src/HOL/ex/Numeral.thy
author haftmann
Thu, 26 Aug 2010 12:19:49 +0200
changeset 39006 f9837065b5e8
parent 38300 acd48ef85bfc
child 39043 abe92b33ac9f
permissions -rw-r--r--
prevent line breaks after Scala symbolic operators
haftmann@28021
     1
(*  Title:      HOL/ex/Numeral.thy
haftmann@28021
     2
    Author:     Florian Haftmann
huffman@29884
     3
*)
haftmann@28021
     4
huffman@29884
     5
header {* An experimental alternative numeral representation. *}
haftmann@28021
     6
haftmann@28021
     7
theory Numeral
wenzelm@33343
     8
imports Main
haftmann@28021
     9
begin
haftmann@28021
    10
haftmann@28021
    11
subsection {* The @{text num} type *}
haftmann@28021
    12
huffman@29880
    13
datatype num = One | Dig0 num | Dig1 num
huffman@29880
    14
huffman@29880
    15
text {* Increment function for type @{typ num} *}
huffman@29880
    16
haftmann@31021
    17
primrec inc :: "num \<Rightarrow> num" where
huffman@29880
    18
  "inc One = Dig0 One"
huffman@29880
    19
| "inc (Dig0 x) = Dig1 x"
huffman@29880
    20
| "inc (Dig1 x) = Dig0 (inc x)"
huffman@29880
    21
huffman@29880
    22
text {* Converting between type @{typ num} and type @{typ nat} *}
huffman@29880
    23
haftmann@31021
    24
primrec nat_of_num :: "num \<Rightarrow> nat" where
huffman@29880
    25
  "nat_of_num One = Suc 0"
huffman@29880
    26
| "nat_of_num (Dig0 x) = nat_of_num x + nat_of_num x"
huffman@29880
    27
| "nat_of_num (Dig1 x) = Suc (nat_of_num x + nat_of_num x)"
huffman@29880
    28
haftmann@31021
    29
primrec num_of_nat :: "nat \<Rightarrow> num" where
huffman@29880
    30
  "num_of_nat 0 = One"
huffman@29880
    31
| "num_of_nat (Suc n) = (if 0 < n then inc (num_of_nat n) else One)"
huffman@29880
    32
huffman@29882
    33
lemma nat_of_num_pos: "0 < nat_of_num x"
huffman@29880
    34
  by (induct x) simp_all
huffman@29880
    35
huffman@31028
    36
lemma nat_of_num_neq_0: "nat_of_num x \<noteq> 0"
huffman@29880
    37
  by (induct x) simp_all
huffman@29880
    38
huffman@29880
    39
lemma nat_of_num_inc: "nat_of_num (inc x) = Suc (nat_of_num x)"
huffman@29880
    40
  by (induct x) simp_all
huffman@29880
    41
huffman@29880
    42
lemma num_of_nat_double:
huffman@29880
    43
  "0 < n \<Longrightarrow> num_of_nat (n + n) = Dig0 (num_of_nat n)"
huffman@29880
    44
  by (induct n) simp_all
huffman@29880
    45
haftmann@28021
    46
text {*
huffman@29880
    47
  Type @{typ num} is isomorphic to the strictly positive
haftmann@28021
    48
  natural numbers.
haftmann@28021
    49
*}
haftmann@28021
    50
huffman@29880
    51
lemma nat_of_num_inverse: "num_of_nat (nat_of_num x) = x"
huffman@29882
    52
  by (induct x) (simp_all add: num_of_nat_double nat_of_num_pos)
nipkow@29667
    53
huffman@29880
    54
lemma num_of_nat_inverse: "0 < n \<Longrightarrow> nat_of_num (num_of_nat n) = n"
huffman@29880
    55
  by (induct n) (simp_all add: nat_of_num_inc)
huffman@29879
    56
huffman@29879
    57
lemma num_eq_iff: "x = y \<longleftrightarrow> nat_of_num x = nat_of_num y"
haftmann@38300
    58
proof
haftmann@38300
    59
  assume "nat_of_num x = nat_of_num y"
haftmann@38300
    60
  then have "num_of_nat (nat_of_num x) = num_of_nat (nat_of_num y)" by simp
haftmann@38300
    61
  then show "x = y" by (simp add: nat_of_num_inverse)
haftmann@38300
    62
qed simp
huffman@29879
    63
huffman@29880
    64
lemma num_induct [case_names One inc]:
huffman@29880
    65
  fixes P :: "num \<Rightarrow> bool"
huffman@29880
    66
  assumes One: "P One"
huffman@29880
    67
    and inc: "\<And>x. P x \<Longrightarrow> P (inc x)"
huffman@29880
    68
  shows "P x"
huffman@29880
    69
proof -
huffman@29880
    70
  obtain n where n: "Suc n = nat_of_num x"
huffman@29880
    71
    by (cases "nat_of_num x", simp_all add: nat_of_num_neq_0)
huffman@29880
    72
  have "P (num_of_nat (Suc n))"
huffman@29880
    73
  proof (induct n)
huffman@29880
    74
    case 0 show ?case using One by simp
nipkow@29667
    75
  next
huffman@29880
    76
    case (Suc n)
huffman@29880
    77
    then have "P (inc (num_of_nat (Suc n)))" by (rule inc)
huffman@29880
    78
    then show "P (num_of_nat (Suc (Suc n)))" by simp
nipkow@29667
    79
  qed
huffman@29880
    80
  with n show "P x"
huffman@29880
    81
    by (simp add: nat_of_num_inverse)
nipkow@29667
    82
qed
haftmann@28021
    83
haftmann@28021
    84
text {*
haftmann@38300
    85
  From now on, there are two possible models for @{typ num}: as
haftmann@38300
    86
  positive naturals (rule @{text "num_induct"}) and as digit
haftmann@38300
    87
  representation (rules @{text "num.induct"}, @{text "num.cases"}).
nipkow@29667
    88
haftmann@38300
    89
  It is not entirely clear in which context it is better to use the
haftmann@38300
    90
  one or the other, or whether the construction should be reversed.
haftmann@28021
    91
*}
haftmann@28021
    92
haftmann@28021
    93
huffman@29882
    94
subsection {* Numeral operations *}
haftmann@28021
    95
nipkow@29667
    96
ML {*
wenzelm@31913
    97
structure Dig_Simps = Named_Thms
wenzelm@31913
    98
(
wenzelm@31913
    99
  val name = "numeral"
wenzelm@31913
   100
  val description = "Simplification rules for numerals"
wenzelm@31913
   101
)
nipkow@29667
   102
*}
haftmann@28021
   103
wenzelm@31913
   104
setup Dig_Simps.setup
haftmann@28021
   105
huffman@29882
   106
instantiation num :: "{plus,times,ord}"
haftmann@28021
   107
begin
haftmann@28021
   108
haftmann@28021
   109
definition plus_num :: "num \<Rightarrow> num \<Rightarrow> num" where
haftmann@37765
   110
  "m + n = num_of_nat (nat_of_num m + nat_of_num n)"
haftmann@28021
   111
haftmann@28021
   112
definition times_num :: "num \<Rightarrow> num \<Rightarrow> num" where
haftmann@37765
   113
  "m * n = num_of_nat (nat_of_num m * nat_of_num n)"
haftmann@28021
   114
huffman@29882
   115
definition less_eq_num :: "num \<Rightarrow> num \<Rightarrow> bool" where
haftmann@37765
   116
  "m \<le> n \<longleftrightarrow> nat_of_num m \<le> nat_of_num n"
haftmann@28021
   117
huffman@29882
   118
definition less_num :: "num \<Rightarrow> num \<Rightarrow> bool" where
haftmann@37765
   119
  "m < n \<longleftrightarrow> nat_of_num m < nat_of_num n"
haftmann@28021
   120
huffman@29882
   121
instance ..
