doc-src/IsarRef/Thy/HOL_Specific.thy
author wenzelm
Tue, 03 May 2011 15:07:36 +0200
changeset 43522 e3fdb7c96be5
parent 43498 8749742785b8
child 43523 c963499143e5
permissions -rw-r--r--
formal Base theory;
wenzelm@26840
     1
theory HOL_Specific
wenzelm@43522
     2
imports Base Main
wenzelm@26840
     3
begin
wenzelm@26840
     4
wenzelm@26852
     5
chapter {* Isabelle/HOL \label{ch:hol} *}
wenzelm@26849
     6
wenzelm@35757
     7
section {* Typedef axiomatization \label{sec:hol-typedef} *}
wenzelm@26849
     8
wenzelm@26849
     9
text {*
wenzelm@26849
    10
  \begin{matharray}{rcl}
wenzelm@35757
    11
    @{command_def (HOL) "typedef"} & : & @{text "local_theory \<rightarrow> proof(prove)"} \\
wenzelm@26849
    12
  \end{matharray}
wenzelm@26849
    13
wenzelm@43467
    14
  @{rail "
wenzelm@43467
    15
    @@{command (HOL) typedef} altname? abstype '=' repset
wenzelm@26849
    16
    ;
wenzelm@26849
    17
wenzelm@43467
    18
    altname: '(' (@{syntax name} | @'open' | @'open' @{syntax name}) ')'
wenzelm@26849
    19
    ;
wenzelm@43467
    20
    abstype: @{syntax typespecsorts} @{syntax mixfix}?
wenzelm@26849
    21
    ;
wenzelm@43467
    22
    repset: @{syntax term} (@'morphisms' @{syntax name} @{syntax name})?
wenzelm@43467
    23
  "}
wenzelm@26849
    24
wenzelm@28760
    25
  \begin{description}
wenzelm@42994
    26
wenzelm@35757
    27
  \item @{command (HOL) "typedef"}~@{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>n) t = A"}
wenzelm@35757
    28
  axiomatizes a Gordon/HOL-style type definition in the background
wenzelm@35757
    29
  theory of the current context, depending on a non-emptiness result
wenzelm@35757
    30
  of the set @{text A} (which needs to be proven interactively).
wenzelm@35757
    31
wenzelm@35757
    32
  The raw type may not depend on parameters or assumptions of the
wenzelm@35757
    33
  context --- this is logically impossible in Isabelle/HOL --- but the
wenzelm@35757
    34
  non-emptiness property can be local, potentially resulting in
wenzelm@35757
    35
  multiple interpretations in target contexts.  Thus the established
wenzelm@35757
    36
  bijection between the representing set @{text A} and the new type
wenzelm@35757
    37
  @{text t} may semantically depend on local assumptions.
wenzelm@42994
    38
wenzelm@35757
    39
  By default, @{command (HOL) "typedef"} defines both a type @{text t}
wenzelm@35757
    40
  and a set (term constant) of the same name, unless an alternative
wenzelm@35757
    41
  base name is given in parentheses, or the ``@{text "(open)"}''
wenzelm@35757
    42
  declaration is used to suppress a separate constant definition
wenzelm@35757
    43
  altogether.  The injection from type to set is called @{text Rep_t},
wenzelm@35757
    44
  its inverse @{text Abs_t} --- this may be changed via an explicit
wenzelm@35757
    45
  @{keyword (HOL) "morphisms"} declaration.
wenzelm@42994
    46
wenzelm@26849
    47
  Theorems @{text Rep_t}, @{text Rep_t_inverse}, and @{text
wenzelm@26849
    48
  Abs_t_inverse} provide the most basic characterization as a
wenzelm@26849
    49
  corresponding injection/surjection pair (in both directions).  Rules
wenzelm@26849
    50
  @{text Rep_t_inject} and @{text Abs_t_inject} provide a slightly
wenzelm@26849
    51
  more convenient view on the injectivity part, suitable for automated
wenzelm@26894
    52
  proof tools (e.g.\ in @{attribute simp} or @{attribute iff}
wenzelm@26894
    53
  declarations).  Rules @{text Rep_t_cases}/@{text Rep_t_induct}, and
wenzelm@26894
    54
  @{text Abs_t_cases}/@{text Abs_t_induct} provide alternative views
wenzelm@26894
    55
  on surjectivity; these are already declared as set or type rules for
wenzelm@26849
    56
  the generic @{method cases} and @{method induct} methods.
wenzelm@42994
    57
wenzelm@35757
    58
  An alternative name for the set definition (and other derived
wenzelm@35757
    59
  entities) may be specified in parentheses; the default is to use
wenzelm@35757
    60
  @{text t} as indicated before.
wenzelm@26849
    61
wenzelm@28760
    62
  \end{description}
wenzelm@26849
    63
*}
wenzelm@26849
    64
wenzelm@26849
    65
wenzelm@26849
    66
section {* Adhoc tuples *}
wenzelm@26849
    67
wenzelm@26849
    68
text {*
wenzelm@26849
    69
  \begin{matharray}{rcl}
wenzelm@43467
    70
    @{attribute_def (HOL) split_format}@{text "\<^sup>*"} & : & @{text attribute} \\
wenzelm@26849
    71
  \end{matharray}
wenzelm@26849
    72
wenzelm@43467
    73
  @{rail "
wenzelm@43467
    74
    @@{attribute (HOL) split_format} ('(' 'complete' ')')?
wenzelm@43467
    75
  "}
wenzelm@26849
    76
wenzelm@28760
    77
  \begin{description}
wenzelm@42994
    78
krauss@40634
    79
  \item @{attribute (HOL) split_format}\ @{text "(complete)"} causes
wenzelm@28760
    80
  arguments in function applications to be represented canonically
wenzelm@28760
    81
  according to their tuple type structure.
wenzelm@26849
    82
krauss@40634
    83
  Note that this operation tends to invent funny names for new local
krauss@40634
    84
  parameters introduced.
wenzelm@26849
    85
wenzelm@28760
    86
  \end{description}
wenzelm@26849
    87
*}
wenzelm@26849
    88
wenzelm@26849
    89
wenzelm@26849
    90
section {* Records \label{sec:hol-record} *}
wenzelm@26849
    91
wenzelm@26849
    92
text {*
wenzelm@26849
    93
  In principle, records merely generalize the concept of tuples, where
wenzelm@26849
    94
  components may be addressed by labels instead of just position.  The
wenzelm@26849
    95
  logical infrastructure of records in Isabelle/HOL is slightly more
wenzelm@26849
    96
  advanced, though, supporting truly extensible record schemes.  This
wenzelm@26849
    97
  admits operations that are polymorphic with respect to record
wenzelm@26849
    98
  extension, yielding ``object-oriented'' effects like (single)
wenzelm@26849
    99
  inheritance.  See also \cite{NaraschewskiW-TPHOLs98} for more
wenzelm@26849
   100
  details on object-oriented verification and record subtyping in HOL.
wenzelm@26849
   101
*}
wenzelm@26849
   102
wenzelm@26849
   103
wenzelm@26849
   104
subsection {* Basic concepts *}
wenzelm@26849
   105
wenzelm@26849
   106
text {*
wenzelm@26849
   107
  Isabelle/HOL supports both \emph{fixed} and \emph{schematic} records
wenzelm@26849
   108
  at the level of terms and types.  The notation is as follows:
wenzelm@26849
   109
wenzelm@26849
   110
  \begin{center}
wenzelm@26849
   111
  \begin{tabular}{l|l|l}
wenzelm@26849
   112
    & record terms & record types \\ \hline
wenzelm@26849
   113
    fixed & @{text "\<lparr>x = a, y = b\<rparr>"} & @{text "\<lparr>x :: A, y :: B\<rparr>"} \\
wenzelm@26849
   114
    schematic & @{text "\<lparr>x = a, y = b, \<dots> = m\<rparr>"} &
wenzelm@26849
   115
      @{text "\<lparr>x :: A, y :: B, \<dots> :: M\<rparr>"} \\
wenzelm@26849
   116
  \end{tabular}
wenzelm@26849
   117
  \end{center}
wenzelm@26849
   118
wenzelm@26849
   119
  \noindent The ASCII representation of @{text "\<lparr>x = a\<rparr>"} is @{text
wenzelm@26849
   120
  "(| x = a |)"}.
wenzelm@26849
   121
wenzelm@26849
   122
  A fixed record @{text "\<lparr>x = a, y = b\<rparr>"} has field @{text x} of value
wenzelm@26849
   123
  @{text a} and field @{text y} of value @{text b}.  The corresponding
wenzelm@26849
   124
  type is @{text "\<lparr>x :: A, y :: B\<rparr>"}, assuming that @{text "a :: A"}
wenzelm@26849
   125
  and @{text "b :: B"}.
wenzelm@26849
   126
wenzelm@26849
   127
  A record scheme like @{text "\<lparr>x = a, y = b, \<dots> = m\<rparr>"} contains fields
wenzelm@26849
   128
  @{text x} and @{text y} as before, but also possibly further fields
wenzelm@26849
   129
  as indicated by the ``@{text "\<dots>"}'' notation (which is actually part
wenzelm@26849
   130
  of the syntax).  The improper field ``@{text "\<dots>"}'' of a record
wenzelm@26849
   131
  scheme is called the \emph{more part}.  Logically it is just a free
wenzelm@26849
   132
  variable, which is occasionally referred to as ``row variable'' in
wenzelm@26849
   133
  the literature.  The more part of a record scheme may be
wenzelm@26849
   134
  instantiated by zero or more further components.  For example, the
wenzelm@26849
   135
  previous scheme may get instantiated to @{text "\<lparr>x = a, y = b, z =
wenzelm@26852
   136
  c, \<dots> = m'\<rparr>"}, where @{text m'} refers to a different more part.
wenzelm@26849
   137
  Fixed records are special instances of record schemes, where
wenzelm@26849
   138
  ``@{text "\<dots>"}'' is properly terminated by the @{text "() :: unit"}
wenzelm@26849
   139
  element.  In fact, @{text "\<lparr>x = a, y = b\<rparr>"} is just an abbreviation
wenzelm@26849
   140
  for @{text "\<lparr>x = a, y = b, \<dots> = ()\<rparr>"}.
wenzelm@42994
   141
wenzelm@26849
   142
  \medskip Two key observations make extensible records in a simply
wenzelm@26849
   143
  typed language like HOL work out:
wenzelm@26849
   144
wenzelm@26849
   145
  \begin{enumerate}
wenzelm@26849
   146
wenzelm@26849
   147
  \item the more part is internalized, as a free term or type
wenzelm@26849
   148
  variable,
wenzelm@26849
   149
wenzelm@26852
   150
  \item field names are externalized, they cannot be accessed within
wenzelm@26852
   151
  the logic as first-class values.
wenzelm@26849
   152
wenzelm@26849
   153
  \end{enumerate}
wenzelm@26849
   154
wenzelm@26849
   155
  \medskip In Isabelle/HOL record types have to be defined explicitly,
wenzelm@26849
   156
  fixing their field names and types, and their (optional) parent
wenzelm@26849
   157
  record.  Afterwards, records may be formed using above syntax, while
wenzelm@26849
   158
  obeying the canonical order of fields as given by their declaration.
wenzelm@26849
   159
  The record package provides several standard operations like
wenzelm@26849
   160
  selectors and updates.  The common setup for various generic proof
wenzelm@26849
   161
  tools enable succinct reasoning patterns.  See also the Isabelle/HOL
wenzelm@26849
   162
  tutorial \cite{isabelle-hol-book} for further instructions on using
wenzelm@26849
   163
  records in practice.
wenzelm@26849
   164
*}
wenzelm@26849
   165
wenzelm@26849
   166
wenzelm@26849
   167
subsection {* Record specifications *}
wenzelm@26849
   168
wenzelm@26849
   169
text {*
wenzelm@26849
   170
  \begin{matharray}{rcl}
wenzelm@28761
   171
    @{command_def (HOL) "record"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@26849
   172
  \end{matharray}
wenzelm@26849
   173
wenzelm@43467
   174
  @{rail "
wenzelm@43467
   175
    @@{command (HOL) record} @{syntax typespecsorts} '=' (@{syntax type} '+')? (@{syntax constdecl} +)
wenzelm@43467
   176
  "}
wenzelm@26849
   177
wenzelm@28760
   178
  \begin{description}
wenzelm@26849
   179
wenzelm@28760
   180
  \item @{command (HOL) "record"}~@{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>m) t = \<tau> + c\<^sub>1 :: \<sigma>\<^sub>1
wenzelm@28760
   181
  \<dots> c\<^sub>n :: \<sigma>\<^sub>n"} defines extensible record type @{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>m) t"},
wenzelm@26849
   182
  derived from the optional parent record @{text "\<tau>"} by adding new
wenzelm@26849
   183
  field components @{text "c\<^sub>i :: \<sigma>\<^sub>i"} etc.
wenzelm@26849
   184
wenzelm@26849
   185
  The type variables of @{text "\<tau>"} and @{text "\<sigma>\<^sub>i"} need to be
wenzelm@26849
   186
  covered by the (distinct) parameters @{text "\<alpha>\<^sub>1, \<dots>,
wenzelm@26849
   187
  \<alpha>\<^sub>m"}.  Type constructor @{text t} has to be new, while @{text
wenzelm@26849
   188
  \<tau>} needs to specify an instance of an existing record type.  At
wenzelm@26849
   189
  least one new field @{text "c\<^sub>i"} has to be specified.
wenzelm@26849
   190
  Basically, field names need to belong to a unique record.  This is
wenzelm@26849
   191
  not a real restriction in practice, since fields are qualified by
wenzelm@26849
   192
  the record name internally.
wenzelm@26849
   193
wenzelm@26849
   194
  The parent record specification @{text \<tau>} is optional; if omitted
wenzelm@26849
   195
  @{text t} becomes a root record.  The hierarchy of all records
wenzelm@26849
   196
  declared within a theory context forms a forest structure, i.e.\ a
wenzelm@26849
   197
  set of trees starting with a root record each.  There is no way to
wenzelm@26849
   198
  merge multiple parent records!
wenzelm@26849
   199
wenzelm@26849
   200
  For convenience, @{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>m) t"} is made a
wenzelm@26849
   201
  type abbreviation for the fixed record type @{text "\<lparr>c\<^sub>1 ::
wenzelm@26849
   202
  \<sigma>\<^sub>1, \<dots>, c\<^sub>n :: \<sigma>\<^sub>n\<rparr>"}, likewise is @{text
wenzelm@26849
   203
  "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>m, \<zeta>) t_scheme"} made an abbreviation for
wenzelm@26849
   204
  @{text "\<lparr>c\<^sub>1 :: \<sigma>\<^sub>1, \<dots>, c\<^sub>n :: \<sigma>\<^sub>n, \<dots> ::
wenzelm@26849
   205
  \<zeta>\<rparr>"}.
