doc-src/TutorialI/Inductive/document/Star.tex
author paulson
Tue, 10 Feb 2004 12:17:04 +0100
changeset 14379 ea10a8c3e9cf
parent 13778 61272514e3b5
child 15481 fc075ae929e4
permissions -rw-r--r--
updated links to the old ftp site
nipkow@10225
     1
%
nipkow@10225
     2
\begin{isabellebody}%
nipkow@10225
     3
\def\isabellecontext{Star}%
wenzelm@11866
     4
\isamarkupfalse%
nipkow@10225
     5
%
paulson@10878
     6
\isamarkupsection{The Reflexive Transitive Closure%
wenzelm@10395
     7
}
wenzelm@11866
     8
\isamarkuptrue%
nipkow@10225
     9
%
nipkow@10225
    10
\begin{isamarkuptext}%
nipkow@10242
    11
\label{sec:rtc}
paulson@11494
    12
\index{reflexive transitive closure!defining inductively|(}%
paulson@10878
    13
An inductive definition may accept parameters, so it can express 
paulson@10878
    14
functions that yield sets.
paulson@10878
    15
Relations too can be defined inductively, since they are just sets of pairs.
paulson@10878
    16
A perfect example is the function that maps a relation to its
paulson@10878
    17
reflexive transitive closure.  This concept was already
nipkow@11147
    18
introduced in \S\ref{sec:Relations}, where the operator \isa{\isactrlsup {\isacharasterisk}} was
nipkow@10520
    19
defined as a least fixed point because inductive definitions were not yet
nipkow@10520
    20
available. But now they are:%
nipkow@10225
    21
\end{isamarkuptext}%
wenzelm@11866
    22
\isamarkuptrue%
nipkow@10242
    23
\isacommand{consts}\ rtc\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequote}\ \ \ {\isacharparenleft}{\isachardoublequote}{\isacharunderscore}{\isacharasterisk}{\isachardoublequote}\ {\isacharbrackleft}{\isadigit{1}}{\isadigit{0}}{\isadigit{0}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{9}}{\isadigit{9}}{\isadigit{9}}{\isacharparenright}\isanewline
wenzelm@11866
    24
\isamarkupfalse%
nipkow@10225
    25
\isacommand{inductive}\ {\isachardoublequote}r{\isacharasterisk}{\isachardoublequote}\isanewline
nipkow@10225
    26
\isakeyword{intros}\isanewline
nipkow@10242
    27
rtc{\isacharunderscore}refl{\isacharbrackleft}iff{\isacharbrackright}{\isacharcolon}\ \ {\isachardoublequote}{\isacharparenleft}x{\isacharcomma}x{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequote}\isanewline
wenzelm@11866
    28
rtc{\isacharunderscore}step{\isacharcolon}\ \ \ \ \ \ \ {\isachardoublequote}{\isasymlbrakk}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequote}\isamarkupfalse%
wenzelm@11866
    29
%
nipkow@10242
    30
\begin{isamarkuptext}%
nipkow@10242
    31
\noindent
nipkow@10242
    32
The function \isa{rtc} is annotated with concrete syntax: instead of
paulson@11494
    33
\isa{rtc\ r} we can write \isa{r{\isacharasterisk}}. The actual definition
nipkow@10520
    34
consists of two rules. Reflexivity is obvious and is immediately given the
nipkow@10520
    35
\isa{iff} attribute to increase automation. The
nipkow@10363
    36
second rule, \isa{rtc{\isacharunderscore}step}, says that we can always add one more
nipkow@10363
    37
\isa{r}-step to the left. Although we could make \isa{rtc{\isacharunderscore}step} an
nipkow@10520
    38
introduction rule, this is dangerous: the recursion in the second premise
nipkow@10520
    39
slows down and may even kill the automatic tactics.
nipkow@10242
    40
nipkow@10242
    41
The above definition of the concept of reflexive transitive closure may
nipkow@10242
    42
be sufficiently intuitive but it is certainly not the only possible one:
paulson@10878
    43
for a start, it does not even mention transitivity.
