doc-src/isac/jrocnik/present-1.tex
branchdecompose-isar
changeset 42159 9d8a198bb471
parent 42158 27b410571774
child 42163 3bf084f80641
equal deleted inserted replaced
42158:27b410571774 42159:9d8a198bb471
     1 
       
     2 % test
       
     3 
     1 
     4 \documentclass{beamer}
     2 \documentclass{beamer}
     5 
     3 
     6 
     4 
     7 \mode<presentation>
     5 \mode<presentation>
   126 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   124 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   127 
   125 
   128 \begin{frame}\frametitle{Fourier Transform 1: Specification}
   126 \begin{frame}\frametitle{Fourier Transform 1: Specification}
   129 {\footnotesize\it
   127 {\footnotesize\it
   130 Fourier Transform
   128 Fourier Transform
       
   129 
   131 \begin{tabbing}
   130 \begin{tabbing}
   132 1\=postcond \=: \= \= $\;\;\;\;$\=\kill
   131 1\=postcond \=: \= \= $\;\;\;\;$\=\kill
   133 \>given    \>:\>  Time continiues, not periodic Signal \\
   132 \>given    \>:\>  Time continiues, not periodic Signal \\
   134 \>         \> \>  \>$(x (t::real), exp(-\,(\alpha::real\,+\,\alpha::imag)\,*\,t::real)*u(t::real))$\\
   133 \>         \> \>  \>$(x (t::real), exp(-\,(\alpha::real\,+\,\alpha::imag)\,*\,t::real)*u(t::real))$\\
   135 \>precond  \>:\>  TODO\\
   134 \>precond  \>:\>  TODO\\
   174 %%										Transform expl 2 SPEC                      %%
   173 %%										Transform expl 2 SPEC                      %%
   175 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   174 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   176 
   175 
   177 \begin{frame}\frametitle{Fourier Transform 2: Specification}
   176 \begin{frame}\frametitle{Fourier Transform 2: Specification}
   178 {\footnotesize\it
   177 {\footnotesize\it
   179 Fourier Transform
   178 
       
   179 \textbf{(a)} Determine the fourier transform for the given rectangular impulse:
       
   180 
       
   181 \begin{center}
       
   182 $x(t)= \left\{
       
   183      \begin{array}{lr}
       
   184        1 & -1\leq t\geq1\\
       
   185        0 & else
       
   186      \end{array}
       
   187    \right.$
       
   188 \end{center}
       
   189 
   180 \begin{tabbing}
   190 \begin{tabbing}
   181 1\=postcond \=: \= \= $\;\;\;\;$\=\kill
   191 1\=postcond \=: \= \= $\;\;\;\;$\=\kill
   182 \>given    \>:\>  piecewise\_function \\
   192 \>given    \>:\>  piecewise\_function \\
   183 \>         \> \>  \>$(x (t::real), [(0,-\infty<t<1), (1,1\leq t\leq 3), (0, 3<t<\infty)])$\\
   193 \>         \> \>  \>$(x (t::real), [(0,-\infty<t<1), (1,1\leq t\leq 3), (0, 3<t<\infty)])$\\
   184                         %?(iterativer) datentyp in Isabelle/HOL
   194                         %?(iterativer) datentyp in Isabelle/HOL
   185 \>         \> \>  translation $T=2$\\
   195 \>         \> \>  translation $T=2$\\
   186 %WN these 2 inputs calculated to [(0,-\infty<t<-1), (1,-1\leq t\leq 1), (0, 1<t<\infty)]
       
   187 %WN translation helpful only, if solution available from other calculation - DROP T ???
       
