src/HOL/Lifting.thy
author kuncar
Thu, 10 Apr 2014 17:48:18 +0200
changeset 57866 f4ba736040fa
parent 57861 c1048f5bbb45
child 58740 882091eb1e9a
permissions -rw-r--r--
setup for Transfer and Lifting from BNF; tuned thm names
kuncar@48153
     1
(*  Title:      HOL/Lifting.thy
kuncar@48153
     2
    Author:     Brian Huffman and Ondrej Kuncar
kuncar@48153
     3
    Author:     Cezary Kaliszyk and Christian Urban
kuncar@48153
     4
*)
kuncar@48153
     5
kuncar@48153
     6
header {* Lifting package *}
kuncar@48153
     7
kuncar@48153
     8
theory Lifting
haftmann@52249
     9
imports Equiv_Relations Transfer
kuncar@48153
    10
keywords
kuncar@52511
    11
  "parametric" and
kuncar@54356
    12
  "print_quot_maps" "print_quotients" :: diag and
kuncar@48153
    13
  "lift_definition" :: thy_goal and
kuncar@54788
    14
  "setup_lifting" "lifting_forget" "lifting_update" :: thy_decl
kuncar@48153
    15
begin
kuncar@48153
    16
huffman@48196
    17
subsection {* Function map *}
kuncar@48153
    18
kuncar@54148
    19
context
kuncar@54148
    20
begin
kuncar@54148
    21
interpretation lifting_syntax .
kuncar@48153
    22
kuncar@48153
    23
lemma map_fun_id:
kuncar@48153
    24
  "(id ---> id) = id"
kuncar@48153
    25
  by (simp add: fun_eq_iff)
kuncar@48153
    26
kuncar@48153
    27
subsection {* Quotient Predicate *}
kuncar@48153
    28
kuncar@48153
    29
definition
kuncar@48153
    30
  "Quotient R Abs Rep T \<longleftrightarrow>
kuncar@48153
    31
     (\<forall>a. Abs (Rep a) = a) \<and> 
kuncar@48153
    32
     (\<forall>a. R (Rep a) (Rep a)) \<and>
kuncar@48153
    33
     (\<forall>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s) \<and>
kuncar@48153
    34
     T = (\<lambda>x y. R x x \<and> Abs x = y)"
kuncar@48153
    35
kuncar@48153
    36
lemma QuotientI:
kuncar@48153
    37
  assumes "\<And>a. Abs (Rep a) = a"
kuncar@48153
    38
    and "\<And>a. R (Rep a) (Rep a)"
kuncar@48153
    39
    and "\<And>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s"
kuncar@48153
    40
    and "T = (\<lambda>x y. R x x \<and> Abs x = y)"
kuncar@48153
    41
  shows "Quotient R Abs Rep T"
kuncar@48153
    42
  using assms unfolding Quotient_def by blast
kuncar@48153
    43
huffman@48407
    44
context
huffman@48407
    45
  fixes R Abs Rep T
kuncar@48153
    46
  assumes a: "Quotient R Abs Rep T"
huffman@48407
    47
begin
huffman@48407
    48
huffman@48407
    49
lemma Quotient_abs_rep: "Abs (Rep a) = a"
huffman@48407
    50
  using a unfolding Quotient_def
kuncar@48153
    51
  by simp
kuncar@48153
    52
huffman@48407
    53
lemma Quotient_rep_reflp: "R (Rep a) (Rep a)"
huffman@48407
    54
  using a unfolding Quotient_def
kuncar@48153
    55
  by blast
kuncar@48153
    56
kuncar@48153
    57
lemma Quotient_rel:
huffman@48407
    58
  "R r r \<and> R s s \<and> Abs r = Abs s \<longleftrightarrow> R r s" -- {* orientation does not loop on rewriting *}
kuncar@48153
    59
  using a unfolding Quotient_def
kuncar@48153
    60
  by blast
kuncar@48153
    61
huffman@48407
    62
lemma Quotient_cr_rel: "T = (\<lambda>x y. R x x \<and> Abs x = y)"
kuncar@48153
    63
  using a unfolding Quotient_def
kuncar@48153
    64
  by blast
kuncar@48153
    65
huffman@48407
    66
lemma Quotient_refl1: "R r s \<Longrightarrow> R r r"
huffman@48407
    67
  using a unfolding Quotient_def
huffman@48407
    68
  by fast
huffman@48407
    69
huffman@48407
    70
lemma Quotient_refl2: "R r s \<Longrightarrow> R s s"
huffman@48407
    71
  using a unfolding Quotient_def
huffman@48407
    72
  by fast
huffman@48407
    73
huffman@48407