nipkow@10242
    44
The rest of this section is devoted to proving that it is equivalent to
paulson@10878
    45
the standard definition. We start with a simple lemma:%
nipkow@10242
    46
\end{isamarkuptext}%
wenzelm@11866
    47
\isamarkuptrue%
nipkow@11308
    48
\isacommand{lemma}\ {\isacharbrackleft}intro{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequote}\isanewline
wenzelm@11866
    49
\isamarkupfalse%
wenzelm@11866
    50
\isacommand{by}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isacharunderscore}step{\isacharparenright}\isamarkupfalse%
wenzelm@11866
    51
%
nipkow@10242
    52
\begin{isamarkuptext}%
nipkow@10242
    53
\noindent
nipkow@10242
    54
Although the lemma itself is an unremarkable consequence of the basic rules,
nipkow@10242
    55
it has the advantage that it can be declared an introduction rule without the
nipkow@10242
    56
danger of killing the automatic tactics because \isa{r{\isacharasterisk}} occurs only in
nipkow@10242
    57
the conclusion and not in the premise. Thus some proofs that would otherwise
nipkow@10242
    58
need \isa{rtc{\isacharunderscore}step} can now be found automatically. The proof also
paulson@10878
    59
shows that \isa{blast} is able to handle \isa{rtc{\isacharunderscore}step}. But
nipkow@10242
    60
some of the other automatic tactics are more sensitive, and even \isa{blast} can be lead astray in the presence of large numbers of rules.
nipkow@10242
    61
nipkow@10520
    62
To prove transitivity, we need rule induction, i.e.\ theorem
nipkow@10520
    63
\isa{rtc{\isachardot}induct}:
nipkow@10520
    64
\begin{isabelle}%
nipkow@10696
    65
\ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}{\isacharquery}xb{\isacharcomma}\ {\isacharquery}xa{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}{\isacharsemicolon}\ {\isasymAnd}x{\isachardot}\ {\isacharquery}P\ x\ x{\isacharsemicolon}\isanewline
paulson@14379
    66
\isaindent{\ \ \ \ \ \ }{\isasymAnd}x\ y\ z{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}{\isacharsemicolon}\ {\isacharquery}P\ y\ z{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharquery}P\ x\ z{\isasymrbrakk}\isanewline
wenzelm@10950
    67
\isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ {\isacharquery}P\ {\isacharquery}xb\ {\isacharquery}xa%
nipkow@10520
    68
\end{isabelle}
nipkow@10520
    69
It says that \isa{{\isacharquery}P} holds for an arbitrary pair \isa{{\isacharparenleft}{\isacharquery}xb{\isacharcomma}{\isacharquery}xa{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}} if \isa{{\isacharquery}P} is preserved by all rules of the inductive definition,
nipkow@10520
    70
i.e.\ if \isa{{\isacharquery}P} holds for the conclusion provided it holds for the
nipkow@10520
    71
premises. In general, rule induction for an $n$-ary inductive relation $R$
nipkow@10520
    72
expects a premise of the form $(x@1,\dots,x@n) \in R$.
nipkow@10520
    73
nipkow@10520
    74
Now we turn to the inductive proof of transitivity:%
nipkow@10242
    75
\end{isamarkuptext}%
wenzelm@11866
    76
\isamarkuptrue%
nipkow@10520
    77
\isacommand{lemma}\ rtc{\isacharunderscore}trans{\isacharcolon}\ {\isachardoublequote}{\isasymlbrakk}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequote}\isanewline
wenzelm@11866
    78
\isamarkupfalse%
wenzelm@11866
    79
\isacommand{apply}{\isacharparenleft}erule\ rtc{\isachardot}induct{\isacharparenright}\isamarkupfalse%
wenzelm@11866
    80
%
nipkow@10363
    81
\begin{isamarkuptxt}%
nipkow@10242
    82
\noindent
paulson@11494
    83
Unfortunately, even the base case is a problem:
nipkow@10363
    84
\begin{isabelle}%
nipkow@10363
    85
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}%
nipkow@10242
    86
\end{isabelle}
paulson@11494
    87
We have to abandon this proof attempt.
nipkow@10520
    88
To understand what is going on, let us look again at \isa{rtc{\isachardot}induct}.
nipkow@10520
    89
In the above application of \isa{erule}, the first premise of
nipkow@10520
    90
\isa{rtc{\isachardot}induct} is unified with the first suitable assumption, which
nipkow@10520
    91
is \isa{{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}} rather than \isa{{\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}}. Although that
nipkow@10520
    92
is what we want, it is merely due to the order in which the assumptions occur
nipkow@10520
    93
in the subgoal, which it is not good practice to rely on. As a result,
nipkow@10520
    94
\isa{{\isacharquery}xb} becomes \isa{x}, \isa{{\isacharquery}xa} becomes
nipkow@10520
    95
\isa{y} and \isa{{\isacharquery}P} becomes \isa{{\isasymlambda}u\ v{\isachardot}\ {\isacharparenleft}u{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}}, thus
nipkow@10242
    96
yielding the above subgoal. So what went wrong?