haftmann@28021
   122
haftmann@28021
   123
end
haftmann@28021
   124
huffman@29882
   125
lemma nat_of_num_add: "nat_of_num (x + y) = nat_of_num x + nat_of_num y"
huffman@29882
   126
  unfolding plus_num_def
huffman@29882
   127
  by (intro num_of_nat_inverse add_pos_pos nat_of_num_pos)
haftmann@28021
   128
huffman@29882
   129
lemma nat_of_num_mult: "nat_of_num (x * y) = nat_of_num x * nat_of_num y"
huffman@29882
   130
  unfolding times_num_def
huffman@29882
   131
  by (intro num_of_nat_inverse mult_pos_pos nat_of_num_pos)
haftmann@28021
   132
huffman@29882
   133
lemma Dig_plus [numeral, simp, code]:
huffman@29882
   134
  "One + One = Dig0 One"
huffman@29882
   135
  "One + Dig0 m = Dig1 m"
huffman@29882
   136
  "One + Dig1 m = Dig0 (m + One)"
huffman@29882
   137
  "Dig0 n + One = Dig1 n"
huffman@29882
   138
  "Dig0 n + Dig0 m = Dig0 (n + m)"
huffman@29882
   139
  "Dig0 n + Dig1 m = Dig1 (n + m)"
huffman@29882
   140
  "Dig1 n + One = Dig0 (n + One)"
huffman@29882
   141
  "Dig1 n + Dig0 m = Dig1 (n + m)"
huffman@29882
   142
  "Dig1 n + Dig1 m = Dig0 (n + m + One)"
huffman@29882
   143
  by (simp_all add: num_eq_iff nat_of_num_add)
haftmann@28021
   144
huffman@29882
   145
lemma Dig_times [numeral, simp, code]:
huffman@29882
   146
  "One * One = One"
huffman@29882
   147
  "One * Dig0 n = Dig0 n"
huffman@29882
   148
  "One * Dig1 n = Dig1 n"
huffman@29882
   149
  "Dig0 n * One = Dig0 n"
huffman@29882
   150
  "Dig0 n * Dig0 m = Dig0 (n * Dig0 m)"
huffman@29882
   151
  "Dig0 n * Dig1 m = Dig0 (n * Dig1 m)"
huffman@29882
   152
  "Dig1 n * One = Dig1 n"
huffman@29882
   153
  "Dig1 n * Dig0 m = Dig0 (n * Dig0 m + m)"
huffman@29882
   154
  "Dig1 n * Dig1 m = Dig1 (n * Dig1 m + m)"
huffman@29882
   155
  by (simp_all add: num_eq_iff nat_of_num_add nat_of_num_mult
huffman@29882
   156
                    left_distrib right_distrib)
haftmann@28021
   157
huffman@29882
   158
lemma less_eq_num_code [numeral, simp, code]:
huffman@29882
   159
  "One \<le> n \<longleftrightarrow> True"
huffman@29882
   160
  "Dig0 m \<le> One \<longleftrightarrow> False"
huffman@29882
   161
  "Dig1 m \<le> One \<longleftrightarrow> False"
huffman@29882
   162
  "Dig0 m \<le> Dig0 n \<longleftrightarrow> m \<le> n"
huffman@29882
   163
  "Dig0 m \<le> Dig1 n \<longleftrightarrow> m \<le> n"
huffman@29882
   164
  "Dig1 m \<le> Dig1 n \<longleftrightarrow> m \<le> n"
huffman@29882
   165
  "Dig1 m \<le> Dig0 n \<longleftrightarrow> m < n"
huffman@29882
   166
  using nat_of_num_pos [of n] nat_of_num_pos [of m]
huffman@29882
   167
  by (auto simp add: less_eq_num_def less_num_def)
haftmann@28021
   168
huffman@29882
   169
lemma less_num_code [numeral, simp, code]:
huffman@29882
   170
  "m < One \<longleftrightarrow> False"
huffman@29882
   171
  "One < One \<longleftrightarrow> False"
huffman@29882
   172
  "One < Dig0 n \<longleftrightarrow> True"
huffman@29882
   173
  "One < Dig1 n \<longleftrightarrow> True"
huffman@29882
   174
  "Dig0 m < Dig0 n \<longleftrightarrow> m < n"
huffman@29882
   175
  "Dig0 m < Dig1 n \<longleftrightarrow> m \<le> n"
huffman@29882
   176
  "Dig1 m < Dig1 n \<longleftrightarrow> m < n"
huffman@29882
   177
  "Dig1 m < Dig0 n \<longleftrightarrow> m < n"
huffman@29882
   178
  using nat_of_num_pos [of n] nat_of_num_pos [of m]
huffman@29882
   179
  by (auto simp add: less_eq_num_def less_num_def)
haftmann@28021
   180
huffman@29882
   181
text {* Rules using @{text One} and @{text inc} as constructors *}
haftmann@28021
   182
huffman@29882
   183
lemma add_One: "x + One = inc x"
huffman@29882
   184
  by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc)
huffman@29882
   185
huffman@29882
   186
lemma add_inc: "x + inc y = inc (x + y)"
huffman@29882
   187
  by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc)
huffman@29882
   188
huffman@29882
   189
lemma mult_One: "x * One = x"
huffman@29882
   190
  by (simp add: num_eq_iff nat_of_num_mult)
huffman@29882
   191
huffman@29882
   192
lemma mult_inc: "x * inc y = x * y + x"
huffman@29882
   193
  by (simp add: num_eq_iff nat_of_num_mult nat_of_num_add nat_of_num_inc)
huffman@29882
   194
huffman@29882
   195
text {* A double-and-decrement function *}
huffman@29882
   196
huffman@29882
   197
primrec DigM :: "num \<Rightarrow> num" where
huffman@29882
   198
  "DigM One = One"
haftmann@38300
   199
| "DigM (Dig0 n) = Dig1 (DigM n)"
haftmann@38300
   200
| "DigM (Dig1 n) = Dig1 (Dig0 n)"
huffman@29882
   201
huffman@29882
   202
lemma DigM_plus_one: "DigM n + One = Dig0 n"
huffman@29882
   203
  by (induct n) simp_all
huffman@29882
   204
huffman@29882
   205
lemma add_One_commute: "One + n = n + One"
huffman@29882
   206
  by (induct n) simp_all
huffman@29882
   207
huffman@29882
   208
lemma one_plus_DigM: "One + DigM n = Dig0 n"
haftmann@38300
   209
  by (simp add: add_One_commute DigM_plus_one)
haftmann@28021
   210
huffman@29891
   211
text {* Squaring and exponentiation *}
huffman@29884
   212
huffman@29884
   213
primrec square :: "num \<Rightarrow> num" where
huffman@29884
   214
  "square One = One"
huffman@29884
   215
| "square (Dig0 n) = Dig0 (Dig0 (square n))"
huffman@29884
   216
| "square (Dig1 n) = Dig1 (Dig0 (square n + n))"
huffman@29884
   217
haftmann@38300
   218
primrec pow :: "num \<Rightarrow> num \<Rightarrow> num" where
huffman@29891
   219
  "pow x One = x"
huffman@29891
   220
| "pow x (Dig0 y) = square (pow x y)"
huffman@29891
   221
| "pow x (Dig1 y) = x * square (pow x y)"
huffman@29884
   222
haftmann@28021
   223
haftmann@28021
   224
subsection {* Binary numerals *}
haftmann@28021
   225
haftmann@28021
   226
text {*
haftmann@28021
   227
  We embed binary representations into a generic algebraic
haftmann@29871
   228
  structure using @{text of_num}.
haftmann@28021
   229
*}
haftmann@28021
   230
haftmann@28021
   231
class semiring_numeral = semiring + monoid_mult
haftmann@28021
   232
begin
haftmann@28021
   233
haftmann@28021
   234
primrec of_num :: "num \<Rightarrow> 'a" where
huffman@31028
   235
  of_num_One [numeral]: "of_num One = 1"
haftmann@38300
   236
| "of_num (Dig0 n) = of_num n + of_num n"
haftmann@38300
   237
| "of_num (Dig1 n) = of_num n + of_num n + 1"
haftmann@28021
   238
haftmann@38300
   239
lemma of_num_inc: "of_num (inc n) = of_num n + 1"
haftmann@38300
   240
  by (induct n) (simp_all add: add_ac)
huffman@29880
   241
huffman@31028
   242
lemma of_num_add: "of_num (m + n) = of_num m + of_num n"
haftmann@38300
   243
  by (induct n rule: num_induct) (simp_all add: add_One add_inc of_num_inc add_ac)
huffman@31028
   244
huffman@31028
   245
lemma of_num_mult: "of_num (m * n) = of_num m * of_num n"
haftmann@38300
   246
  by (induct n rule: num_induct) (simp_all add: mult_One mult_inc of_num_add of_num_inc right_distrib)
huffman@31028
   247
haftmann@28021
   248
declare of_num.simps [simp del]
haftmann@28021
   249
haftmann@28021
   250
end
haftmann@28021
   251
haftmann@28021
   252
ML {*
huffman@31027
   253
fun mk_num k =
huffman@31027
   254
  if k > 1 then
huffman@31027
   255
    let
huffman@31027
   256
      val (l, b) = Integer.div_mod k 2;
huffman@31027
   257
      val bit = (if b = 0 then @{term Dig0} else @{term Dig1});
huffman@31027
   258
    in bit $ (mk_num l) end
huffman@31027
   259
  else if k = 1 then @{term One}
huffman@31027
   260
  else error ("mk_num " ^ string_of_int k);
haftmann@28021
   261
huffman@29879
   262
fun dest_num @{term One} = 1
haftmann@28021
   263
  | dest_num (@{term Dig0} $ n) = 2 * dest_num n
huffman@31027
   264
  | dest_num (@{term Dig1} $ n) = 2 * dest_num n + 1
huffman@31027
   265
  | dest_num t = raise TERM ("dest_num", [t]);
haftmann@28021
   266
haftmann@38300
   267
fun mk_numeral phi T k = Morphism.term phi (Const (@{const_name of_num}, @{typ num} --> T))
haftmann@28021
   268
  $ mk_num k
haftmann@28021
   269
haftmann@38300
   270
fun dest_numeral phi (u $ t) =
haftmann@38300
   271
  if Term.aconv_untyped (u, Morphism.term phi (Const (@{const_name of_num}, dummyT)))
haftmann@38300
   272
  then (range_type (fastype_of u), dest_num t)
haftmann@38300
   273
  else raise TERM ("dest_numeral", [u, t]);