   188 \>precond  \>:\>  TODO\\
   196 \>precond  \>:\>  TODO\\
   189 \>find     \>:\>  $X(j\cdot\omega)$\\
   197 \>find     \>:\>  $X(j\cdot\omega)$\\
   190 \>postcond \>:\>  TODO\\
   198 \>postcond \>:\>  TODO\\
   191 \end{tabbing}
   199 \end{tabbing}
   192 
   200 
   195 
   203 
   196 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   204 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   197 %%												Transform expl  2 CALC                 %%
   205 %%												Transform expl  2 CALC                 %%
   198 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   206 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   199 
   207 
   200 \begin{frame}\frametitle{Fourier Transform 2: Calculation}
   208 %\begin{frame}\frametitle{Fourier Transform 2: Calculation}
   201 \footnotesize{
   209 %\footnotesize{
   202 \begin{tabbing}
   210 %\begin{tabbing}
   203 000\=\kill
   211 %000\=\kill
   204 %WN first 
   212 %01 \> ${\cal F}\;(x(t-2)) =$\\
   205 01 \> ${\cal F}\;(x(t-2)) =$\\
   213 %      \`${\cal F}\;(x(t-T)) = e^{-j\cdot\omega\cdot T}\cdot X\;j\cdot\omega$\\
   206       \`${\cal F}\;(x(t-T)) = e^{-j\cdot\omega\cdot T}\cdot X\;j\cdot\omega$\\
   214 %02 \> $e^{-j\cdot\omega\cdot 2}\cdot X\;(j\cdot\omega)$\\
   207 02 \> $e^{-j\cdot\omega\cdot 2}\cdot X\;(j\cdot\omega)$\\
   215 %      \`definition $X\;(j\cdot\omega)$\\
   208       \`definition $X\;(j\cdot\omega)$\\
   216 %03 \> $e^{-j\cdot\omega\cdot 2}\cdot \int_{-\infty}^\infty x\;t\;\cdot e^{-j\cdot\omega\cdot t} d t$\\
   209 03 \> $e^{-j\cdot\omega\cdot 2}\cdot \int_{-\infty}^\infty x\;t\;\cdot e^{-j\cdot\omega\cdot t} d t$\\
   217 %      \` $x\;t = 1\;{\it for}\;\{x.\;-1\leq t\;\land\;t\leq 1\}\;{\it and}\;x\;t=0\;{\it otherwise}$\\
   210       \` $x\;t = 1\;{\it for}\;\{x.\;-1\leq t\;\land\;t\leq 1\}\;{\it and}\;x\;t=0\;{\it otherwise}$\\
   218 %04 \> $e^{-j\cdot\omega\cdot 2}\cdot \int_{-1}^1 1\cdot e^{-j\cdot\omega\cdot t} d t$\\
   211 04 \> $e^{-j\cdot\omega\cdot 2}\cdot \int_{-1}^1 1\cdot e^{-j\cdot\omega\cdot t} d t$\\
   219 %      \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\
   212       \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\
   220 %05 \> $e^{-j\cdot\omega\cdot 2}\cdot \int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{-1}^1$\\
   213 05 \> $e^{-j\cdot\omega\cdot 2}\cdot \int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{-1}^1$\\
   221 %      %\` $\int e^{a\cdot t} = \frac{1}{a}\cdot e^{a\cdot t}$\\
   214       %\` $\int e^{a\cdot t} = \frac{1}{a}\cdot e^{a\cdot t}$\\
   222 %       \` pbl: integration in $\cal C$\\
   215        \` pbl: integration in $\cal C$\\
   223 %06 \> $e^{-j\cdot\omega\cdot 2}\cdot (\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot t} \;|_{-1}^1)$\\
   216 06 \> $e^{-j\cdot\omega\cdot 2}\cdot (\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot t} \;|_{-1}^1)$\\
   224 %      \` $f\;t\;|_a^b = f\;b-f\;a$\\
   217       \` $f\;t\;|_a^b = f\;b-f\;a$\\
   225 %07 \> $e^{-j\cdot\omega\cdot 2}\cdot (\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 1} -  \frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot -1})$\\
   218 07 \> $e^{-j\cdot\omega\cdot 2}\cdot (\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 1} -  \frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot -1})$\\
   226 %\vdots\` pbl: simplification+factorization in $\cal C$\\
   219 \vdots\` pbl: simplification+factorization in $\cal C$\\
   227 %08 \> $e^{-j\cdot\omega\cdot 2}\cdot \frac{1}{-j\cdot\omega}\cdot(e^{j\cdot\omega} - e^{-j\cdot\omega})$\\
   220 08 \> $e^{-j\cdot\omega\cdot 2}\cdot \frac{1}{-j\cdot\omega}\cdot(e^{j\cdot\omega} - e^{-j\cdot\omega})$\\
   228 %      \` trick~!\\
   221       \` trick~!\\
   229 %09 \> $e^{-j\cdot\omega\cdot 2}\cdot \frac{1}{\omega}\cdot(\frac{-e^{j\cdot\omega} + e^{-j\cdot\omega}}{j})$\\
   222 09 \> $e^{-j\cdot\omega\cdot 2}\cdot \frac{1}{\omega}\cdot(\frac{-e^{j\cdot\omega} + e^{-j\cdot\omega}}{j})$\\
   230 %      \` table\\
   223       \` table\\
   231 %10 \> $e^{-j\cdot\omega\cdot 2}\cdot 2\cdot\frac{\sin\;\omega}{\omega}$
   224 10 \> $e^{-j\cdot\omega\cdot 2}\cdot 2\cdot\frac{\sin\;\omega}{\omega}$
   232 %\end{tabbing}
   225 \end{tabbing}
   233 %}
   226 }
   234 %\end{frame}
   227 \end{frame}
       
   228 
   235 
   229 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   236 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   230 %%												Transform expl 2 REQ                   %%
   237 %%												Transform expl 2 REQ                   %%
   231 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   238 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   232 
   239 
   233 %WN ...
       