wenzelm@26849
   206
wenzelm@28760
   207
  \end{description}
wenzelm@26849
   208
*}
wenzelm@26849
   209
wenzelm@26849
   210
wenzelm@26849
   211
subsection {* Record operations *}
wenzelm@26849
   212
wenzelm@26849
   213
text {*
wenzelm@26849
   214
  Any record definition of the form presented above produces certain
wenzelm@26849
   215
  standard operations.  Selectors and updates are provided for any
wenzelm@26849
   216
  field, including the improper one ``@{text more}''.  There are also
wenzelm@26849
   217
  cumulative record constructor functions.  To simplify the
wenzelm@26849
   218
  presentation below, we assume for now that @{text "(\<alpha>\<^sub>1, \<dots>,
wenzelm@26849
   219
  \<alpha>\<^sub>m) t"} is a root record with fields @{text "c\<^sub>1 ::
wenzelm@26849
   220
  \<sigma>\<^sub>1, \<dots>, c\<^sub>n :: \<sigma>\<^sub>n"}.
wenzelm@26849
   221
wenzelm@26849
   222
  \medskip \textbf{Selectors} and \textbf{updates} are available for
wenzelm@26849
   223
  any field (including ``@{text more}''):
wenzelm@26849
   224
wenzelm@26849
   225
  \begin{matharray}{lll}
wenzelm@26852
   226
    @{text "c\<^sub>i"} & @{text "::"} & @{text "\<lparr>\<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr> \<Rightarrow> \<sigma>\<^sub>i"} \\
wenzelm@26852
   227
    @{text "c\<^sub>i_update"} & @{text "::"} & @{text "\<sigma>\<^sub>i \<Rightarrow> \<lparr>\<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr> \<Rightarrow> \<lparr>\<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr>"} \\
wenzelm@26849
   228
  \end{matharray}
wenzelm@26849
   229
wenzelm@26849
   230
  There is special syntax for application of updates: @{text "r\<lparr>x :=
wenzelm@26849
   231
  a\<rparr>"} abbreviates term @{text "x_update a r"}.  Further notation for
wenzelm@26849
   232
  repeated updates is also available: @{text "r\<lparr>x := a\<rparr>\<lparr>y := b\<rparr>\<lparr>z :=
wenzelm@26849
   233
  c\<rparr>"} may be written @{text "r\<lparr>x := a, y := b, z := c\<rparr>"}.  Note that
wenzelm@26849
   234
  because of postfix notation the order of fields shown here is
wenzelm@26849
   235
  reverse than in the actual term.  Since repeated updates are just
wenzelm@26849
   236
  function applications, fields may be freely permuted in @{text "\<lparr>x
wenzelm@26849
   237
  := a, y := b, z := c\<rparr>"}, as far as logical equality is concerned.
wenzelm@26849
   238
  Thus commutativity of independent updates can be proven within the
wenzelm@26849
   239
  logic for any two fields, but not as a general theorem.
wenzelm@26849
   240
wenzelm@26849
   241
  \medskip The \textbf{make} operation provides a cumulative record
wenzelm@26849
   242
  constructor function:
wenzelm@26849
   243
wenzelm@26849
   244
  \begin{matharray}{lll}
wenzelm@26852
   245
    @{text "t.make"} & @{text "::"} & @{text "\<sigma>\<^sub>1 \<Rightarrow> \<dots> \<sigma>\<^sub>n \<Rightarrow> \<lparr>\<^vec>c :: \<^vec>\<sigma>\<rparr>"} \\
wenzelm@26849
   246
  \end{matharray}
wenzelm@26849
   247
wenzelm@26849
   248
  \medskip We now reconsider the case of non-root records, which are
wenzelm@26849
   249
  derived of some parent.  In general, the latter may depend on
wenzelm@26849
   250
  another parent as well, resulting in a list of \emph{ancestor
wenzelm@26849
   251
  records}.  Appending the lists of fields of all ancestors results in
wenzelm@26849
   252
  a certain field prefix.  The record package automatically takes care
wenzelm@26849
   253
  of this by lifting operations over this context of ancestor fields.
wenzelm@26849
   254
  Assuming that @{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>m) t"} has ancestor
wenzelm@26849
   255
  fields @{text "b\<^sub>1 :: \<rho>\<^sub>1, \<dots>, b\<^sub>k :: \<rho>\<^sub>k"},
wenzelm@26849
   256
  the above record operations will get the following types:
wenzelm@26849
   257
wenzelm@26852
   258
  \medskip
wenzelm@26852
   259
  \begin{tabular}{lll}
wenzelm@26852
   260
    @{text "c\<^sub>i"} & @{text "::"} & @{text "\<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr> \<Rightarrow> \<sigma>\<^sub>i"} \\
wenzelm@42994
   261
    @{text "c\<^sub>i_update"} & @{text "::"} & @{text "\<sigma>\<^sub>i \<Rightarrow>
wenzelm@26852
   262
      \<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr> \<Rightarrow>
wenzelm@26852
   263
      \<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr>"} \\
wenzelm@26852
   264
    @{text "t.make"} & @{text "::"} & @{text "\<rho>\<^sub>1 \<Rightarrow> \<dots> \<rho>\<^sub>k \<Rightarrow> \<sigma>\<^sub>1 \<Rightarrow> \<dots> \<sigma>\<^sub>n \<Rightarrow>
wenzelm@26852
   265
      \<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>\<rparr>"} \\
wenzelm@26852
   266
  \end{tabular}
wenzelm@26852
   267
  \medskip
wenzelm@26849
   268
wenzelm@26852
   269
  \noindent Some further operations address the extension aspect of a
wenzelm@26849
   270
  derived record scheme specifically: @{text "t.fields"} produces a
wenzelm@26849
   271
  record fragment consisting of exactly the new fields introduced here
wenzelm@26849
   272
  (the result may serve as a more part elsewhere); @{text "t.extend"}
wenzelm@26849
   273
  takes a fixed record and adds a given more part; @{text
wenzelm@26849
   274
  "t.truncate"} restricts a record scheme to a fixed record.
wenzelm@26849
   275
wenzelm@26852
   276
  \medskip
wenzelm@26852
   277
  \begin{tabular}{lll}
wenzelm@26852
   278
    @{text "t.fields"} & @{text "::"} & @{text "\<sigma>\<^sub>1 \<Rightarrow> \<dots> \<sigma>\<^sub>n \<Rightarrow> \<lparr>\<^vec>c :: \<^vec>\<sigma>\<rparr>"} \\
wenzelm@26852
   279
    @{text "t.extend"} & @{text "::"} & @{text "\<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>\<rparr> \<Rightarrow>
wenzelm@26852
   280
      \<zeta> \<Rightarrow> \<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr>"} \\
wenzelm@26852
   281
    @{text "t.truncate"} & @{text "::"} & @{text "\<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr> \<Rightarrow> \<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>\<rparr>"} \\
wenzelm@26852
   282
  \end{tabular}
wenzelm@26852
   283
  \medskip
wenzelm@26849
   284
wenzelm@26849
   285
  \noindent Note that @{text "t.make"} and @{text "t.fields"} coincide
wenzelm@26849
   286
  for root records.
wenzelm@26849
   287
*}
wenzelm@26849
   288
wenzelm@26849
   289
wenzelm@26849
   290
subsection {* Derived rules and proof tools *}
wenzelm@26849
   291
wenzelm@26849
   292
text {*
wenzelm@26849
   293
  The record package proves several results internally, declaring
wenzelm@26849
   294
  these facts to appropriate proof tools.  This enables users to
wenzelm@26849
   295
  reason about record structures quite conveniently.  Assume that
wenzelm@26849
   296
  @{text t} is a record type as specified above.
wenzelm@26849
   297
wenzelm@26849
   298
  \begin{enumerate}
wenzelm@42994
   299
wenzelm@26849
   300
  \item Standard conversions for selectors or updates applied to
wenzelm@26849
   301
  record constructor terms are made part of the default Simplifier
wenzelm@26849
   302
  context; thus proofs by reduction of basic operations merely require
wenzelm@26849
   303
  the @{method simp} method without further arguments.  These rules
wenzelm@26849
   304
  are available as @{text "t.simps"}, too.
wenzelm@42994
   305
wenzelm@26849
   306
  \item Selectors applied to updated records are automatically reduced
wenzelm@26849
   307
  by an internal simplification procedure, which is also part of the
wenzelm@26849
   308
  standard Simplifier setup.
wenzelm@26849
   309
wenzelm@26849
   310
  \item Inject equations of a form analogous to @{prop "(x, y) = (x',
wenzelm@26849
   311
  y') \<equiv> x = x' \<and> y = y'"} are declared to the Simplifier and Classical
wenzelm@26849
   312
  Reasoner as @{attribute iff} rules.  These rules are available as
wenzelm@26849
   313
  @{text "t.iffs"}.
wenzelm@26849
   314
wenzelm@26849
   315
  \item The introduction rule for record equality analogous to @{text
wenzelm@26849
   316
  "x r = x r' \<Longrightarrow> y r = y r' \<dots> \<Longrightarrow> r = r'"} is declared to the Simplifier,
wenzelm@26849
   317
  and as the basic rule context as ``@{attribute intro}@{text "?"}''.
wenzelm@26849
   318
  The rule is called @{text "t.equality"}.
wenzelm@26849
   319
wenzelm@26849
   320
  \item Representations of arbitrary record expressions as canonical
wenzelm@26849
   321
  constructor terms are provided both in @{method cases} and @{method
wenzelm@26849
   322
  induct} format (cf.\ the generic proof methods of the same name,
wenzelm@26849
   323
  \secref{sec:cases-induct}).  Several variations are available, for
wenzelm@26849
   324
  fixed records, record schemes, more parts etc.
wenzelm@42994
   325
wenzelm@26849
   326
  The generic proof methods are sufficiently smart to pick the most
wenzelm@26849
   327
  sensible rule according to the type of the indicated record
wenzelm@26849
   328
  expression: users just need to apply something like ``@{text "(cases
wenzelm@26849
   329
  r)"}'' to a certain proof problem.
wenzelm@26849
   330
wenzelm@26849
   331
  \item The derived record operations @{text "t.make"}, @{text
wenzelm@26849
   332
  "t.fields"}, @{text "t.extend"}, @{text "t.truncate"} are \emph{not}
wenzelm@26849
   333
  treated automatically, but usually need to be expanded by hand,
wenzelm@26849
   334
  using the collective fact @{text "t.defs"}.
wenzelm@26849
   335
wenzelm@26849
   336
  \end{enumerate}
wenzelm@26849
   337
*}
wenzelm@26849
   338
wenzelm@26849
   339
wenzelm@26849
   340
section {* Datatypes \label{sec:hol-datatype} *}
wenzelm@26849
   341
wenzelm@26849
   342
text {*
wenzelm@26849
   343
  \begin{matharray}{rcl}
wenzelm@28761
   344
    @{command_def (HOL) "datatype"} & : & @{text "theory \<rightarrow> theory"} \\
haftmann@41644
   345
    @{command_def (HOL) "rep_datatype"} & : & @{text "theory \<rightarrow> proof(prove)"} \\
wenzelm@26849
   346
  \end{matharray}
wenzelm@26849
   347
wenzelm@43467
   348
  @{rail "
wenzelm@43467
   349
    @@{command (HOL) datatype} (dtspec + @'and')
wenzelm@26849
   350
    ;
wenzelm@43467
   351
    @@{command (HOL) rep_datatype} ('(' (@{syntax name} +) ')')? (@{syntax term} +)
wenzelm@26849
   352
    ;
wenzelm@26849
   353
wenzelm@43467
   354
    dtspec: @{syntax parname}? @{syntax typespec} @{syntax mixfix}? '=' (cons + '|')
wenzelm@26849
   355
    ;
wenzelm@43467
   356
    cons: @{syntax name} (@{syntax type} * ) @{syntax mixfix}?
wenzelm@43467
   357
  "}
wenzelm@26849
   358
wenzelm@28760
   359
  \begin{description}
wenzelm@26849
   360
wenzelm@28760
   361
  \item @{command (HOL) "datatype"} defines inductive datatypes in
wenzelm@26849
   362
  HOL.
wenzelm@26849
   363
wenzelm@28760
   364
  \item @{command (HOL) "rep_datatype"} represents existing types as
wenzelm@26849
   365
  inductive ones, generating the standard infrastructure of derived
wenzelm@26849
   366
  concepts (primitive recursion etc.).
wenzelm@26849
   367
wenzelm@28760
   368
  \end{description}
wenzelm@26849
   369
wenzelm@26849
   370
  The induction and exhaustion theorems generated provide case names
wenzelm@26849
   371
  according to the constructors involved, while parameters are named
wenzelm@26849
   372
  after the types (see also \secref{sec:cases-induct}).
wenzelm@26849
   373
wenzelm@26849
   374
  See \cite{isabelle-HOL} for more details on datatypes, but beware of
wenzelm@26849
   375
  the old-style theory syntax being used there!  Apart from proper
wenzelm@26849
   376
  proof methods for case-analysis and induction, there are also
wenzelm@26849
   377
  emulations of ML tactics @{method (HOL) case_tac} and @{method (HOL)
wenzelm@26849
   378
  induct_tac} available, see \secref{sec:hol-induct-tac}; these admit
wenzelm@26849
   379
  to refer directly to the internal structure of subgoals (including
wenzelm@26849
   380
  internally bound parameters).
wenzelm@26849
   381
*}
wenzelm@26849
   382
wenzelm@26849
   383
haftmann@41644
   384
section {* Functorial structure of types *}
haftmann@41644
   385
haftmann@41644
   386
text {*
haftmann@41644
   387
  \begin{matharray}{rcl}
haftmann@41752
   388
    @{command_def (HOL) "enriched_type"} & : & @{text "local_theory \<rightarrow> proof(prove)"}
haftmann@41644
   389
  \end{matharray}
haftmann@41644
   390
wenzelm@43467
   391
  @{rail "
wenzelm@43488
   392
    @@{command (HOL) enriched_type} (@{syntax name} ':')? @{syntax term}
haftmann@41644
   393
    ;
wenzelm@43488
   394
  "}
haftmann@41644
   395
haftmann@41644
   396
  \begin{description}
haftmann@41644
   397
wenzelm@43488
   398
  \item @{command (HOL) "enriched_type"}~@{text "prefix: m"} allows to
wenzelm@43488
   399
  prove and register properties about the functorial structure of type
wenzelm@43488
   400
  constructors.  These properties then can be used by other packages
wenzelm@43488
   401
  to deal with those type constructors in certain type constructions.