    74
lemma Quotient_rel_rep: "R (Rep a) (Rep b) \<longleftrightarrow> a = b"
huffman@48407
    75
  using a unfolding Quotient_def
huffman@48407
    76
  by metis
huffman@48407
    77
huffman@48407
    78
lemma Quotient_rep_abs: "R r r \<Longrightarrow> R (Rep (Abs r)) r"
huffman@48407
    79
  using a unfolding Quotient_def
huffman@48407
    80
  by blast
huffman@48407
    81
kuncar@56952
    82
lemma Quotient_rep_abs_eq: "R t t \<Longrightarrow> R \<le> op= \<Longrightarrow> Rep (Abs t) = t"
kuncar@56952
    83
  using a unfolding Quotient_def
kuncar@56952
    84
  by blast
kuncar@56952
    85
kuncar@48952
    86
lemma Quotient_rep_abs_fold_unmap: 
kuncar@48952
    87
  assumes "x' \<equiv> Abs x" and "R x x" and "Rep x' \<equiv> Rep' x'" 
kuncar@48952
    88
  shows "R (Rep' x') x"
kuncar@48952
    89
proof -
kuncar@48952
    90
  have "R (Rep x') x" using assms(1-2) Quotient_rep_abs by auto
kuncar@48952
    91
  then show ?thesis using assms(3) by simp
kuncar@48952
    92
qed
kuncar@48952
    93
kuncar@48952
    94
lemma Quotient_Rep_eq:
kuncar@48952
    95
  assumes "x' \<equiv> Abs x" 
kuncar@48952
    96
  shows "Rep x' \<equiv> Rep x'"
kuncar@48952
    97
by simp
kuncar@48952
    98
huffman@48407
    99
lemma Quotient_rel_abs: "R r s \<Longrightarrow> Abs r = Abs s"
huffman@48407
   100
  using a unfolding Quotient_def
huffman@48407
   101
  by blast
huffman@48407
   102
kuncar@48952
   103
lemma Quotient_rel_abs2:
kuncar@48952
   104
  assumes "R (Rep x) y"
kuncar@48952
   105
  shows "x = Abs y"
kuncar@48952
   106
proof -
kuncar@48952
   107
  from assms have "Abs (Rep x) = Abs y" by (auto intro: Quotient_rel_abs)
kuncar@48952
   108
  then show ?thesis using assms(1) by (simp add: Quotient_abs_rep)
kuncar@48952
   109
qed
kuncar@48952
   110
huffman@48407
   111
lemma Quotient_symp: "symp R"
kuncar@48153
   112
  using a unfolding Quotient_def using sympI by (metis (full_types))
kuncar@48153
   113
huffman@48407
   114
lemma Quotient_transp: "transp R"
kuncar@48153
   115
  using a unfolding Quotient_def using transpI by (metis (full_types))
kuncar@48153
   116
huffman@48407
   117
lemma Quotient_part_equivp: "part_equivp R"
huffman@48407
   118
by (metis Quotient_rep_reflp Quotient_symp Quotient_transp part_equivpI)
huffman@48407
   119
huffman@48407
   120
end
kuncar@48153
   121
kuncar@48153
   122
lemma identity_quotient: "Quotient (op =) id id (op =)"
kuncar@48153
   123
unfolding Quotient_def by simp 
kuncar@48153
   124
huffman@48523
   125
text {* TODO: Use one of these alternatives as the real definition. *}
huffman@48523
   126
kuncar@48153
   127
lemma Quotient_alt_def:
kuncar@48153
   128
  "Quotient R Abs Rep T \<longleftrightarrow>
kuncar@48153
   129
    (\<forall>a b. T a b \<longrightarrow> Abs a = b) \<and>
kuncar@48153
   130
    (\<forall>b. T (Rep b) b) \<and>
kuncar@48153
   131
    (\<forall>x y. R x y \<longleftrightarrow> T x (Abs x) \<and> T y (Abs y) \<and> Abs x = Abs y)"
kuncar@48153
   132
apply safe
kuncar@48153
   133
apply (simp (no_asm_use) only: Quotient_def, fast)
kuncar@48153
   134
apply (simp (no_asm_use) only: Quotient_def, fast)
kuncar@48153
   135
apply (simp (no_asm_use) only: Quotient_def, fast)
kuncar@48153
   136
apply (simp (no_asm_use) only: Quotient_def, fast)
kuncar@48153
   137
apply (simp (no_asm_use) only: Quotient_def, fast)
kuncar@48153
   138
apply (simp (no_asm_use) only: Quotient_def, fast)
kuncar@48153
   139
apply (rule QuotientI)
kuncar@48153
   140
apply simp
kuncar@48153
   141
apply metis
kuncar@48153
   142
apply simp
kuncar@48153
   143