   234 \begin{frame}\frametitle{Fourier Transform 2: Development effort}
   240 \begin{frame}\frametitle{Fourier Transform 2: Development effort}
   235 {\small
   241 {\small
   236 \begin{center}
   242 \begin{center}
   237 \begin{tabular}{l|l|r}
   243 \begin{tabular}{l|l|r}
   238 requirements            & comments             &effort\\ \hline\hline
   244 requirements            & comments             &effort\\ \hline\hline
   273 %%												DTS SPEC				                       %%
   279 %%												DTS SPEC				                       %%
   274 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   280 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   275 
   281 
   276 \begin{frame}\frametitle{Convolution: Specification}
   282 \begin{frame}\frametitle{Convolution: Specification}
   277 {\footnotesize\it
   283 {\footnotesize\it
   278 Convolution
   284 
       
   285 Consider the two discrete-time, linear and time-invariant (LTI) systems with the following impulse response:
       
   286 
       
   287 \begin{center}
       
   288 $h_1[n]=\left(\frac{3}{5}\right)^n\cdot u[n]$\\
       
   289 $h_1[n]=\left(-\frac{2}{3}\right)^n\cdot u[n]$
       
   290 \end{center}
       
   291 
       
   292 The two systems are cascaded seriell. Derive the impulse respinse of the overall system $h_c[n]$.
       
   293 
   279 \begin{tabbing}
   294 \begin{tabbing}
   280 1\=postcond \=: \= \= $\;\;\;\;$\=\kill
   295 1\=postcond \=: \= \= $\;\;\;\;$\=\kill
   281 \>given    \>:\>  Signals h1[n], h2[n] \\
   296 \>given    \>:\>  Signals h1[n], h2[n] \\
   282 \>         \> \>  \>((h1 (n::real),(3/5)\textasciicircum{}n\,u(n::real)),\,(h2 (n::real),(-2/3)\textasciicircum{}n\,u(n::real)))\\
   297 \>         \> \>  \>((h1 (n::real),(3/5)\textasciicircum{}n\,u(n::real)),\,(h2 (n::real),(-2/3)\textasciicircum{}n\,u(n::real)))\\
   283                         %?(iterativer) datentyp in Isabelle/HOL
   298                         %?(iterativer) datentyp in Isabelle/HOL
   291 
   306 
   292 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   307 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   293 %%												DTS CALC				                       %%
   308 %%												DTS CALC				                       %%
   294 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   309 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   295 
   310 
   296 \begin{frame}\frametitle{Convolution: Calculation}
   311 %\begin{frame}\frametitle{Convolution: Calculation}
   297 TODO
   312 %TODO
   298 \end{frame}
   313 %\end{frame}
   299 
   314 
   300 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   315 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   301 %%												DTS REQ  				                       %%
   316 %%												DTS REQ  				                       %%
   302 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   317 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   303 
   318 
   347 %%												Z-Transform  SPEC                      %%
   362 %%												Z-Transform  SPEC                      %%
   348 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   363 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   349 
   364 
   350 \begin{frame}\frametitle{(Inverse) ${\cal Z}$-Transformation: Specification}
   365 \begin{frame}\frametitle{(Inverse) ${\cal Z}$-Transformation: Specification}
   351 {\footnotesize\it
   366 {\footnotesize\it
   352 Convolution
   367 
       
   368 Determine the inverse $\cal{z}$ transform of the following expression. Hint: applay the partial fraction expansion.
       
   369 
       
   370 \begin{center}
       
   371 $X(z)=\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}},\ \ x[n]$ is absolute summable
       
   372 \end{center}
       
   373 
   353 \begin{tabbing}
   374 \begin{tabbing}
   354 1\=postcond \=: \= \= $\;\;\;\;$\=\kill
   375 1\=postcond \=: \= \= $\;\;\;\;$\=\kill
   355 \>given    \>:\>  Expression of z \\
   376 \>given    \>:\>  Expression of z \\
   356 \>         \> \>  \>(X (z::real\,+z::imag),3/(z-1/4-1/8\,z\textasciicircum{}(-1)))\\
   377 \>         \> \>  \>(X (z::real\,+z::imag),3/(z-1/4-1/8\,z\textasciicircum{}(-1)))\\
   357 \>precond  \>:\>  TODO\\
   378 \>precond  \>:\>  TODO\\
   365 
   386 
   366 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   387 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   367 %%												Z expl		CALC                         %%
   388 %%												Z expl		CALC                         %%
   368 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   389 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   369 
   390 
   370 \begin{frame}\frametitle{(Inverse) ${\cal Z}$-Transformation: Calculation}
   391 %\begin{frame}\frametitle{(Inverse) ${\cal Z}$-Transformation: Calculation}
   371 TODO
   392 %TODO
   372 \end{frame}
   393 %\end{frame}
   373 
   394 
   374 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   395 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   375 %%												Z expl		REQ	                         %%
   396 %%												Z expl		REQ	                         %%
   376 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   397 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   377 
   398