wenzelm@43488
   402
  Characteristic theorems are noted in the current local theory.  By
wenzelm@43488
   403
  default, they are prefixed with the base name of the type
wenzelm@43488
   404
  constructor, an explicit prefix can be given alternatively.
haftmann@41644
   405
haftmann@41644
   406
  The given term @{text "m"} is considered as \emph{mapper} for the
haftmann@41644
   407
  corresponding type constructor and must conform to the following
haftmann@41644
   408
  type pattern:
haftmann@41644
   409
haftmann@41644
   410
  \begin{matharray}{lll}
haftmann@41644
   411
    @{text "m"} & @{text "::"} &
haftmann@41644
   412
      @{text "\<sigma>\<^isub>1 \<Rightarrow> \<dots> \<sigma>\<^isub>k \<Rightarrow> (\<^vec>\<alpha>\<^isub>n) t \<Rightarrow> (\<^vec>\<beta>\<^isub>n) t"} \\
haftmann@41644
   413
  \end{matharray}
haftmann@41644
   414
haftmann@41644
   415
  \noindent where @{text t} is the type constructor, @{text
haftmann@41644
   416
  "\<^vec>\<alpha>\<^isub>n"} and @{text "\<^vec>\<beta>\<^isub>n"} are distinct
haftmann@41644
   417
  type variables free in the local theory and @{text "\<sigma>\<^isub>1"},
haftmann@41644
   418
  \ldots, @{text "\<sigma>\<^isub>k"} is a subsequence of @{text "\<alpha>\<^isub>1 \<Rightarrow>
haftmann@41644
   419
  \<beta>\<^isub>1"}, @{text "\<beta>\<^isub>1 \<Rightarrow> \<alpha>\<^isub>1"}, \ldots,
haftmann@41644
   420
  @{text "\<alpha>\<^isub>n \<Rightarrow> \<beta>\<^isub>n"}, @{text "\<beta>\<^isub>n \<Rightarrow>
haftmann@41644
   421
  \<alpha>\<^isub>n"}.
haftmann@41644
   422
haftmann@41644
   423
  \end{description}
haftmann@41644
   424
*}
haftmann@41644
   425
haftmann@41644
   426
wenzelm@26849
   427
section {* Recursive functions \label{sec:recursion} *}
wenzelm@26849
   428
wenzelm@26849
   429
text {*
wenzelm@26849
   430
  \begin{matharray}{rcl}
wenzelm@28761
   431
    @{command_def (HOL) "primrec"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   432
    @{command_def (HOL) "fun"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   433
    @{command_def (HOL) "function"} & : & @{text "local_theory \<rightarrow> proof(prove)"} \\
wenzelm@28761
   434
    @{command_def (HOL) "termination"} & : & @{text "local_theory \<rightarrow> proof(prove)"} \\
wenzelm@26849
   435
  \end{matharray}
wenzelm@26849
   436
wenzelm@43467
   437
  @{rail "
wenzelm@43467
   438
    @@{command (HOL) primrec} @{syntax target}? @{syntax \"fixes\"} @'where' equations
wenzelm@26849
   439
    ;
wenzelm@43467
   440
    (@@{command (HOL) fun} | @@{command (HOL) function}) @{syntax target}? functionopts?
wenzelm@43467
   441
      @{syntax \"fixes\"} \\ @'where' equations
krauss@40411
   442
    ;
wenzelm@43467
   443
wenzelm@43467
   444
    equations: (@{syntax thmdecl}? @{syntax prop} + '|')
wenzelm@26849
   445
    ;
krauss@42717
   446
    functionopts: '(' (('sequential' | 'domintros') + ',') ')'
wenzelm@26849
   447
    ;
wenzelm@43467
   448
    @@{command (HOL) termination} @{syntax term}?
wenzelm@43467
   449
  "}
wenzelm@26849
   450
wenzelm@28760
   451
  \begin{description}
wenzelm@26849
   452
wenzelm@28760
   453
  \item @{command (HOL) "primrec"} defines primitive recursive
wenzelm@26849
   454
  functions over datatypes, see also \cite{isabelle-HOL}.
wenzelm@26849
   455
wenzelm@28760
   456
  \item @{command (HOL) "function"} defines functions by general
wenzelm@26849
   457
  wellfounded recursion. A detailed description with examples can be
wenzelm@26849
   458
  found in \cite{isabelle-function}. The function is specified by a
wenzelm@26849
   459
  set of (possibly conditional) recursive equations with arbitrary
wenzelm@26849
   460
  pattern matching. The command generates proof obligations for the
wenzelm@26849
   461
  completeness and the compatibility of patterns.
wenzelm@26849
   462
wenzelm@26849
   463
  The defined function is considered partial, and the resulting
wenzelm@26849
   464
  simplification rules (named @{text "f.psimps"}) and induction rule
wenzelm@26849
   465
  (named @{text "f.pinduct"}) are guarded by a generated domain
wenzelm@26849
   466
  predicate @{text "f_dom"}. The @{command (HOL) "termination"}
wenzelm@26849
   467
  command can then be used to establish that the function is total.
wenzelm@26849
   468
wenzelm@28760
   469
  \item @{command (HOL) "fun"} is a shorthand notation for ``@{command
wenzelm@28760
   470
  (HOL) "function"}~@{text "(sequential)"}, followed by automated
wenzelm@28760
   471
  proof attempts regarding pattern matching and termination.  See
wenzelm@28760
   472
  \cite{isabelle-function} for further details.
wenzelm@26849
   473
wenzelm@28760
   474
  \item @{command (HOL) "termination"}~@{text f} commences a
wenzelm@26849
   475
  termination proof for the previously defined function @{text f}.  If
wenzelm@26849
   476
  this is omitted, the command refers to the most recent function
wenzelm@26849
   477
  definition.  After the proof is closed, the recursive equations and
wenzelm@26849
   478
  the induction principle is established.
wenzelm@26849
   479
wenzelm@28760
   480
  \end{description}
wenzelm@26849
   481
haftmann@27452
   482
  Recursive definitions introduced by the @{command (HOL) "function"}
haftmann@27452
   483
  command accommodate
wenzelm@26849
   484
  reasoning by induction (cf.\ \secref{sec:cases-induct}): rule @{text
wenzelm@26849
   485
  "c.induct"} (where @{text c} is the name of the function definition)
wenzelm@26849
   486
  refers to a specific induction rule, with parameters named according
krauss@33857
   487
  to the user-specified equations. Cases are numbered (starting from 1).
krauss@33857
   488
krauss@33857
   489
  For @{command (HOL) "primrec"}, the induction principle coincides
haftmann@27452
   490
  with structural recursion on the datatype the recursion is carried
haftmann@27452
   491
  out.
wenzelm@26849
   492
wenzelm@26849
   493
  The equations provided by these packages may be referred later as
wenzelm@26849
   494
  theorem list @{text "f.simps"}, where @{text f} is the (collective)
wenzelm@26849
   495
  name of the functions defined.  Individual equations may be named
wenzelm@26849
   496
  explicitly as well.
wenzelm@26849
   497
wenzelm@26849
   498
  The @{command (HOL) "function"} command accepts the following
wenzelm@26849
   499
  options.
wenzelm@26849
   500
wenzelm@28760
   501
  \begin{description}
wenzelm@26849
   502
wenzelm@28760
   503
  \item @{text sequential} enables a preprocessor which disambiguates
wenzelm@28760
   504
  overlapping patterns by making them mutually disjoint.  Earlier
wenzelm@28760
   505
  equations take precedence over later ones.  This allows to give the
wenzelm@28760
   506
  specification in a format very similar to functional programming.
wenzelm@28760
   507
  Note that the resulting simplification and induction rules
wenzelm@28760
   508
  correspond to the transformed specification, not the one given
wenzelm@26849
   509
  originally. This usually means that each equation given by the user
hoelzl@36137
   510
  may result in several theorems.  Also note that this automatic
wenzelm@26849
   511
  transformation only works for ML-style datatype patterns.
wenzelm@26849
   512
wenzelm@28760
   513
  \item @{text domintros} enables the automated generation of
wenzelm@26849
   514
  introduction rules for the domain predicate. While mostly not
wenzelm@26849
   515
  needed, they can be helpful in some proofs about partial functions.
wenzelm@26849
   516
wenzelm@28760
   517
  \end{description}
wenzelm@26849
   518
*}
wenzelm@26849
   519
wenzelm@26849
   520
wenzelm@26849
   521
subsection {* Proof methods related to recursive definitions *}
wenzelm@26849
   522
wenzelm@26849
   523
text {*
wenzelm@26849
   524
  \begin{matharray}{rcl}
wenzelm@28761
   525
    @{method_def (HOL) pat_completeness} & : & @{text method} \\
wenzelm@28761
   526
    @{method_def (HOL) relation} & : & @{text method} \\
wenzelm@28761
   527
    @{method_def (HOL) lexicographic_order} & : & @{text method} \\
krauss@33858
   528
    @{method_def (HOL) size_change} & : & @{text method} \\
wenzelm@26849
   529
  \end{matharray}
wenzelm@26849
   530
wenzelm@43467
   531
  @{rail "
wenzelm@43467
   532
    @@{method (HOL) relation} @{syntax term}
wenzelm@26849
   533
    ;
wenzelm@43467
   534
    @@{method (HOL) lexicographic_order} (@{syntax clasimpmod} * )
wenzelm@26849
   535
    ;
wenzelm@43467
   536
    @@{method (HOL) size_change} ( orders (@{syntax clasimpmod} * ) )
krauss@33858
   537
    ;
krauss@33858
   538
    orders: ( 'max' | 'min' | 'ms' ) *
wenzelm@43467
   539
  "}
wenzelm@26849
   540
wenzelm@28760
   541
  \begin{description}
wenzelm@26849
   542
wenzelm@28760
   543
  \item @{method (HOL) pat_completeness} is a specialized method to
wenzelm@26849
   544
  solve goals regarding the completeness of pattern matching, as
wenzelm@26849
   545
  required by the @{command (HOL) "function"} package (cf.\
wenzelm@26849
   546
  \cite{isabelle-function}).
wenzelm@26849
   547
wenzelm@28760
   548
  \item @{method (HOL) relation}~@{text R} introduces a termination
wenzelm@26849
   549
  proof using the relation @{text R}.  The resulting proof state will
wenzelm@26849
   550
  contain goals expressing that @{text R} is wellfounded, and that the
wenzelm@26849
   551
  arguments of recursive calls decrease with respect to @{text R}.
wenzelm@26849
   552
  Usually, this method is used as the initial proof step of manual
wenzelm@26849
   553
  termination proofs.
wenzelm@26849
   554
wenzelm@28760
   555
  \item @{method (HOL) "lexicographic_order"} attempts a fully
wenzelm@26849
   556
  automated termination proof by searching for a lexicographic
wenzelm@26849
   557
  combination of size measures on the arguments of the function. The
wenzelm@26849
   558
  method accepts the same arguments as the @{method auto} method,
wenzelm@26849
   559
  which it uses internally to prove local descents.  The same context
wenzelm@26849
   560
  modifiers as for @{method auto} are accepted, see
wenzelm@26849
   561
  \secref{sec:clasimp}.
wenzelm@26849
   562
wenzelm@26849
   563
  In case of failure, extensive information is printed, which can help
wenzelm@26849
   564
  to analyse the situation (cf.\ \cite{isabelle-function}).
wenzelm@26849
   565
krauss@33858
   566
  \item @{method (HOL) "size_change"} also works on termination goals,
krauss@33858
   567
  using a variation of the size-change principle, together with a
krauss@33858
   568
  graph decomposition technique (see \cite{krauss_phd} for details).
krauss@33858
   569
  Three kinds of orders are used internally: @{text max}, @{text min},
krauss@33858
   570
  and @{text ms} (multiset), which is only available when the theory
krauss@33858
   571
  @{text Multiset} is loaded. When no order kinds are given, they are
krauss@33858
   572
  tried in order. The search for a termination proof uses SAT solving
krauss@33858
   573
  internally.
krauss@33858
   574
krauss@33858
   575
 For local descent proofs, the same context modifiers as for @{method
krauss@33858
   576
  auto} are accepted, see \secref{sec:clasimp}.
krauss@33858
   577
wenzelm@28760
   578
  \end{description}
wenzelm@26849
   579
*}
wenzelm@26849
   580
krauss@40412
   581
subsection {* Functions with explicit partiality *}
krauss@40412
   582
krauss@40412
   583
text {*
krauss@40412
   584
  \begin{matharray}{rcl}
krauss@40412
   585
    @{command_def (HOL) "partial_function"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
krauss@40412
   586
    @{attribute_def (HOL) "partial_function_mono"} & : & @{text attribute} \\
krauss@40412
   587
  \end{matharray}
krauss@40412
   588
wenzelm@43467
   589
  @{rail "
wenzelm@43467
   590
    @@{command (HOL) partial_function} @{syntax target}?
wenzelm@43488
   591
      '(' @{syntax nameref} ')' @{syntax \"fixes\"} \\
wenzelm@43488
   592
      @'where' @{syntax thmdecl}? @{syntax prop}
wenzelm@43488
   593
  "}
krauss@40412
   594
krauss@40412
   595
  \begin{description}
krauss@40412
   596
wenzelm@43488
   597
  \item @{command (HOL) "partial_function"}~@{text "(mode)"} defines
wenzelm@43488
   598
  recursive functions based on fixpoints in complete partial
wenzelm@43488
   599
  orders. No termination proof is required from the user or
wenzelm@43488
   600
  constructed internally. Instead, the possibility of non-termination
wenzelm@43488
   601
  is modelled explicitly in the result type, which contains an
wenzelm@43488
   602
  explicit bottom element.
krauss@40412
   603
krauss@40412
   604
  Pattern matching and mutual recursion are currently not supported.
krauss@40412
   605
  Thus, the specification consists of a single function described by a
krauss@40412
   606
  single recursive equation.
krauss@40412
   607
krauss@40412
   608
  There are no fixed syntactic restrictions on the body of the
krauss@40412
   609
  function, but the induced functional must be provably monotonic
krauss@40412
   610
  wrt.\ the underlying order.  The monotonicitity proof is performed
krauss@40412
   611
  internally, and the definition is rejected when it fails. The proof
krauss@40412
   612
  can be influenced by declaring hints using the
krauss@40412
   613
  @{attribute (HOL) partial_function_mono} attribute.
krauss@40412
   614
krauss@40412
   615
  The mandatory @{text mode} argument specifies the mode of operation
krauss@40412
   616
  of the command, which directly corresponds to a complete partial
krauss@40412
   617
  order on the result type. By default, the following modes are
wenzelm@42994
   618
  defined:
krauss@40412
   619
krauss@40412
   620
  \begin{description}
krauss@40412
   621
  \item @{text option} defines functions that map into the @{type
krauss@40412
   622
  option} type. Here, the value @{term None} is used to model a
krauss@40412
   623
  non-terminating computation. Monotonicity requires that if @{term
krauss@40412
   624
  None} is returned by a recursive call, then the overall result
krauss@40412
   625
  must also be @{term None}. This is best achieved through the use of
krauss@40412
   626
  the monadic operator @{const "Option.bind"}.
wenzelm@42994
   627
krauss@40412
   628
  \item @{text tailrec} defines functions with an arbitrary result
krauss@40412
   629
  type and uses the slightly degenerated partial order where @{term
krauss@40412
   630
  "undefined"} is the bottom element.  Now, monotonicity requires that
krauss@40412
   631
  if @{term undefined} is returned by a recursive call, then the
krauss@40412
   632
  overall result must also be @{term undefined}. In practice, this is
krauss@40412
   633
  only satisfied when each recursive call is a tail call, whose result
krauss@40412
   634
  is directly returned. Thus, this mode of operation allows the
krauss@40412
   635
  definition of arbitrary tail-recursive functions.
krauss@40412
   636
  \end{description}
krauss@40412
   637
krauss@40412
   638
  Experienced users may define new modes by instantiating the locale
krauss@40412
   639
  @{const "partial_function_definitions"} appropriately.
krauss@40412
   640
krauss@40412
   641
  \item @{attribute (HOL) partial_function_mono} declares rules for
krauss@40412
   642
  use in the internal monononicity proofs of partial function
krauss@40412
   643
  definitions.
krauss@40412
   644
krauss@40412
   645
  \end{description}
krauss@40412
   646
krauss@40412
   647
*}
wenzelm@26849
   648
wenzelm@26849
   649
subsection {* Old-style recursive function definitions (TFL) *}
wenzelm@26849
   650
wenzelm@26849
   651
text {*
wenzelm@26849
   652
  The old TFL commands @{command (HOL) "recdef"} and @{command (HOL)
wenzelm@26849
   653
  "recdef_tc"} for defining recursive are mostly obsolete; @{command
wenzelm@26849
   654
  (HOL) "function"} or @{command (HOL) "fun"} should be used instead.
wenzelm@26849
   655
wenzelm@26849
   656
  \begin{matharray}{rcl}
wenzelm@28761
   657
    @{command_def (HOL) "recdef"} & : & @{text "theory \<rightarrow> theory)"} \\
wenzelm@28761
   658
    @{command_def (HOL) "recdef_tc"}@{text "\<^sup>*"} & : & @{text "theory \<rightarrow> proof(prove)"} \\
wenzelm@26849
   659
  \end{matharray}
wenzelm@26849
   660
wenzelm@43467
   661
  @{rail "
wenzelm@43467
   662
    @@{command (HOL) recdef} ('(' @'permissive' ')')? \\
wenzelm@43467
   663
      @{syntax name} @{syntax term} (@{syntax prop} +) hints?
wenzelm@26849
   664
    ;
wenzelm@43467
   665
    recdeftc @{syntax thmdecl}? tc
wenzelm@26849
   666
    ;
wenzelm@43467
   667
    hints: '(' @'hints' ( recdefmod * ) ')'
wenzelm@26849
   668
    ;
wenzelm@43467
   669
    recdefmod: (('recdef_simp' | 'recdef_cong' | 'recdef_wf')
wenzelm@43467
   670
      (() | 'add' | 'del') ':' @{syntax thmrefs}) | @{syntax clasimpmod}
wenzelm@26849
   671
    ;
wenzelm@43467
   672
    tc: @{syntax nameref} ('(' @{syntax nat} ')')?
wenzelm@43467
   673
  "}
wenzelm@26849
   674
wenzelm@28760
   675
  \begin{description}
wenzelm@42994
   676
wenzelm@28760
   677
  \item @{command (HOL) "recdef"} defines general well-founded
wenzelm@26849
   678
  recursive functions (using the TFL package), see also
wenzelm@26849
   679
  \cite{isabelle-HOL}.  The ``@{text "(permissive)"}'' option tells
wenzelm@26849
   680
  TFL to recover from failed proof attempts, returning unfinished
wenzelm@26849
   681
  results.  The @{text recdef_simp}, @{text recdef_cong}, and @{text
wenzelm@26849
   682
  recdef_wf} hints refer to auxiliary rules to be used in the internal
wenzelm@26849
   683
  automated proof process of TFL.  Additional @{syntax clasimpmod}
wenzelm@26849
   684
  declarations (cf.\ \secref{sec:clasimp}) may be given to tune the
wenzelm@26849
   685
  context of the Simplifier (cf.\ \secref{sec:simplifier}) and
wenzelm@26849
   686
  Classical reasoner (cf.\ \secref{sec:classical}).
wenzelm@42994
   687
wenzelm@28760
   688
  \item @{command (HOL) "recdef_tc"}~@{text "c (i)"} recommences the
wenzelm@26849
   689
  proof for leftover termination condition number @{text i} (default
wenzelm@26849
   690
  1) as generated by a @{command (HOL) "recdef"} definition of
wenzelm@26849
   691
  constant @{text c}.
wenzelm@42994
   692
wenzelm@26849
   693
  Note that in most cases, @{command (HOL) "recdef"} is able to finish
wenzelm@26849
   694
  its internal proofs without manual intervention.
wenzelm@26849
   695
wenzelm@28760
   696
  \end{description}
wenzelm@26849
   697
wenzelm@26849
   698
  \medskip Hints for @{command (HOL) "recdef"} may be also declared
wenzelm@26849
   699
  globally, using the following attributes.
wenzelm@26849
   700
wenzelm@26849
   701
  \begin{matharray}{rcl}
wenzelm@28761
   702
    @{attribute_def (HOL) recdef_simp} & : & @{text attribute} \\
wenzelm@28761
   703
    @{attribute_def (HOL) recdef_cong} & : & @{text attribute} \\
wenzelm@28761
   704
    @{attribute_def (HOL) recdef_wf} & : & @{text attribute} \\
wenzelm@26849
   705
  \end{matharray}
wenzelm@26849
   706
wenzelm@43467
   707
  @{rail "
wenzelm@43467
   708
    (@@{attribute (HOL) recdef_simp} | @@{attribute (HOL) recdef_cong} |
wenzelm@43467
   709
      @@{attribute (HOL) recdef_wf}) (() | 'add' | 'del')
wenzelm@43467
   710
  "}
wenzelm@26849
   711
*}
wenzelm@26849
   712
wenzelm@26849
   713
wenzelm@26849
   714
section {* Inductive and coinductive definitions \label{sec:hol-inductive} *}
wenzelm@26849
   715
wenzelm@26849
   716
text {*
wenzelm@26849
   717
  An \textbf{inductive definition} specifies the least predicate (or
wenzelm@26849
   718
  set) @{text R} closed under given rules: applying a rule to elements
wenzelm@26849
   719
  of @{text R} yields a result within @{text R}.  For example, a
wenzelm@26849
   720
  structural operational semantics is an inductive definition of an
wenzelm@26849
   721
  evaluation relation.
wenzelm@26849
   722
wenzelm@26849
   723
  Dually, a \textbf{coinductive definition} specifies the greatest
wenzelm@26849
   724
  predicate~/ set @{text R} that is consistent with given rules: every
wenzelm@26849
   725
  element of @{text R} can be seen as arising by applying a rule to
wenzelm@26849
   726
  elements of @{text R}.  An important example is using bisimulation
wenzelm@26849
   727
  relations to formalise equivalence of processes and infinite data
wenzelm@26849
   728
  structures.
wenzelm@26849
   729
wenzelm@26849
   730
  \medskip The HOL package is related to the ZF one, which is
wenzelm@26849
   731
  described in a separate paper,\footnote{It appeared in CADE
wenzelm@26849
   732
  \cite{paulson-CADE}; a longer version is distributed with Isabelle.}
wenzelm@26849
   733
  which you should refer to in case of difficulties.  The package is
wenzelm@26849
   734
  simpler than that of ZF thanks to implicit type-checking in HOL.
wenzelm@26849
   735
  The types of the (co)inductive predicates (or sets) determine the
wenzelm@26849
   736
  domain of the fixedpoint definition, and the package does not have
wenzelm@26849
   737
  to use inference rules for type-checking.
wenzelm@26849
   738
wenzelm@26849
   739
  \begin{matharray}{rcl}
wenzelm@28761
   740
    @{command_def (HOL) "inductive"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   741
    @{command_def (HOL) "inductive_set"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   742
    @{command_def (HOL) "coinductive"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   743
    @{command_def (HOL) "coinductive_set"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   744
    @{attribute_def (HOL) mono} & : & @{text attribute} \\
wenzelm@26849
   745
  \end{matharray}
wenzelm@26849
   746
wenzelm@43467
   747
  @{rail "
wenzelm@43467
   748
    (@@{command (HOL) inductive} | @@{command (HOL) inductive_set} |
wenzelm@43467
   749
      @@{command (HOL) coinductive} | @@{command (HOL) coinductive_set})
wenzelm@43467
   750
    @{syntax target}? @{syntax \"fixes\"} (@'for' @{syntax \"fixes\"})? \\
wenzelm@43467
   751
    (@'where' clauses)? (@'monos' @{syntax thmrefs})?
wenzelm@26849
   752
    ;
wenzelm@43467
   753
    clauses: (@{syntax thmdecl}? @{syntax prop} + '|')
wenzelm@26849
   754
    ;
wenzelm@43467
   755
    @@{attribute (HOL) mono} (() | 'add' | 'del')
wenzelm@43467
   756
  "}
wenzelm@26849
   757
wenzelm@28760
   758
  \begin{description}
wenzelm@26849
   759
wenzelm@28760
   760
  \item @{command (HOL) "inductive"} and @{command (HOL)
wenzelm@28760
   761
  "coinductive"} define (co)inductive predicates from the
wenzelm@26849
   762
  introduction rules given in the @{keyword "where"} part.  The
wenzelm@26849
   763
  optional @{keyword "for"} part contains a list of parameters of the
wenzelm@26849
   764
  (co)inductive predicates that remain fixed throughout the
wenzelm@26849
   765
  definition.  The optional @{keyword "monos"} section contains
wenzelm@26849
   766
  \emph{monotonicity theorems}, which are required for each operator
wenzelm@26849
   767
  applied to a recursive set in the introduction rules.  There
wenzelm@26849
   768
  \emph{must} be a theorem of the form @{text "A \<le> B \<Longrightarrow> M A \<le> M B"},
wenzelm@26849
   769
  for each premise @{text "M R\<^sub>i t"} in an introduction rule!
wenzelm@26849
   770
wenzelm@28760
   771
  \item @{command (HOL) "inductive_set"} and @{command (HOL)
wenzelm@28760
   772
  "coinductive_set"} are wrappers for to the previous commands,
wenzelm@26849
   773
  allowing the definition of (co)inductive sets.
wenzelm@26849
   774
wenzelm@28760
   775
  \item @{attribute (HOL) mono} declares monotonicity rules.  These
wenzelm@26849
   776
  rule are involved in the automated monotonicity proof of @{command
wenzelm@26849
   777
  (HOL) "inductive"}.
wenzelm@26849
   778
wenzelm@28760
   779
  \end{description}
wenzelm@26849
   780
*}
wenzelm@26849
   781
wenzelm@26849
   782
wenzelm@26849
   783
subsection {* Derived rules *}
wenzelm@26849
   784
wenzelm@26849
   785
text {*
wenzelm@26849
   786
  Each (co)inductive definition @{text R} adds definitions to the
wenzelm@26849
   787
  theory and also proves some theorems:
wenzelm@26849
   788
wenzelm@26849
   789
  \begin{description}
wenzelm@26849
   790
wenzelm@28760
   791
  \item @{text R.intros} is the list of introduction rules as proven
wenzelm@26849
   792
  theorems, for the recursive predicates (or sets).  The rules are
wenzelm@26849
   793
  also available individually, using the names given them in the
wenzelm@26849
   794
  theory file;
wenzelm@26849
   795
wenzelm@28760
   796
  \item @{text R.cases} is the case analysis (or elimination) rule;
wenzelm@26849
   797
wenzelm@28760
   798
  \item @{text R.induct} or @{text R.coinduct} is the (co)induction
wenzelm@26849
   799
  rule.
wenzelm@26849
   800
wenzelm@26849
   801
  \end{description}
wenzelm@26849
   802
wenzelm@26849
   803
  When several predicates @{text "R\<^sub>1, \<dots>, R\<^sub>n"} are
wenzelm@26849
   804
  defined simultaneously, the list of introduction rules is called
wenzelm@26849
   805
  @{text "R\<^sub>1_\<dots>_R\<^sub>n.intros"}, the case analysis rules are
wenzelm@26849
   806
  called @{text "R\<^sub>1.cases, \<dots>, R\<^sub>n.cases"}, and the list
wenzelm@26849
   807
  of mutual induction rules is called @{text
wenzelm@26849
   808
  "R\<^sub>1_\<dots>_R\<^sub>n.inducts"}.
wenzelm@26849
   809
*}
wenzelm@26849
   810
wenzelm@26849
   811
wenzelm@26849
   812
subsection {* Monotonicity theorems *}
wenzelm@26849
   813
wenzelm@26849
   814
text {*
wenzelm@26849
   815
  Each theory contains a default set of theorems that are used in
wenzelm@26849
   816
  monotonicity proofs.  New rules can be added to this set via the
wenzelm@26849
   817
  @{attribute (HOL) mono} attribute.  The HOL theory @{text Inductive}
wenzelm@26849
   818
  shows how this is done.  In general, the following monotonicity
wenzelm@26849
   819
  theorems may be added:
wenzelm@26849
   820
wenzelm@26849
   821
  \begin{itemize}
wenzelm@26849
   822
wenzelm@26849
   823
  \item Theorems of the form @{text "A \<le> B \<Longrightarrow> M A \<le> M B"}, for proving
wenzelm@26849
   824
  monotonicity of inductive definitions whose introduction rules have
wenzelm@26849
   825
  premises involving terms such as @{text "M R\<^sub>i t"}.
wenzelm@26849
   826
wenzelm@26849
   827
  \item Monotonicity theorems for logical operators, which are of the
wenzelm@26849
   828
  general form @{text "(\<dots> \<longrightarrow> \<dots>) \<Longrightarrow> \<dots> (\<dots> \<longrightarrow> \<dots>) \<Longrightarrow> \<dots> \<longrightarrow> \<dots>"}.  For example, in
wenzelm@26849
   829
  the case of the operator @{text "\<or>"}, the corresponding theorem is
wenzelm@26849
   830
  \[
wenzelm@26849
   831
  \infer{@{text "P\<^sub>1 \<or> P\<^sub>2 \<longrightarrow> Q\<^sub>1 \<or> Q\<^sub>2"}}{@{text "P\<^sub>1 \<longrightarrow> Q\<^sub>1"} & @{text "P\<^sub>2 \<longrightarrow> Q\<^sub>2"}}
wenzelm@26849
   832
  \]
wenzelm@26849
   833
wenzelm@26849
   834
  \item De Morgan style equations for reasoning about the ``polarity''
wenzelm@26849
   835
  of expressions, e.g.
wenzelm@26849
   836
  \[
wenzelm@26849
   837
  @{prop "\<not> \<not> P \<longleftrightarrow> P"} \qquad\qquad
wenzelm@26849
   838
  @{prop "\<not> (P \<and> Q) \<longleftrightarrow> \<not> P \<or> \<not> Q"}
wenzelm@26849
   839
  \]
wenzelm@26849
   840
wenzelm@26849
   841
  \item Equations for reducing complex operators to more primitive
wenzelm@26849
   842
  ones whose monotonicity can easily be proved, e.g.
wenzelm@26849
   843
  \[
wenzelm@26849
   844
  @{prop "(P \<longrightarrow> Q) \<longleftrightarrow> \<not> P \<or> Q"} \qquad\qquad
wenzelm@26849
   845
  @{prop "Ball A P \<equiv> \<forall>x. x \<in> A \<longrightarrow> P x"}
wenzelm@26849
   846
  \]
wenzelm@26849
   847
wenzelm@26849
   848
  \end{itemize}
wenzelm@26849
   849
wenzelm@26849
   850
  %FIXME: Example of an inductive definition
wenzelm@26849
   851
*}
wenzelm@26849
   852
wenzelm@26849
   853
wenzelm@26849
   854
section {* Arithmetic proof support *}
wenzelm@26849
   855
wenzelm@26849
   856
text {*
wenzelm@26849
   857
  \begin{matharray}{rcl}
wenzelm@28761
   858
    @{method_def (HOL) arith} & : & @{text method} \\
nipkow@30863
   859
    @{attribute_def (HOL) arith} & : & @{text attribute} \\
wenzelm@28761
   860
    @{attribute_def (HOL) arith_split} & : & @{text attribute} \\
wenzelm@26849
   861
  \end{matharray}
wenzelm@26849
   862
wenzelm@26849
   863
  The @{method (HOL) arith} method decides linear arithmetic problems
wenzelm@26849
   864
  (on types @{text nat}, @{text int}, @{text real}).  Any current
wenzelm@26849
   865
  facts are inserted into the goal before running the procedure.
wenzelm@26849
   866
nipkow@30863
   867
  The @{attribute (HOL) arith} attribute declares facts that are
nipkow@30863
   868
  always supplied to the arithmetic provers implicitly.
nipkow@30863
   869
wenzelm@26894
   870
  The @{attribute (HOL) arith_split} attribute declares case split
wenzelm@30865
   871
  rules to be expanded before @{method (HOL) arith} is invoked.
wenzelm@26849
   872
nipkow@30863
   873
  Note that a simpler (but faster) arithmetic prover is
nipkow@30863
   874
  already invoked by the Simplifier.
wenzelm@26849
   875
*}
wenzelm@26849
   876
wenzelm@26849
   877
wenzelm@30169
   878
section {* Intuitionistic proof search *}
wenzelm@30169
   879
wenzelm@30169
   880
text {*
wenzelm@30169
   881
  \begin{matharray}{rcl}
wenzelm@30171
   882
    @{method_def (HOL) iprover} & : & @{text method} \\
wenzelm@30169
   883
  \end{matharray}
wenzelm@30169
   884
wenzelm@43467
   885
  @{rail "
wenzelm@43467
   886
    @@{method (HOL) iprover} ( @{syntax rulemod} * )
wenzelm@43467
   887
  "}
wenzelm@30169
   888
wenzelm@30171
   889
  The @{method (HOL) iprover} method performs intuitionistic proof
wenzelm@30171
   890
  search, depending on specifically declared rules from the context,
wenzelm@30171
   891
  or given as explicit arguments.  Chained facts are inserted into the
wenzelm@35613
   892
  goal before commencing proof search.
wenzelm@35613
   893
wenzelm@30169
   894
  Rules need to be classified as @{attribute (Pure) intro},
wenzelm@30169
   895
  @{attribute (Pure) elim}, or @{attribute (Pure) dest}; here the
wenzelm@30169
   896
  ``@{text "!"}'' indicator refers to ``safe'' rules, which may be
wenzelm@30169
   897
  applied aggressively (without considering back-tracking later).
wenzelm@30169
   898
  Rules declared with ``@{text "?"}'' are ignored in proof search (the
wenzelm@43497
   899
  single-step @{method (Pure) rule} method still observes these).  An
wenzelm@30169
   900
  explicit weight annotation may be given as well; otherwise the
wenzelm@30169
   901
  number of rule premises will be taken into account here.
wenzelm@30169
   902
*}
wenzelm@30169
   903
wenzelm@30169
   904
wenzelm@30171
   905
section {* Coherent Logic *}
wenzelm@30171
   906
wenzelm@30171
   907
text {*
wenzelm@30171
   908
  \begin{matharray}{rcl}
wenzelm@30171
   909
    @{method_def (HOL) "coherent"} & : & @{text method} \\
wenzelm@30171
   910
  \end{matharray}
wenzelm@30171
   911
wenzelm@43467
   912
  @{rail "
wenzelm@43467
   913
    @@{method (HOL) coherent} @{syntax thmrefs}?
wenzelm@43467
   914
  "}
wenzelm@30171
   915
wenzelm@30171
   916
  The @{method (HOL) coherent} method solves problems of
wenzelm@30171
   917
  \emph{Coherent Logic} \cite{Bezem-Coquand:2005}, which covers
wenzelm@30171
   918
  applications in confluence theory, lattice theory and projective
wenzelm@41048
   919
  geometry.  See @{file "~~/src/HOL/ex/Coherent.thy"} for some
wenzelm@30171
   920
  examples.
wenzelm@30171
   921
*}
wenzelm@30171
   922
wenzelm@30171
   923
blanchet@43082
   924
section {* Proving propositions *}
blanchet@43082
   925
blanchet@43082
   926
text {*
blanchet@43082
   927
  In addition to the standard proof methods, a number of diagnosis
blanchet@43082
   928
  tools search for proofs and provide an Isar proof snippet on success.
blanchet@43082
   929
  These tools are available via the following commands.
blanchet@43082
   930
blanchet@43082
   931
  \begin{matharray}{rcl}
blanchet@43082
   932
    @{command_def (HOL) "solve_direct"}@{text "\<^sup>*"} & : & @{text "proof \<rightarrow>"} \\
blanchet@43082
   933
    @{command_def (HOL) "try"}@{text "\<^sup>*"} & : & @{text "proof \<rightarrow>"} \\
blanchet@43082
   934
    @{command_def (HOL) "sledgehammer"}@{text "\<^sup>*"} & : & @{text "proof \<rightarrow>"} \\
blanchet@43082
   935
    @{command_def (HOL) "sledgehammer_params"} & : & @{text "theory \<rightarrow> theory"}
blanchet@43082
   936
  \end{matharray}
blanchet@43082
   937
wenzelm@43467
   938
  @{rail "
wenzelm@43467
   939
    @@{command (HOL) try} ( ( ( 'simp' | 'intro' | 'elim' | 'dest' ) ':' @{syntax thmrefs} ) + ) ?
wenzelm@43467
   940
      @{syntax nat}?
wenzelm@43467
   941
    ;
wenzelm@43467
   942
    @@{command (HOL) sledgehammer} ( '[' args ']' )? facts? @{syntax nat}?
blanchet@43082
   943
    ;
blanchet@43082
   944
wenzelm@43467
   945
    @@{command (HOL) sledgehammer_params} ( ( '[' args ']' ) ? )
blanchet@43082
   946
    ;
blanchet@43082
   947
wenzelm@43467
   948
    args: ( @{syntax name} '=' value + ',' )
blanchet@43082
   949
    ;
blanchet@43082
   950
wenzelm@43467
   951
    facts: '(' ( ( ( ( 'add' | 'del' ) ':' ) ? @{syntax thmrefs} ) + ) ? ')'
blanchet@43082
   952
    ;
wenzelm@43467
   953
  "} % FIXME try: proper clasimpmod!?
wenzelm@43467
   954
  % FIXME check args "value"
blanchet@43082
   955
blanchet@43082
   956
  \begin{description}
blanchet@43082
   957
blanchet@43082
   958
  \item @{command (HOL) "solve_direct"} checks whether the current subgoals can
blanchet@43082
   959
    be solved directly by an existing theorem. Duplicate lemmas can be detected
blanchet@43082
   960
    in this way.
blanchet@43082
   961
blanchet@43082
   962
  \item @{command (HOL) "try"} attempts to prove a subgoal using a combination
blanchet@43082
   963
    of standard proof methods (@{text auto}, @{text simp}, @{text blast}, etc.).
blanchet@43082
   964
    Additional facts supplied via @{text "simp:"}, @{text "intro:"},
blanchet@43082
   965
    @{text "elim:"}, and @{text "dest:"} are passed to the appropriate proof
blanchet@43082
   966
    methods.
blanchet@43082
   967
blanchet@43082
   968
  \item @{command (HOL) "sledgehammer"} attempts to prove a subgoal using external
blanchet@43082
   969
    automatic provers (resolution provers and SMT solvers). See the Sledgehammer
blanchet@43082
   970
    manual \cite{isabelle-sledgehammer} for details.
blanchet@43082
   971
blanchet@43082
   972
  \item @{command (HOL) "sledgehammer_params"} changes
blanchet@43082
   973
    @{command (HOL) "sledgehammer"} configuration options persistently.
blanchet@43082
   974
blanchet@43082
   975
  \end{description}
blanchet@43082
   976
*}
blanchet@43082
   977
blanchet@43082
   978
haftmann@31906
   979
section {* Checking and refuting propositions *}
haftmann@31906
   980
haftmann@31906
   981
text {*
haftmann@31906
   982
  Identifying incorrect propositions usually involves evaluation of
blanchet@43082
   983
  particular assignments and systematic counterexample search.  This
haftmann@31906
   984
  is supported by the following commands.
haftmann@31906
   985
haftmann@31906
   986
  \begin{matharray}{rcl}
haftmann@31906
   987
    @{command_def (HOL) "value"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
haftmann@31906
   988
    @{command_def (HOL) "quickcheck"}@{text "\<^sup>*"} & : & @{text "proof \<rightarrow>"} \\
blanchet@43082
   989
    @{command_def (HOL) "refute"}@{text "\<^sup>*"} & : & @{text "proof \<rightarrow>"} \\
blanchet@43082
   990
    @{command_def (HOL) "nitpick"}@{text "\<^sup>*"} & : & @{text "proof \<rightarrow>"} \\
blanchet@43082
   991
    @{command_def (HOL) "quickcheck_params"} & : & @{text "theory \<rightarrow> theory"} \\
blanchet@43082
   992
    @{command_def (HOL) "refute_params"} & : & @{text "theory \<rightarrow> theory"} \\
blanchet@43082
   993
    @{command_def (HOL) "nitpick_params"} & : & @{text "theory \<rightarrow> theory"}
haftmann@31906
   994
  \end{matharray}
haftmann@31906
   995
wenzelm@43467
   996
  @{rail "
wenzelm@43467
   997
    @@{command (HOL) value} ( '[' name ']' )? modes? @{syntax term}
haftmann@31906
   998
    ;
haftmann@31906
   999
wenzelm@43467
  1000
    (@@{command (HOL) quickcheck} | @@{command (HOL) refute} | @@{command (HOL) nitpick})
wenzelm@43467
  1001
      ( '[' args ']' )? @{syntax nat}?
haftmann@31906
  1002
    ;
haftmann@31906
  1003
wenzelm@43467
  1004
    (@@{command (HOL) quickcheck_params} | @@{command (HOL) refute_params} |
wenzelm@43467
  1005
      @@{command (HOL) nitpick_params}) ( '[' args ']' )?
haftmann@31906
  1006
    ;
haftmann@31906
  1007
wenzelm@43467
  1008
    modes: '(' (@{syntax name} +) ')'
haftmann@31906
  1009
    ;
haftmann@31906
  1010
wenzelm@43467
  1011
    args: ( @{syntax name} '=' value + ',' )
haftmann@31906
  1012
    ;
wenzelm@43467
  1013
  "} % FIXME check "value"
haftmann@31906
  1014
haftmann@31906
  1015
  \begin{description}
haftmann@31906
  1016
haftmann@31906
  1017
  \item @{command (HOL) "value"}~@{text t} evaluates and prints a
haftmann@31906
  1018
    term; optionally @{text modes} can be specified, which are
haftmann@31906
  1019
    appended to the current print mode (see also \cite{isabelle-ref}).
haftmann@31906
  1020
    Internally, the evaluation is performed by registered evaluators,
haftmann@31906
  1021
    which are invoked sequentially until a result is returned.
haftmann@31906
  1022
    Alternatively a specific evaluator can be selected using square
haftmann@37419
  1023
    brackets; typical evaluators use the current set of code equations
haftmann@37419
  1024
    to normalize and include @{text simp} for fully symbolic evaluation
haftmann@37419
  1025
    using the simplifier, @{text nbe} for \emph{normalization by evaluation}
haftmann@37419
  1026
    and \emph{code} for code generation in SML.
haftmann@31906
  1027
haftmann@31906
  1028
  \item @{command (HOL) "quickcheck"} tests the current goal for
blanchet@43082
  1029
    counterexamples using a series of assignments for its
haftmann@31906
  1030
    free variables; by default the first subgoal is tested, an other
haftmann@31906
  1031
    can be selected explicitly using an optional goal index.
bulwahn@41162
  1032
    Assignments can be chosen exhausting the search space upto a given
bulwahn@41162
  1033
    size or using a fixed number of random assignments in the search space.
bulwahn@41162
  1034
    By default, quickcheck uses exhaustive testing.
haftmann@31906
  1035
    A number of configuration options are supported for
haftmann@31906
  1036
    @{command (HOL) "quickcheck"}, notably:
haftmann@31906
  1037
haftmann@31906
  1038
    \begin{description}
haftmann@31906
  1039
bulwahn@41162
  1040
    \item[@{text tester}] specifies how to explore the search space
bulwahn@41162
  1041
      (e.g. exhaustive or random).
bulwahn@41162
  1042
      An unknown configuration option is treated as an argument to tester,
bulwahn@41162
  1043
      making @{text "tester ="} optional.
wenzelm@40515
  1044
    \item[@{text size}] specifies the maximum size of the search space
wenzelm@40515
  1045
    for assignment values.
haftmann@31906
  1046
bulwahn@42956
  1047
    \item[@{text eval}] takes a term or a list of terms and evaluates
bulwahn@42956
  1048
      these terms under the variable assignment found by quickcheck.
wenzelm@42994
  1049
wenzelm@40515
  1050
    \item[@{text iterations}] sets how many sets of assignments are
wenzelm@40515
  1051
    generated for each particular size.
haftmann@31906
  1052
wenzelm@40515
  1053
    \item[@{text no_assms}] specifies whether assumptions in
wenzelm@40515
  1054
    structured proofs should be ignored.
blanchet@35331
  1055
wenzelm@40515
  1056
    \item[@{text timeout}] sets the time limit in seconds.
bulwahn@40480
  1057
wenzelm@40515
  1058
    \item[@{text default_type}] sets the type(s) generally used to
wenzelm@40515
  1059
    instantiate type variables.
bulwahn@40480
  1060
wenzelm@40515
  1061
    \item[@{text report}] if set quickcheck reports how many tests
wenzelm@40515
  1062
    fulfilled the preconditions.
bulwahn@40480
  1063
wenzelm@40515
  1064
    \item[@{text quiet}] if not set quickcheck informs about the
wenzelm@40515
  1065
    current size for assignment values.
bulwahn@40480
  1066
wenzelm@40515
  1067
    \item[@{text expect}] can be used to check if the user's
wenzelm@40515
  1068
    expectation was met (@{text no_expectation}, @{text
wenzelm@40515
  1069
    no_counterexample}, or @{text counterexample}).
bulwahn@40480
  1070
haftmann@31906
  1071
    \end{description}
haftmann@31906
  1072
haftmann@31906
  1073
    These option can be given within square brackets.
haftmann@31906
  1074
blanchet@43082
  1075
  \item @{command (HOL) "quickcheck_params"} changes
blanchet@43082
  1076
    @{command (HOL) "quickcheck"} configuration options persistently.
blanchet@43082
  1077
blanchet@43082
  1078
  \item @{command (HOL) "refute"} tests the current goal for
blanchet@43082
  1079
    counterexamples using a reduction to SAT. The following configuration
blanchet@43082
  1080
    options are supported:
blanchet@43082
  1081
blanchet@43082
  1082
    \begin{description}
blanchet@43082
  1083
blanchet@43082
  1084
    \item[@{text minsize}] specifies the minimum size (cardinality) of the
blanchet@43082
  1085
      models to search for.
blanchet@43082
  1086
blanchet@43082
  1087
    \item[@{text maxsize}] specifies the maximum size (cardinality) of the
blanchet@43082
  1088
      models to search for. Nonpositive values mean $\infty$.
blanchet@43082
  1089
blanchet@43082
  1090
    \item[@{text maxvars}] specifies the maximum number of Boolean variables
blanchet@43082
  1091
    to use when transforming the term into a propositional formula.
blanchet@43082
  1092
    Nonpositive values mean $\infty$.
blanchet@43082
  1093
blanchet@43082
  1094
    \item[@{text satsolver}] specifies the SAT solver to use.
blanchet@43082
  1095
blanchet@43082
  1096
    \item[@{text no_assms}] specifies whether assumptions in
blanchet@43082
  1097
    structured proofs should be ignored.
blanchet@43082
  1098
blanchet@43082
  1099
    \item[@{text maxtime}] sets the time limit in seconds.
blanchet@43082
  1100
blanchet@43082
  1101
    \item[@{text expect}] can be used to check if the user's
blanchet@43082
  1102
    expectation was met (@{text genuine}, @{text potential},
blanchet@43082
  1103
    @{text none}, or @{text unknown}).
blanchet@43082
  1104
blanchet@43082
  1105
    \end{description}
blanchet@43082
  1106
blanchet@43082
  1107
    These option can be given within square brackets.
blanchet@43082
  1108
blanchet@43082
  1109
  \item @{command (HOL) "refute_params"} changes
blanchet@43082
  1110
    @{command (HOL) "refute"} configuration options persistently.
blanchet@43082
  1111
blanchet@43082
  1112
  \item @{command (HOL) "nitpick"} tests the current goal for counterexamples
blanchet@43082
  1113
    using a reduction to first-order relational logic. See the Nitpick manual
blanchet@43082
  1114
    \cite{isabelle-nitpick} for details.
blanchet@43082
  1115
blanchet@43082
  1116
  \item @{command (HOL) "nitpick_params"} changes
blanchet@43082
  1117
    @{command (HOL) "nitpick"} configuration options persistently.
haftmann@31906
  1118
haftmann@31906
  1119
  \end{description}
haftmann@31906
  1120
*}
haftmann@31906
  1121
haftmann@31906
  1122
wenzelm@28752
  1123
section {* Unstructured case analysis and induction \label{sec:hol-induct-tac} *}
wenzelm@26849
  1124
wenzelm@26849
  1125
text {*
wenzelm@27123
  1126
  The following tools of Isabelle/HOL support cases analysis and
wenzelm@27123
  1127
  induction in unstructured tactic scripts; see also
wenzelm@27123
  1128
  \secref{sec:cases-induct} for proper Isar versions of similar ideas.
wenzelm@26849
  1129
wenzelm@26849
  1130
  \begin{matharray}{rcl}
wenzelm@28761
  1131
    @{method_def (HOL) case_tac}@{text "\<^sup>*"} & : & @{text method} \\
wenzelm@28761
  1132
    @{method_def (HOL) induct_tac}@{text "\<^sup>*"} & : & @{text method} \\
wenzelm@28761
  1133
    @{method_def (HOL) ind_cases}@{text "\<^sup>*"} & : & @{text method} \\
wenzelm@28761
  1134
    @{command_def (HOL) "inductive_cases"}@{text "\<^sup>*"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@26849
  1135
  \end{matharray}
wenzelm@26849
  1136
wenzelm@43467
  1137
  @{rail "
wenzelm@43467
  1138
    @@{method (HOL) case_tac} @{syntax goalspec}? @{syntax term} rule?
wenzelm@26849
  1139
    ;
wenzelm@43467
  1140
    @@{method (HOL) induct_tac} @{syntax goalspec}? (@{syntax insts} * @'and') rule?
wenzelm@26849
  1141
    ;
wenzelm@43467
  1142
    @@{method (HOL) ind_cases} (@{syntax prop}+) (@'for' (@{syntax name}+))?
wenzelm@26849
  1143
    ;
wenzelm@43467
  1144
    @@{command (HOL) inductive_cases} (@{syntax thmdecl}? (@{syntax prop}+) + @'and')
wenzelm@26849
  1145
    ;
wenzelm@26849
  1146
wenzelm@43467
  1147
    rule: 'rule' ':' @{syntax thmref}
wenzelm@43467
  1148
  "}
wenzelm@26849
  1149
wenzelm@28760
  1150
  \begin{description}
wenzelm@26849
  1151
wenzelm@28760
  1152
  \item @{method (HOL) case_tac} and @{method (HOL) induct_tac} admit
wenzelm@28760
  1153
  to reason about inductive types.  Rules are selected according to
wenzelm@28760
  1154
  the declarations by the @{attribute cases} and @{attribute induct}
wenzelm@28760
  1155
  attributes, cf.\ \secref{sec:cases-induct}.  The @{command (HOL)
wenzelm@28760
  1156
  datatype} package already takes care of this.
wenzelm@27123
  1157
wenzelm@27123
  1158
  These unstructured tactics feature both goal addressing and dynamic
wenzelm@26849
  1159
  instantiation.  Note that named rule cases are \emph{not} provided
wenzelm@27123
  1160
  as would be by the proper @{method cases} and @{method induct} proof
wenzelm@27123
  1161
  methods (see \secref{sec:cases-induct}).  Unlike the @{method
wenzelm@27123
  1162
  induct} method, @{method induct_tac} does not handle structured rule
wenzelm@27123
  1163
  statements, only the compact object-logic conclusion of the subgoal
wenzelm@27123
  1164
  being addressed.
wenzelm@42994
  1165
wenzelm@28760
  1166
  \item @{method (HOL) ind_cases} and @{command (HOL)
wenzelm@28760
  1167
  "inductive_cases"} provide an interface to the internal @{ML_text
wenzelm@26860
  1168
  mk_cases} operation.  Rules are simplified in an unrestricted
wenzelm@26860
  1169
  forward manner.
wenzelm@26849
  1170
wenzelm@26849
  1171
  While @{method (HOL) ind_cases} is a proof method to apply the
wenzelm@26849
  1172
  result immediately as elimination rules, @{command (HOL)
wenzelm@26849
  1173
  "inductive_cases"} provides case split theorems at the theory level
wenzelm@26849
  1174
  for later use.  The @{keyword "for"} argument of the @{method (HOL)
wenzelm@26849
  1175
  ind_cases} method allows to specify a list of variables that should
wenzelm@26849
  1176
  be generalized before applying the resulting rule.
wenzelm@26849
  1177
wenzelm@28760
  1178
  \end{description}
wenzelm@26849
  1179
*}
wenzelm@26849
  1180
wenzelm@26849
  1181
wenzelm@26849
  1182
section {* Executable code *}
wenzelm@26849
  1183
wenzelm@43498
  1184
text {* For validation purposes, it is often useful to \emph{execute}
wenzelm@43498
  1185
  specifications.  In principle, execution could be simulated by
wenzelm@43498
  1186
  Isabelle's inference kernel, i.e. by a combination of resolution and
wenzelm@43498
  1187
  simplification.  Unfortunately, this approach is rather inefficient.
wenzelm@43498
  1188
  A more efficient way of executing specifications is to translate
wenzelm@43498
  1189
  them into a functional programming language such as ML.
wenzelm@26849
  1190
wenzelm@43498
  1191
  Isabelle provides two generic frameworks to support code generation
wenzelm@43498
  1192
  from executable specifications.  Isabelle/HOL instantiates these
wenzelm@43498
  1193
  mechanisms in a way that is amenable to end-user applications.
wenzelm@43498
  1194
*}
wenzelm@43498
  1195
wenzelm@43498
  1196
wenzelm@43498
  1197
subsection {* The new code generator (F. Haftmann) *}
wenzelm@43498
  1198
wenzelm@43498
  1199
text {* This framework generates code from functional programs
haftmann@37397
  1200
  (including overloading using type classes) to SML \cite{SML}, OCaml
haftmann@39049
  1201
  \cite{OCaml}, Haskell \cite{haskell-revised-report} and Scala
wenzelm@43498
  1202
  \cite{scala-overview-tech-report}.  Conceptually, code generation is
wenzelm@43498
  1203
  split up in three steps: \emph{selection} of code theorems,
wenzelm@43498
  1204
  \emph{translation} into an abstract executable view and
wenzelm@43498
  1205
  \emph{serialization} to a specific \emph{target language}.
wenzelm@43498
  1206
  Inductive specifications can be executed using the predicate
wenzelm@43498
  1207
  compiler which operates within HOL.  See \cite{isabelle-codegen} for
wenzelm@43498
  1208
  an introduction.
haftmann@37397
  1209
haftmann@37397
  1210
  \begin{matharray}{rcl}
haftmann@37397
  1211
    @{command_def (HOL) "export_code"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
haftmann@37397
  1212
    @{attribute_def (HOL) code} & : & @{text attribute} \\
haftmann@37397
  1213
    @{command_def (HOL) "code_abort"} & : & @{text "theory \<rightarrow> theory"} \\
haftmann@37397
  1214
    @{command_def (HOL) "code_datatype"} & : & @{text "theory \<rightarrow> theory"} \\
haftmann@37397
  1215
    @{command_def (HOL) "print_codesetup"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
haftmann@37397
  1216
    @{attribute_def (HOL) code_inline} & : & @{text attribute} \\
haftmann@37397
  1217
    @{attribute_def (HOL) code_post} & : & @{text attribute} \\
haftmann@37397
  1218
    @{command_def (HOL) "print_codeproc"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
haftmann@37397
  1219
    @{command_def (HOL) "code_thms"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
haftmann@37397
  1220
    @{command_def (HOL) "code_deps"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
haftmann@37397
  1221
    @{command_def (HOL) "code_const"} & : & @{text "theory \<rightarrow> theory"} \\
haftmann@37397
  1222
    @{command_def (HOL) "code_type"} & : & @{text "theory \<rightarrow> theory"} \\
haftmann@37397
  1223
    @{command_def (HOL) "code_class"} & : & @{text "theory \<rightarrow> theory"} \\
haftmann@37397
  1224
    @{command_def (HOL) "code_instance"} & : & @{text "theory \<rightarrow> theory"} \\
haftmann@37397
  1225
    @{command_def (HOL) "code_reserved"} & : & @{text "theory \<rightarrow> theory"} \\
haftmann@37397
  1226
    @{command_def (HOL) "code_monad"} & : & @{text "theory \<rightarrow> theory"} \\
haftmann@37397
  1227
    @{command_def (HOL) "code_include"} & : & @{text "theory \<rightarrow> theory"} \\
haftmann@37397
  1228
    @{command_def (HOL) "code_modulename"} & : & @{text "theory \<rightarrow> theory"} \\
haftmann@39832
  1229
    @{command_def (HOL) "code_reflect"} & : & @{text "theory \<rightarrow> theory"}
haftmann@37397
  1230
  \end{matharray}
haftmann@37397
  1231
wenzelm@43467
  1232
  @{rail "
wenzelm@43467
  1233
    @@{command (HOL) export_code} ( constexpr + ) \\
wenzelm@43467
  1234
       ( ( @'in' target ( @'module_name' @{syntax string} ) ? \\
wenzelm@43467
  1235
        ( @'file' ( @{syntax string} | '-' ) ) ? ( '(' args ')' ) ?) + ) ?
haftmann@37397
  1236
    ;
haftmann@37397
  1237
wenzelm@43467
  1238
    const: @{syntax term}
haftmann@37397
  1239
    ;
haftmann@37397
  1240
haftmann@40959
  1241
    constexpr: ( const | 'name._' | '_' )
haftmann@37397
  1242
    ;
haftmann@37397
  1243
wenzelm@43467
  1244
    typeconstructor: @{syntax nameref}
haftmann@37397
  1245
    ;
haftmann@37397
  1246
wenzelm@43467
  1247
    class: @{syntax nameref}
haftmann@37397
  1248
    ;
haftmann@37397
  1249
haftmann@39049
  1250
    target: 'SML' | 'OCaml' | 'Haskell' | 'Scala'
haftmann@37397
  1251
    ;
haftmann@37397
  1252
wenzelm@43467
  1253
    @@{attribute (HOL) code} ( 'del' | 'abstype' | 'abstract' )?
haftmann@37397
  1254
    ;
haftmann@37397
  1255
wenzelm@43467
  1256
    @@{command (HOL) code_abort} ( const + )
haftmann@37397
  1257
    ;
haftmann@37397
  1258
wenzelm@43467
  1259
    @@{command (HOL) code_datatype} ( const + )
haftmann@37397
  1260
    ;
haftmann@37397
  1261
wenzelm@43467
  1262
    @@{attribute (HOL) code_inline} ( 'del' ) ?
haftmann@37397
  1263
    ;
haftmann@37397
  1264
wenzelm@43467
  1265
    @@{attribute (HOL) code_post} ( 'del' ) ?
haftmann@37397
  1266
    ;
haftmann@37397
  1267
wenzelm@43467
  1268
    @@{command (HOL) code_thms} ( constexpr + ) ?
haftmann@37397
  1269
    ;
haftmann@37397
  1270
wenzelm@43467
  1271
    @@{command (HOL) code_deps} ( constexpr + ) ?
haftmann@37397
  1272
    ;
haftmann@37397
  1273
wenzelm@43467
  1274
    @@{command (HOL) code_const} (const + @'and') \\
wenzelm@43467
  1275
      ( ( '(' target ( syntax ? + @'and' ) ')' ) + )
haftmann@37397
  1276
    ;
haftmann@37397
  1277
wenzelm@43467
  1278
    @@{command (HOL) code_type} (typeconstructor + @'and') \\
wenzelm@43467
  1279
      ( ( '(' target ( syntax ? + @'and' ) ')' ) + )
haftmann@37397
  1280
    ;
haftmann@37397
  1281
wenzelm@43467
  1282
    @@{command (HOL) code_class} (class + @'and') \\
wenzelm@43467
  1283
      ( ( '(' target \\ ( @{syntax string} ? + @'and' ) ')' ) + )
haftmann@37397
  1284
    ;
haftmann@37397
  1285
wenzelm@43467
  1286
    @@{command (HOL) code_instance} (( typeconstructor '::' class ) + @'and') \\
wenzelm@43467
  1287
      ( ( '(' target ( '-' ? + @'and' ) ')' ) + )
haftmann@37397
  1288
    ;
haftmann@37397
  1289
wenzelm@43467
  1290
    @@{command (HOL) code_reserved} target ( @{syntax string} + )
haftmann@37397
  1291
    ;
haftmann@37397
  1292
wenzelm@43467
  1293
    @@{command (HOL) code_monad} const const target
haftmann@37397
  1294
    ;
haftmann@37397
  1295
wenzelm@43467
  1296
    @@{command (HOL) code_include} target ( @{syntax string} ( @{syntax string} | '-') )
haftmann@37397
  1297
    ;
haftmann@37397
  1298
wenzelm@43467
  1299
    @@{command (HOL) code_modulename} target ( ( @{syntax string} @{syntax string} ) + )
haftmann@37397
  1300
    ;
haftmann@37397
  1301
wenzelm@43467
  1302
    @@{command (HOL) code_reflect} @{syntax string} \\
wenzelm@43467
  1303
      ( @'datatypes' ( @{syntax string} '=' ( '_' | ( @{syntax string} + '|' ) + @'and' ) ) ) ? \\
wenzelm@43467
  1304
      ( @'functions' ( @{syntax string} + ) ) ? ( @'file' @{syntax string} ) ?
haftmann@39832
  1305
    ;
haftmann@39832
  1306
wenzelm@43467
  1307
    syntax: @{syntax string} | ( @'infix' | @'infixl' | @'infixr' ) @{syntax nat} @{syntax string}
wenzelm@43467
  1308
  "}
haftmann@37397
  1309
haftmann@37397
  1310
  \begin{description}
haftmann@37397
  1311
haftmann@37397
  1312
  \item @{command (HOL) "export_code"} generates code for a given list
haftmann@39832
  1313
  of constants in the specified target language(s).  If no
haftmann@39832
  1314
  serialization instruction is given, only abstract code is generated
haftmann@39832
  1315
  internally.
haftmann@37397
  1316
haftmann@37397
  1317
  Constants may be specified by giving them literally, referring to
haftmann@37397
  1318
  all executable contants within a certain theory by giving @{text
haftmann@37397
  1319
  "name.*"}, or referring to \emph{all} executable constants currently
haftmann@37397
  1320
  available by giving @{text "*"}.
haftmann@37397
  1321
haftmann@37397
  1322
  By default, for each involved theory one corresponding name space
haftmann@37397
  1323
  module is generated.  Alternativly, a module name may be specified
haftmann@37397
  1324
  after the @{keyword "module_name"} keyword; then \emph{all} code is
haftmann@37397
  1325
  placed in this module.
haftmann@37397
  1326
haftmann@39832
  1327
  For \emph{SML}, \emph{OCaml} and \emph{Scala} the file specification
haftmann@39832
  1328
  refers to a single file; for \emph{Haskell}, it refers to a whole
haftmann@39832
  1329
  directory, where code is generated in multiple files reflecting the
haftmann@39832
  1330
  module hierarchy.  Omitting the file specification denotes standard
haftmann@37748
  1331
  output.
haftmann@37397
  1332
haftmann@37397
  1333
  Serializers take an optional list of arguments in parentheses.  For
haftmann@37397
  1334
  \emph{SML} and \emph{OCaml}, ``@{text no_signatures}`` omits
haftmann@37397
  1335
  explicit module signatures.
wenzelm@42994
  1336
haftmann@39832
  1337
  For \emph{Haskell} a module name prefix may be given using the
haftmann@39832
  1338
  ``@{text "root:"}'' argument; ``@{text string_classes}'' adds a
haftmann@39832
  1339
  ``@{verbatim "deriving (Read, Show)"}'' clause to each appropriate
haftmann@39832
  1340
  datatype declaration.
haftmann@37397
  1341
haftmann@37397
  1342
  \item @{attribute (HOL) code} explicitly selects (or with option
haftmann@38706
  1343
  ``@{text "del"}'' deselects) a code equation for code generation.
haftmann@38706
  1344
  Usually packages introducing code equations provide a reasonable
haftmann@38706
  1345
  default setup for selection.  Variants @{text "code abstype"} and
haftmann@38706
  1346
  @{text "code abstract"} declare abstract datatype certificates or
haftmann@38706
  1347
  code equations on abstract datatype representations respectively.
haftmann@37397
  1348
haftmann@37397
  1349
  \item @{command (HOL) "code_abort"} declares constants which are not
haftmann@39832
  1350
  required to have a definition by means of code equations; if needed
haftmann@39832
  1351
  these are implemented by program abort instead.
haftmann@37397
  1352
haftmann@37397
  1353
  \item @{command (HOL) "code_datatype"} specifies a constructor set
haftmann@37397
  1354
  for a logical type.
haftmann@37397
  1355
haftmann@37397
  1356
  \item @{command (HOL) "print_codesetup"} gives an overview on
haftmann@37397
  1357
  selected code equations and code generator datatypes.
haftmann@37397
  1358
haftmann@39832
  1359
  \item @{attribute (HOL) code_inline} declares (or with option
haftmann@39832
  1360
  ``@{text "del"}'' removes) inlining theorems which are applied as
haftmann@39832
  1361
  rewrite rules to any code equation during preprocessing.
haftmann@37397
  1362
haftmann@39832
  1363
  \item @{attribute (HOL) code_post} declares (or with option ``@{text
haftmann@39832
  1364
  "del"}'' removes) theorems which are applied as rewrite rules to any
haftmann@39832
  1365
  result of an evaluation.
haftmann@37397
  1366
haftmann@39832
  1367
  \item @{command (HOL) "print_codeproc"} prints the setup of the code
haftmann@39832
  1368
  generator preprocessor.
haftmann@37397
  1369
haftmann@37397
  1370
  \item @{command (HOL) "code_thms"} prints a list of theorems
haftmann@37397
  1371
  representing the corresponding program containing all given
haftmann@37397
  1372
  constants after preprocessing.
haftmann@37397
  1373
haftmann@37397
  1374
  \item @{command (HOL) "code_deps"} visualizes dependencies of
haftmann@37397
  1375
  theorems representing the corresponding program containing all given
haftmann@37397
  1376
  constants after preprocessing.
haftmann@37397
  1377
haftmann@37397
  1378
  \item @{command (HOL) "code_const"} associates a list of constants
haftmann@37397
  1379
  with target-specific serializations; omitting a serialization
haftmann@37397
  1380
  deletes an existing serialization.
haftmann@37397
  1381
haftmann@37397
  1382
  \item @{command (HOL) "code_type"} associates a list of type
haftmann@37397
  1383
  constructors with target-specific serializations; omitting a
haftmann@37397
  1384
  serialization deletes an existing serialization.
haftmann@37397
  1385
haftmann@37397
  1386
  \item @{command (HOL) "code_class"} associates a list of classes
haftmann@37397
  1387
  with target-specific class names; omitting a serialization deletes
haftmann@37397
  1388
  an existing serialization.  This applies only to \emph{Haskell}.
haftmann@37397
  1389
haftmann@37397
  1390
  \item @{command (HOL) "code_instance"} declares a list of type
haftmann@37397
  1391
  constructor / class instance relations as ``already present'' for a
haftmann@37397
  1392
  given target.  Omitting a ``@{text "-"}'' deletes an existing
haftmann@37397
  1393
  ``already present'' declaration.  This applies only to
haftmann@37397
  1394
  \emph{Haskell}.
haftmann@37397
  1395
haftmann@37397
  1396
  \item @{command (HOL) "code_reserved"} declares a list of names as
haftmann@37397
  1397
  reserved for a given target, preventing it to be shadowed by any
haftmann@37397
  1398
  generated code.
haftmann@37397
  1399
haftmann@37397
  1400
  \item @{command (HOL) "code_monad"} provides an auxiliary mechanism
haftmann@37397
  1401
  to generate monadic code for Haskell.
haftmann@37397
  1402
haftmann@37397
  1403
  \item @{command (HOL) "code_include"} adds arbitrary named content
haftmann@37397
  1404
  (``include'') to generated code.  A ``@{text "-"}'' as last argument
haftmann@37397
  1405
  will remove an already added ``include''.
haftmann@37397
  1406
haftmann@37397
  1407
  \item @{command (HOL) "code_modulename"} declares aliasings from one
haftmann@37397
  1408
  module name onto another.
haftmann@37397
  1409
haftmann@39832
  1410
  \item @{command (HOL) "code_reflect"} without a ``@{text "file"}''
haftmann@39832
  1411
  argument compiles code into the system runtime environment and
haftmann@39832
  1412
  modifies the code generator setup that future invocations of system
haftmann@39832
  1413
  runtime code generation referring to one of the ``@{text
haftmann@39832
  1414
  "datatypes"}'' or ``@{text "functions"}'' entities use these precompiled
haftmann@39832
  1415
  entities.  With a ``@{text "file"}'' argument, the corresponding code
haftmann@39832
  1416
  is generated into that specified file without modifying the code
haftmann@39832
  1417
  generator setup.
haftmann@39832
  1418
haftmann@37397
  1419
  \end{description}
wenzelm@43498
  1420
*}
haftmann@37397
  1421
wenzelm@43498
  1422
wenzelm@43498
  1423
subsection {* The old code generator (S. Berghofer) *}
wenzelm@43498
  1424
wenzelm@43498
  1425
text {* This framework generates code from both functional and
wenzelm@43498
  1426
  relational programs to SML, as explained below.
wenzelm@26849
  1427
wenzelm@26849
  1428
  \begin{matharray}{rcl}
wenzelm@43498
  1429
    @{command_def "code_module"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@43498
  1430
    @{command_def "code_library"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@43498
  1431
    @{command_def "consts_code"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@43498
  1432
    @{command_def "types_code"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@43497
  1433
    @{attribute_def code} & : & @{text attribute} \\
wenzelm@26849
  1434
  \end{matharray}
wenzelm@26849
  1435
wenzelm@43467
  1436
  @{rail "
wenzelm@43498
  1437
  ( @@{command code_module} | @@{command code_library} ) modespec? @{syntax name}? \\
wenzelm@43467
  1438
    ( @'file' name ) ? ( @'imports' ( @{syntax name} + ) ) ? \\
wenzelm@43467
  1439
    @'contains' ( ( @{syntax name} '=' @{syntax term} ) + | @{syntax term} + )
wenzelm@26849
  1440
  ;
wenzelm@26849
  1441
wenzelm@43467
  1442
  modespec: '(' ( @{syntax name} * ) ')'
wenzelm@26849
  1443
  ;
wenzelm@26849
  1444
wenzelm@43467
  1445
  @@{command (HOL) consts_code} (codespec +)
wenzelm@26849
  1446
  ;
wenzelm@26849
  1447
wenzelm@26849
  1448
  codespec: const template attachment ?
wenzelm@26849
  1449
  ;
wenzelm@26849
  1450
wenzelm@43467
  1451
  @@{command (HOL) types_code} (tycodespec +)
wenzelm@26849
  1452
  ;
wenzelm@26849
  1453
wenzelm@43467
  1454
  tycodespec: @{syntax name} template attachment ?
wenzelm@26849
  1455
  ;
wenzelm@26849
  1456
wenzelm@43467
  1457
  const: @{syntax term}
wenzelm@26849
  1458
  ;
wenzelm@26849
  1459
wenzelm@43467
  1460
  template: '(' @{syntax string} ')'
wenzelm@26849
  1461
  ;
wenzelm@26849
  1462
wenzelm@43467
  1463
  attachment: 'attach' modespec? '{' @{syntax text} '}'
wenzelm@26849
  1464
  ;
wenzelm@26849
  1465
wenzelm@43497
  1466
  @@{attribute code} name?
wenzelm@43467
  1467
  "}
wenzelm@26849
  1468
*}
wenzelm@26849
  1469
wenzelm@27045
  1470
wenzelm@43498
  1471
subsubsection {* Invoking the code generator *}
wenzelm@43498
  1472
wenzelm@43498
  1473
text {* The code generator is invoked via the @{command code_module}
wenzelm@43498
  1474
  and @{command code_library} commands, which correspond to
wenzelm@43498
  1475
  \emph{incremental} and \emph{modular} code generation, respectively.
wenzelm@43498
  1476
wenzelm@43498
  1477
  \begin{description}
wenzelm@43498
  1478
wenzelm@43498
  1479
  \item [Modular] For each theory, an ML structure is generated,
wenzelm@43498
  1480
  containing the code generated from the constants defined in this
wenzelm@43498
  1481
  theory.
wenzelm@43498
  1482
wenzelm@43498
  1483
  \item [Incremental] All the generated code is emitted into the same
wenzelm@43498
  1484
  structure.  This structure may import code from previously generated
wenzelm@43498
  1485
  structures, which can be specified via @{keyword "imports"}.
wenzelm@43498
  1486
  Moreover, the generated structure may also be referred to in later
wenzelm@43498
  1487
  invocations of the code generator.
wenzelm@43498
  1488
wenzelm@43498
  1489
  \end{description}
wenzelm@43498
  1490
wenzelm@43498
  1491
  After the @{command code_module} and @{command code_library}
wenzelm@43498
  1492
  keywords, the user may specify an optional list of ``modes'' in
wenzelm@43498
  1493
  parentheses. These can be used to instruct the code generator to
wenzelm@43498
  1494
  emit additional code for special purposes, e.g.\ functions for
wenzelm@43498
  1495
  converting elements of generated datatypes to Isabelle terms, or
wenzelm@43498
  1496
  test data generators. The list of modes is followed by a module
wenzelm@43498
  1497
  name.  The module name is optional for modular code generation, but
wenzelm@43498
  1498
  must be specified for incremental code generation.
wenzelm@43498
  1499
wenzelm@43498
  1500
  The code can either be written to a file, in which case a file name
wenzelm@43498
  1501
  has to be specified after the @{keyword "file"} keyword, or be loaded
wenzelm@43498
  1502
  directly into Isabelle's ML environment. In the latter case, the
wenzelm@43498
  1503
  @{command ML} theory command can be used to inspect the results
wenzelm@43498
  1504
  interactively, for example.
wenzelm@43498
  1505
wenzelm@43498
  1506
  The terms from which to generate code can be specified after the
wenzelm@43498
  1507
  @{keyword "contains"} keyword, either as a list of bindings, or just
wenzelm@43498
  1508
  as a list of terms. In the latter case, the code generator just
wenzelm@43498
  1509
  produces code for all constants and types occuring in the term, but
wenzelm@43498
  1510
  does not bind the compiled terms to ML identifiers.
wenzelm@43498
  1511
wenzelm@43498
  1512
  Here is an example:
wenzelm@43498
  1513
*}
wenzelm@43498
  1514
wenzelm@43498
  1515
code_module Test
wenzelm@43498
  1516
  contains test = "foldl op + (0 :: int) [1, 2, 3, 4, 5]"
wenzelm@43498
  1517
wenzelm@43498
  1518
text {* \noindent This binds the result of compiling the given term to
wenzelm@43498
  1519
  the ML identifier @{ML Test.test}.  *}
wenzelm@43498
  1520
wenzelm@43498
  1521
ML {* @{assert} (Test.test = 15) *}
wenzelm@43498
  1522
wenzelm@43498
  1523
wenzelm@43498
  1524
subsubsection {* Configuring the code generator *}
wenzelm@43498
  1525
wenzelm@43498
  1526
text {* When generating code for a complex term, the code generator
wenzelm@43498
  1527
  recursively calls itself for all subterms.  When it arrives at a
wenzelm@43498
  1528
  constant, the default strategy of the code generator is to look up
wenzelm@43498
  1529
  its definition and try to generate code for it.  Constants which
wenzelm@43498
  1530
  have no definitions that are immediately executable, may be
wenzelm@43498
  1531
  associated with a piece of ML code manually using the @{command_ref
wenzelm@43498
  1532
  consts_code} command.  It takes a list whose elements consist of a
wenzelm@43498
  1533
  constant (given in usual term syntax -- an explicit type constraint
wenzelm@43498
  1534
  accounts for overloading), and a mixfix template describing the ML
wenzelm@43498
  1535
  code. The latter is very much the same as the mixfix templates used
wenzelm@43498
  1536
  when declaring new constants.  The most notable difference is that
wenzelm@43498
  1537
  terms may be included in the ML template using antiquotation
wenzelm@43498
  1538
  brackets @{verbatim "{"}@{verbatim "*"}~@{text "..."}~@{verbatim
wenzelm@43498
  1539
  "*"}@{verbatim "}"}.
wenzelm@43498
  1540
wenzelm@43498
  1541
  A similar mechanism is available for types: @{command_ref
wenzelm@43498
  1542
  types_code} associates type constructors with specific ML code.
wenzelm@43498
  1543
wenzelm@43498
  1544
  For example, the following declarations copied from @{file
wenzelm@43498
  1545
  "~~/src/HOL/Product_Type.thy"} describe how the product type of
wenzelm@43498
  1546
  Isabelle/HOL should be compiled to ML.  *}
wenzelm@43498
  1547
wenzelm@43498
  1548
typedecl ('a, 'b) prod
wenzelm@43498
  1549
consts Pair :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) prod"
wenzelm@43498
  1550
wenzelm@43498
  1551
types_code prod  ("(_ */ _)")
wenzelm@43498
  1552
consts_code Pair  ("(_,/ _)")
wenzelm@43498
  1553
wenzelm@43498
  1554
text {* Sometimes, the code associated with a constant or type may
wenzelm@43498
  1555
  need to refer to auxiliary functions, which have to be emitted when
wenzelm@43498
  1556
  the constant is used. Code for such auxiliary functions can be
wenzelm@43498
  1557
  declared using @{keyword "attach"}. For example, the @{const wfrec}
wenzelm@43498
  1558
  function can be implemented as follows:
wenzelm@43498
  1559
*}
wenzelm@43498
  1560
wenzelm@43498
  1561
consts_code wfrec  ("\<module>wfrec?")  (* FIXME !? *)
wenzelm@43498
  1562
  attach {* fun wfrec f x = f (wfrec f) x *}
wenzelm@43498
  1563
wenzelm@43498
  1564
text {* If the code containing a call to @{const wfrec} resides in an
wenzelm@43498
  1565
  ML structure different from the one containing the function
wenzelm@43498
  1566
  definition attached to @{const wfrec}, the name of the ML structure
wenzelm@43498
  1567
  (followed by a ``@{text "."}'')  is inserted in place of ``@{text
wenzelm@43498
  1568
  "\<module>"}'' in the above template.  The ``@{text "?"}''  means that
wenzelm@43498
  1569
  the code generator should ignore the first argument of @{const
wenzelm@43498
  1570
  wfrec}, i.e.\ the termination relation, which is usually not
wenzelm@43498
  1571
  executable.
wenzelm@43498
  1572
wenzelm@43498
  1573
  \medskip Another possibility of configuring the code generator is to
wenzelm@43498
  1574
  register theorems to be used for code generation. Theorems can be
wenzelm@43498
  1575
  registered via the @{attribute code} attribute. It takes an optional
wenzelm@43498
  1576
  name as an argument, which indicates the format of the
wenzelm@43498
  1577
  theorem. Currently supported formats are equations (this is the
wenzelm@43498
  1578
  default when no name is specified) and horn clauses (this is
wenzelm@43498
  1579
  indicated by the name \texttt{ind}). The left-hand sides of
wenzelm@43498
  1580
  equations may only contain constructors and distinct variables,
wenzelm@43498
  1581
  whereas horn clauses must have the same format as introduction rules
wenzelm@43498
  1582
  of inductive definitions.
wenzelm@43498
  1583
wenzelm@43498
  1584
  The following example specifies three equations from which to
wenzelm@43498
  1585
  generate code for @{term "op <"} on natural numbers (see also
wenzelm@43498
  1586
  @{"file" "~~/src/HOL/Nat.thy"}).  *}
wenzelm@43498
  1587
wenzelm@43498
  1588
lemma [code]: "(Suc m < Suc n) = (m < n)"
wenzelm@43498
  1589
  and [code]: "((n::nat) < 0) = False"
wenzelm@43498
  1590
  and [code]: "(0 < Suc n) = True" by simp_all
wenzelm@43498
  1591
wenzelm@43498
  1592
wenzelm@43498
  1593
subsubsection {* Specific HOL code generators *}
wenzelm@43498
  1594
wenzelm@43498
  1595
text {* The basic code generator framework offered by Isabelle/Pure
wenzelm@43498
  1596
  has already been extended with additional code generators for
wenzelm@43498
  1597
  specific HOL constructs. These include datatypes, recursive
wenzelm@43498
  1598
  functions and inductive relations. The code generator for inductive
wenzelm@43498
  1599
  relations can handle expressions of the form @{text "(t\<^sub>1, \<dots>, t\<^sub>n) \<in>
wenzelm@43498
  1600
  r"}, where @{text "r"} is an inductively defined relation. If at
wenzelm@43498
  1601
  least one of the @{text "t\<^sub>i"} is a dummy pattern ``@{text "_"}'',
wenzelm@43498
  1602
  the above expression evaluates to a sequence of possible answers. If
wenzelm@43498
  1603
  all of the @{text "t\<^sub>i"} are proper terms, the expression evaluates
wenzelm@43498
  1604
  to a boolean value.
wenzelm@43498
  1605
wenzelm@43498
  1606
  %FIXME
wenzelm@43498
  1607
  %\begin{ttbox}
wenzelm@43498
  1608
  %  theory Test = Lambda:
wenzelm@43498
  1609
  %
wenzelm@43498
  1610
  %  code_module Test
wenzelm@43498
  1611
  %  contains
wenzelm@43498
  1612
  %    test1 = "Abs (Var 0) \(\circ\) Var 0 -> Var 0"
wenzelm@43498
  1613
  %    test2 = "Abs (Abs (Var 0 \(\circ\) Var 0) \(\circ\) (Abs (Var 0) \(\circ\) Var 0)) -> _"
wenzelm@43498
  1614
  %\end{ttbox}
wenzelm@43498
  1615
  %In the above example, \texttt{Test.test1} evaluates to the boolean
wenzelm@43498
  1616
  %value \texttt{true}, whereas \texttt{Test.test2} is a sequence whose
wenzelm@43498
  1617
  %elements can be inspected using \texttt{Seq.pull} or similar functions.
wenzelm@43498
  1618
  %\begin{ttbox}
wenzelm@43498
  1619
  %ML \{* Seq.pull Test.test2 *\}  -- \{* This is the first answer *\}
wenzelm@43498
  1620
  %ML \{* Seq.pull (snd (the it)) *\}  -- \{* This is the second answer *\}
wenzelm@43498
  1621
  %\end{ttbox}
wenzelm@43498
  1622
wenzelm@43498
  1623
  \medskip The theory underlying the HOL code generator is described
wenzelm@43498
  1624
  more detailed in \cite{Berghofer-Nipkow:2002}. More examples that
wenzelm@43498
  1625
  illustrate the usage of the code generator can be found e.g.\ in
wenzelm@43498
  1626
  @{"file" "~~/src/HOL/MicroJava/J/JListExample.thy"} and @{"file"
wenzelm@43498
  1627
  "~~/src/HOL/MicroJava/JVM/JVMListExample.thy"}.
wenzelm@43498
  1628
*}
wenzelm@43498
  1629
wenzelm@43498
  1630
wenzelm@27045
  1631
section {* Definition by specification \label{sec:hol-specification} *}
wenzelm@27045
  1632
wenzelm@27045
  1633
text {*
wenzelm@27045
  1634
  \begin{matharray}{rcl}
wenzelm@28761
  1635
    @{command_def (HOL) "specification"} & : & @{text "theory \<rightarrow> proof(prove)"} \\
wenzelm@28761
  1636
    @{command_def (HOL) "ax_specification"} & : & @{text "theory \<rightarrow> proof(prove)"} \\
wenzelm@27045
  1637
  \end{matharray}
wenzelm@27045
  1638
wenzelm@43467
  1639
  @{rail "
wenzelm@43467
  1640
  (@@{command (HOL) specification} | @@{command (HOL) ax_specification})
wenzelm@43467
  1641
    '(' (decl +) ')' \\ (@{syntax thmdecl}? @{syntax prop} +)
wenzelm@27045
  1642
  ;
wenzelm@43467
  1643
  decl: ((@{syntax name} ':')? @{syntax term} '(' @'overloaded' ')'?)
wenzelm@43467
  1644
  "}
wenzelm@27045
  1645
wenzelm@28760
  1646
  \begin{description}
wenzelm@27045
  1647
wenzelm@28760
  1648
  \item @{command (HOL) "specification"}~@{text "decls \<phi>"} sets up a
wenzelm@27045
  1649
  goal stating the existence of terms with the properties specified to
wenzelm@27045
  1650
  hold for the constants given in @{text decls}.  After finishing the
wenzelm@27045
  1651
  proof, the theory will be augmented with definitions for the given
wenzelm@27045
  1652
  constants, as well as with theorems stating the properties for these
wenzelm@27045
  1653
  constants.
wenzelm@27045
  1654
wenzelm@28760
  1655
  \item @{command (HOL) "ax_specification"}~@{text "decls \<phi>"} sets up
wenzelm@28760
  1656
  a goal stating the existence of terms with the properties specified
wenzelm@28760
  1657
  to hold for the constants given in @{text decls}.  After finishing
wenzelm@28760
  1658
  the proof, the theory will be augmented with axioms expressing the
wenzelm@28760
  1659
  properties given in the first place.
wenzelm@27045
  1660
wenzelm@28760
  1661
  \item @{text decl} declares a constant to be defined by the
wenzelm@27045
  1662
  specification given.  The definition for the constant @{text c} is
wenzelm@27045
  1663
  bound to the name @{text c_def} unless a theorem name is given in
wenzelm@27045
  1664
  the declaration.  Overloaded constants should be declared as such.
wenzelm@27045
  1665
wenzelm@28760
  1666
  \end{description}
wenzelm@27045
  1667
wenzelm@27045
  1668
  Whether to use @{command (HOL) "specification"} or @{command (HOL)
wenzelm@27045
  1669
  "ax_specification"} is to some extent a matter of style.  @{command
wenzelm@27045
  1670
  (HOL) "specification"} introduces no new axioms, and so by
wenzelm@27045
  1671
  construction cannot introduce inconsistencies, whereas @{command
wenzelm@27045
  1672
  (HOL) "ax_specification"} does introduce axioms, but only after the
wenzelm@27045
  1673
  user has explicitly proven it to be safe.  A practical issue must be
wenzelm@27045
  1674
  considered, though: After introducing two constants with the same
wenzelm@27045
  1675
  properties using @{command (HOL) "specification"}, one can prove
wenzelm@27045
  1676
  that the two constants are, in fact, equal.  If this might be a
wenzelm@27045
  1677
  problem, one should use @{command (HOL) "ax_specification"}.
wenzelm@27045
  1678
*}
wenzelm@27045
  1679
wenzelm@26840
  1680
end