haftmann@28021
   274
*}
haftmann@28021
   275
haftmann@28021
   276
syntax
haftmann@28021
   277
  "_Numerals" :: "xnum \<Rightarrow> 'a"    ("_")
haftmann@28021
   278
haftmann@28021
   279
parse_translation {*
haftmann@28021
   280
let
haftmann@28021
   281
  fun num_of_int n = if n > 0 then case IntInf.quotRem (n, 2)
huffman@29879
   282
     of (0, 1) => Const (@{const_name One}, dummyT)
haftmann@28021
   283
      | (n, 0) => Const (@{const_name Dig0}, dummyT) $ num_of_int n
haftmann@28021
   284
      | (n, 1) => Const (@{const_name Dig1}, dummyT) $ num_of_int n
haftmann@28021
   285
    else raise Match;
haftmann@28021
   286
  fun numeral_tr [Free (num, _)] =
haftmann@28021
   287
        let
haftmann@28021
   288
          val {leading_zeros, value, ...} = Syntax.read_xnum num;
haftmann@28021
   289
          val _ = leading_zeros = 0 andalso value > 0
haftmann@28021
   290
            orelse error ("Bad numeral: " ^ num);
haftmann@28021
   291
        in Const (@{const_name of_num}, @{typ num} --> dummyT) $ num_of_int value end
haftmann@28021
   292
    | numeral_tr ts = raise TERM ("numeral_tr", ts);
wenzelm@35116
   293
in [(@{syntax_const "_Numerals"}, numeral_tr)] end
haftmann@28021
   294
*}
haftmann@28021
   295
haftmann@28021
   296
typed_print_translation {*
haftmann@28021
   297
let
haftmann@28021
   298
  fun dig b n = b + 2 * n; 
haftmann@28021
   299
  fun int_of_num' (Const (@{const_syntax Dig0}, _) $ n) =
haftmann@28021
   300
        dig 0 (int_of_num' n)
haftmann@28021
   301
    | int_of_num' (Const (@{const_syntax Dig1}, _) $ n) =
haftmann@28021
   302
        dig 1 (int_of_num' n)
huffman@29879
   303
    | int_of_num' (Const (@{const_syntax One}, _)) = 1;
haftmann@28021
   304
  fun num_tr' show_sorts T [n] =
haftmann@28021
   305
    let
haftmann@28021
   306
      val k = int_of_num' n;
wenzelm@35116
   307
      val t' = Syntax.const @{syntax_const "_Numerals"} $ Syntax.free ("#" ^ string_of_int k);
haftmann@28021
   308
    in case T
wenzelm@35540
   309
     of Type (@{type_name fun}, [_, T']) =>
haftmann@28021
   310
         if not (! show_types) andalso can Term.dest_Type T' then t'
haftmann@28021
   311
         else Syntax.const Syntax.constrainC $ t' $ Syntax.term_of_typ show_sorts T'
haftmann@28021
   312
      | T' => if T' = dummyT then t' else raise Match
haftmann@28021
   313
    end;
haftmann@28021
   314
in [(@{const_syntax of_num}, num_tr')] end
haftmann@28021
   315
*}
haftmann@28021
   316
haftmann@38300
   317
huffman@29882
   318
subsection {* Class-specific numeral rules *}
haftmann@28021
   319
huffman@29882
   320
subsubsection {* Class @{text semiring_numeral} *}
huffman@29882
   321
haftmann@28021
   322
context semiring_numeral
haftmann@28021
   323
begin
haftmann@28021
   324
huffman@29880
   325
abbreviation "Num1 \<equiv> of_num One"
haftmann@28021
   326
haftmann@28021
   327
text {*
haftmann@38300
   328
  Alas, there is still the duplication of @{term 1}, although the
haftmann@38300
   329
  duplicated @{term 0} has disappeared.  We could get rid of it by
haftmann@38300
   330
  replacing the constructor @{term 1} in @{typ num} by two
haftmann@38300
   331
  constructors @{text two} and @{text three}, resulting in a further
haftmann@28021
   332
  blow-up.  But it could be worth the effort.
haftmann@28021
   333
*}
haftmann@28021
   334
haftmann@28021
   335
lemma of_num_plus_one [numeral]:
huffman@29879
   336
  "of_num n + 1 = of_num (n + One)"
huffman@31028
   337
  by (simp only: of_num_add of_num_One)
haftmann@28021
   338
haftmann@28021
   339
lemma of_num_one_plus [numeral]:
huffman@31028
   340
  "1 + of_num n = of_num (One + n)"
huffman@31028
   341
  by (simp only: of_num_add of_num_One)
haftmann@28021
   342
haftmann@28021
   343
lemma of_num_plus [numeral]:
haftmann@28021
   344
  "of_num m + of_num n = of_num (m + n)"
haftmann@38300
   345
  by (simp only: of_num_add)
haftmann@28021
   346
haftmann@28021
   347
lemma of_num_times_one [numeral]:
haftmann@28021
   348
  "of_num n * 1 = of_num n"
haftmann@28021
   349
  by simp
haftmann@28021
   350
haftmann@28021
   351
lemma of_num_one_times [numeral]:
haftmann@28021
   352
  "1 * of_num n = of_num n"
haftmann@28021
   353
  by simp
haftmann@28021
   354
haftmann@28021
   355
lemma of_num_times [numeral]:
haftmann@28021
   356
  "of_num m * of_num n = of_num (m * n)"
huffman@31028
   357
  unfolding of_num_mult ..
haftmann@28021
   358
haftmann@28021
   359
end
haftmann@28021
   360
haftmann@38300
   361
haftmann@38300
   362
subsubsection {* Structures with a zero: class @{text semiring_1} *}
haftmann@28021
   363
haftmann@28021
   364
context semiring_1
haftmann@28021
   365
begin
haftmann@28021
   366
haftmann@28021
   367
subclass semiring_numeral ..
haftmann@28021
   368
haftmann@28021
   369
lemma of_nat_of_num [numeral]: "of_nat (of_num n) = of_num n"
haftmann@28021
   370
  by (induct n)
haftmann@28021
   371
    (simp_all add: semiring_numeral_class.of_num.simps of_num.simps add_ac)
haftmann@28021
   372
haftmann@28021
   373
declare of_nat_1 [numeral]
haftmann@28021
   374
haftmann@28021
   375
lemma Dig_plus_zero [numeral]:
haftmann@28021
   376
  "0 + 1 = 1"
haftmann@28021
   377
  "0 + of_num n = of_num n"
haftmann@28021
   378
  "1 + 0 = 1"
haftmann@28021
   379
  "of_num n + 0 = of_num n"
haftmann@28021
   380
  by simp_all
haftmann@28021
   381
haftmann@28021
   382
lemma Dig_times_zero [numeral]:
haftmann@28021
   383
  "0 * 1 = 0"
haftmann@28021
   384
  "0 * of_num n = 0"
haftmann@28021
   385
  "1 * 0 = 0"
haftmann@28021
   386
  "of_num n * 0 = 0"
haftmann@28021
   387
  by simp_all
haftmann@28021
   388
haftmann@28021
   389
end
haftmann@28021
   390
haftmann@28021
   391
lemma nat_of_num_of_num: "nat_of_num = of_num"
haftmann@28021
   392
proof
haftmann@28021
   393
  fix n
huffman@29880
   394
  have "of_num n = nat_of_num n"
huffman@29880
   395
    by (induct n) (simp_all add: of_num.simps)
haftmann@28021
   396
  then show "nat_of_num n = of_num n" by simp
haftmann@28021
   397
qed
haftmann@28021
   398
haftmann@38300
   399
haftmann@38300
   400
subsubsection {* Equality: class @{text semiring_char_0} *}
haftmann@28021
   401
haftmann@28021
   402
context semiring_char_0
haftmann@28021
   403
begin
haftmann@28021
   404
huffman@31028
   405
lemma of_num_eq_iff [numeral]: "of_num m = of_num n \<longleftrightarrow> m = n"
haftmann@28021
   406
  unfolding of_nat_of_num [symmetric] nat_of_num_of_num [symmetric]
huffman@29880
   407
    of_nat_eq_iff num_eq_iff ..
haftmann@28021
   408
huffman@31028
   409
lemma of_num_eq_one_iff [numeral]: "of_num n = 1 \<longleftrightarrow> n = One"
huffman@31028
   410
  using of_num_eq_iff [of n One] by (simp add: of_num_One)
haftmann@28021
   411
huffman@31028
   412
lemma one_eq_of_num_iff [numeral]: "1 = of_num n \<longleftrightarrow> One = n"
huffman@31028
   413
  using of_num_eq_iff [of One n] by (simp add: of_num_One)
haftmann@28021
   414
haftmann@28021
   415
end
haftmann@28021
   416
haftmann@38300
   417
haftmann@38300
   418
subsubsection {* Comparisons: class @{text linordered_semidom} *}
haftmann@38300
   419
haftmann@38300
   420
text {*
haftmann@38300
   421
  Perhaps the underlying structure could even 
haftmann@38300
   422
  be more general than @{text linordered_semidom}.
haftmann@28021
   423
*}
haftmann@28021
   424
haftmann@35028
   425
context linordered_semidom
haftmann@28021
   426
begin
haftmann@28021
   427
huffman@29928
   428
lemma of_num_pos [numeral]: "0 < of_num n"
huffman@29928
   429
  by (induct n) (simp_all add: of_num.simps add_pos_pos)
huffman@29928
   430
haftmann@38300
   431
lemma of_num_not_zero [numeral]: "of_num n \<noteq> 0"
haftmann@38300
   432
  using of_num_pos [of n] by simp
haftmann@38300
   433
haftmann@28021
   434
lemma of_num_less_eq_iff [numeral]: "of_num m \<le> of_num n \<longleftrightarrow> m \<le> n"
haftmann@28021
   435
proof -
haftmann@28021
   436
  have "of_nat (of_num m) \<le> of_nat (of_num n) \<longleftrightarrow> m \<le> n"
haftmann@28021
   437
    unfolding less_eq_num_def nat_of_num_of_num of_nat_le_iff ..
haftmann@28021
   438
  then show ?thesis by (simp add: of_nat_of_num)
haftmann@28021
   439
qed
haftmann@28021
   440
huffman@31028
   441
lemma of_num_less_eq_one_iff [numeral]: "of_num n \<le> 1 \<longleftrightarrow> n \<le> One"
huffman@31028
   442
  using of_num_less_eq_iff [of n One] by (simp add: of_num_One)
haftmann@28021
   443
haftmann@28021
   444
lemma one_less_eq_of_num_iff [numeral]: "1 \<le> of_num n"
huffman@31028
   445
  using of_num_less_eq_iff [of One n] by (simp add: of_num_One)
haftmann@28021
   446
haftmann@28021
   447
lemma of_num_less_iff [numeral]: "of_num m < of_num n \<longleftrightarrow> m < n"
haftmann@28021
   448
proof -
haftmann@28021
   449
  have "of_nat (of_num m) < of_nat (of_num n) \<longleftrightarrow> m < n"
haftmann@28021
   450
    unfolding less_num_def nat_of_num_of_num of_nat_less_iff ..
haftmann@28021
   451
  then show ?thesis by (simp add: of_nat_of_num)
haftmann@28021
   452
qed
haftmann@28021
   453
haftmann@28021
   454
lemma of_num_less_one_iff [numeral]: "\<not> of_num n < 1"
huffman@31028
   455
  using of_num_less_iff [of n One] by (simp add: of_num_One)
haftmann@28021
   456
huffman@31028
   457
lemma one_less_of_num_iff [numeral]: "1 < of_num n \<longleftrightarrow> One < n"
huffman@31028
   458
  using of_num_less_iff [of One n] by (simp add: of_num_One)
haftmann@28021
   459
huffman@29928
   460
lemma of_num_nonneg [numeral]: "0 \<le> of_num n"
huffman@29928
   461
  by (induct n) (simp_all add: of_num.simps add_nonneg_nonneg)
huffman@29928
   462
huffman@29928
   463
lemma of_num_less_zero_iff [numeral]: "\<not> of_num n < 0"
huffman@29928
   464
  by (simp add: not_less of_num_nonneg)
huffman@29928
   465
huffman@29928
   466
lemma of_num_le_zero_iff [numeral]: "\<not> of_num n \<le> 0"
huffman@29928
   467
  by (simp add: not_le of_num_pos)
huffman@29928
   468
huffman@29928
   469
end
huffman@29928
   470
haftmann@35028
   471
context linordered_idom
huffman@29928
   472
begin
huffman@29928
   473
huffman@30791
   474
lemma minus_of_num_less_of_num_iff: "- of_num m < of_num n"
huffman@29928
   475
proof -
huffman@29928
   476
  have "- of_num m < 0" by (simp add: of_num_pos)
huffman@29928
   477
  also have "0 < of_num n" by (simp add: of_num_pos)
huffman@29928
   478
  finally show ?thesis .
huffman@29928
   479
qed
huffman@29928
   480
haftmann@38300
   481
lemma minus_of_num_not_equal_of_num: "- of_num m \<noteq> of_num n"
haftmann@38300
   482
  using minus_of_num_less_of_num_iff [of m n] by simp
haftmann@38300
   483
huffman@30791
   484
lemma minus_of_num_less_one_iff: "- of_num n < 1"
huffman@31028
   485
  using minus_of_num_less_of_num_iff [of n One] by (simp add: of_num_One)
huffman@29928
   486
huffman@30791
   487
lemma minus_one_less_of_num_iff: "- 1 < of_num n"
huffman@31028
   488
  using minus_of_num_less_of_num_iff [of One n] by (simp add: of_num_One)
huffman@29928
   489
huffman@30791
   490
lemma minus_one_less_one_iff: "- 1 < 1"
huffman@31028
   491
  using minus_of_num_less_of_num_iff [of One One] by (simp add: of_num_One)
huffman@30791
   492
huffman@30791
   493
lemma minus_of_num_le_of_num_iff: "- of_num m \<le> of_num n"
huffman@29928
   494
  by (simp add: less_imp_le minus_of_num_less_of_num_iff)
huffman@29928
   495
huffman@30791
   496
lemma minus_of_num_le_one_iff: "- of_num n \<le> 1"
huffman@29928
   497
  by (simp add: less_imp_le minus_of_num_less_one_iff)
huffman@29928
   498
huffman@30791
   499
lemma minus_one_le_of_num_iff: "- 1 \<le> of_num n"
huffman@29928
   500
  by (simp add: less_imp_le minus_one_less_of_num_iff)
huffman@29928
   501
huffman@30791
   502
lemma minus_one_le_one_iff: "- 1 \<le> 1"
huffman@30791
   503
  by (simp add: less_imp_le minus_one_less_one_iff)
huffman@30791
   504
huffman@30791
   505
lemma of_num_le_minus_of_num_iff: "\<not> of_num m \<le> - of_num n"
huffman@29928
   506
  by (simp add: not_le minus_of_num_less_of_num_iff)
huffman@29928
   507
huffman@30791
   508
lemma one_le_minus_of_num_iff: "\<not> 1 \<le> - of_num n"
huffman@29928
   509
  by (simp add: not_le minus_of_num_less_one_iff)
huffman@29928
   510
huffman@30791
   511
lemma of_num_le_minus_one_iff: "\<not> of_num n \<le> - 1"
huffman@29928
   512
  by (simp add: not_le minus_one_less_of_num_iff)
huffman@29928
   513
huffman@30791
   514
lemma one_le_minus_one_iff: "\<not> 1 \<le> - 1"
huffman@30791
   515
  by (simp add: not_le minus_one_less_one_iff)
huffman@30791
   516
huffman@30791
   517
lemma of_num_less_minus_of_num_iff: "\<not> of_num m < - of_num n"
huffman@29928
   518
  by (simp add: not_less minus_of_num_le_of_num_iff)
huffman@29928
   519
huffman@30791
   520
lemma one_less_minus_of_num_iff: "\<not> 1 < - of_num n"
huffman@29928
   521
  by (simp add: not_less minus_of_num_le_one_iff)
huffman@29928
   522
huffman@30791
   523
lemma of_num_less_minus_one_iff: "\<not> of_num n < - 1"
huffman@29928
   524
  by (simp add: not_less minus_one_le_of_num_iff)
huffman@29928
   525
huffman@30791
   526
lemma one_less_minus_one_iff: "\<not> 1 < - 1"
huffman@30791
   527
  by (simp add: not_less minus_one_le_one_iff)
huffman@30791
   528
huffman@30791
   529
lemmas le_signed_numeral_special [numeral] =
huffman@30791
   530
  minus_of_num_le_of_num_iff
huffman@30791
   531
  minus_of_num_le_one_iff
huffman@30791
   532
  minus_one_le_of_num_iff
huffman@30791
   533
  minus_one_le_one_iff
huffman@30791
   534
  of_num_le_minus_of_num_iff
huffman@30791
   535
  one_le_minus_of_num_iff
huffman@30791
   536
  of_num_le_minus_one_iff
huffman@30791
   537
  one_le_minus_one_iff
huffman@30791
   538
huffman@30791
   539
lemmas less_signed_numeral_special [numeral] =
huffman@30791
   540
  minus_of_num_less_of_num_iff
haftmann@38300
   541
  minus_of_num_not_equal_of_num
huffman@30791
   542
  minus_of_num_less_one_iff
huffman@30791
   543
  minus_one_less_of_num_iff
huffman@30791
   544
  minus_one_less_one_iff
huffman@30791
   545
  of_num_less_minus_of_num_iff
huffman@30791
   546
  one_less_minus_of_num_iff
huffman@30791
   547
  of_num_less_minus_one_iff
huffman@30791
   548
  one_less_minus_one_iff
huffman@30791
   549
haftmann@28021
   550
end
haftmann@28021
   551
haftmann@38300
   552
subsubsection {* Structures with subtraction: class @{text semiring_1_minus} *}
haftmann@28021
   553
haftmann@28021
   554
class semiring_minus = semiring + minus + zero +
haftmann@28021
   555
  assumes minus_inverts_plus1: "a + b = c \<Longrightarrow> c - b = a"
haftmann@28021
   556
  assumes minus_minus_zero_inverts_plus1: "a + b = c \<Longrightarrow> b - c = 0 - a"
haftmann@28021
   557
begin
haftmann@28021
   558
haftmann@28021
   559
lemma minus_inverts_plus2: "a + b = c \<Longrightarrow> c - a = b"
haftmann@28021
   560
  by (simp add: add_ac minus_inverts_plus1 [of b a])
haftmann@28021
   561
haftmann@28021
   562
lemma minus_minus_zero_inverts_plus2: "a + b = c \<Longrightarrow> a - c = 0 - b"
haftmann@28021
   563
  by (simp add: add_ac minus_minus_zero_inverts_plus1 [of b a])
haftmann@28021
   564
haftmann@28021
   565
end
haftmann@28021
   566
haftmann@28021
   567
class semiring_1_minus = semiring_1 + semiring_minus
haftmann@28021
   568
begin
haftmann@28021
   569
haftmann@28021
   570
lemma Dig_of_num_pos:
haftmann@28021
   571
  assumes "k + n = m"
haftmann@28021
   572
  shows "of_num m - of_num n = of_num k"
haftmann@28021
   573
  using assms by (simp add: of_num_plus minus_inverts_plus1)
haftmann@28021
   574
haftmann@28021
   575
lemma Dig_of_num_zero:
haftmann@28021
   576
  shows "of_num n - of_num n = 0"
haftmann@28021
   577
  by (rule minus_inverts_plus1) simp
haftmann@28021
   578
haftmann@28021
   579
lemma Dig_of_num_neg:
haftmann@28021
   580
  assumes "k + m = n"
haftmann@28021
   581
  shows "of_num m - of_num n = 0 - of_num k"
haftmann@28021
   582
  by (rule minus_minus_zero_inverts_plus1) (simp add: of_num_plus assms)
haftmann@28021
   583
haftmann@28021
   584
lemmas Dig_plus_eval =
huffman@29879
   585
  of_num_plus of_num_eq_iff Dig_plus refl [of One, THEN eqTrueI] num.inject
haftmann@28021
   586
haftmann@28021
   587
simproc_setup numeral_minus ("of_num m - of_num n") = {*
haftmann@28021
   588
  let
haftmann@28021
   589
    (*TODO proper implicit use of morphism via pattern antiquotations*)
haftmann@28021
   590
    fun cdest_of_num ct = (snd o split_last o snd o Drule.strip_comb) ct;
haftmann@28021
   591
    fun cdest_minus ct = case (rev o snd o Drule.strip_comb) ct of [n, m] => (m, n);
haftmann@28021
   592
    fun attach_num ct = (dest_num (Thm.term_of ct), ct);
haftmann@28021
   593
    fun cdifference t = (pairself (attach_num o cdest_of_num) o cdest_minus) t;
haftmann@28021
   594
    val simplify = MetaSimplifier.rewrite false (map mk_meta_eq @{thms Dig_plus_eval});
haftmann@38300
   595
    fun cert ck cl cj = @{thm eqTrueE} OF [@{thm meta_eq_to_obj_eq}
haftmann@38300
   596
      OF [simplify (Drule.list_comb (@{cterm "op = :: num \<Rightarrow> _"},
haftmann@38300
   597
        [Drule.list_comb (@{cterm "op + :: num \<Rightarrow> _"}, [ck, cl]), cj]))]];
haftmann@28021
   598
  in fn phi => fn _ => fn ct => case try cdifference ct
haftmann@28021
   599
   of NONE => (NONE)
haftmann@28021
   600
    | SOME ((k, ck), (l, cl)) => SOME (let val j = k - l in if j = 0
haftmann@28021
   601
        then MetaSimplifier.rewrite false [mk_meta_eq (Morphism.thm phi @{thm Dig_of_num_zero})] ct
haftmann@28021
   602
        else mk_meta_eq (let
haftmann@28021
   603
          val cj = Thm.cterm_of (Thm.theory_of_cterm ct) (mk_num (abs j));
haftmann@28021
   604
        in
haftmann@28021
   605
          (if j > 0 then (Morphism.thm phi @{thm Dig_of_num_pos}) OF [cert cj cl ck]
haftmann@28021
   606
          else (Morphism.thm phi @{thm Dig_of_num_neg}) OF [cert cj ck cl])
haftmann@28021
   607
        end) end)
haftmann@28021
   608
  end
haftmann@28021
   609
*}
haftmann@28021
   610
haftmann@28021
   611
lemma Dig_of_num_minus_zero [numeral]:
haftmann@28021
   612
  "of_num n - 0 = of_num n"
haftmann@28021
   613
  by (simp add: minus_inverts_plus1)
haftmann@28021
   614
haftmann@28021
   615
lemma Dig_one_minus_zero [numeral]:
haftmann@28021
   616
  "1 - 0 = 1"
haftmann@28021
   617
  by (simp add: minus_inverts_plus1)
haftmann@28021
   618
haftmann@28021
   619
lemma Dig_one_minus_one [numeral]:
haftmann@28021
   620
  "1 - 1 = 0"
haftmann@28021
   621
  by (simp add: minus_inverts_plus1)
haftmann@28021
   622
haftmann@28021
   623
lemma Dig_of_num_minus_one [numeral]:
huffman@29878
   624
  "of_num (Dig0 n) - 1 = of_num (DigM n)"
haftmann@28021
   625
  "of_num (Dig1 n) - 1 = of_num (Dig0 n)"
huffman@29878
   626
  by (auto intro: minus_inverts_plus1 simp add: DigM_plus_one of_num.simps of_num_plus_one)
haftmann@28021
   627
haftmann@28021
   628
lemma Dig_one_minus_of_num [numeral]:
huffman@29878
   629
  "1 - of_num (Dig0 n) = 0 - of_num (DigM n)"
haftmann@28021
   630
  "1 - of_num (Dig1 n) = 0 - of_num (Dig0 n)"
huffman@29878
   631
  by (auto intro: minus_minus_zero_inverts_plus1 simp add: DigM_plus_one of_num.simps of_num_plus_one)
haftmann@28021
   632
haftmann@28021
   633
end
haftmann@28021
   634
haftmann@38300
   635
haftmann@38300
   636
subsubsection {* Structures with negation: class @{text ring_1} *}
huffman@29882
   637
haftmann@28021
   638
context ring_1
haftmann@28021
   639
begin
haftmann@28021
   640
haftmann@38300
   641
subclass semiring_1_minus proof
haftmann@38300
   642
qed (simp_all add: algebra_simps)
haftmann@28021
   643
haftmann@28021
   644
lemma Dig_zero_minus_of_num [numeral]:
haftmann@28021
   645
  "0 - of_num n = - of_num n"
haftmann@28021
   646
  by simp
haftmann@28021
   647
haftmann@28021
   648
lemma Dig_zero_minus_one [numeral]:
haftmann@28021
   649
  "0 - 1 = - 1"
haftmann@28021
   650
  by simp
haftmann@28021
   651
haftmann@28021
   652
lemma Dig_uminus_uminus [numeral]:
haftmann@28021
   653
  "- (- of_num n) = of_num n"
haftmann@28021
   654
  by simp
haftmann@28021
   655
haftmann@28021
   656
lemma Dig_plus_uminus [numeral]:
haftmann@28021
   657
  "of_num m + - of_num n = of_num m - of_num n"
haftmann@28021
   658
  "- of_num m + of_num n = of_num n - of_num m"
haftmann@28021
   659
  "- of_num m + - of_num n = - (of_num m + of_num n)"
haftmann@28021
   660
  "of_num m - - of_num n = of_num m + of_num n"
haftmann@28021
   661
  "- of_num m - of_num n = - (of_num m + of_num n)"
haftmann@28021
   662
  "- of_num m - - of_num n = of_num n - of_num m"
haftmann@28021
   663
  by (simp_all add: diff_minus add_commute)
haftmann@28021
   664
haftmann@28021
   665
lemma Dig_times_uminus [numeral]:
haftmann@28021
   666
  "- of_num n * of_num m = - (of_num n * of_num m)"
haftmann@28021
   667
  "of_num n * - of_num m = - (of_num n * of_num m)"
haftmann@28021
   668
  "- of_num n * - of_num m = of_num n * of_num m"
huffman@31028
   669
  by simp_all
haftmann@28021
   670
haftmann@28021
   671
lemma of_int_of_num [numeral]: "of_int (of_num n) = of_num n"
haftmann@28021
   672
by (induct n)
haftmann@28021
   673
  (simp_all only: of_num.simps semiring_numeral_class.of_num.simps of_int_add, simp_all)
haftmann@28021
   674
haftmann@28021
   675
declare of_int_1 [numeral]
haftmann@28021
   676
haftmann@28021
   677
end
haftmann@28021
   678
haftmann@38300
   679
haftmann@38300
   680
subsubsection {* Structures with exponentiation *}
huffman@29891
   681
huffman@29891
   682
lemma of_num_square: "of_num (square x) = of_num x * of_num x"
huffman@29891
   683
by (induct x)
huffman@31028
   684
   (simp_all add: of_num.simps of_num_add algebra_simps)
huffman@29891
   685
huffman@31028
   686
lemma of_num_pow: "of_num (pow x y) = of_num x ^ of_num y"
huffman@29891
   687
by (induct y)
huffman@31028
   688
   (simp_all add: of_num.simps of_num_square of_num_mult power_add)
huffman@29891
   689
huffman@31028
   690
lemma power_of_num [numeral]: "of_num x ^ of_num y = of_num (pow x y)"
huffman@31028
   691
  unfolding of_num_pow ..
huffman@29891
   692
huffman@29891
   693
lemma power_zero_of_num [numeral]:
huffman@31029
   694
  "0 ^ of_num n = (0::'a::semiring_1)"
huffman@29891
   695
  using of_num_pos [where n=n and ?'a=nat]
huffman@29891
   696
  by (simp add: power_0_left)
huffman@29891
   697
huffman@29891
   698
lemma power_minus_Dig0 [numeral]:
huffman@31029
   699
  fixes x :: "'a::ring_1"
huffman@29891
   700
  shows "(- x) ^ of_num (Dig0 n) = x ^ of_num (Dig0 n)"
huffman@31028
   701
  by (induct n rule: num_induct) (simp_all add: of_num.simps of_num_inc)
huffman@29891
   702
huffman@29891
   703
lemma power_minus_Dig1 [numeral]:
huffman@31029
   704
  fixes x :: "'a::ring_1"
huffman@29891
   705
  shows "(- x) ^ of_num (Dig1 n) = - (x ^ of_num (Dig1 n))"
huffman@31028
   706
  by (induct n rule: num_induct) (simp_all add: of_num.simps of_num_inc)
huffman@29891
   707
huffman@29891
   708
declare power_one [numeral]
huffman@29891
   709
huffman@29891
   710
haftmann@38300
   711
subsubsection {* Greetings to @{typ nat}. *}
haftmann@28021
   712
haftmann@38300
   713
instance nat :: semiring_1_minus proof
haftmann@38300
   714
qed simp_all
haftmann@28021
   715
huffman@29879
   716
lemma Suc_of_num [numeral]: "Suc (of_num n) = of_num (n + One)"
haftmann@28021
   717
  unfolding of_num_plus_one [symmetric] by simp
haftmann@28021
   718
haftmann@28021
   719
lemma nat_number:
haftmann@28021
   720
  "1 = Suc 0"
huffman@29879
   721
  "of_num One = Suc 0"
huffman@29878
   722
  "of_num (Dig0 n) = Suc (of_num (DigM n))"
haftmann@28021
   723
  "of_num (Dig1 n) = Suc (of_num (Dig0 n))"
huffman@29878
   724
  by (simp_all add: of_num.simps DigM_plus_one Suc_of_num)
haftmann@28021
   725
haftmann@28021
   726
declare diff_0_eq_0 [numeral]
haftmann@28021
   727
haftmann@28021
   728
haftmann@38300
   729
subsection {* Proof tools setup *}
haftmann@28021
   730
haftmann@38300
   731
subsubsection {* Numeral equations as default simplification rules *}
haftmann@28021
   732
huffman@31029
   733
declare (in semiring_numeral) of_num_One [simp]
huffman@31029
   734
declare (in semiring_numeral) of_num_plus_one [simp]
huffman@31029
   735
declare (in semiring_numeral) of_num_one_plus [simp]
huffman@31029
   736
declare (in semiring_numeral) of_num_plus [simp]
huffman@31029
   737
declare (in semiring_numeral) of_num_times [simp]
huffman@31029
   738
huffman@31029
   739
declare (in semiring_1) of_nat_of_num [simp]
huffman@31029
   740
huffman@31029
   741
declare (in semiring_char_0) of_num_eq_iff [simp]
huffman@31029
   742
declare (in semiring_char_0) of_num_eq_one_iff [simp]
huffman@31029
   743
declare (in semiring_char_0) one_eq_of_num_iff [simp]
huffman@31029
   744
haftmann@35028
   745
declare (in linordered_semidom) of_num_pos [simp]
haftmann@38300
   746
declare (in linordered_semidom) of_num_not_zero [simp]
haftmann@35028
   747
declare (in linordered_semidom) of_num_less_eq_iff [simp]
haftmann@35028
   748
declare (in linordered_semidom) of_num_less_eq_one_iff [simp]
haftmann@35028
   749
declare (in linordered_semidom) one_less_eq_of_num_iff [simp]
haftmann@35028
   750
declare (in linordered_semidom) of_num_less_iff [simp]
haftmann@35028
   751
declare (in linordered_semidom) of_num_less_one_iff [simp]
haftmann@35028
   752
declare (in linordered_semidom) one_less_of_num_iff [simp]
haftmann@35028
   753
declare (in linordered_semidom) of_num_nonneg [simp]
haftmann@35028
   754
declare (in linordered_semidom) of_num_less_zero_iff [simp]
haftmann@35028
   755
declare (in linordered_semidom) of_num_le_zero_iff [simp]
huffman@31029
   756
haftmann@35028
   757
declare (in linordered_idom) le_signed_numeral_special [simp]
haftmann@35028
   758
declare (in linordered_idom) less_signed_numeral_special [simp]
huffman@31029
   759
huffman@31029
   760
declare (in semiring_1_minus) Dig_of_num_minus_one [simp]
huffman@31029
   761
declare (in semiring_1_minus) Dig_one_minus_of_num [simp]
huffman@31029
   762
huffman@31029
   763
declare (in ring_1) Dig_plus_uminus [simp]
huffman@31029
   764
declare (in ring_1) of_int_of_num [simp]
huffman@31029
   765
huffman@31029
   766
declare power_of_num [simp]
huffman@31029
   767
declare power_zero_of_num [simp]
huffman@31029
   768
declare power_minus_Dig0 [simp]
huffman@31029
   769
declare power_minus_Dig1 [simp]
huffman@31029
   770
huffman@31029
   771
declare Suc_of_num [simp]
huffman@31029
   772
haftmann@28021
   773
huffman@31026
   774
subsubsection {* Reorientation of equalities *}
huffman@31025
   775
huffman@31025
   776
setup {*
wenzelm@33523
   777
  Reorient_Proc.add
huffman@31025
   778
    (fn Const(@{const_name of_num}, _) $ _ => true
huffman@31025
   779
      | Const(@{const_name uminus}, _) $
huffman@31025
   780
          (Const(@{const_name of_num}, _) $ _) => true
huffman@31025
   781
      | _ => false)
huffman@31025
   782
*}
huffman@31025
   783
wenzelm@33523
   784
simproc_setup reorient_num ("of_num n = x" | "- of_num m = y") = Reorient_Proc.proc
wenzelm@33523
   785
huffman@31025
   786
huffman@31026
   787
subsubsection {* Constant folding for multiplication in semirings *}
huffman@31026
   788
huffman@31026
   789
context semiring_numeral
huffman@31026
   790
begin
huffman@31026
   791
huffman@31026
   792
lemma mult_of_num_commute: "x * of_num n = of_num n * x"
huffman@31026
   793
by (induct n)
huffman@31026
   794
  (simp_all only: of_num.simps left_distrib right_distrib mult_1_left mult_1_right)
huffman@31026
   795
huffman@31026
   796
definition
huffman@31026
   797
  "commutes_with a b \<longleftrightarrow> a * b = b * a"
huffman@31026
   798
huffman@31026
   799
lemma commutes_with_commute: "commutes_with a b \<Longrightarrow> a * b = b * a"
huffman@31026
   800
unfolding commutes_with_def .
huffman@31026
   801
huffman@31026
   802
lemma commutes_with_left_commute: "commutes_with a b \<Longrightarrow> a * (b * c) = b * (a * c)"
huffman@31026
   803
unfolding commutes_with_def by (simp only: mult_assoc [symmetric])
huffman@31026
   804
huffman@31026
   805
lemma commutes_with_numeral: "commutes_with x (of_num n)" "commutes_with (of_num n) x"
huffman@31026
   806
unfolding commutes_with_def by (simp_all add: mult_of_num_commute)
huffman@31026
   807
huffman@31026
   808
lemmas mult_ac_numeral =
huffman@31026
   809
  mult_assoc
huffman@31026
   810
  commutes_with_commute
huffman@31026
   811
  commutes_with_left_commute
huffman@31026
   812
  commutes_with_numeral
huffman@31026
   813
huffman@31026
   814
end
huffman@31026
   815
huffman@31026
   816
ML {*
huffman@31026
   817
structure Semiring_Times_Assoc_Data : ASSOC_FOLD_DATA =
huffman@31026
   818
struct
huffman@31026
   819
  val assoc_ss = HOL_ss addsimps @{thms mult_ac_numeral}
huffman@31026
   820
  val eq_reflection = eq_reflection
huffman@31026
   821
  fun is_numeral (Const(@{const_name of_num}, _) $ _) = true
huffman@31026
   822
    | is_numeral _ = false;
huffman@31026
   823
end;
huffman@31026
   824
huffman@31026
   825
structure Semiring_Times_Assoc = Assoc_Fold (Semiring_Times_Assoc_Data);
huffman@31026
   826
*}
huffman@31026
   827
huffman@31026
   828
simproc_setup semiring_assoc_fold' ("(a::'a::semiring_numeral) * b") =
huffman@31026
   829
  {* fn phi => fn ss => fn ct =>
huffman@31026
   830
    Semiring_Times_Assoc.proc ss (Thm.term_of ct) *}
huffman@31026
   831
huffman@31025
   832
haftmann@38300
   833
subsection {* Code generator setup for @{typ int} *}
haftmann@38300
   834
haftmann@38300
   835
text {* Reversing standard setup *}
haftmann@38300
   836
haftmann@38300
   837
lemma [code_unfold del]: "(0::int) \<equiv> Numeral0" by simp
haftmann@38300
   838
lemma [code_unfold del]: "(1::int) \<equiv> Numeral1" by simp
haftmann@38300
   839
declare zero_is_num_zero [code_unfold del]
haftmann@38300
   840
declare one_is_num_one [code_unfold del]
haftmann@38300
   841
  
haftmann@38300
   842
lemma [code, code del]:
haftmann@38300
   843
  "(1 :: int) = 1"
haftmann@38300
   844
  "(op + :: int \<Rightarrow> int \<Rightarrow> int) = op +"
haftmann@38300
   845
  "(uminus :: int \<Rightarrow> int) = uminus"
haftmann@38300
   846
  "(op - :: int \<Rightarrow> int \<Rightarrow> int) = op -"
haftmann@38300
   847
  "(op * :: int \<Rightarrow> int \<Rightarrow> int) = op *"
haftmann@38300
   848
  "(eq_class.eq :: int \<Rightarrow> int \<Rightarrow> bool) = eq_class.eq"
haftmann@38300
   849
  "(op \<le> :: int \<Rightarrow> int \<Rightarrow> bool) = op \<le>"
haftmann@38300
   850
  "(op < :: int \<Rightarrow> int \<Rightarrow> bool) = op <"
