}^1 1\cdot e^{-j\cdot\omega\cdot t} d t$\\
    1.88 +%      \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\
    1.89 +%05 \> $e^{-j\cdot\omega\cdot 2}\cdot \int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{-1}^1$\\
    1.90 +%      %\` $\int e^{a\cdot t} = \frac{1}{a}\cdot e^{a\cdot t}$\\
    1.91 +%       \` pbl: integration in $\cal C$\\
    1.92 +%06 \> $e^{-j\cdot\omega\cdot 2}\cdot (\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot t} \;|_{-1}^1)$\\
    1.93 +%      \` $f\;t\;|_a^b = f\;b-f\;a$\\
    1.94 +%07 \> $e^{-j\cdot\omega\cdot 2}\cdot (\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 1} -  \frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot -1})$\\
    1.95 +%\vdots\` pbl: simplification+factorization in $\cal C$\\
    1.96 +%08 \> $e^{-j\cdot\omega\cdot 2}\cdot \frac{1}{-j\cdot\omega}\cdot(e^{j\cdot\omega} - e^{-j\cdot\omega})$\\
    1.97 +%      \` trick~!\\
    1.98 +%09 \> $e^{-j\cdot\omega\cdot 2}\cdot \frac{1}{\omega}\cdot(\frac{-e^{j\cdot\omega} + e^{-j\cdot\omega}}{j})$\\
    1.99 +%      \` table\\
   1.100 +%10 \> $e^{-j\cdot\omega\cdot 2}\cdot 2\cdot\frac{\sin\;\omega}{\omega}$
   1.101 +%\end{tabbing}
   1.102 +%}
   1.103 +%\end{frame}
   1.104  
   1.105  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1.106  %%												Transform expl 2 REQ                   %%
   1.107  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1.108  
   1.109 -%WN ...
   1.110  \begin{frame}\frametitle{Fourier Transform 2: Development effort}
   1.111  {\small
   1.112  \begin{center}
   1.113 @@ -275,7 +281,16 @@
   1.114  
   1.115  \begin{frame}\frametitle{Convolution: Specification}
   1.116  {\footnotesize\it
   1.117 -Convolution
   1.118 +
   1.119 +Consider the two discrete-time, linear and time-invariant (LTI) systems with the following impulse response:
   1.120 +
   1.121 +\begin{center}
   1.122 +$h_1[n]=\left(\frac{3}{5}\right)^n\cdot u[n]$\\
   1.123 +$h_1[n]=\left(-\frac{2}{3}\right)^n\cdot u[n]$
   1.124 +\end{center}
   1.125 +
   1.126 +The two systems are cascaded seriell. Derive the impulse respinse of the overall system $h_c[n]$.
   1.127 +
   1.128  \begin{tabbing}
   1.129  1\=postcond \=: \= \= $\;\;\;\;$\=\kill
   1.130  \>given    \>:\>  Signals h1[n], h2[n] \\
   1.131 @@ -293,9 +308,9 @@
   1.132  %%												DTS CALC				                       %%
   1.133  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1.134  
   1.135 -\begin{frame}\frametitle{Convolution: Calculation}
   1.136 -TODO
   1.137 -\end{frame}
   1.138 +%\begin{frame}\frametitle{Convolution: Calculation}
   1.139 +%TODO
   1.140 +%\end{frame}
   1.141  
   1.142  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1.143  %%												DTS REQ  				                       %%
   1.144 @@ -349,7 +364,13 @@
   1.145  
   1.146  \begin{frame}\frametitle{(Inverse) ${\cal Z}$-Transformation: Specification}
   1.147  {\footnotesize\it
   1.148 -Convolution
   1.149 +
   1.150 +Determine the inverse $\cal{z}$ transform of the following expression. Hint: applay the partial fraction expansion.
   1.151 +
   1.152 +\begin{center}
   1.153 +$X(z)=\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}},\ \ x[n]$ is absolute summable
   1.154 +\end{center}
   1.155 +
   1.156  \begin{tabbing}
   1.157  1\=postcond \=: \= \= $\;\;\;\;$\=\kill
   1.158  \>given    \>:\>  Expression of z \\
   1.159 @@ -367,9 +388,9 @@
   1.160  %%												Z expl		CALC                         %%
   1.161  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1.162  
   1.163 -\begin{frame}\frametitle{(Inverse) ${\cal Z}$-Transformation: Calculation}
   1.164 -TODO
   1.165 -\end{frame}
   1.166 +%\begin{frame}\frametitle{(Inverse) ${\cal Z}$-Transformation: Calculation}
   1.167 +%TODO
   1.168 +%\end{frame}
   1.169  
   1.170  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1.171  %%												Z expl		REQ	                         %%