nipkow@10242
    97
nipkow@10520
    98
When looking at the instantiation of \isa{{\isacharquery}P} we see that it does not
nipkow@10520
    99
depend on its second parameter at all. The reason is that in our original
nipkow@10520
   100
goal, of the pair \isa{{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}} only \isa{x} appears also in the
nipkow@10520
   101
conclusion, but not \isa{y}. Thus our induction statement is too
nipkow@10520
   102
weak. Fortunately, it can easily be strengthened:
nipkow@10242
   103
transfer the additional premise \isa{{\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}} into the conclusion:%
nipkow@10363
   104
\end{isamarkuptxt}%
wenzelm@11866
   105
\isamarkuptrue%
wenzelm@11866
   106
\isamarkupfalse%
nipkow@10242
   107
\isacommand{lemma}\ rtc{\isacharunderscore}trans{\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\isanewline
wenzelm@11866
   108
\ \ {\isachardoublequote}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymLongrightarrow}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequote}\isamarkupfalse%
wenzelm@11866
   109
%
nipkow@10242
   110
\begin{isamarkuptxt}%
nipkow@10242
   111
\noindent
nipkow@10242
   112
This is not an obscure trick but a generally applicable heuristic:
nipkow@10242
   113
\begin{quote}\em
nipkow@11257
   114
When proving a statement by rule induction on $(x@1,\dots,x@n) \in R$,
nipkow@10242
   115
pull all other premises containing any of the $x@i$ into the conclusion
nipkow@10242
   116
using $\longrightarrow$.
nipkow@10242
   117
\end{quote}
nipkow@10242
   118
A similar heuristic for other kinds of inductions is formulated in
nipkow@10242
   119
\S\ref{sec:ind-var-in-prems}. The \isa{rule{\isacharunderscore}format} directive turns
nipkow@11147
   120
\isa{{\isasymlongrightarrow}} back into \isa{{\isasymLongrightarrow}}: in the end we obtain the original
nipkow@10363
   121
statement of our lemma.%
nipkow@10363
   122
\end{isamarkuptxt}%
wenzelm@11866
   123
\isamarkuptrue%
wenzelm@11866
   124
\isacommand{apply}{\isacharparenleft}erule\ rtc{\isachardot}induct{\isacharparenright}\isamarkupfalse%
wenzelm@11866
   125
%
nipkow@10363
   126
\begin{isamarkuptxt}%
nipkow@10363
   127
\noindent
nipkow@10242
   128
Now induction produces two subgoals which are both proved automatically:
nipkow@10363
   129
\begin{isabelle}%
nipkow@10242
   130
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\isanewline
nipkow@10242
   131
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}x\ y\ za{\isachardot}\isanewline
wenzelm@10950
   132
\isaindent{\ {\isadigit{2}}{\isachardot}\ \ \ \ }{\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ za{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isacharsemicolon}\ {\isacharparenleft}za{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isasymrbrakk}\isanewline
wenzelm@10950
   133
\isaindent{\ {\isadigit{2}}{\isachardot}\ \ \ \ }{\isasymLongrightarrow}\ {\isacharparenleft}za{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}%
nipkow@10242
   134
\end{isabelle}%
nipkow@10242
   135
\end{isamarkuptxt}%
wenzelm@11866
   136
\ \isamarkuptrue%
wenzelm@11866
   137
\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
wenzelm@11866
   138
\isamarkupfalse%
nipkow@10237
   139
\isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isacharunderscore}step{\isacharparenright}\isanewline
wenzelm@11866
   140
\isamarkupfalse%
wenzelm@11866
   141
\isacommand{done}\isamarkupfalse%
wenzelm@11866
   142
%
nipkow@10242
   143
\begin{isamarkuptext}%
nipkow@10242
   144
Let us now prove that \isa{r{\isacharasterisk}} is really the reflexive transitive closure
nipkow@10242
   145
of \isa{r}, i.e.\ the least reflexive and transitive
nipkow@10242
   146
relation containing \isa{r}. The latter is easily formalized%
nipkow@10242
   147
\end{isamarkuptext}%
wenzelm@11866
   148
\isamarkuptrue%
nipkow@10237
   149
\isacommand{consts}\ rtc{\isadigit{2}}\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequote}\isanewline
wenzelm@11866
   150
\isamarkupfalse%
nipkow@10237
   151
\isacommand{inductive}\ {\isachardoublequote}rtc{\isadigit{2}}\ r{\isachardoublequote}\isanewline