haftmann@38300
   851
  by rule+
haftmann@38300
   852
haftmann@38300
   853
text {* Constructors *}
haftmann@38300
   854
haftmann@38300
   855
definition Pls :: "num \<Rightarrow> int" where
haftmann@38300
   856
  [simp, code_post]: "Pls n = of_num n"
haftmann@38300
   857
haftmann@38300
   858
definition Mns :: "num \<Rightarrow> int" where
haftmann@38300
   859
  [simp, code_post]: "Mns n = - of_num n"
haftmann@38300
   860
haftmann@38300
   861
code_datatype "0::int" Pls Mns
haftmann@38300
   862
haftmann@38300
   863
lemmas [code_unfold] = Pls_def [symmetric] Mns_def [symmetric]
haftmann@38300
   864
haftmann@38300
   865
text {* Auxiliary operations *}
haftmann@38300
   866
haftmann@38300
   867
definition dup :: "int \<Rightarrow> int" where
haftmann@38300
   868
  [simp]: "dup k = k + k"
haftmann@38300
   869
haftmann@38300
   870
lemma Dig_dup [code]:
haftmann@38300
   871
  "dup 0 = 0"
haftmann@38300
   872
  "dup (Pls n) = Pls (Dig0 n)"
haftmann@38300
   873
  "dup (Mns n) = Mns (Dig0 n)"
haftmann@38300
   874
  by (simp_all add: of_num.simps)
haftmann@38300
   875
haftmann@38300
   876
definition sub :: "num \<Rightarrow> num \<Rightarrow> int" where
haftmann@38300
   877
  [simp]: "sub m n = (of_num m - of_num n)"
haftmann@38300
   878
haftmann@38300
   879
lemma Dig_sub [code]:
haftmann@38300
   880
  "sub One One = 0"
haftmann@38300
   881
  "sub (Dig0 m) One = of_num (DigM m)"
haftmann@38300
   882
  "sub (Dig1 m) One = of_num (Dig0 m)"
haftmann@38300
   883
  "sub One (Dig0 n) = - of_num (DigM n)"
haftmann@38300
   884
  "sub One (Dig1 n) = - of_num (Dig0 n)"
haftmann@38300
   885
  "sub (Dig0 m) (Dig0 n) = dup (sub m n)"
haftmann@38300
   886
  "sub (Dig1 m) (Dig1 n) = dup (sub m n)"
haftmann@38300
   887
  "sub (Dig1 m) (Dig0 n) = dup (sub m n) + 1"
haftmann@38300
   888
  "sub (Dig0 m) (Dig1 n) = dup (sub m n) - 1"
haftmann@38300
   889
  by (simp_all add: algebra_simps num_eq_iff nat_of_num_add)
haftmann@38300
   890
haftmann@38300
   891
text {* Implementations *}
haftmann@38300
   892
haftmann@38300
   893
lemma one_int_code [code]:
haftmann@38300
   894
  "1 = Pls One"
haftmann@38300
   895
  by (simp add: of_num_One)
haftmann@38300
   896
haftmann@38300
   897
lemma plus_int_code [code]:
haftmann@38300
   898
  "k + 0 = (k::int)"
haftmann@38300
   899
  "0 + l = (l::int)"
haftmann@38300
   900
  "Pls m + Pls n = Pls (m + n)"
haftmann@38300
   901
  "Pls m + Mns n = sub m n"
haftmann@38300
   902
  "Mns m + Pls n = sub n m"
haftmann@38300
   903
  "Mns m + Mns n = Mns (m + n)"
haftmann@38300
   904
  by simp_all
haftmann@38300
   905
haftmann@38300
   906
lemma uminus_int_code [code]:
haftmann@38300
   907
  "uminus 0 = (0::int)"
haftmann@38300
   908
  "uminus (Pls m) = Mns m"
haftmann@38300
   909
  "uminus (Mns m) = Pls m"
haftmann@38300
   910
  by simp_all
haftmann@38300
   911
haftmann@38300
   912
lemma minus_int_code [code]:
haftmann@38300
   913
  "k - 0 = (k::int)"
haftmann@38300
   914
  "0 - l = uminus (l::int)"
haftmann@38300
   915
  "Pls m - Pls n = sub m n"
haftmann@38300
   916
  "Pls m - Mns n = Pls (m + n)"
haftmann@38300
   917
  "Mns m - Pls n = Mns (m + n)"
haftmann@38300
   918
  "Mns m - Mns n = sub n m"
haftmann@38300
   919
  by simp_all
haftmann@38300
   920
haftmann@38300
   921
lemma times_int_code [code]:
haftmann@38300
   922
  "k * 0 = (0::int)"
haftmann@38300
   923
  "0 * l = (0::int)"
haftmann@38300
   924
  "Pls m * Pls n = Pls (m * n)"
haftmann@38300
   925
  "Pls m * Mns n = Mns (m * n)"
haftmann@38300
   926
  "Mns m * Pls n = Mns (m * n)"
haftmann@38300
   927
  "Mns m * Mns n = Pls (m * n)"
haftmann@38300
   928
  by simp_all
haftmann@38300
   929
haftmann@38300
   930
lemma eq_int_code [code]:
haftmann@38300
   931
  "eq_class.eq 0 (0::int) \<longleftrightarrow> True"
haftmann@38300
   932
  "eq_class.eq 0 (Pls l) \<longleftrightarrow> False"
haftmann@38300
   933
  "eq_class.eq 0 (Mns l) \<longleftrightarrow> False"
haftmann@38300
   934
  "eq_class.eq (Pls k) 0 \<longleftrightarrow> False"
haftmann@38300
   935
  "eq_class.eq (Pls k) (Pls l) \<longleftrightarrow> eq_class.eq k l"
haftmann@38300
   936
  "eq_class.eq (Pls k) (Mns l) \<longleftrightarrow> False"
haftmann@38300
   937
  "eq_class.eq (Mns k) 0 \<longleftrightarrow> False"
haftmann@38300
   938
  "eq_class.eq (Mns k) (Pls l) \<longleftrightarrow> False"
haftmann@38300
   939
  "eq_class.eq (Mns k) (Mns l) \<longleftrightarrow> eq_class.eq k l"
haftmann@38300
   940
  by (auto simp add: eq dest: sym)
haftmann@38300
   941
haftmann@38300
   942
lemma less_eq_int_code [code]:
haftmann@38300
   943
  "0 \<le> (0::int) \<longleftrightarrow> True"
haftmann@38300
   944
  "0 \<le> Pls l \<longleftrightarrow> True"
haftmann@38300
   945
  "0 \<le> Mns l \<longleftrightarrow> False"
haftmann@38300
   946
  "Pls k \<le> 0 \<longleftrightarrow> False"
haftmann@38300
   947
  "Pls k \<le> Pls l \<longleftrightarrow> k \<le> l"
haftmann@38300
   948
  "Pls k \<le> Mns l \<longleftrightarrow> False"
haftmann@38300
   949
  "Mns k \<le> 0 \<longleftrightarrow> True"
haftmann@38300
   950
  "Mns k \<le> Pls l \<longleftrightarrow> True"
haftmann@38300
   951
  "Mns k \<le> Mns l \<longleftrightarrow> l \<le> k"
haftmann@38300
   952
  by simp_all
haftmann@38300
   953
haftmann@38300
   954
lemma less_int_code [code]:
haftmann@38300
   955
  "0 < (0::int) \<longleftrightarrow> False"
haftmann@38300
   956
  "0 < Pls l \<longleftrightarrow> True"
haftmann@38300
   957
  "0 < Mns l \<longleftrightarrow> False"
haftmann@38300
   958
  "Pls k < 0 \<longleftrightarrow> False"
haftmann@38300
   959
  "Pls k < Pls l \<longleftrightarrow> k < l"
haftmann@38300
   960
  "Pls k < Mns l \<longleftrightarrow> False"
haftmann@38300
   961
  "Mns k < 0 \<longleftrightarrow> True"
haftmann@38300
   962
  "Mns k < Pls l \<longleftrightarrow> True"
haftmann@38300
   963
  "Mns k < Mns l \<longleftrightarrow> l < k"
haftmann@38300
   964
  by simp_all
haftmann@38300
   965
haftmann@38300
   966
hide_const (open) sub dup
haftmann@38300
   967
haftmann@38300
   968
text {* Pretty literals *}
haftmann@38300
   969
haftmann@38300
   970
ML {*
haftmann@38300
   971
local open Code_Thingol in
haftmann@38300
   972
haftmann@38300
   973
fun add_code print target =
haftmann@38300
   974
  let
haftmann@38300
   975
    fun dest_num one' dig0' dig1' thm =
haftmann@38300
   976
      let
haftmann@38300
   977
        fun dest_dig (IConst (c, _)) = if c = dig0' then 0
haftmann@38300
   978
              else if c = dig1' then 1
haftmann@38300
   979
              else Code_Printer.eqn_error thm "Illegal numeral expression: illegal dig"
haftmann@38300
   980
          | dest_dig _ = Code_Printer.eqn_error thm "Illegal numeral expression: illegal digit";
haftmann@38300
   981
        fun dest_num (IConst (c, _)) = if c = one' then 1
haftmann@38300
   982
              else Code_Printer.eqn_error thm "Illegal numeral expression: illegal leading digit"
haftmann@38300
   983
          | dest_num (t1 `$ t2) = 2 * dest_num t2 + dest_dig t1
haftmann@38300
   984
          | dest_num _ = Code_Printer.eqn_error thm "Illegal numeral expression: illegal term";
haftmann@38300
   985
      in dest_num end;
haftmann@38300
   986
    fun pretty sgn literals [one', dig0', dig1'] _ thm _ _ [(t, _)] =
haftmann@38300
   987
      (Code_Printer.str o print literals o sgn o dest_num one' dig0' dig1' thm) t
haftmann@38300
   988
    fun add_syntax (c, sgn) = Code_Target.add_syntax_const target c
haftmann@38300
   989
      (SOME (Code_Printer.complex_const_syntax
haftmann@38300
   990
        (1, ([@{const_name One}, @{const_name Dig0}, @{const_name Dig1}],
haftmann@38300
   991
          pretty sgn))));
haftmann@38300
   992
  in
haftmann@38300
   993
    add_syntax (@{const_name Pls}, I)
haftmann@38300
   994
    #> add_syntax (@{const_name Mns}, (fn k => ~ k))
haftmann@38300
   995
  end;
haftmann@38300
   996
haftmann@38300
   997
end
haftmann@38300
   998
*}
haftmann@38300
   999
haftmann@38300
  1000
hide_const (open) One Dig0 Dig1
haftmann@38300
  1001
haftmann@38300
  1002
huffman@31025
  1003
subsection {* Toy examples *}
haftmann@28021
  1004
haftmann@38300
  1005
definition "foo \<longleftrightarrow> #4 * #2 + #7 = (#8 :: nat)"
haftmann@38300
  1006
definition "bar \<longleftrightarrow> #4 * #2 + #7 \<ge> (#8 :: int) - #3"
haftmann@37826
  1007
haftmann@38300
  1008
code_thms foo bar
haftmann@38300
  1009
export_code foo bar checking SML OCaml? Haskell? Scala?
haftmann@37826
  1010
haftmann@38300
  1011
text {* This is an ad-hoc @{text Code_Integer} setup. *}
haftmann@38300
  1012
haftmann@38300
  1013
setup {*
haftmann@38300
  1014
  fold (add_code Code_Printer.literal_numeral)
haftmann@38300
  1015
    [Code_ML.target_SML, Code_ML.target_OCaml, Code_Haskell.target, Code_Scala.target]
haftmann@38300
  1016
*}
haftmann@38300
  1017
haftmann@38300
  1018
code_type int
haftmann@38300
  1019
  (SML "IntInf.int")
haftmann@38300
  1020
  (OCaml "Big'_int.big'_int")
haftmann@38300
  1021
  (Haskell "Integer")
haftmann@38300
  1022
  (Scala "BigInt")
haftmann@38300
  1023
  (Eval "int")
haftmann@38300
  1024
haftmann@38300
  1025
code_const "0::int"
haftmann@38300
  1026
  (SML "0/ :/ IntInf.int")
haftmann@38300
  1027
  (OCaml "Big'_int.zero")
haftmann@38300
  1028
  (Haskell "0")
haftmann@38300
  1029
  (Scala "BigInt(0)")
haftmann@38300
  1030
  (Eval "0/ :/ int")
haftmann@38300
  1031
haftmann@38300
  1032
code_const Int.pred
haftmann@38300
  1033
  (SML "IntInf.- ((_), 1)")
haftmann@38300
  1034
  (OCaml "Big'_int.pred'_big'_int")
haftmann@38300
  1035
  (Haskell "!(_/ -/ 1)")
haftmann@39006
  1036
  (Scala "!(_ -/ 1)")
haftmann@38300
  1037
  (Eval "!(_/ -/ 1)")
haftmann@38300
  1038
haftmann@38300
  1039
code_const Int.succ
haftmann@38300
  1040
  (SML "IntInf.+ ((_), 1)")
haftmann@38300
  1041
  (OCaml "Big'_int.succ'_big'_int")
haftmann@38300
  1042
  (Haskell "!(_/ +/ 1)")
haftmann@39006
  1043
  (Scala "!(_ +/ 1)")
haftmann@38300
  1044
  (Eval "!(_/ +/ 1)")
haftmann@38300
  1045
haftmann@38300
  1046
code_const "op + \<Colon> int \<Rightarrow> int \<Rightarrow> int"
haftmann@38300
  1047
  (SML "IntInf.+ ((_), (_))")
haftmann@38300
  1048
  (OCaml "Big'_int.add'_big'_int")
haftmann@38300
  1049
  (Haskell infixl 6 "+")
haftmann@38300
  1050
  (Scala infixl 7 "+")
haftmann@38300
  1051
  (Eval infixl 8 "+")
haftmann@38300
  1052
haftmann@38300
  1053
code_const "uminus \<Colon> int \<Rightarrow> int"
haftmann@38300
  1054
  (SML "IntInf.~")
haftmann@38300
  1055
  (OCaml "Big'_int.minus'_big'_int")
haftmann@38300
  1056
  (Haskell "negate")
haftmann@38300
  1057
  (Scala "!(- _)")
haftmann@38300
  1058
  (Eval "~/ _")
haftmann@38300
  1059
haftmann@38300
  1060
code_const "op - \<Colon> int \<Rightarrow> int \<Rightarrow> int"
haftmann@38300
  1061
  (SML "IntInf.- ((_), (_))")
haftmann@38300
  1062
  (OCaml "Big'_int.sub'_big'_int")
haftmann@38300
  1063
  (Haskell infixl 6 "-")
haftmann@38300
  1064
  (Scala infixl 7 "-")
haftmann@38300
  1065
  (Eval infixl 8 "-")
haftmann@38300
  1066
haftmann@38300
  1067
code_const "op * \<Colon> int \<Rightarrow> int \<Rightarrow> int"
haftmann@38300
  1068
  (SML "IntInf.* ((_), (_))")
haftmann@38300
  1069
  (OCaml "Big'_int.mult'_big'_int")
haftmann@38300
  1070
  (Haskell infixl 7 "*")
haftmann@38300
  1071
  (Scala infixl 8 "*")
haftmann@38300
  1072
  (Eval infixl 9 "*")
haftmann@38300
  1073
haftmann@38300
  1074
code_const pdivmod
haftmann@38300
  1075
  (SML "IntInf.divMod/ (IntInf.abs _,/ IntInf.abs _)")
haftmann@38300
  1076
  (OCaml "Big'_int.quomod'_big'_int/ (Big'_int.abs'_big'_int _)/ (Big'_int.abs'_big'_int _)")
haftmann@38300
  1077
  (Haskell "divMod/ (abs _)/ (abs _)")
haftmann@38300
  1078
  (Scala "!((k: BigInt) => (l: BigInt) =>/ if (l == 0)/ (BigInt(0), k) else/ (k.abs '/% l.abs))")
haftmann@38300
  1079
  (Eval "Integer.div'_mod/ (abs _)/ (abs _)")
haftmann@38300
  1080
haftmann@38300
  1081
code_const "eq_class.eq \<Colon> int \<Rightarrow> int \<Rightarrow> bool"
haftmann@38300
  1082
  (SML "!((_ : IntInf.int) = _)")
haftmann@38300
  1083
  (OCaml "Big'_int.eq'_big'_int")
haftmann@38300
  1084
  (Haskell infixl 4 "==")
haftmann@38300
  1085
  (Scala infixl 5 "==")
haftmann@38300
  1086
  (Eval infixl 6 "=")
haftmann@38300
  1087
haftmann@38300
  1088
code_const "op \<le> \<Colon> int \<Rightarrow> int \<Rightarrow> bool"
haftmann@38300
  1089
  (SML "IntInf.<= ((_), (_))")
haftmann@38300
  1090
  (OCaml "Big'_int.le'_big'_int")
haftmann@38300
  1091
  (Haskell infix 4 "<=")
haftmann@38300
  1092
  (Scala infixl 4 "<=")
haftmann@38300
  1093
  (Eval infixl 6 "<=")
haftmann@38300
  1094
haftmann@38300
  1095
code_const "op < \<Colon> int \<Rightarrow> int \<Rightarrow> bool"
haftmann@38300
  1096
  (SML "IntInf.< ((_), (_))")
haftmann@38300
  1097
  (OCaml "Big'_int.lt'_big'_int")
haftmann@38300
  1098
  (Haskell infix 4 "<")
haftmann@38300
  1099
  (Scala infixl 4 "<")
haftmann@38300
  1100
  (Eval infixl 6 "<")
haftmann@38300
  1101
haftmann@38300
  1102
code_const Code_Numeral.int_of
haftmann@38300
  1103
  (SML "IntInf.fromInt")
haftmann@38300
  1104
  (OCaml "_")
haftmann@38300
  1105
  (Haskell "toInteger")
haftmann@38300
  1106
  (Scala "!_.as'_BigInt")
haftmann@38300
  1107
  (Eval "_")
haftmann@38300
  1108
haftmann@38300
  1109
export_code foo bar checking SML OCaml? Haskell? Scala?
haftmann@28021
  1110
haftmann@28021
  1111
end