apply (rule ext, rule ext, metis)
kuncar@48153
   144
done
kuncar@48153
   145
kuncar@48153
   146
lemma Quotient_alt_def2:
kuncar@48153
   147
  "Quotient R Abs Rep T \<longleftrightarrow>
kuncar@48153
   148
    (\<forall>a b. T a b \<longrightarrow> Abs a = b) \<and>
kuncar@48153
   149
    (\<forall>b. T (Rep b) b) \<and>
kuncar@48153
   150
    (\<forall>x y. R x y \<longleftrightarrow> T x (Abs y) \<and> T y (Abs x))"
kuncar@48153
   151
  unfolding Quotient_alt_def by (safe, metis+)
kuncar@48153
   152
huffman@48523
   153
lemma Quotient_alt_def3:
huffman@48523
   154
  "Quotient R Abs Rep T \<longleftrightarrow>
huffman@48523
   155
    (\<forall>a b. T a b \<longrightarrow> Abs a = b) \<and> (\<forall>b. T (Rep b) b) \<and>
huffman@48523
   156
    (\<forall>x y. R x y \<longleftrightarrow> (\<exists>z. T x z \<and> T y z))"
huffman@48523
   157
  unfolding Quotient_alt_def2 by (safe, metis+)
huffman@48523
   158
huffman@48523
   159
lemma Quotient_alt_def4:
huffman@48523
   160
  "Quotient R Abs Rep T \<longleftrightarrow>
huffman@48523
   161
    (\<forall>a b. T a b \<longrightarrow> Abs a = b) \<and> (\<forall>b. T (Rep b) b) \<and> R = T OO conversep T"
huffman@48523
   162
  unfolding Quotient_alt_def3 fun_eq_iff by auto
huffman@48523
   163
kuncar@57866
   164
lemma Quotient_alt_def5:
kuncar@57866
   165
  "Quotient R Abs Rep T \<longleftrightarrow>
kuncar@57866
   166
    T \<le> BNF_Util.Grp UNIV Abs \<and> BNF_Util.Grp UNIV Rep \<le> T\<inverse>\<inverse> \<and> R = T OO T\<inverse>\<inverse>"
kuncar@57866
   167
  unfolding Quotient_alt_def4 Grp_def by blast
kuncar@57866
   168
kuncar@48153
   169
lemma fun_quotient:
kuncar@48153
   170
  assumes 1: "Quotient R1 abs1 rep1 T1"
kuncar@48153
   171
  assumes 2: "Quotient R2 abs2 rep2 T2"
kuncar@48153
   172
  shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2) (T1 ===> T2)"
kuncar@48153
   173
  using assms unfolding Quotient_alt_def2
blanchet@57287
   174
  unfolding rel_fun_def fun_eq_iff map_fun_apply
kuncar@48153
   175
  by (safe, metis+)
kuncar@48153
   176
kuncar@48153
   177
lemma apply_rsp:
kuncar@48153
   178
  fixes f g::"'a \<Rightarrow> 'c"
kuncar@48153
   179
  assumes q: "Quotient R1 Abs1 Rep1 T1"
kuncar@48153
   180
  and     a: "(R1 ===> R2) f g" "R1 x y"
kuncar@48153
   181
  shows "R2 (f x) (g y)"
blanchet@57287
   182
  using a by (auto elim: rel_funE)
kuncar@48153
   183
kuncar@48153
   184
lemma apply_rsp':
kuncar@48153
   185
  assumes a: "(R1 ===> R2) f g" "R1 x y"
kuncar@48153
   186
  shows "R2 (f x) (g y)"
blanchet@57287
   187
  using a by (auto elim: rel_funE)
kuncar@48153
   188
kuncar@48153
   189
lemma apply_rsp'':
kuncar@48153
   190
  assumes "Quotient R Abs Rep T"
kuncar@48153
   191
  and "(R ===> S) f f"
kuncar@48153
   192
  shows "S (f (Rep x)) (f (Rep x))"
kuncar@48153
   193
proof -
kuncar@48153
   194
  from assms(1) have "R (Rep x) (Rep x)" by (rule Quotient_rep_reflp)
kuncar@48153
   195
  then show ?thesis using assms(2) by (auto intro: apply_rsp')
kuncar@48153
   196
qed
kuncar@48153
   197
kuncar@48153
   198
subsection {* Quotient composition *}
kuncar@48153
   199
kuncar@48153
   200
lemma Quotient_compose:
kuncar@48153
   201
  assumes 1: "Quotient R1 Abs1 Rep1 T1"
kuncar@48153
   202
  assumes 2: "Quotient R2 Abs2 Rep2 T2"
kuncar@48153
   203
  shows "Quotient (T1 OO R2 OO conversep T1) (Abs2 \<circ> Abs1) (Rep1 \<circ> Rep2) (T1 OO T2)"
kuncar@53131
   204
  using assms unfolding Quotient_alt_def4 by fastforce
kuncar@48153
   205
kuncar@48392
   206
lemma equivp_reflp2:
kuncar@48392
   207
  "equivp R \<Longrightarrow> reflp R"
kuncar@48392
   208
  by (erule equivpE)
kuncar@48392
   209
huffman@48410
   210
subsection {* Respects predicate *}
huffman@48410
   211
huffman@48410
   212
definition Respects :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set"
huffman@48410
   213
  where "Respects R = {x. R x x}"
huffman@48410
   214
huffman@48410
   215
lemma in_respects: "x \<in> Respects R \<longleftrightarrow> R x x"
huffman@48410
   216
  unfolding Respects_def by simp
huffman@48410
   217
kuncar@48219
   218
lemma UNIV_typedef_to_Quotient:
kuncar@48153
   219
  assumes "type_definition Rep Abs UNIV"
kuncar@48219
   220
  and T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
kuncar@48153
   221
  shows "Quotient (op =) Abs Rep T"
kuncar@48153
   222
proof -
kuncar@48153
   223
  interpret type_definition Rep Abs UNIV by fact
kuncar@48219
   224
  from Abs_inject Rep_inverse Abs_inverse T_def show ?thesis 
kuncar@48219
   225
    by (fastforce intro!: QuotientI fun_eq_iff)
kuncar@48153
   226
qed
kuncar@48153
   227
kuncar@48219
   228
lemma UNIV_typedef_to_equivp:
kuncar@48153
   229
  fixes Abs :: "'a \<Rightarrow> 'b"
kuncar@48153
   230
  and Rep :: "'b \<Rightarrow> 'a"
kuncar@48153
   231
  assumes "type_definition Rep Abs (UNIV::'a set)"
kuncar@48153
   232
  shows "equivp (op=::'a\<Rightarrow>'a\<Rightarrow>bool)"
kuncar@48153
   233
by (rule identity_equivp)
kuncar@48153
   234
huffman@48212
   235
lemma typedef_to_Quotient:
kuncar@48219
   236
  assumes "type_definition Rep Abs S"
kuncar@48219
   237
  and T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
kuncar@57861
   238
  shows "Quotient (eq_onp (\<lambda>x. x \<in> S)) Abs Rep T"
kuncar@48219
   239
proof -
kuncar@48219
   240
  interpret type_definition Rep Abs S by fact
kuncar@48219
   241
  from Rep Abs_inject Rep_inverse Abs_inverse T_def show ?thesis
kuncar@57861
   242
    by (auto intro!: QuotientI simp: eq_onp_def fun_eq_iff)
kuncar@48219
   243
qed
kuncar@48219
   244
kuncar@48219
   245
lemma typedef_to_part_equivp:
kuncar@48219
   246
  assumes "type_definition Rep Abs S"
kuncar@57861
   247
  shows "part_equivp (eq_onp (\<lambda>x. x \<in> S))"
kuncar@48219
   248
proof (intro part_equivpI)
kuncar@48219
   249
  interpret type_definition Rep Abs S by fact
kuncar@57861
   250
  show "\<exists>x. eq_onp (\<lambda>x. x \<in> S) x x" using Rep by (auto simp: eq_onp_def)
kuncar@48219
   251
next
kuncar@57861
   252
  show "symp (eq_onp (\<lambda>x. x \<in> S))" by (auto intro: sympI simp: eq_onp_def)
kuncar@48219
   253
next
kuncar@57861
   254
  show "transp (eq_onp (\<lambda>x. x \<in> S))" by (auto intro: transpI simp: eq_onp_def)
kuncar@48219
   255
qed
kuncar@48219
   256
kuncar@48219
   257
lemma open_typedef_to_Quotient:
kuncar@48153
   258
  assumes "type_definition Rep Abs {x. P x}"
huffman@48212
   259
  and T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
kuncar@57861
   260
  shows "Quotient (eq_onp P) Abs Rep T"
huffman@48522
   261
  using typedef_to_Quotient [OF assms] by simp
kuncar@48153
   262
kuncar@48219
   263
lemma open_typedef_to_part_equivp:
kuncar@48153
   264
  assumes "type_definition Rep Abs {x. P x}"
kuncar@57861
   265
  shows "part_equivp (eq_onp P)"
huffman@48522
   266
  using typedef_to_part_equivp [OF assms] by simp
kuncar@48153
   267
huffman@48234
   268
text {* Generating transfer rules for quotients. *}
huffman@48234
   269
huffman@48408
   270
context
huffman@48408
   271
  fixes R Abs Rep T
huffman@48408
   272
  assumes 1: "Quotient R Abs Rep T"
huffman@48408
   273
begin
huffman@48234
   274
huffman@48408
   275
lemma Quotient_right_unique: "right_unique T"
huffman@48408
   276
  using 1 unfolding Quotient_alt_def right_unique_def by metis
huffman@48234
   277
huffman@48408
   278
lemma Quotient_right_total: "right_total T"
huffman@48408
   279
  using 1 unfolding Quotient_alt_def right_total_def by metis
huffman@48234
   280
huffman@48408
   281
lemma Quotient_rel_eq_transfer: "(T ===> T ===> op =) R (op =)"
blanchet@57287
   282
  using 1 unfolding Quotient_alt_def rel_fun_def by simp
huffman@48234
   283
huffman@48409
   284
lemma Quotient_abs_induct:
huffman@48409
   285
  assumes "\<And>y. R y y \<Longrightarrow> P (Abs y)" shows "P x"
huffman@48409
   286
  using 1 assms unfolding Quotient_def by metis
huffman@48409
   287
huffman@48408
   288
end
huffman@48408
   289
huffman@48408
   290
text {* Generating transfer rules for total quotients. *}
huffman@48408
   291
huffman@48408
   292
context
huffman@48408
   293
  fixes R Abs Rep T
huffman@48408
   294
  assumes 1: "Quotient R Abs Rep T" and 2: "reflp R"
huffman@48408
   295
begin
huffman@48408
   296
kuncar@57860
   297
lemma Quotient_left_total: "left_total T"
kuncar@57860
   298
  using 1 2 unfolding Quotient_alt_def left_total_def reflp_def by auto
kuncar@57860
   299
huffman@48408
   300
lemma Quotient_bi_total: "bi_total T"
huffman@48408
   301
  using 1 2 unfolding Quotient_alt_def bi_total_def reflp_def by auto
huffman@48408
   302
huffman@48408
   303
lemma Quotient_id_abs_transfer: "(op = ===> T) (\<lambda>x. x) Abs"
blanchet@57287
   304
  using 1 2 unfolding Quotient_alt_def reflp_def rel_fun_def by simp
huffman@48408
   305
huffman@48446
   306
lemma Quotient_total_abs_induct: "(\<And>y. P (Abs y)) \<Longrightarrow> P x"
huffman@48446
   307
  using 1 2 assms unfolding Quotient_alt_def reflp_def by metis
huffman@48446
   308
huffman@48904
   309
lemma Quotient_total_abs_eq_iff: "Abs x = Abs y \<longleftrightarrow> R x y"
huffman@48904
   310
  using Quotient_rel [OF 1] 2 unfolding reflp_def by simp
huffman@48904
   311
huffman@48408
   312
end
huffman@48234
   313
huffman@48226
   314
text {* Generating transfer rules for a type defined with @{text "typedef"}. *}
huffman@48226
   315
huffman@48405
   316
context
huffman@48405
   317
  fixes Rep Abs A T
huffman@48226
   318
  assumes type: "type_definition Rep Abs A"
huffman@48405
   319
  assumes T_def: "T \<equiv> (\<lambda>(x::'a) (y::'b). x = Rep y)"
huffman@48405
   320
begin
huffman@48405
   321
kuncar@53131
   322
lemma typedef_left_unique: "left_unique T"
kuncar@53131
   323
  unfolding left_unique_def T_def
kuncar@53131
   324
  by (simp add: type_definition.Rep_inject [OF type])
kuncar@53131
   325
huffman@48405
   326
lemma typedef_bi_unique: "bi_unique T"
huffman@48226
   327
  unfolding bi_unique_def T_def
huffman@48226
   328
  by (simp add: type_definition.Rep_inject [OF type])
huffman@48226
   329
kuncar@52511
   330
(* the following two theorems are here only for convinience *)
kuncar@52511
   331
kuncar@52511
   332
lemma typedef_right_unique: "right_unique T"
kuncar@52511
   333
  using T_def type Quotient_right_unique typedef_to_Quotient 
kuncar@52511
   334
  by blast
kuncar@52511
   335
kuncar@52511
   336
lemma typedef_right_total: "right_total T"
kuncar@52511
   337
  using T_def type Quotient_right_total typedef_to_Quotient 
kuncar@52511
   338
  by blast
kuncar@52511
   339
huffman@48406
   340
lemma typedef_rep_transfer: "(T ===> op =) (\<lambda>x. x) Rep"
blanchet@57287
   341
  unfolding rel_fun_def T_def by simp
huffman@48406
   342
huffman@48405
   343
end
huffman@48405
   344
huffman@48226
   345
text {* Generating the correspondence rule for a constant defined with
huffman@48226
   346
  @{text "lift_definition"}. *}
huffman@48226
   347
huffman@48209
   348
lemma Quotient_to_transfer:
huffman@48209
   349
  assumes "Quotient R Abs Rep T" and "R c c" and "c' \<equiv> Abs c"
huffman@48209
   350
  shows "T c c'"
huffman@48209
   351
  using assms by (auto dest: Quotient_cr_rel)
huffman@48209
   352
kuncar@48997
   353
text {* Proving reflexivity *}
kuncar@48997
   354
kuncar@48997
   355
lemma Quotient_to_left_total:
kuncar@48997
   356
  assumes q: "Quotient R Abs Rep T"
kuncar@48997
   357
  and r_R: "reflp R"
kuncar@48997
   358
  shows "left_total T"
kuncar@48997
   359
using r_R Quotient_cr_rel[OF q] unfolding left_total_def by (auto elim: reflpE)
kuncar@48997
   360
kuncar@56905
   361
lemma Quotient_composition_ge_eq:
kuncar@56905
   362
  assumes "left_total T"
kuncar@56905
   363
  assumes "R \<ge> op="
kuncar@56905
   364
  shows "(T OO R OO T\<inverse>\<inverse>) \<ge> op="
kuncar@56905
   365
using assms unfolding left_total_def by fast
kuncar@53131
   366
kuncar@56905
   367
lemma Quotient_composition_le_eq:
kuncar@56905
   368
  assumes "left_unique T"
kuncar@56905
   369
  assumes "R \<le> op="
kuncar@56905
   370
  shows "(T OO R OO T\<inverse>\<inverse>) \<le> op="
noschinl@56946
   371
using assms unfolding left_unique_def by blast
kuncar@48997
   372
kuncar@57861
   373
lemma eq_onp_le_eq:
kuncar@57861
   374
  "eq_onp P \<le> op=" unfolding eq_onp_def by blast
kuncar@56905
   375
kuncar@56905
   376
lemma reflp_ge_eq:
kuncar@56905
   377
  "reflp R \<Longrightarrow> R \<ge> op=" unfolding reflp_def by blast
kuncar@56905
   378
kuncar@56905
   379
lemma ge_eq_refl:
kuncar@56905
   380
  "R \<ge> op= \<Longrightarrow> R x x" by blast
kuncar@48997
   381
kuncar@52511
   382
text {* Proving a parametrized correspondence relation *}
kuncar@52511
   383
kuncar@52511
   384
definition POS :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where
kuncar@52511
   385
"POS A B \<equiv> A \<le> B"
kuncar@52511
   386
kuncar@52511
   387
definition  NEG :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where
kuncar@52511
   388
"NEG A B \<equiv> B \<le> A"
kuncar@52511
   389
kuncar@52511
   390
lemma pos_OO_eq:
kuncar@52511
   391
  shows "POS (A OO op=) A"
kuncar@52511
   392
unfolding POS_def OO_def by blast
kuncar@52511
   393
kuncar@52511
   394
lemma pos_eq_OO:
kuncar@52511
   395
  shows "POS (op= OO A) A"
kuncar@52511
   396
unfolding POS_def OO_def by blast
kuncar@52511
   397
kuncar@52511
   398
lemma neg_OO_eq:
kuncar@52511
   399
  shows "NEG (A OO op=) A"
kuncar@52511
   400
unfolding NEG_def OO_def by auto
kuncar@52511
   401
kuncar@52511
   402
lemma neg_eq_OO:
kuncar@52511
   403
  shows "NEG (op= OO A) A"
kuncar@52511
   404
unfolding NEG_def OO_def by blast
kuncar@52511
   405
kuncar@52511
   406
lemma POS_trans:
kuncar@52511
   407
  assumes "POS A B"
kuncar@52511
   408
  assumes "POS B C"
kuncar@52511
   409
  shows "POS A C"
kuncar@52511
   410
using assms unfolding POS_def by auto
kuncar@52511
   411
kuncar@52511
   412
lemma NEG_trans:
kuncar@52511
   413
  assumes "NEG A B"
kuncar@52511
   414
  assumes "NEG B C"
kuncar@52511
   415
  shows "NEG A C"
kuncar@52511
   416
using assms unfolding NEG_def by auto
kuncar@52511
   417
kuncar@52511
   418
lemma POS_NEG:
kuncar@52511
   419
  "POS A B \<equiv> NEG B A"
kuncar@52511
   420
  unfolding POS_def NEG_def by auto
kuncar@52511
   421
kuncar@52511
   422
lemma NEG_POS:
kuncar@52511
   423
  "NEG A B \<equiv> POS B A"
kuncar@52511
   424
  unfolding POS_def NEG_def by auto
kuncar@52511
   425
kuncar@52511
   426
lemma POS_pcr_rule:
kuncar@52511
   427
  assumes "POS (A OO B) C"
kuncar@52511
   428
  shows "POS (A OO B OO X) (C OO X)"
kuncar@52511
   429
using assms unfolding POS_def OO_def by blast
kuncar@52511
   430
kuncar@52511
   431
lemma NEG_pcr_rule:
kuncar@52511
   432
  assumes "NEG (A OO B) C"
kuncar@52511
   433
  shows "NEG (A OO B OO X) (C OO X)"
kuncar@52511
   434
using assms unfolding NEG_def OO_def by blast
kuncar@52511
   435
kuncar@52511
   436
lemma POS_apply:
kuncar@52511
   437
  assumes "POS R R'"
kuncar@52511
   438
  assumes "R f g"
kuncar@52511
   439
  shows "R' f g"
kuncar@52511
   440
using assms unfolding POS_def by auto
kuncar@52511
   441
kuncar@52511
   442
text {* Proving a parametrized correspondence relation *}
kuncar@52511
   443
kuncar@52511
   444
lemma fun_mono:
kuncar@52511
   445
  assumes "A \<ge> C"
kuncar@52511
   446
  assumes "B \<le> D"
kuncar@52511
   447
  shows   "(A ===> B) \<le> (C ===> D)"
blanchet@57287
   448
using assms unfolding rel_fun_def by blast
kuncar@52511
   449
kuncar@52511
   450
lemma pos_fun_distr: "((R ===> S) OO (R' ===> S')) \<le> ((R OO R') ===> (S OO S'))"
blanchet@57287
   451
unfolding OO_def rel_fun_def by blast
kuncar@52511
   452
kuncar@52511
   453
lemma functional_relation: "right_unique R \<Longrightarrow> left_total R \<Longrightarrow> \<forall>x. \<exists>!y. R x y"
kuncar@52511
   454
unfolding right_unique_def left_total_def by blast
kuncar@52511
   455
kuncar@52511
   456
lemma functional_converse_relation: "left_unique R \<Longrightarrow> right_total R \<Longrightarrow> \<forall>y. \<exists>!x. R x y"
kuncar@52511
   457
unfolding left_unique_def right_total_def by blast
kuncar@52511
   458
kuncar@52511
   459
lemma neg_fun_distr1:
kuncar@52511
   460
assumes 1: "left_unique R" "right_total R"
kuncar@52511
   461
assumes 2: "right_unique R'" "left_total R'"
kuncar@52511
   462
shows "(R OO R' ===> S OO S') \<le> ((R ===> S) OO (R' ===> S')) "
kuncar@52511
   463
  using functional_relation[OF 2] functional_converse_relation[OF 1]
blanchet@57287
   464
  unfolding rel_fun_def OO_def
kuncar@52511
   465
  apply clarify
kuncar@52511
   466
  apply (subst all_comm)
kuncar@52511
   467
  apply (subst all_conj_distrib[symmetric])
kuncar@52511
   468
  apply (intro choice)
kuncar@52511
   469
  by metis
kuncar@52511
   470
kuncar@52511
   471
lemma neg_fun_distr2:
kuncar@52511
   472
assumes 1: "right_unique R'" "left_total R'"
kuncar@52511
   473
assumes 2: "left_unique S'" "right_total S'"
kuncar@52511
   474
shows "(R OO R' ===> S OO S') \<le> ((R ===> S) OO (R' ===> S'))"
kuncar@52511
   475
  using functional_converse_relation[OF 2] functional_relation[OF 1]
blanchet@57287
   476
  unfolding rel_fun_def OO_def
kuncar@52511
   477
  apply clarify
kuncar@52511
   478
  apply (subst all_comm)
kuncar@52511
   479
  apply (subst all_conj_distrib[symmetric])
kuncar@52511
   480
  apply (intro choice)
kuncar@52511
   481
  by metis
kuncar@52511
   482
kuncar@53093
   483
subsection {* Domains *}
kuncar@53093
   484
kuncar@57861
   485
lemma composed_equiv_rel_eq_onp:
kuncar@57073
   486
  assumes "left_unique R"
kuncar@57073
   487
  assumes "(R ===> op=) P P'"
kuncar@57073
   488
  assumes "Domainp R = P''"
kuncar@57861
   489
  shows "(R OO eq_onp P' OO R\<inverse>\<inverse>) = eq_onp (inf P'' P)"
kuncar@57861
   490
using assms unfolding OO_def conversep_iff Domainp_iff[abs_def] left_unique_def rel_fun_def eq_onp_def
kuncar@57073
   491
fun_eq_iff by blast
kuncar@57073
   492
kuncar@57861
   493
lemma composed_equiv_rel_eq_eq_onp:
kuncar@57073
   494
  assumes "left_unique R"
kuncar@57073
   495
  assumes "Domainp R = P"
kuncar@57861
   496
  shows "(R OO op= OO R\<inverse>\<inverse>) = eq_onp P"
kuncar@57861
   497
using assms unfolding OO_def conversep_iff Domainp_iff[abs_def] left_unique_def eq_onp_def
kuncar@57073
   498
fun_eq_iff is_equality_def by metis
kuncar@57073
   499
kuncar@53093
   500
lemma pcr_Domainp_par_left_total:
kuncar@53093
   501
  assumes "Domainp B = P"
kuncar@53093
   502
  assumes "left_total A"
kuncar@53093
   503
  assumes "(A ===> op=) P' P"
kuncar@53093
   504
  shows "Domainp (A OO B) = P'"
kuncar@53093
   505
using assms
blanchet@57287
   506
unfolding Domainp_iff[abs_def] OO_def bi_unique_def left_total_def rel_fun_def 
kuncar@53093
   507
by (fast intro: fun_eq_iff)
kuncar@53093
   508
kuncar@53093
   509
lemma pcr_Domainp_par:
kuncar@53093
   510
assumes "Domainp B = P2"
kuncar@53093
   511
assumes "Domainp A = P1"
kuncar@53093
   512
assumes "(A ===> op=) P2' P2"
kuncar@53093
   513
shows "Domainp (A OO B) = (inf P1 P2')"
blanchet@57287
   514
using assms unfolding rel_fun_def Domainp_iff[abs_def] OO_def
kuncar@53093
   515
by (fast intro: fun_eq_iff)
kuncar@53093
   516
kuncar@54288
   517
definition rel_pred_comp :: "('a => 'b => bool) => ('b => bool) => 'a => bool"
kuncar@53093
   518
where "rel_pred_comp R P \<equiv> \<lambda>x. \<exists>y. R x y \<and> P y"
kuncar@53093
   519
kuncar@53093
   520
lemma pcr_Domainp:
kuncar@53093
   521
assumes "Domainp B = P"
kuncar@54288
   522
shows "Domainp (A OO B) = (\<lambda>x. \<exists>y. A x y \<and> P y)"
kuncar@54288
   523
using assms by blast
kuncar@53093
   524
kuncar@53093
   525
lemma pcr_Domainp_total:
kuncar@57860
   526
  assumes "left_total B"
kuncar@53093
   527
  assumes "Domainp A = P"
kuncar@53093
   528
  shows "Domainp (A OO B) = P"
kuncar@57860
   529
using assms unfolding left_total_def 
kuncar@53093
   530
by fast
kuncar@53093
   531
kuncar@53093
   532
lemma Quotient_to_Domainp:
kuncar@53093
   533
  assumes "Quotient R Abs Rep T"
kuncar@53093
   534
  shows "Domainp T = (\<lambda>x. R x x)"  
kuncar@53093
   535
by (simp add: Domainp_iff[abs_def] Quotient_cr_rel[OF assms])
kuncar@53093
   536
kuncar@57861
   537
lemma eq_onp_to_Domainp:
kuncar@57861
   538
  assumes "Quotient (eq_onp P) Abs Rep T"
kuncar@53093
   539
  shows "Domainp T = P"
kuncar@57861
   540
by (simp add: eq_onp_def Domainp_iff[abs_def] Quotient_cr_rel[OF assms])
kuncar@53093
   541
kuncar@54148
   542
end
kuncar@54148
   543
kuncar@48153
   544
subsection {* ML setup *}
kuncar@48153
   545
wenzelm@49906
   546
ML_file "Tools/Lifting/lifting_util.ML"
kuncar@48153
   547
wenzelm@49906
   548
ML_file "Tools/Lifting/lifting_info.ML"
kuncar@48153
   549
setup Lifting_Info.setup
kuncar@48153
   550
kuncar@52511
   551
(* setup for the function type *)
kuncar@48647
   552
declare fun_quotient[quot_map]
kuncar@52511
   553
declare fun_mono[relator_mono]
kuncar@52511
   554
lemmas [relator_distr] = pos_fun_distr neg_fun_distr1 neg_fun_distr2
kuncar@48153
   555
kuncar@57866
   556
ML_file "Tools/Lifting/lifting_bnf.ML"
kuncar@57866
   557
wenzelm@49906
   558
ML_file "Tools/Lifting/lifting_term.ML"
kuncar@48153
   559
wenzelm@49906
   560
ML_file "Tools/Lifting/lifting_def.ML"
kuncar@48153
   561
wenzelm@49906
   562
ML_file "Tools/Lifting/lifting_setup.ML"
kuncar@57860
   563
                           
kuncar@57861
   564
hide_const (open) POS NEG
kuncar@48153
   565
kuncar@48153
   566
end