nipkow@10225
   152
\isakeyword{intros}\isanewline
nipkow@10237
   153
{\isachardoublequote}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequote}\isanewline
nipkow@10237
   154
{\isachardoublequote}{\isacharparenleft}x{\isacharcomma}x{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequote}\isanewline
wenzelm@11866
   155
{\isachardoublequote}{\isasymlbrakk}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequote}\isamarkupfalse%
wenzelm@11866
   156
%
nipkow@10237
   157
\begin{isamarkuptext}%
nipkow@10242
   158
\noindent
nipkow@10242
   159
and the equivalence of the two definitions is easily shown by the obvious rule
nipkow@10237
   160
inductions:%
nipkow@10237
   161
\end{isamarkuptext}%
wenzelm@11866
   162
\isamarkuptrue%
nipkow@10237
   163
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequote}\isanewline
wenzelm@11866
   164
\isamarkupfalse%
nipkow@10237
   165
\isacommand{apply}{\isacharparenleft}erule\ rtc{\isadigit{2}}{\isachardot}induct{\isacharparenright}\isanewline
wenzelm@11866
   166
\ \ \isamarkupfalse%
wenzelm@11866
   167
\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
wenzelm@11866
   168
\ \isamarkupfalse%
wenzelm@11866
   169
\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
wenzelm@11866
   170
\isamarkupfalse%
nipkow@10237
   171
\isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isacharunderscore}trans{\isacharparenright}\isanewline
wenzelm@11866
   172
\isamarkupfalse%
nipkow@10237
   173
\isacommand{done}\isanewline
nipkow@10225
   174
\isanewline
wenzelm@11866
   175
\isamarkupfalse%
nipkow@10237
   176
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequote}\isanewline
wenzelm@11866
   177
\isamarkupfalse%
nipkow@10237
   178
\isacommand{apply}{\isacharparenleft}erule\ rtc{\isachardot}induct{\isacharparenright}\isanewline
wenzelm@11866
   179
\ \isamarkupfalse%
nipkow@10237
   180
\isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isadigit{2}}{\isachardot}intros{\isacharparenright}\isanewline
wenzelm@11866
   181
\isamarkupfalse%
wenzelm@11866
   182
\isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isadigit{2}}{\isachardot}intros{\isacharparenright}\isanewline
wenzelm@11866
   183
\isamarkupfalse%
wenzelm@11866
   184
\isacommand{done}\isamarkupfalse%
wenzelm@11866
   185
%
nipkow@10242
   186
\begin{isamarkuptext}%
nipkow@10242
   187
So why did we start with the first definition? Because it is simpler. It
nipkow@10242
   188
contains only two rules, and the single step rule is simpler than
nipkow@10242
   189
transitivity.  As a consequence, \isa{rtc{\isachardot}induct} is simpler than
paulson@10878
   190
\isa{rtc{\isadigit{2}}{\isachardot}induct}. Since inductive proofs are hard enough
nipkow@11147
   191
anyway, we should always pick the simplest induction schema available.
nipkow@10242
   192
Hence \isa{rtc} is the definition of choice.
paulson@11494
   193
\index{reflexive transitive closure!defining inductively|)}
nipkow@10242
   194
nipkow@10520
   195
\begin{exercise}\label{ex:converse-rtc-step}
nipkow@10242
   196
Show that the converse of \isa{rtc{\isacharunderscore}step} also holds:
nipkow@10242
   197
\begin{isabelle}%
nipkow@10696
   198
\ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}%
nipkow@10242
   199
\end{isabelle}
nipkow@10520
   200
\end{exercise}
nipkow@10520
   201
\begin{exercise}
nipkow@10520
   202
Repeat the development of this section, but starting with a definition of
nipkow@10520
   203
\isa{rtc} where \isa{rtc{\isacharunderscore}step} is replaced by its converse as shown
nipkow@10520
   204
in exercise~\ref{ex:converse-rtc-step}.
nipkow@10242
   205
\end{exercise}%
nipkow@10242
   206
\end{isamarkuptext}%
wenzelm@11866
   207
\isamarkuptrue%
wenzelm@11866
   208
\isamarkupfalse%
wenzelm@11866
   209
\isamarkupfalse%
wenzelm@11866
   210
\isamarkupfalse%
wenzelm@11866
   211
\isamarkupfalse%
wenzelm@11866
   212
\isamarkupfalse%
wenzelm@11866
   213
\isamarkupfalse%
nipkow@10225
   214
\end{isabellebody}%
nipkow@10225
   215
%%% Local Variables:
nipkow@10225
   216
%%% mode: latex
nipkow@10225
   217
%%% TeX-master: "root"
nipkow@10225
   218
%%% End: