doc-src/IsarRef/Thy/document/HOL_Specific.tex
author krauss
Sat, 06 Nov 2010 00:10:32 +0100
changeset 40634 cb9fd7dd641c
parent 40626 ae4b67af2f37
child 40685 313a24b66a8d
permissions -rw-r--r--
abolished obscure goal variant of [split_format] -- unused (cf. d1c14898fd04), unrelated to '(complete)' variant, and not at all canonical
wenzelm@26840
     1
%
wenzelm@26840
     2
\begin{isabellebody}%
wenzelm@26840
     3
\def\isabellecontext{HOL{\isacharunderscore}Specific}%
wenzelm@26840
     4
%
wenzelm@26840
     5
\isadelimtheory
wenzelm@26840
     6
%
wenzelm@26840
     7
\endisadelimtheory
wenzelm@26840
     8
%
wenzelm@26840
     9
\isatagtheory
wenzelm@26840
    10
\isacommand{theory}\isamarkupfalse%
wenzelm@26840
    11
\ HOL{\isacharunderscore}Specific\isanewline
wenzelm@26849
    12
\isakeyword{imports}\ Main\isanewline
wenzelm@26849
    13
\isakeyword{begin}%
wenzelm@26849
    14
\endisatagtheory
wenzelm@26849
    15
{\isafoldtheory}%
wenzelm@26849
    16
%
wenzelm@26849
    17
\isadelimtheory
wenzelm@26849
    18
%
wenzelm@26849
    19
\endisadelimtheory
wenzelm@26849
    20
%
wenzelm@26852
    21
\isamarkupchapter{Isabelle/HOL \label{ch:hol}%
wenzelm@26849
    22
}
wenzelm@26849
    23
\isamarkuptrue%
wenzelm@26849
    24
%
wenzelm@35757
    25
\isamarkupsection{Typedef axiomatization \label{sec:hol-typedef}%
wenzelm@26849
    26
}
wenzelm@26849
    27
\isamarkuptrue%
wenzelm@26849
    28
%
wenzelm@26849
    29
\begin{isamarkuptext}%
wenzelm@26849
    30
\begin{matharray}{rcl}
wenzelm@35757
    31
    \indexdef{HOL}{command}{typedef}\hypertarget{command.HOL.typedef}{\hyperlink{command.HOL.typedef}{\mbox{\isa{\isacommand{typedef}}}}} & : & \isa{{\isachardoublequote}local{\isacharunderscore}theory\ {\isasymrightarrow}\ proof{\isacharparenleft}prove{\isacharparenright}{\isachardoublequote}} \\
wenzelm@26849
    32
  \end{matharray}
wenzelm@26849
    33
wenzelm@26849
    34
  \begin{rail}
wenzelm@26849
    35
    'typedef' altname? abstype '=' repset
wenzelm@26849
    36
    ;
wenzelm@26849
    37
wenzelm@26849
    38
    altname: '(' (name | 'open' | 'open' name) ')'
wenzelm@26849
    39
    ;
wenzelm@35841
    40
    abstype: typespecsorts mixfix?
wenzelm@26849
    41
    ;
wenzelm@26849
    42
    repset: term ('morphisms' name name)?
wenzelm@26849
    43
    ;
wenzelm@26849
    44
  \end{rail}
wenzelm@26849
    45
wenzelm@28788
    46
  \begin{description}
wenzelm@26849
    47
  
wenzelm@35757
    48
  \item \hyperlink{command.HOL.typedef}{\mbox{\isa{\isacommand{typedef}}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t\ {\isacharequal}\ A{\isachardoublequote}}
wenzelm@35757
    49
  axiomatizes a Gordon/HOL-style type definition in the background
wenzelm@35757
    50
  theory of the current context, depending on a non-emptiness result
wenzelm@35757
    51
  of the set \isa{A} (which needs to be proven interactively).
wenzelm@35757
    52
wenzelm@35757
    53
  The raw type may not depend on parameters or assumptions of the
wenzelm@35757
    54
  context --- this is logically impossible in Isabelle/HOL --- but the
wenzelm@35757
    55
  non-emptiness property can be local, potentially resulting in
wenzelm@35757
    56
  multiple interpretations in target contexts.  Thus the established
wenzelm@35757
    57
  bijection between the representing set \isa{A} and the new type
wenzelm@35757
    58
  \isa{t} may semantically depend on local assumptions.
wenzelm@26849
    59
  
wenzelm@35757
    60
  By default, \hyperlink{command.HOL.typedef}{\mbox{\isa{\isacommand{typedef}}}} defines both a type \isa{t}
wenzelm@35757
    61
  and a set (term constant) of the same name, unless an alternative
wenzelm@35757
    62
  base name is given in parentheses, or the ``\isa{{\isachardoublequote}{\isacharparenleft}open{\isacharparenright}{\isachardoublequote}}''
wenzelm@35757
    63
  declaration is used to suppress a separate constant definition
wenzelm@35757
    64
  altogether.  The injection from type to set is called \isa{Rep{\isacharunderscore}t},
wenzelm@35757
    65
  its inverse \isa{Abs{\isacharunderscore}t} --- this may be changed via an explicit
wenzelm@35757
    66
  \hyperlink{keyword.HOL.morphisms}{\mbox{\isa{\isakeyword{morphisms}}}} declaration.
wenzelm@26849
    67
  
wenzelm@26849
    68
  Theorems \isa{Rep{\isacharunderscore}t}, \isa{Rep{\isacharunderscore}t{\isacharunderscore}inverse}, and \isa{Abs{\isacharunderscore}t{\isacharunderscore}inverse} provide the most basic characterization as a
wenzelm@26849
    69
  corresponding injection/surjection pair (in both directions).  Rules
wenzelm@26849
    70
  \isa{Rep{\isacharunderscore}t{\isacharunderscore}inject} and \isa{Abs{\isacharunderscore}t{\isacharunderscore}inject} provide a slightly
wenzelm@26849
    71
  more convenient view on the injectivity part, suitable for automated
wenzelm@26902
    72
  proof tools (e.g.\ in \hyperlink{attribute.simp}{\mbox{\isa{simp}}} or \hyperlink{attribute.iff}{\mbox{\isa{iff}}}
wenzelm@26895
    73
  declarations).  Rules \isa{Rep{\isacharunderscore}t{\isacharunderscore}cases}/\isa{Rep{\isacharunderscore}t{\isacharunderscore}induct}, and
wenzelm@26895
    74
  \isa{Abs{\isacharunderscore}t{\isacharunderscore}cases}/\isa{Abs{\isacharunderscore}t{\isacharunderscore}induct} provide alternative views
wenzelm@26895
    75
  on surjectivity; these are already declared as set or type rules for
wenzelm@26902
    76
  the generic \hyperlink{method.cases}{\mbox{\isa{cases}}} and \hyperlink{method.induct}{\mbox{\isa{induct}}} methods.
wenzelm@26849
    77
  
wenzelm@35757
    78
  An alternative name for the set definition (and other derived
wenzelm@35757
    79
  entities) may be specified in parentheses; the default is to use
wenzelm@35757
    80
  \isa{t} as indicated before.
wenzelm@26849
    81
wenzelm@35757
    82
  \end{description}%
wenzelm@26849
    83
\end{isamarkuptext}%
wenzelm@26849
    84
\isamarkuptrue%
wenzelm@26849
    85
%
wenzelm@26849
    86
\isamarkupsection{Adhoc tuples%
wenzelm@26849
    87
}
wenzelm@26849
    88
\isamarkuptrue%
wenzelm@26849
    89
%
wenzelm@26849
    90
\begin{isamarkuptext}%
wenzelm@26849
    91
\begin{matharray}{rcl}
wenzelm@28788
    92
    \hyperlink{attribute.HOL.split-format}{\mbox{\isa{split{\isacharunderscore}format}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isa{attribute} \\
wenzelm@26849
    93
  \end{matharray}
wenzelm@26849
    94
wenzelm@26849
    95
  \begin{rail}
krauss@40634
    96
    'split_format' '(' 'complete' ')'
wenzelm@26849
    97
    ;
wenzelm@26849
    98
  \end{rail}
wenzelm@26849
    99
wenzelm@28788
   100
  \begin{description}
wenzelm@26849
   101
  
krauss@40634
   102
  \item \hyperlink{attribute.HOL.split-format}{\mbox{\isa{split{\isacharunderscore}format}}}\ \isa{{\isachardoublequote}{\isacharparenleft}complete{\isacharparenright}{\isachardoublequote}} causes
wenzelm@28788
   103
  arguments in function applications to be represented canonically
wenzelm@28788
   104
  according to their tuple type structure.
wenzelm@26849
   105
krauss@40634
   106
  Note that this operation tends to invent funny names for new local
krauss@40634
   107
  parameters introduced.
wenzelm@26849
   108
wenzelm@28788
   109
  \end{description}%
wenzelm@26849
   110
\end{isamarkuptext}%
wenzelm@26849
   111
\isamarkuptrue%
wenzelm@26849
   112
%
wenzelm@26849
   113
\isamarkupsection{Records \label{sec:hol-record}%
wenzelm@26849
   114
}
wenzelm@26849
   115
\isamarkuptrue%
wenzelm@26849
   116
%
wenzelm@26849
   117
\begin{isamarkuptext}%
wenzelm@26849
   118
In principle, records merely generalize the concept of tuples, where
wenzelm@26849
   119
  components may be addressed by labels instead of just position.  The
wenzelm@26849
   120
  logical infrastructure of records in Isabelle/HOL is slightly more
wenzelm@26849
   121
  advanced, though, supporting truly extensible record schemes.  This
wenzelm@26849
   122
  admits operations that are polymorphic with respect to record
wenzelm@26849
   123
  extension, yielding ``object-oriented'' effects like (single)
wenzelm@26849
   124
  inheritance.  See also \cite{NaraschewskiW-TPHOLs98} for more
wenzelm@26849
   125
  details on object-oriented verification and record subtyping in HOL.%
wenzelm@26849
   126
\end{isamarkuptext}%
wenzelm@26849
   127
\isamarkuptrue%
wenzelm@26849
   128
%
wenzelm@26849
   129
\isamarkupsubsection{Basic concepts%
wenzelm@26849
   130
}
wenzelm@26849
   131
\isamarkuptrue%
wenzelm@26849
   132
%
wenzelm@26849
   133
\begin{isamarkuptext}%
wenzelm@26849
   134
Isabelle/HOL supports both \emph{fixed} and \emph{schematic} records
wenzelm@26849
   135
  at the level of terms and types.  The notation is as follows:
wenzelm@26849
   136
wenzelm@26849
   137
  \begin{center}
wenzelm@26849
   138
  \begin{tabular}{l|l|l}
wenzelm@26849
   139
    & record terms & record types \\ \hline
wenzelm@26849
   140
    fixed & \isa{{\isachardoublequote}{\isasymlparr}x\ {\isacharequal}\ a{\isacharcomma}\ y\ {\isacharequal}\ b{\isasymrparr}{\isachardoublequote}} & \isa{{\isachardoublequote}{\isasymlparr}x\ {\isacharcolon}{\isacharcolon}\ A{\isacharcomma}\ y\ {\isacharcolon}{\isacharcolon}\ B{\isasymrparr}{\isachardoublequote}} \\
wenzelm@26849
   141
    schematic & \isa{{\isachardoublequote}{\isasymlparr}x\ {\isacharequal}\ a{\isacharcomma}\ y\ {\isacharequal}\ b{\isacharcomma}\ {\isasymdots}\ {\isacharequal}\ m{\isasymrparr}{\isachardoublequote}} &
wenzelm@26849
   142
      \isa{{\isachardoublequote}{\isasymlparr}x\ {\isacharcolon}{\isacharcolon}\ A{\isacharcomma}\ y\ {\isacharcolon}{\isacharcolon}\ B{\isacharcomma}\ {\isasymdots}\ {\isacharcolon}{\isacharcolon}\ M{\isasymrparr}{\isachardoublequote}} \\
wenzelm@26849
   143
  \end{tabular}
wenzelm@26849
   144
  \end{center}
wenzelm@26849
   145
wenzelm@26849
   146
  \noindent The ASCII representation of \isa{{\isachardoublequote}{\isasymlparr}x\ {\isacharequal}\ a{\isasymrparr}{\isachardoublequote}} is \isa{{\isachardoublequote}{\isacharparenleft}{\isacharbar}\ x\ {\isacharequal}\ a\ {\isacharbar}{\isacharparenright}{\isachardoublequote}}.
wenzelm@26849
   147
wenzelm@26849
   148
  A fixed record \isa{{\isachardoublequote}{\isasymlparr}x\ {\isacharequal}\ a{\isacharcomma}\ y\ {\isacharequal}\ b{\isasymrparr}{\isachardoublequote}} has field \isa{x} of value
wenzelm@26849
   149
  \isa{a} and field \isa{y} of value \isa{b}.  The corresponding
wenzelm@26849
   150
  type is \isa{{\isachardoublequote}{\isasymlparr}x\ {\isacharcolon}{\isacharcolon}\ A{\isacharcomma}\ y\ {\isacharcolon}{\isacharcolon}\ B{\isasymrparr}{\isachardoublequote}}, assuming that \isa{{\isachardoublequote}a\ {\isacharcolon}{\isacharcolon}\ A{\isachardoublequote}}
wenzelm@26849
   151
  and \isa{{\isachardoublequote}b\ {\isacharcolon}{\isacharcolon}\ B{\isachardoublequote}}.
wenzelm@26849
   152
wenzelm@26849
   153
  A record scheme like \isa{{\isachardoublequote}{\isasymlparr}x\ {\isacharequal}\ a{\isacharcomma}\ y\ {\isacharequal}\ b{\isacharcomma}\ {\isasymdots}\ {\isacharequal}\ m{\isasymrparr}{\isachardoublequote}} contains fields
wenzelm@26849
   154
  \isa{x} and \isa{y} as before, but also possibly further fields
wenzelm@26849
   155
  as indicated by the ``\isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}'' notation (which is actually part
wenzelm@26849
   156
  of the syntax).  The improper field ``\isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}'' of a record
wenzelm@26849
   157
  scheme is called the \emph{more part}.  Logically it is just a free
wenzelm@26849
   158
  variable, which is occasionally referred to as ``row variable'' in
wenzelm@26849
   159
  the literature.  The more part of a record scheme may be
wenzelm@26849
   160
  instantiated by zero or more further components.  For example, the
wenzelm@26852
   161
  previous scheme may get instantiated to \isa{{\isachardoublequote}{\isasymlparr}x\ {\isacharequal}\ a{\isacharcomma}\ y\ {\isacharequal}\ b{\isacharcomma}\ z\ {\isacharequal}\ c{\isacharcomma}\ {\isasymdots}\ {\isacharequal}\ m{\isacharprime}{\isasymrparr}{\isachardoublequote}}, where \isa{m{\isacharprime}} refers to a different more part.
wenzelm@26849
   162
  Fixed records are special instances of record schemes, where
wenzelm@26849
   163
  ``\isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}'' is properly terminated by the \isa{{\isachardoublequote}{\isacharparenleft}{\isacharparenright}\ {\isacharcolon}{\isacharcolon}\ unit{\isachardoublequote}}
wenzelm@26849
   164
  element.  In fact, \isa{{\isachardoublequote}{\isasymlparr}x\ {\isacharequal}\ a{\isacharcomma}\ y\ {\isacharequal}\ b{\isasymrparr}{\isachardoublequote}} is just an abbreviation
wenzelm@26849
   165
  for \isa{{\isachardoublequote}{\isasymlparr}x\ {\isacharequal}\ a{\isacharcomma}\ y\ {\isacharequal}\ b{\isacharcomma}\ {\isasymdots}\ {\isacharequal}\ {\isacharparenleft}{\isacharparenright}{\isasymrparr}{\isachardoublequote}}.
wenzelm@26849
   166
  
wenzelm@26849
   167
  \medskip Two key observations make extensible records in a simply
wenzelm@26849
   168
  typed language like HOL work out:
wenzelm@26849
   169
wenzelm@26849
   170
  \begin{enumerate}
wenzelm@26849
   171
wenzelm@26849
   172
  \item the more part is internalized, as a free term or type
wenzelm@26849
   173
  variable,
wenzelm@26849
   174
wenzelm@26852
   175
  \item field names are externalized, they cannot be accessed within
wenzelm@26852
   176
  the logic as first-class values.
wenzelm@26849
   177
wenzelm@26849
   178
  \end{enumerate}
wenzelm@26849
   179
wenzelm@26849
   180
  \medskip In Isabelle/HOL record types have to be defined explicitly,
wenzelm@26849
   181
  fixing their field names and types, and their (optional) parent
wenzelm@26849
   182
  record.  Afterwards, records may be formed using above syntax, while
wenzelm@26849
   183
  obeying the canonical order of fields as given by their declaration.
wenzelm@26849
   184
  The record package provides several standard operations like
wenzelm@26849
   185
  selectors and updates.  The common setup for various generic proof
wenzelm@26849
   186
  tools enable succinct reasoning patterns.  See also the Isabelle/HOL
wenzelm@26849
   187
  tutorial \cite{isabelle-hol-book} for further instructions on using
wenzelm@26849
   188
  records in practice.%
wenzelm@26849
   189
\end{isamarkuptext}%
wenzelm@26849
   190
\isamarkuptrue%
wenzelm@26849
   191
%
wenzelm@26849
   192
\isamarkupsubsection{Record specifications%
wenzelm@26849
   193
}
wenzelm@26849
   194
\isamarkuptrue%
wenzelm@26849
   195
%
wenzelm@26849
   196
\begin{isamarkuptext}%
wenzelm@26849
   197
\begin{matharray}{rcl}
wenzelm@28788
   198
    \indexdef{HOL}{command}{record}\hypertarget{command.HOL.record}{\hyperlink{command.HOL.record}{\mbox{\isa{\isacommand{record}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
wenzelm@26849
   199
  \end{matharray}
wenzelm@26849
   200
wenzelm@26849
   201
  \begin{rail}
wenzelm@36158
   202
    'record' typespecsorts '=' (type '+')? (constdecl +)
wenzelm@26849
   203
    ;
wenzelm@26849
   204
  \end{rail}
wenzelm@26849
   205
wenzelm@28788
   206
  \begin{description}
wenzelm@26849
   207
wenzelm@28788
   208
  \item \hyperlink{command.HOL.record}{\mbox{\isa{\isacommand{record}}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub m{\isacharparenright}\ t\ {\isacharequal}\ {\isasymtau}\ {\isacharplus}\ c\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ c\isactrlsub n\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub n{\isachardoublequote}} defines extensible record type \isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub m{\isacharparenright}\ t{\isachardoublequote}},
wenzelm@26849
   209
  derived from the optional parent record \isa{{\isachardoublequote}{\isasymtau}{\isachardoublequote}} by adding new
wenzelm@26849
   210
  field components \isa{{\isachardoublequote}c\isactrlsub i\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub i{\isachardoublequote}} etc.
wenzelm@26849
   211
wenzelm@26849
   212
  The type variables of \isa{{\isachardoublequote}{\isasymtau}{\isachardoublequote}} and \isa{{\isachardoublequote}{\isasymsigma}\isactrlsub i{\isachardoublequote}} need to be
wenzelm@26849
   213
  covered by the (distinct) parameters \isa{{\isachardoublequote}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub m{\isachardoublequote}}.  Type constructor \isa{t} has to be new, while \isa{{\isasymtau}} needs to specify an instance of an existing record type.  At
wenzelm@26849
   214
  least one new field \isa{{\isachardoublequote}c\isactrlsub i{\isachardoublequote}} has to be specified.
wenzelm@26849
   215
  Basically, field names need to belong to a unique record.  This is
wenzelm@26849
   216
  not a real restriction in practice, since fields are qualified by
wenzelm@26849
   217
  the record name internally.
wenzelm@26849
   218
wenzelm@26849
   219
  The parent record specification \isa{{\isasymtau}} is optional; if omitted
wenzelm@26849
   220
  \isa{t} becomes a root record.  The hierarchy of all records
wenzelm@26849
   221
  declared within a theory context forms a forest structure, i.e.\ a
wenzelm@26849
   222
  set of trees starting with a root record each.  There is no way to
wenzelm@26849
   223
  merge multiple parent records!
wenzelm@26849
   224
wenzelm@26849
   225
  For convenience, \isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub m{\isacharparenright}\ t{\isachardoublequote}} is made a
wenzelm@26849
   226
  type abbreviation for the fixed record type \isa{{\isachardoublequote}{\isasymlparr}c\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlsub n\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub n{\isasymrparr}{\isachardoublequote}}, likewise is \isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub m{\isacharcomma}\ {\isasymzeta}{\isacharparenright}\ t{\isacharunderscore}scheme{\isachardoublequote}} made an abbreviation for
wenzelm@26849
   227
  \isa{{\isachardoublequote}{\isasymlparr}c\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlsub n\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub n{\isacharcomma}\ {\isasymdots}\ {\isacharcolon}{\isacharcolon}\ {\isasymzeta}{\isasymrparr}{\isachardoublequote}}.
wenzelm@26849
   228
wenzelm@28788
   229
  \end{description}%
wenzelm@26849
   230
\end{isamarkuptext}%
wenzelm@26849
   231
\isamarkuptrue%
wenzelm@26849
   232
%
wenzelm@26849
   233
\isamarkupsubsection{Record operations%
wenzelm@26849
   234
}
wenzelm@26849
   235
\isamarkuptrue%
wenzelm@26849
   236
%
wenzelm@26849
   237
\begin{isamarkuptext}%
wenzelm@26849
   238
Any record definition of the form presented above produces certain
wenzelm@26849
   239
  standard operations.  Selectors and updates are provided for any
wenzelm@26849
   240
  field, including the improper one ``\isa{more}''.  There are also
wenzelm@26849
   241
  cumulative record constructor functions.  To simplify the
wenzelm@26849
   242
  presentation below, we assume for now that \isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub m{\isacharparenright}\ t{\isachardoublequote}} is a root record with fields \isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlsub n\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub n{\isachardoublequote}}.
wenzelm@26849
   243
wenzelm@26849
   244
  \medskip \textbf{Selectors} and \textbf{updates} are available for
wenzelm@26849
   245
  any field (including ``\isa{more}''):
wenzelm@26849
   246
wenzelm@26849
   247
  \begin{matharray}{lll}
wenzelm@26852
   248
    \isa{{\isachardoublequote}c\isactrlsub i{\isachardoublequote}} & \isa{{\isachardoublequote}{\isacharcolon}{\isacharcolon}{\isachardoublequote}} & \isa{{\isachardoublequote}{\isasymlparr}\isactrlvec c\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymsigma}{\isacharcomma}\ {\isasymdots}\ {\isacharcolon}{\isacharcolon}\ {\isasymzeta}{\isasymrparr}\ {\isasymRightarrow}\ {\isasymsigma}\isactrlsub i{\isachardoublequote}} \\
wenzelm@26852
   249
    \isa{{\isachardoublequote}c\isactrlsub i{\isacharunderscore}update{\isachardoublequote}} & \isa{{\isachardoublequote}{\isacharcolon}{\isacharcolon}{\isachardoublequote}} & \isa{{\isachardoublequote}{\isasymsigma}\isactrlsub i\ {\isasymRightarrow}\ {\isasymlparr}\isactrlvec c\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymsigma}{\isacharcomma}\ {\isasymdots}\ {\isacharcolon}{\isacharcolon}\ {\isasymzeta}{\isasymrparr}\ {\isasymRightarrow}\ {\isasymlparr}\isactrlvec c\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymsigma}{\isacharcomma}\ {\isasymdots}\ {\isacharcolon}{\isacharcolon}\ {\isasymzeta}{\isasymrparr}{\isachardoublequote}} \\
wenzelm@26849
   250
  \end{matharray}
wenzelm@26849
   251
wenzelm@26849
   252
  There is special syntax for application of updates: \isa{{\isachardoublequote}r{\isasymlparr}x\ {\isacharcolon}{\isacharequal}\ a{\isasymrparr}{\isachardoublequote}} abbreviates term \isa{{\isachardoublequote}x{\isacharunderscore}update\ a\ r{\isachardoublequote}}.  Further notation for
wenzelm@26849
   253
  repeated updates is also available: \isa{{\isachardoublequote}r{\isasymlparr}x\ {\isacharcolon}{\isacharequal}\ a{\isasymrparr}{\isasymlparr}y\ {\isacharcolon}{\isacharequal}\ b{\isasymrparr}{\isasymlparr}z\ {\isacharcolon}{\isacharequal}\ c{\isasymrparr}{\isachardoublequote}} may be written \isa{{\isachardoublequote}r{\isasymlparr}x\ {\isacharcolon}{\isacharequal}\ a{\isacharcomma}\ y\ {\isacharcolon}{\isacharequal}\ b{\isacharcomma}\ z\ {\isacharcolon}{\isacharequal}\ c{\isasymrparr}{\isachardoublequote}}.  Note that
wenzelm@26849
   254
  because of postfix notation the order of fields shown here is
wenzelm@26849
   255
  reverse than in the actual term.  Since repeated updates are just
wenzelm@26849
   256
  function applications, fields may be freely permuted in \isa{{\isachardoublequote}{\isasymlparr}x\ {\isacharcolon}{\isacharequal}\ a{\isacharcomma}\ y\ {\isacharcolon}{\isacharequal}\ b{\isacharcomma}\ z\ {\isacharcolon}{\isacharequal}\ c{\isasymrparr}{\isachardoublequote}}, as far as logical equality is concerned.
wenzelm@26849
   257
  Thus commutativity of independent updates can be proven within the
wenzelm@26849
   258
  logic for any two fields, but not as a general theorem.
wenzelm@26849
   259
wenzelm@26849
   260
  \medskip The \textbf{make} operation provides a cumulative record
wenzelm@26849
   261
  constructor function:
wenzelm@26849
   262
wenzelm@26849
   263
  \begin{matharray}{lll}
wenzelm@26852
   264
    \isa{{\isachardoublequote}t{\isachardot}make{\isachardoublequote}} & \isa{{\isachardoublequote}{\isacharcolon}{\isacharcolon}{\isachardoublequote}} & \isa{{\isachardoublequote}{\isasymsigma}\isactrlsub {\isadigit{1}}\ {\isasymRightarrow}\ {\isasymdots}\ {\isasymsigma}\isactrlsub n\ {\isasymRightarrow}\ {\isasymlparr}\isactrlvec c\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymsigma}{\isasymrparr}{\isachardoublequote}} \\
wenzelm@26849
   265
  \end{matharray}
wenzelm@26849
   266
wenzelm@26849
   267
  \medskip We now reconsider the case of non-root records, which are
wenzelm@26849
   268
  derived of some parent.  In general, the latter may depend on
wenzelm@26849
   269
  another parent as well, resulting in a list of \emph{ancestor
wenzelm@26849
   270
  records}.  Appending the lists of fields of all ancestors results in
wenzelm@26849
   271
  a certain field prefix.  The record package automatically takes care
wenzelm@26849
   272
  of this by lifting operations over this context of ancestor fields.
wenzelm@26849
   273
  Assuming that \isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub m{\isacharparenright}\ t{\isachardoublequote}} has ancestor
wenzelm@26849
   274
  fields \isa{{\isachardoublequote}b\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ {\isasymrho}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ b\isactrlsub k\ {\isacharcolon}{\isacharcolon}\ {\isasymrho}\isactrlsub k{\isachardoublequote}},
wenzelm@26849
   275
  the above record operations will get the following types:
wenzelm@26849
   276
wenzelm@26852
   277
  \medskip
wenzelm@26852
   278
  \begin{tabular}{lll}
wenzelm@26852
   279
    \isa{{\isachardoublequote}c\isactrlsub i{\isachardoublequote}} & \isa{{\isachardoublequote}{\isacharcolon}{\isacharcolon}{\isachardoublequote}} & \isa{{\isachardoublequote}{\isasymlparr}\isactrlvec b\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymrho}{\isacharcomma}\ \isactrlvec c\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymsigma}{\isacharcomma}\ {\isasymdots}\ {\isacharcolon}{\isacharcolon}\ {\isasymzeta}{\isasymrparr}\ {\isasymRightarrow}\ {\isasymsigma}\isactrlsub i{\isachardoublequote}} \\
wenzelm@26852
   280
    \isa{{\isachardoublequote}c\isactrlsub i{\isacharunderscore}update{\isachardoublequote}} & \isa{{\isachardoublequote}{\isacharcolon}{\isacharcolon}{\isachardoublequote}} & \isa{{\isachardoublequote}{\isasymsigma}\isactrlsub i\ {\isasymRightarrow}\ {\isasymlparr}\isactrlvec b\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymrho}{\isacharcomma}\ \isactrlvec c\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymsigma}{\isacharcomma}\ {\isasymdots}\ {\isacharcolon}{\isacharcolon}\ {\isasymzeta}{\isasymrparr}\ {\isasymRightarrow}\ {\isasymlparr}\isactrlvec b\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymrho}{\isacharcomma}\ \isactrlvec c\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymsigma}{\isacharcomma}\ {\isasymdots}\ {\isacharcolon}{\isacharcolon}\ {\isasymzeta}{\isasymrparr}{\isachardoublequote}} \\
wenzelm@26852
   281
    \isa{{\isachardoublequote}t{\isachardot}make{\isachardoublequote}} & \isa{{\isachardoublequote}{\isacharcolon}{\isacharcolon}{\isachardoublequote}} & \isa{{\isachardoublequote}{\isasymrho}\isactrlsub {\isadigit{1}}\ {\isasymRightarrow}\ {\isasymdots}\ {\isasymrho}\isactrlsub k\ {\isasymRightarrow}\ {\isasymsigma}\isactrlsub {\isadigit{1}}\ {\isasymRightarrow}\ {\isasymdots}\ {\isasymsigma}\isactrlsub n\ {\isasymRightarrow}\ {\isasymlparr}\isactrlvec b\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymrho}{\isacharcomma}\ \isactrlvec c\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymsigma}{\isasymrparr}{\isachardoublequote}} \\
wenzelm@26852
   282
  \end{tabular}
wenzelm@26852
   283
  \medskip
wenzelm@26849
   284
wenzelm@26852
   285
  \noindent Some further operations address the extension aspect of a
wenzelm@26849
   286
  derived record scheme specifically: \isa{{\isachardoublequote}t{\isachardot}fields{\isachardoublequote}} produces a
wenzelm@26849
   287
  record fragment consisting of exactly the new fields introduced here
wenzelm@26849
   288
  (the result may serve as a more part elsewhere); \isa{{\isachardoublequote}t{\isachardot}extend{\isachardoublequote}}
wenzelm@26849
   289
  takes a fixed record and adds a given more part; \isa{{\isachardoublequote}t{\isachardot}truncate{\isachardoublequote}} restricts a record scheme to a fixed record.
wenzelm@26849
   290
wenzelm@26852
   291
  \medskip
wenzelm@26852
   292
  \begin{tabular}{lll}
wenzelm@26852
   293
    \isa{{\isachardoublequote}t{\isachardot}fields{\isachardoublequote}} & \isa{{\isachardoublequote}{\isacharcolon}{\isacharcolon}{\isachardoublequote}} & \isa{{\isachardoublequote}{\isasymsigma}\isactrlsub {\isadigit{1}}\ {\isasymRightarrow}\ {\isasymdots}\ {\isasymsigma}\isactrlsub n\ {\isasymRightarrow}\ {\isasymlparr}\isactrlvec c\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymsigma}{\isasymrparr}{\isachardoublequote}} \\
wenzelm@26852
   294
    \isa{{\isachardoublequote}t{\isachardot}extend{\isachardoublequote}} & \isa{{\isachardoublequote}{\isacharcolon}{\isacharcolon}{\isachardoublequote}} & \isa{{\isachardoublequote}{\isasymlparr}\isactrlvec b\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymrho}{\isacharcomma}\ \isactrlvec c\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymsigma}{\isasymrparr}\ {\isasymRightarrow}\ {\isasymzeta}\ {\isasymRightarrow}\ {\isasymlparr}\isactrlvec b\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymrho}{\isacharcomma}\ \isactrlvec c\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymsigma}{\isacharcomma}\ {\isasymdots}\ {\isacharcolon}{\isacharcolon}\ {\isasymzeta}{\isasymrparr}{\isachardoublequote}} \\
wenzelm@26852
   295
    \isa{{\isachardoublequote}t{\isachardot}truncate{\isachardoublequote}} & \isa{{\isachardoublequote}{\isacharcolon}{\isacharcolon}{\isachardoublequote}} & \isa{{\isachardoublequote}{\isasymlparr}\isactrlvec b\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymrho}{\isacharcomma}\ \isactrlvec c\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymsigma}{\isacharcomma}\ {\isasymdots}\ {\isacharcolon}{\isacharcolon}\ {\isasymzeta}{\isasymrparr}\ {\isasymRightarrow}\ {\isasymlparr}\isactrlvec b\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymrho}{\isacharcomma}\ \isactrlvec c\ {\isacharcolon}{\isacharcolon}\ \isactrlvec {\isasymsigma}{\isasymrparr}{\isachardoublequote}} \\
wenzelm@26852
   296
  \end{tabular}
wenzelm@26852
   297
  \medskip
wenzelm@26849
   298
wenzelm@26849
   299
  \noindent Note that \isa{{\isachardoublequote}t{\isachardot}make{\isachardoublequote}} and \isa{{\isachardoublequote}t{\isachardot}fields{\isachardoublequote}} coincide
wenzelm@26849
   300
  for root records.%
wenzelm@26849
   301
\end{isamarkuptext}%
wenzelm@26849
   302
\isamarkuptrue%
wenzelm@26849
   303
%
wenzelm@26849
   304
\isamarkupsubsection{Derived rules and proof tools%
wenzelm@26849
   305
}
wenzelm@26849
   306
\isamarkuptrue%
wenzelm@26849
   307
%
wenzelm@26849
   308
\begin{isamarkuptext}%
wenzelm@26849
   309
The record package proves several results internally, declaring
wenzelm@26849
   310
  these facts to appropriate proof tools.  This enables users to
wenzelm@26849
   311
  reason about record structures quite conveniently.  Assume that
wenzelm@26849
   312
  \isa{t} is a record type as specified above.
wenzelm@26849
   313
wenzelm@26849
   314
  \begin{enumerate}
wenzelm@26849
   315
  
wenzelm@26849
   316
  \item Standard conversions for selectors or updates applied to
wenzelm@26849
   317
  record constructor terms are made part of the default Simplifier
wenzelm@26849
   318
  context; thus proofs by reduction of basic operations merely require
wenzelm@26902
   319
  the \hyperlink{method.simp}{\mbox{\isa{simp}}} method without further arguments.  These rules
wenzelm@26849
   320
  are available as \isa{{\isachardoublequote}t{\isachardot}simps{\isachardoublequote}}, too.
wenzelm@26849
   321
  
wenzelm@26849
   322
  \item Selectors applied to updated records are automatically reduced
wenzelm@26849
   323
  by an internal simplification procedure, which is also part of the
wenzelm@26849
   324
  standard Simplifier setup.
wenzelm@26849
   325
wenzelm@26849
   326
  \item Inject equations of a form analogous to \isa{{\isachardoublequote}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x{\isacharprime}{\isacharcomma}\ y{\isacharprime}{\isacharparenright}\ {\isasymequiv}\ x\ {\isacharequal}\ x{\isacharprime}\ {\isasymand}\ y\ {\isacharequal}\ y{\isacharprime}{\isachardoublequote}} are declared to the Simplifier and Classical
wenzelm@26902
   327
  Reasoner as \hyperlink{attribute.iff}{\mbox{\isa{iff}}} rules.  These rules are available as
wenzelm@26849
   328
  \isa{{\isachardoublequote}t{\isachardot}iffs{\isachardoublequote}}.
wenzelm@26849
   329
wenzelm@26849
   330
  \item The introduction rule for record equality analogous to \isa{{\isachardoublequote}x\ r\ {\isacharequal}\ x\ r{\isacharprime}\ {\isasymLongrightarrow}\ y\ r\ {\isacharequal}\ y\ r{\isacharprime}\ {\isasymdots}\ {\isasymLongrightarrow}\ r\ {\isacharequal}\ r{\isacharprime}{\isachardoublequote}} is declared to the Simplifier,
wenzelm@26902
   331
  and as the basic rule context as ``\hyperlink{attribute.intro}{\mbox{\isa{intro}}}\isa{{\isachardoublequote}{\isacharquery}{\isachardoublequote}}''.
wenzelm@26849
   332
  The rule is called \isa{{\isachardoublequote}t{\isachardot}equality{\isachardoublequote}}.
wenzelm@26849
   333
wenzelm@26849
   334
  \item Representations of arbitrary record expressions as canonical
wenzelm@26902
   335
  constructor terms are provided both in \hyperlink{method.cases}{\mbox{\isa{cases}}} and \hyperlink{method.induct}{\mbox{\isa{induct}}} format (cf.\ the generic proof methods of the same name,
wenzelm@26849
   336
  \secref{sec:cases-induct}).  Several variations are available, for
wenzelm@26849
   337
  fixed records, record schemes, more parts etc.
wenzelm@26849
   338
  
wenzelm@26849
   339
  The generic proof methods are sufficiently smart to pick the most
wenzelm@26849
   340
  sensible rule according to the type of the indicated record
wenzelm@26849
   341
  expression: users just need to apply something like ``\isa{{\isachardoublequote}{\isacharparenleft}cases\ r{\isacharparenright}{\isachardoublequote}}'' to a certain proof problem.
wenzelm@26849
   342
wenzelm@26849
   343
  \item The derived record operations \isa{{\isachardoublequote}t{\isachardot}make{\isachardoublequote}}, \isa{{\isachardoublequote}t{\isachardot}fields{\isachardoublequote}}, \isa{{\isachardoublequote}t{\isachardot}extend{\isachardoublequote}}, \isa{{\isachardoublequote}t{\isachardot}truncate{\isachardoublequote}} are \emph{not}
wenzelm@26849
   344
  treated automatically, but usually need to be expanded by hand,
wenzelm@26849
   345
  using the collective fact \isa{{\isachardoublequote}t{\isachardot}defs{\isachardoublequote}}.
wenzelm@26849
   346
wenzelm@26849
   347
  \end{enumerate}%
wenzelm@26849
   348
\end{isamarkuptext}%
wenzelm@26849
   349
\isamarkuptrue%
wenzelm@26849
   350
%
wenzelm@26849
   351
\isamarkupsection{Datatypes \label{sec:hol-datatype}%
wenzelm@26849
   352
}
wenzelm@26849
   353
\isamarkuptrue%
wenzelm@26849
   354
%
wenzelm@26849
   355
\begin{isamarkuptext}%
wenzelm@26849
   356
\begin{matharray}{rcl}
wenzelm@28788
   357
    \indexdef{HOL}{command}{datatype}\hypertarget{command.HOL.datatype}{\hyperlink{command.HOL.datatype}{\mbox{\isa{\isacommand{datatype}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
wenzelm@28788
   358
  \indexdef{HOL}{command}{rep\_datatype}\hypertarget{command.HOL.rep-datatype}{\hyperlink{command.HOL.rep-datatype}{\mbox{\isa{\isacommand{rep{\isacharunderscore}datatype}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ proof{\isacharparenleft}prove{\isacharparenright}{\isachardoublequote}} \\
wenzelm@26849
   359
  \end{matharray}
wenzelm@26849
   360
wenzelm@26849
   361
  \begin{rail}
wenzelm@26849
   362
    'datatype' (dtspec + 'and')
wenzelm@26849
   363
    ;
wenzelm@40516
   364
    'rep_datatype' ('(' (name +) ')')? (term +)
wenzelm@26849
   365
    ;
wenzelm@26849
   366
wenzelm@35352
   367
    dtspec: parname? typespec mixfix? '=' (cons + '|')
wenzelm@26849
   368
    ;
haftmann@31907
   369
    cons: name ( type * ) mixfix?
wenzelm@26849
   370
  \end{rail}
wenzelm@26849
   371
wenzelm@28788
   372
  \begin{description}
wenzelm@26849
   373
wenzelm@28788
   374
  \item \hyperlink{command.HOL.datatype}{\mbox{\isa{\isacommand{datatype}}}} defines inductive datatypes in
wenzelm@26849
   375
  HOL.
wenzelm@26849
   376
wenzelm@28788
   377
  \item \hyperlink{command.HOL.rep-datatype}{\mbox{\isa{\isacommand{rep{\isacharunderscore}datatype}}}} represents existing types as
wenzelm@26849
   378
  inductive ones, generating the standard infrastructure of derived
wenzelm@26849
   379
  concepts (primitive recursion etc.).
wenzelm@26849
   380
wenzelm@28788
   381
  \end{description}
wenzelm@26849
   382
wenzelm@26849
   383
  The induction and exhaustion theorems generated provide case names
wenzelm@26849
   384
  according to the constructors involved, while parameters are named
wenzelm@26849
   385
  after the types (see also \secref{sec:cases-induct}).
wenzelm@26849
   386
wenzelm@26849
   387
  See \cite{isabelle-HOL} for more details on datatypes, but beware of
wenzelm@26849
   388
  the old-style theory syntax being used there!  Apart from proper
wenzelm@26849
   389
  proof methods for case-analysis and induction, there are also
wenzelm@26907
   390
  emulations of ML tactics \hyperlink{method.HOL.case-tac}{\mbox{\isa{case{\isacharunderscore}tac}}} and \hyperlink{method.HOL.induct-tac}{\mbox{\isa{induct{\isacharunderscore}tac}}} available, see \secref{sec:hol-induct-tac}; these admit
wenzelm@26849
   391
  to refer directly to the internal structure of subgoals (including
wenzelm@26849
   392
  internally bound parameters).%
wenzelm@26849
   393
\end{isamarkuptext}%
wenzelm@26849
   394
\isamarkuptrue%
wenzelm@26849
   395
%
wenzelm@26849
   396
\isamarkupsection{Recursive functions \label{sec:recursion}%
wenzelm@26849
   397
}
wenzelm@26849
   398
\isamarkuptrue%
wenzelm@26849
   399
%
wenzelm@26849
   400
\begin{isamarkuptext}%
wenzelm@26849
   401
\begin{matharray}{rcl}
wenzelm@28788
   402
    \indexdef{HOL}{command}{primrec}\hypertarget{command.HOL.primrec}{\hyperlink{command.HOL.primrec}{\mbox{\isa{\isacommand{primrec}}}}} & : & \isa{{\isachardoublequote}local{\isacharunderscore}theory\ {\isasymrightarrow}\ local{\isacharunderscore}theory{\isachardoublequote}} \\
wenzelm@28788
   403
    \indexdef{HOL}{command}{fun}\hypertarget{command.HOL.fun}{\hyperlink{command.HOL.fun}{\mbox{\isa{\isacommand{fun}}}}} & : & \isa{{\isachardoublequote}local{\isacharunderscore}theory\ {\isasymrightarrow}\ local{\isacharunderscore}theory{\isachardoublequote}} \\
wenzelm@28788
   404
    \indexdef{HOL}{command}{function}\hypertarget{command.HOL.function}{\hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}}} & : & \isa{{\isachardoublequote}local{\isacharunderscore}theory\ {\isasymrightarrow}\ proof{\isacharparenleft}prove{\isacharparenright}{\isachardoublequote}} \\
wenzelm@28788
   405
    \indexdef{HOL}{command}{termination}\hypertarget{command.HOL.termination}{\hyperlink{command.HOL.termination}{\mbox{\isa{\isacommand{termination}}}}} & : & \isa{{\isachardoublequote}local{\isacharunderscore}theory\ {\isasymrightarrow}\ proof{\isacharparenleft}prove{\isacharparenright}{\isachardoublequote}} \\
wenzelm@26849
   406
  \end{matharray}
wenzelm@26849
   407
wenzelm@26849
   408
  \begin{rail}
wenzelm@26849
   409
    'primrec' target? fixes 'where' equations
wenzelm@26849
   410
    ;
krauss@40411
   411
    ('fun' | 'function') target? functionopts? fixes \\ 'where' equations
krauss@40411
   412
    ;
wenzelm@26849
   413
    equations: (thmdecl? prop + '|')
wenzelm@26849
   414
    ;
wenzelm@26987
   415
    functionopts: '(' (('sequential' | 'domintros' | 'tailrec' | 'default' term) + ',') ')'
wenzelm@26849
   416
    ;
wenzelm@26849
   417
    'termination' ( term )?
wenzelm@26849
   418
  \end{rail}
wenzelm@26849
   419
wenzelm@28788
   420
  \begin{description}
wenzelm@26849
   421
wenzelm@28788
   422
  \item \hyperlink{command.HOL.primrec}{\mbox{\isa{\isacommand{primrec}}}} defines primitive recursive
wenzelm@26849
   423
  functions over datatypes, see also \cite{isabelle-HOL}.
wenzelm@26849
   424
wenzelm@28788
   425
  \item \hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}} defines functions by general
wenzelm@26849
   426
  wellfounded recursion. A detailed description with examples can be
wenzelm@26849
   427
  found in \cite{isabelle-function}. The function is specified by a
wenzelm@26849
   428
  set of (possibly conditional) recursive equations with arbitrary
wenzelm@26849
   429
  pattern matching. The command generates proof obligations for the
wenzelm@26849
   430
  completeness and the compatibility of patterns.
wenzelm@26849
   431
wenzelm@26849
   432
  The defined function is considered partial, and the resulting
wenzelm@26849
   433
  simplification rules (named \isa{{\isachardoublequote}f{\isachardot}psimps{\isachardoublequote}}) and induction rule
wenzelm@26849
   434
  (named \isa{{\isachardoublequote}f{\isachardot}pinduct{\isachardoublequote}}) are guarded by a generated domain
wenzelm@26902
   435
  predicate \isa{{\isachardoublequote}f{\isacharunderscore}dom{\isachardoublequote}}. The \hyperlink{command.HOL.termination}{\mbox{\isa{\isacommand{termination}}}}
wenzelm@26849
   436
  command can then be used to establish that the function is total.
wenzelm@26849
   437
wenzelm@28788
   438
  \item \hyperlink{command.HOL.fun}{\mbox{\isa{\isacommand{fun}}}} is a shorthand notation for ``\hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}}~\isa{{\isachardoublequote}{\isacharparenleft}sequential{\isacharparenright}{\isachardoublequote}}, followed by automated
wenzelm@28788
   439
  proof attempts regarding pattern matching and termination.  See
wenzelm@28788
   440
  \cite{isabelle-function} for further details.
wenzelm@26849
   441
wenzelm@28788
   442
  \item \hyperlink{command.HOL.termination}{\mbox{\isa{\isacommand{termination}}}}~\isa{f} commences a
wenzelm@26849
   443
  termination proof for the previously defined function \isa{f}.  If
wenzelm@26849
   444
  this is omitted, the command refers to the most recent function
wenzelm@26849
   445
  definition.  After the proof is closed, the recursive equations and
wenzelm@26849
   446
  the induction principle is established.
wenzelm@26849
   447
wenzelm@28788
   448
  \end{description}
wenzelm@26849
   449
haftmann@27452
   450
  Recursive definitions introduced by the \hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}}
haftmann@27452
   451
  command accommodate
wenzelm@26849
   452
  reasoning by induction (cf.\ \secref{sec:cases-induct}): rule \isa{{\isachardoublequote}c{\isachardot}induct{\isachardoublequote}} (where \isa{c} is the name of the function definition)
wenzelm@26849
   453
  refers to a specific induction rule, with parameters named according
krauss@33857
   454
  to the user-specified equations. Cases are numbered (starting from 1).
krauss@33857
   455
krauss@33857
   456
  For \hyperlink{command.HOL.primrec}{\mbox{\isa{\isacommand{primrec}}}}, the induction principle coincides
haftmann@27452
   457
  with structural recursion on the datatype the recursion is carried
haftmann@27452
   458
  out.
wenzelm@26849
   459
wenzelm@26849
   460
  The equations provided by these packages may be referred later as
wenzelm@26849
   461
  theorem list \isa{{\isachardoublequote}f{\isachardot}simps{\isachardoublequote}}, where \isa{f} is the (collective)
wenzelm@26849
   462
  name of the functions defined.  Individual equations may be named
wenzelm@26849
   463
  explicitly as well.
wenzelm@26849
   464
wenzelm@26902
   465
  The \hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}} command accepts the following
wenzelm@26849
   466
  options.
wenzelm@26849
   467
wenzelm@28788
   468
  \begin{description}
wenzelm@26849
   469
wenzelm@28788
   470
  \item \isa{sequential} enables a preprocessor which disambiguates
wenzelm@28788
   471
  overlapping patterns by making them mutually disjoint.  Earlier
wenzelm@28788
   472
  equations take precedence over later ones.  This allows to give the
wenzelm@28788
   473
  specification in a format very similar to functional programming.
wenzelm@28788
   474
  Note that the resulting simplification and induction rules
wenzelm@28788
   475
  correspond to the transformed specification, not the one given
wenzelm@26849
   476
  originally. This usually means that each equation given by the user
hoelzl@36137
   477
  may result in several theorems.  Also note that this automatic
wenzelm@26849
   478
  transformation only works for ML-style datatype patterns.
wenzelm@26849
   479
wenzelm@28788
   480
  \item \isa{domintros} enables the automated generation of
wenzelm@26849
   481
  introduction rules for the domain predicate. While mostly not
wenzelm@26849
   482
  needed, they can be helpful in some proofs about partial functions.
wenzelm@26849
   483
wenzelm@28788
   484
  \item \isa{tailrec} generates the unconstrained recursive
wenzelm@26849
   485
  equations even without a termination proof, provided that the
wenzelm@26849
   486
  function is tail-recursive. This currently only works
wenzelm@26849
   487
wenzelm@28788
   488
  \item \isa{{\isachardoublequote}default\ d{\isachardoublequote}} allows to specify a default value for a
wenzelm@26849
   489
  (partial) function, which will ensure that \isa{{\isachardoublequote}f\ x\ {\isacharequal}\ d\ x{\isachardoublequote}}
wenzelm@26849
   490
  whenever \isa{{\isachardoublequote}x\ {\isasymnotin}\ f{\isacharunderscore}dom{\isachardoublequote}}.
wenzelm@26849
   491
wenzelm@28788
   492
  \end{description}%
wenzelm@26849
   493
\end{isamarkuptext}%
wenzelm@26849
   494
\isamarkuptrue%
wenzelm@26849
   495
%
wenzelm@26849
   496
\isamarkupsubsection{Proof methods related to recursive definitions%
wenzelm@26849
   497
}
wenzelm@26849
   498
\isamarkuptrue%
wenzelm@26849
   499
%
wenzelm@26849
   500
\begin{isamarkuptext}%
wenzelm@26849
   501
\begin{matharray}{rcl}
wenzelm@28788
   502
    \indexdef{HOL}{method}{pat\_completeness}\hypertarget{method.HOL.pat-completeness}{\hyperlink{method.HOL.pat-completeness}{\mbox{\isa{pat{\isacharunderscore}completeness}}}} & : & \isa{method} \\
wenzelm@28788
   503
    \indexdef{HOL}{method}{relation}\hypertarget{method.HOL.relation}{\hyperlink{method.HOL.relation}{\mbox{\isa{relation}}}} & : & \isa{method} \\
wenzelm@28788
   504
    \indexdef{HOL}{method}{lexicographic\_order}\hypertarget{method.HOL.lexicographic-order}{\hyperlink{method.HOL.lexicographic-order}{\mbox{\isa{lexicographic{\isacharunderscore}order}}}} & : & \isa{method} \\
krauss@33858
   505
    \indexdef{HOL}{method}{size\_change}\hypertarget{method.HOL.size-change}{\hyperlink{method.HOL.size-change}{\mbox{\isa{size{\isacharunderscore}change}}}} & : & \isa{method} \\
wenzelm@26849
   506
  \end{matharray}
wenzelm@26849
   507
wenzelm@26849
   508
  \begin{rail}
wenzelm@26849
   509
    'relation' term
wenzelm@26849
   510
    ;
wenzelm@40516
   511
    'lexicographic_order' ( clasimpmod * )
wenzelm@26849
   512
    ;
wenzelm@40516
   513
    'size_change' ( orders ( clasimpmod * ) )
krauss@33858
   514
    ;
krauss@33858
   515
    orders: ( 'max' | 'min' | 'ms' ) *
wenzelm@26849
   516
  \end{rail}
wenzelm@26849
   517
wenzelm@28788
   518
  \begin{description}
wenzelm@26849
   519
wenzelm@28788
   520
  \item \hyperlink{method.HOL.pat-completeness}{\mbox{\isa{pat{\isacharunderscore}completeness}}} is a specialized method to
wenzelm@26849
   521
  solve goals regarding the completeness of pattern matching, as
wenzelm@26902
   522
  required by the \hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}} package (cf.\
wenzelm@26849
   523
  \cite{isabelle-function}).
wenzelm@26849
   524
wenzelm@28788
   525
  \item \hyperlink{method.HOL.relation}{\mbox{\isa{relation}}}~\isa{R} introduces a termination
wenzelm@26849
   526
  proof using the relation \isa{R}.  The resulting proof state will
wenzelm@26849
   527
  contain goals expressing that \isa{R} is wellfounded, and that the
wenzelm@26849
   528
  arguments of recursive calls decrease with respect to \isa{R}.
wenzelm@26849
   529
  Usually, this method is used as the initial proof step of manual
wenzelm@26849
   530
  termination proofs.
wenzelm@26849
   531
wenzelm@28788
   532
  \item \hyperlink{method.HOL.lexicographic-order}{\mbox{\isa{lexicographic{\isacharunderscore}order}}} attempts a fully
wenzelm@26849
   533
  automated termination proof by searching for a lexicographic
wenzelm@26849
   534
  combination of size measures on the arguments of the function. The
wenzelm@26902
   535
  method accepts the same arguments as the \hyperlink{method.auto}{\mbox{\isa{auto}}} method,
wenzelm@26849
   536
  which it uses internally to prove local descents.  The same context
wenzelm@26902
   537
  modifiers as for \hyperlink{method.auto}{\mbox{\isa{auto}}} are accepted, see
wenzelm@26849
   538
  \secref{sec:clasimp}.
wenzelm@26849
   539
wenzelm@26849
   540
  In case of failure, extensive information is printed, which can help
wenzelm@26849
   541
  to analyse the situation (cf.\ \cite{isabelle-function}).
wenzelm@26849
   542
krauss@33858
   543
  \item \hyperlink{method.HOL.size-change}{\mbox{\isa{size{\isacharunderscore}change}}} also works on termination goals,
krauss@33858
   544
  using a variation of the size-change principle, together with a
krauss@33858
   545
  graph decomposition technique (see \cite{krauss_phd} for details).
krauss@33858
   546
  Three kinds of orders are used internally: \isa{max}, \isa{min},
krauss@33858
   547
  and \isa{ms} (multiset), which is only available when the theory
krauss@33858
   548
  \isa{Multiset} is loaded. When no order kinds are given, they are
krauss@33858
   549
  tried in order. The search for a termination proof uses SAT solving
krauss@33858
   550
  internally.
krauss@33858
   551
krauss@33858
   552
 For local descent proofs, the same context modifiers as for \hyperlink{method.auto}{\mbox{\isa{auto}}} are accepted, see \secref{sec:clasimp}.
krauss@33858
   553
wenzelm@28788
   554
  \end{description}%
wenzelm@26849
   555
\end{isamarkuptext}%
wenzelm@26849
   556
\isamarkuptrue%
wenzelm@26849
   557
%
krauss@40412
   558
\isamarkupsubsection{Functions with explicit partiality%
krauss@40412
   559
}
krauss@40412
   560
\isamarkuptrue%
krauss@40412
   561
%
krauss@40412
   562
\begin{isamarkuptext}%
krauss@40412
   563
\begin{matharray}{rcl}
krauss@40412
   564
    \indexdef{HOL}{command}{partial\_function}\hypertarget{command.HOL.partial-function}{\hyperlink{command.HOL.partial-function}{\mbox{\isa{\isacommand{partial{\isacharunderscore}function}}}}} & : & \isa{{\isachardoublequote}local{\isacharunderscore}theory\ {\isasymrightarrow}\ local{\isacharunderscore}theory{\isachardoublequote}} \\
krauss@40412
   565
    \indexdef{HOL}{attribute}{partial\_function\_mono}\hypertarget{attribute.HOL.partial-function-mono}{\hyperlink{attribute.HOL.partial-function-mono}{\mbox{\isa{partial{\isacharunderscore}function{\isacharunderscore}mono}}}} & : & \isa{attribute} \\
krauss@40412
   566
  \end{matharray}
krauss@40412
   567
krauss@40412
   568
  \begin{rail}
krauss@40412
   569
    'partial_function' target? '(' mode ')' fixes \\ 'where' thmdecl? prop
krauss@40412
   570
  \end{rail}
krauss@40412
   571
krauss@40412
   572
  \begin{description}
krauss@40412
   573
krauss@40412
   574
  \item \hyperlink{command.HOL.partial-function}{\mbox{\isa{\isacommand{partial{\isacharunderscore}function}}}} defines recursive
krauss@40412
   575
  functions based on fixpoints in complete partial orders. No
krauss@40412
   576
  termination proof is required from the user or constructed
krauss@40412
   577
  internally. Instead, the possibility of non-termination is modelled
krauss@40412
   578
  explicitly in the result type, which contains an explicit bottom
krauss@40412
   579
  element.
krauss@40412
   580
krauss@40412
   581
  Pattern matching and mutual recursion are currently not supported.
krauss@40412
   582
  Thus, the specification consists of a single function described by a
krauss@40412
   583
  single recursive equation.
krauss@40412
   584
krauss@40412
   585
  There are no fixed syntactic restrictions on the body of the
krauss@40412
   586
  function, but the induced functional must be provably monotonic
krauss@40412
   587
  wrt.\ the underlying order.  The monotonicitity proof is performed
krauss@40412
   588
  internally, and the definition is rejected when it fails. The proof
krauss@40412
   589
  can be influenced by declaring hints using the
krauss@40412
   590
  \hyperlink{attribute.HOL.partial-function-mono}{\mbox{\isa{partial{\isacharunderscore}function{\isacharunderscore}mono}}} attribute.
krauss@40412
   591
krauss@40412
   592
  The mandatory \isa{mode} argument specifies the mode of operation
krauss@40412
   593
  of the command, which directly corresponds to a complete partial
krauss@40412
   594
  order on the result type. By default, the following modes are
krauss@40412
   595
  defined: 
krauss@40412
   596
krauss@40412
   597
  \begin{description}
krauss@40412
   598
  \item \isa{option} defines functions that map into the \isa{option} type. Here, the value \isa{None} is used to model a
krauss@40412
   599
  non-terminating computation. Monotonicity requires that if \isa{None} is returned by a recursive call, then the overall result
krauss@40412
   600
  must also be \isa{None}. This is best achieved through the use of
krauss@40412
   601
  the monadic operator \isa{{\isachardoublequote}Option{\isachardot}bind{\isachardoublequote}}.
krauss@40412
   602
  
krauss@40412
   603
  \item \isa{tailrec} defines functions with an arbitrary result
krauss@40412
   604
  type and uses the slightly degenerated partial order where \isa{{\isachardoublequote}undefined{\isachardoublequote}} is the bottom element.  Now, monotonicity requires that
krauss@40412
   605
  if \isa{undefined} is returned by a recursive call, then the
krauss@40412
   606
  overall result must also be \isa{undefined}. In practice, this is
krauss@40412
   607
  only satisfied when each recursive call is a tail call, whose result
krauss@40412
   608
  is directly returned. Thus, this mode of operation allows the
krauss@40412
   609
  definition of arbitrary tail-recursive functions.
krauss@40412
   610
  \end{description}
krauss@40412
   611
krauss@40412
   612
  Experienced users may define new modes by instantiating the locale
krauss@40412
   613
  \isa{{\isachardoublequote}partial{\isacharunderscore}function{\isacharunderscore}definitions{\isachardoublequote}} appropriately.
krauss@40412
   614
krauss@40412
   615
  \item \hyperlink{attribute.HOL.partial-function-mono}{\mbox{\isa{partial{\isacharunderscore}function{\isacharunderscore}mono}}} declares rules for
krauss@40412
   616
  use in the internal monononicity proofs of partial function
krauss@40412
   617
  definitions.
krauss@40412
   618
krauss@40412
   619
  \end{description}%
krauss@40412
   620
\end{isamarkuptext}%
krauss@40412
   621
\isamarkuptrue%
krauss@40412
   622
%
wenzelm@26849
   623
\isamarkupsubsection{Old-style recursive function definitions (TFL)%
wenzelm@26849
   624
}
wenzelm@26849
   625
\isamarkuptrue%
wenzelm@26849
   626
%
wenzelm@26849
   627
\begin{isamarkuptext}%
wenzelm@26907
   628
The old TFL commands \hyperlink{command.HOL.recdef}{\mbox{\isa{\isacommand{recdef}}}} and \hyperlink{command.HOL.recdef-tc}{\mbox{\isa{\isacommand{recdef{\isacharunderscore}tc}}}} for defining recursive are mostly obsolete; \hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}} or \hyperlink{command.HOL.fun}{\mbox{\isa{\isacommand{fun}}}} should be used instead.
wenzelm@26849
   629
wenzelm@26849
   630
  \begin{matharray}{rcl}
wenzelm@28788
   631
    \indexdef{HOL}{command}{recdef}\hypertarget{command.HOL.recdef}{\hyperlink{command.HOL.recdef}{\mbox{\isa{\isacommand{recdef}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isacharparenright}{\isachardoublequote}} \\
wenzelm@28788
   632
    \indexdef{HOL}{command}{recdef\_tc}\hypertarget{command.HOL.recdef-tc}{\hyperlink{command.HOL.recdef-tc}{\mbox{\isa{\isacommand{recdef{\isacharunderscore}tc}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ proof{\isacharparenleft}prove{\isacharparenright}{\isachardoublequote}} \\
wenzelm@26849
   633
  \end{matharray}
wenzelm@26849
   634
wenzelm@26849
   635
  \begin{rail}
wenzelm@26849
   636
    'recdef' ('(' 'permissive' ')')? \\ name term (prop +) hints?
wenzelm@26849
   637
    ;
wenzelm@26849
   638
    recdeftc thmdecl? tc
wenzelm@26849
   639
    ;
haftmann@31907
   640
    hints: '(' 'hints' ( recdefmod * ) ')'
wenzelm@26849
   641
    ;
wenzelm@40516
   642
    recdefmod: (('recdef_simp' | 'recdef_cong' | 'recdef_wf') (() | 'add' | 'del') ':' thmrefs) | clasimpmod
wenzelm@26849
   643
    ;
wenzelm@26849
   644
    tc: nameref ('(' nat ')')?
wenzelm@26849
   645
    ;
wenzelm@26849
   646
  \end{rail}
wenzelm@26849
   647
wenzelm@28788
   648
  \begin{description}
wenzelm@26849
   649
  
wenzelm@28788
   650
  \item \hyperlink{command.HOL.recdef}{\mbox{\isa{\isacommand{recdef}}}} defines general well-founded
wenzelm@26849
   651
  recursive functions (using the TFL package), see also
wenzelm@26849
   652
  \cite{isabelle-HOL}.  The ``\isa{{\isachardoublequote}{\isacharparenleft}permissive{\isacharparenright}{\isachardoublequote}}'' option tells
wenzelm@26849
   653
  TFL to recover from failed proof attempts, returning unfinished
wenzelm@26849
   654
  results.  The \isa{recdef{\isacharunderscore}simp}, \isa{recdef{\isacharunderscore}cong}, and \isa{recdef{\isacharunderscore}wf} hints refer to auxiliary rules to be used in the internal
wenzelm@26902
   655
  automated proof process of TFL.  Additional \hyperlink{syntax.clasimpmod}{\mbox{\isa{clasimpmod}}}
wenzelm@26849
   656
  declarations (cf.\ \secref{sec:clasimp}) may be given to tune the
wenzelm@26849
   657
  context of the Simplifier (cf.\ \secref{sec:simplifier}) and
wenzelm@26849
   658
  Classical reasoner (cf.\ \secref{sec:classical}).
wenzelm@26849
   659
  
wenzelm@28788
   660
  \item \hyperlink{command.HOL.recdef-tc}{\mbox{\isa{\isacommand{recdef{\isacharunderscore}tc}}}}~\isa{{\isachardoublequote}c\ {\isacharparenleft}i{\isacharparenright}{\isachardoublequote}} recommences the
wenzelm@26849
   661
  proof for leftover termination condition number \isa{i} (default
wenzelm@26902
   662
  1) as generated by a \hyperlink{command.HOL.recdef}{\mbox{\isa{\isacommand{recdef}}}} definition of
wenzelm@26849
   663
  constant \isa{c}.
wenzelm@26849
   664
  
wenzelm@26902
   665
  Note that in most cases, \hyperlink{command.HOL.recdef}{\mbox{\isa{\isacommand{recdef}}}} is able to finish
wenzelm@26849
   666
  its internal proofs without manual intervention.
wenzelm@26849
   667
wenzelm@28788
   668
  \end{description}
wenzelm@26849
   669
wenzelm@26902
   670
  \medskip Hints for \hyperlink{command.HOL.recdef}{\mbox{\isa{\isacommand{recdef}}}} may be also declared
wenzelm@26849
   671
  globally, using the following attributes.
wenzelm@26849
   672
wenzelm@26849
   673
  \begin{matharray}{rcl}
wenzelm@28788
   674
    \indexdef{HOL}{attribute}{recdef\_simp}\hypertarget{attribute.HOL.recdef-simp}{\hyperlink{attribute.HOL.recdef-simp}{\mbox{\isa{recdef{\isacharunderscore}simp}}}} & : & \isa{attribute} \\
wenzelm@28788
   675
    \indexdef{HOL}{attribute}{recdef\_cong}\hypertarget{attribute.HOL.recdef-cong}{\hyperlink{attribute.HOL.recdef-cong}{\mbox{\isa{recdef{\isacharunderscore}cong}}}} & : & \isa{attribute} \\
wenzelm@28788
   676
    \indexdef{HOL}{attribute}{recdef\_wf}\hypertarget{attribute.HOL.recdef-wf}{\hyperlink{attribute.HOL.recdef-wf}{\mbox{\isa{recdef{\isacharunderscore}wf}}}} & : & \isa{attribute} \\
wenzelm@26849
   677
  \end{matharray}
wenzelm@26849
   678
wenzelm@26849
   679
  \begin{rail}
wenzelm@40516
   680
    ('recdef_simp' | 'recdef_cong' | 'recdef_wf') (() | 'add' | 'del')
wenzelm@26849
   681
    ;
wenzelm@26849
   682
  \end{rail}%
wenzelm@26849
   683
\end{isamarkuptext}%
wenzelm@26849
   684
\isamarkuptrue%
wenzelm@26849
   685
%
wenzelm@26849
   686
\isamarkupsection{Inductive and coinductive definitions \label{sec:hol-inductive}%
wenzelm@26849
   687
}
wenzelm@26849
   688
\isamarkuptrue%
wenzelm@26849
   689
%
wenzelm@26849
   690
\begin{isamarkuptext}%
wenzelm@26849
   691
An \textbf{inductive definition} specifies the least predicate (or
wenzelm@26849
   692
  set) \isa{R} closed under given rules: applying a rule to elements
wenzelm@26849
   693
  of \isa{R} yields a result within \isa{R}.  For example, a
wenzelm@26849
   694
  structural operational semantics is an inductive definition of an
wenzelm@26849
   695
  evaluation relation.
wenzelm@26849
   696
wenzelm@26849
   697
  Dually, a \textbf{coinductive definition} specifies the greatest
wenzelm@26849
   698
  predicate~/ set \isa{R} that is consistent with given rules: every
wenzelm@26849
   699
  element of \isa{R} can be seen as arising by applying a rule to
wenzelm@26849
   700
  elements of \isa{R}.  An important example is using bisimulation
wenzelm@26849
   701
  relations to formalise equivalence of processes and infinite data
wenzelm@26849
   702
  structures.
wenzelm@26849
   703
wenzelm@26849
   704
  \medskip The HOL package is related to the ZF one, which is
wenzelm@26849
   705
  described in a separate paper,\footnote{It appeared in CADE
wenzelm@26849
   706
  \cite{paulson-CADE}; a longer version is distributed with Isabelle.}
wenzelm@26849
   707
  which you should refer to in case of difficulties.  The package is
wenzelm@26849
   708
  simpler than that of ZF thanks to implicit type-checking in HOL.
wenzelm@26849
   709
  The types of the (co)inductive predicates (or sets) determine the
wenzelm@26849
   710
  domain of the fixedpoint definition, and the package does not have
wenzelm@26849
   711
  to use inference rules for type-checking.
wenzelm@26849
   712
wenzelm@26849
   713
  \begin{matharray}{rcl}
wenzelm@28788
   714
    \indexdef{HOL}{command}{inductive}\hypertarget{command.HOL.inductive}{\hyperlink{command.HOL.inductive}{\mbox{\isa{\isacommand{inductive}}}}} & : & \isa{{\isachardoublequote}local{\isacharunderscore}theory\ {\isasymrightarrow}\ local{\isacharunderscore}theory{\isachardoublequote}} \\
wenzelm@28788
   715
    \indexdef{HOL}{command}{inductive\_set}\hypertarget{command.HOL.inductive-set}{\hyperlink{command.HOL.inductive-set}{\mbox{\isa{\isacommand{inductive{\isacharunderscore}set}}}}} & : & \isa{{\isachardoublequote}local{\isacharunderscore}theory\ {\isasymrightarrow}\ local{\isacharunderscore}theory{\isachardoublequote}} \\
wenzelm@28788
   716
    \indexdef{HOL}{command}{coinductive}\hypertarget{command.HOL.coinductive}{\hyperlink{command.HOL.coinductive}{\mbox{\isa{\isacommand{coinductive}}}}} & : & \isa{{\isachardoublequote}local{\isacharunderscore}theory\ {\isasymrightarrow}\ local{\isacharunderscore}theory{\isachardoublequote}} \\
wenzelm@28788
   717
    \indexdef{HOL}{command}{coinductive\_set}\hypertarget{command.HOL.coinductive-set}{\hyperlink{command.HOL.coinductive-set}{\mbox{\isa{\isacommand{coinductive{\isacharunderscore}set}}}}} & : & \isa{{\isachardoublequote}local{\isacharunderscore}theory\ {\isasymrightarrow}\ local{\isacharunderscore}theory{\isachardoublequote}} \\
wenzelm@28788
   718
    \indexdef{HOL}{attribute}{mono}\hypertarget{attribute.HOL.mono}{\hyperlink{attribute.HOL.mono}{\mbox{\isa{mono}}}} & : & \isa{attribute} \\
wenzelm@26849
   719
  \end{matharray}
wenzelm@26849
   720
wenzelm@26849
   721
  \begin{rail}
wenzelm@40516
   722
    ('inductive' | 'inductive_set' | 'coinductive' | 'coinductive_set') target? fixes ('for' fixes)? \\
wenzelm@26849
   723
    ('where' clauses)? ('monos' thmrefs)?
wenzelm@26849
   724
    ;
wenzelm@26849
   725
    clauses: (thmdecl? prop + '|')
wenzelm@26849
   726
    ;
wenzelm@26849
   727
    'mono' (() | 'add' | 'del')
wenzelm@26849
   728
    ;
wenzelm@26849
   729
  \end{rail}
wenzelm@26849
   730
wenzelm@28788
   731
  \begin{description}
wenzelm@26849
   732
wenzelm@28788
   733
  \item \hyperlink{command.HOL.inductive}{\mbox{\isa{\isacommand{inductive}}}} and \hyperlink{command.HOL.coinductive}{\mbox{\isa{\isacommand{coinductive}}}} define (co)inductive predicates from the
wenzelm@26902
   734
  introduction rules given in the \hyperlink{keyword.where}{\mbox{\isa{\isakeyword{where}}}} part.  The
wenzelm@26902
   735
  optional \hyperlink{keyword.for}{\mbox{\isa{\isakeyword{for}}}} part contains a list of parameters of the
wenzelm@26849
   736
  (co)inductive predicates that remain fixed throughout the
wenzelm@26902
   737
  definition.  The optional \hyperlink{keyword.monos}{\mbox{\isa{\isakeyword{monos}}}} section contains
wenzelm@26849
   738
  \emph{monotonicity theorems}, which are required for each operator
wenzelm@26849
   739
  applied to a recursive set in the introduction rules.  There
wenzelm@26849
   740
  \emph{must} be a theorem of the form \isa{{\isachardoublequote}A\ {\isasymle}\ B\ {\isasymLongrightarrow}\ M\ A\ {\isasymle}\ M\ B{\isachardoublequote}},
wenzelm@26849
   741
  for each premise \isa{{\isachardoublequote}M\ R\isactrlsub i\ t{\isachardoublequote}} in an introduction rule!
wenzelm@26849
   742
wenzelm@28788
   743
  \item \hyperlink{command.HOL.inductive-set}{\mbox{\isa{\isacommand{inductive{\isacharunderscore}set}}}} and \hyperlink{command.HOL.coinductive-set}{\mbox{\isa{\isacommand{coinductive{\isacharunderscore}set}}}} are wrappers for to the previous commands,
wenzelm@26849
   744
  allowing the definition of (co)inductive sets.
wenzelm@26849
   745
wenzelm@28788
   746
  \item \hyperlink{attribute.HOL.mono}{\mbox{\isa{mono}}} declares monotonicity rules.  These
wenzelm@26902
   747
  rule are involved in the automated monotonicity proof of \hyperlink{command.HOL.inductive}{\mbox{\isa{\isacommand{inductive}}}}.
wenzelm@26849
   748
wenzelm@28788
   749
  \end{description}%
wenzelm@26849
   750
\end{isamarkuptext}%
wenzelm@26849
   751
\isamarkuptrue%
wenzelm@26849
   752
%
wenzelm@26849
   753
\isamarkupsubsection{Derived rules%
wenzelm@26849
   754
}
wenzelm@26849
   755
\isamarkuptrue%
wenzelm@26849
   756
%
wenzelm@26849
   757
\begin{isamarkuptext}%
wenzelm@26849
   758
Each (co)inductive definition \isa{R} adds definitions to the
wenzelm@26849
   759
  theory and also proves some theorems:
wenzelm@26849
   760
wenzelm@26849
   761
  \begin{description}
wenzelm@26849
   762
wenzelm@28788
   763
  \item \isa{R{\isachardot}intros} is the list of introduction rules as proven
wenzelm@26849
   764
  theorems, for the recursive predicates (or sets).  The rules are
wenzelm@26849
   765
  also available individually, using the names given them in the
wenzelm@26849
   766
  theory file;
wenzelm@26849
   767
wenzelm@28788
   768
  \item \isa{R{\isachardot}cases} is the case analysis (or elimination) rule;
wenzelm@26849
   769
wenzelm@28788
   770
  \item \isa{R{\isachardot}induct} or \isa{R{\isachardot}coinduct} is the (co)induction
wenzelm@26849
   771
  rule.
wenzelm@26849
   772
wenzelm@26849
   773
  \end{description}
wenzelm@26849
   774
wenzelm@26849
   775
  When several predicates \isa{{\isachardoublequote}R\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ R\isactrlsub n{\isachardoublequote}} are
wenzelm@26849
   776
  defined simultaneously, the list of introduction rules is called
wenzelm@26849
   777
  \isa{{\isachardoublequote}R\isactrlsub {\isadigit{1}}{\isacharunderscore}{\isasymdots}{\isacharunderscore}R\isactrlsub n{\isachardot}intros{\isachardoublequote}}, the case analysis rules are
wenzelm@26849
   778
  called \isa{{\isachardoublequote}R\isactrlsub {\isadigit{1}}{\isachardot}cases{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ R\isactrlsub n{\isachardot}cases{\isachardoublequote}}, and the list
wenzelm@26849
   779
  of mutual induction rules is called \isa{{\isachardoublequote}R\isactrlsub {\isadigit{1}}{\isacharunderscore}{\isasymdots}{\isacharunderscore}R\isactrlsub n{\isachardot}inducts{\isachardoublequote}}.%
wenzelm@26849
   780
\end{isamarkuptext}%
wenzelm@26849
   781
\isamarkuptrue%
wenzelm@26849
   782
%
wenzelm@26849
   783
\isamarkupsubsection{Monotonicity theorems%
wenzelm@26849
   784
}
wenzelm@26849
   785
\isamarkuptrue%
wenzelm@26849
   786
%
wenzelm@26849
   787
\begin{isamarkuptext}%
wenzelm@26849
   788
Each theory contains a default set of theorems that are used in
wenzelm@26849
   789
  monotonicity proofs.  New rules can be added to this set via the
wenzelm@26902
   790
  \hyperlink{attribute.HOL.mono}{\mbox{\isa{mono}}} attribute.  The HOL theory \isa{Inductive}
wenzelm@26849
   791
  shows how this is done.  In general, the following monotonicity
wenzelm@26849
   792
  theorems may be added:
wenzelm@26849
   793
wenzelm@26849
   794
  \begin{itemize}
wenzelm@26849
   795
wenzelm@26849
   796
  \item Theorems of the form \isa{{\isachardoublequote}A\ {\isasymle}\ B\ {\isasymLongrightarrow}\ M\ A\ {\isasymle}\ M\ B{\isachardoublequote}}, for proving
wenzelm@26849
   797
  monotonicity of inductive definitions whose introduction rules have
wenzelm@26849
   798
  premises involving terms such as \isa{{\isachardoublequote}M\ R\isactrlsub i\ t{\isachardoublequote}}.
wenzelm@26849
   799
wenzelm@26849
   800
  \item Monotonicity theorems for logical operators, which are of the
wenzelm@26849
   801
  general form \isa{{\isachardoublequote}{\isacharparenleft}{\isasymdots}\ {\isasymlongrightarrow}\ {\isasymdots}{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymdots}\ {\isacharparenleft}{\isasymdots}\ {\isasymlongrightarrow}\ {\isasymdots}{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymdots}\ {\isasymlongrightarrow}\ {\isasymdots}{\isachardoublequote}}.  For example, in
wenzelm@26849
   802
  the case of the operator \isa{{\isachardoublequote}{\isasymor}{\isachardoublequote}}, the corresponding theorem is
wenzelm@26849
   803
  \[
wenzelm@26849
   804
  \infer{\isa{{\isachardoublequote}P\isactrlsub {\isadigit{1}}\ {\isasymor}\ P\isactrlsub {\isadigit{2}}\ {\isasymlongrightarrow}\ Q\isactrlsub {\isadigit{1}}\ {\isasymor}\ Q\isactrlsub {\isadigit{2}}{\isachardoublequote}}}{\isa{{\isachardoublequote}P\isactrlsub {\isadigit{1}}\ {\isasymlongrightarrow}\ Q\isactrlsub {\isadigit{1}}{\isachardoublequote}} & \isa{{\isachardoublequote}P\isactrlsub {\isadigit{2}}\ {\isasymlongrightarrow}\ Q\isactrlsub {\isadigit{2}}{\isachardoublequote}}}
wenzelm@26849
   805
  \]
wenzelm@26849
   806
wenzelm@26849
   807
  \item De Morgan style equations for reasoning about the ``polarity''
wenzelm@26849
   808
  of expressions, e.g.
wenzelm@26849
   809
  \[
wenzelm@26849
   810
  \isa{{\isachardoublequote}{\isasymnot}\ {\isasymnot}\ P\ {\isasymlongleftrightarrow}\ P{\isachardoublequote}} \qquad\qquad
wenzelm@26849
   811
  \isa{{\isachardoublequote}{\isasymnot}\ {\isacharparenleft}P\ {\isasymand}\ Q{\isacharparenright}\ {\isasymlongleftrightarrow}\ {\isasymnot}\ P\ {\isasymor}\ {\isasymnot}\ Q{\isachardoublequote}}
wenzelm@26849
   812
  \]
wenzelm@26849
   813
wenzelm@26849
   814
  \item Equations for reducing complex operators to more primitive
wenzelm@26849
   815
  ones whose monotonicity can easily be proved, e.g.
wenzelm@26849
   816
  \[
wenzelm@26849
   817
  \isa{{\isachardoublequote}{\isacharparenleft}P\ {\isasymlongrightarrow}\ Q{\isacharparenright}\ {\isasymlongleftrightarrow}\ {\isasymnot}\ P\ {\isasymor}\ Q{\isachardoublequote}} \qquad\qquad
wenzelm@26849
   818
  \isa{{\isachardoublequote}Ball\ A\ P\ {\isasymequiv}\ {\isasymforall}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymlongrightarrow}\ P\ x{\isachardoublequote}}
wenzelm@26849
   819
  \]
wenzelm@26849
   820
wenzelm@26849
   821
  \end{itemize}
wenzelm@26849
   822
wenzelm@26849
   823
  %FIXME: Example of an inductive definition%
wenzelm@26849
   824
\end{isamarkuptext}%
wenzelm@26849
   825
\isamarkuptrue%
wenzelm@26849
   826
%
wenzelm@26849
   827
\isamarkupsection{Arithmetic proof support%
wenzelm@26849
   828
}
wenzelm@26849
   829
\isamarkuptrue%
wenzelm@26849
   830
%
wenzelm@26849
   831
\begin{isamarkuptext}%
wenzelm@26849
   832
\begin{matharray}{rcl}
wenzelm@28788
   833
    \indexdef{HOL}{method}{arith}\hypertarget{method.HOL.arith}{\hyperlink{method.HOL.arith}{\mbox{\isa{arith}}}} & : & \isa{method} \\
nipkow@30863
   834
    \indexdef{HOL}{attribute}{arith}\hypertarget{attribute.HOL.arith}{\hyperlink{attribute.HOL.arith}{\mbox{\isa{arith}}}} & : & \isa{attribute} \\
wenzelm@28788
   835
    \indexdef{HOL}{attribute}{arith\_split}\hypertarget{attribute.HOL.arith-split}{\hyperlink{attribute.HOL.arith-split}{\mbox{\isa{arith{\isacharunderscore}split}}}} & : & \isa{attribute} \\
wenzelm@26849
   836
  \end{matharray}
wenzelm@26849
   837
wenzelm@26902
   838
  The \hyperlink{method.HOL.arith}{\mbox{\isa{arith}}} method decides linear arithmetic problems
wenzelm@26849
   839
  (on types \isa{nat}, \isa{int}, \isa{real}).  Any current
wenzelm@26849
   840
  facts are inserted into the goal before running the procedure.
wenzelm@26849
   841
nipkow@30863
   842
  The \hyperlink{attribute.HOL.arith}{\mbox{\isa{arith}}} attribute declares facts that are
nipkow@30863
   843
  always supplied to the arithmetic provers implicitly.
nipkow@30863
   844
wenzelm@26907
   845
  The \hyperlink{attribute.HOL.arith-split}{\mbox{\isa{arith{\isacharunderscore}split}}} attribute declares case split
wenzelm@30865
   846
  rules to be expanded before \hyperlink{method.HOL.arith}{\mbox{\isa{arith}}} is invoked.
wenzelm@26849
   847
nipkow@30863
   848
  Note that a simpler (but faster) arithmetic prover is
nipkow@30863
   849
  already invoked by the Simplifier.%
wenzelm@26849
   850
\end{isamarkuptext}%
wenzelm@26849
   851
\isamarkuptrue%
wenzelm@26849
   852
%
wenzelm@30172
   853
\isamarkupsection{Intuitionistic proof search%
wenzelm@30172
   854
}
wenzelm@30172
   855
\isamarkuptrue%
wenzelm@30172
   856
%
wenzelm@30172
   857
\begin{isamarkuptext}%
wenzelm@30172
   858
\begin{matharray}{rcl}
wenzelm@30172
   859
    \indexdef{HOL}{method}{iprover}\hypertarget{method.HOL.iprover}{\hyperlink{method.HOL.iprover}{\mbox{\isa{iprover}}}} & : & \isa{method} \\
wenzelm@30172
   860
  \end{matharray}
wenzelm@30172
   861
wenzelm@30172
   862
  \begin{rail}
wenzelm@35613
   863
    'iprover' ( rulemod * )
wenzelm@30172
   864
    ;
wenzelm@30172
   865
  \end{rail}
wenzelm@30172
   866
wenzelm@30172
   867
  The \hyperlink{method.HOL.iprover}{\mbox{\isa{iprover}}} method performs intuitionistic proof
wenzelm@30172
   868
  search, depending on specifically declared rules from the context,
wenzelm@30172
   869
  or given as explicit arguments.  Chained facts are inserted into the
wenzelm@35613
   870
  goal before commencing proof search.
wenzelm@35613
   871
wenzelm@30172
   872
  Rules need to be classified as \hyperlink{attribute.Pure.intro}{\mbox{\isa{intro}}},
wenzelm@30172
   873
  \hyperlink{attribute.Pure.elim}{\mbox{\isa{elim}}}, or \hyperlink{attribute.Pure.dest}{\mbox{\isa{dest}}}; here the
wenzelm@30172
   874
  ``\isa{{\isachardoublequote}{\isacharbang}{\isachardoublequote}}'' indicator refers to ``safe'' rules, which may be
wenzelm@30172
   875
  applied aggressively (without considering back-tracking later).
wenzelm@30172
   876
  Rules declared with ``\isa{{\isachardoublequote}{\isacharquery}{\isachardoublequote}}'' are ignored in proof search (the
wenzelm@30172
   877
  single-step \hyperlink{method.rule}{\mbox{\isa{rule}}} method still observes these).  An
wenzelm@30172
   878
  explicit weight annotation may be given as well; otherwise the
wenzelm@30172
   879
  number of rule premises will be taken into account here.%
wenzelm@30172
   880
\end{isamarkuptext}%
wenzelm@30172
   881
\isamarkuptrue%
wenzelm@30172
   882
%
wenzelm@30172
   883
\isamarkupsection{Coherent Logic%
wenzelm@30172
   884
}
wenzelm@30172
   885
\isamarkuptrue%
wenzelm@30172
   886
%
wenzelm@30172
   887
\begin{isamarkuptext}%
wenzelm@30172
   888
\begin{matharray}{rcl}
wenzelm@30172
   889
    \indexdef{HOL}{method}{coherent}\hypertarget{method.HOL.coherent}{\hyperlink{method.HOL.coherent}{\mbox{\isa{coherent}}}} & : & \isa{method} \\
wenzelm@30172
   890
  \end{matharray}
wenzelm@30172
   891
wenzelm@30172
   892
  \begin{rail}
wenzelm@30172
   893
    'coherent' thmrefs?
wenzelm@30172
   894
    ;
wenzelm@30172
   895
  \end{rail}
wenzelm@30172
   896
wenzelm@30172
   897
  The \hyperlink{method.HOL.coherent}{\mbox{\isa{coherent}}} method solves problems of
wenzelm@30172
   898
  \emph{Coherent Logic} \cite{Bezem-Coquand:2005}, which covers
wenzelm@30172
   899
  applications in confluence theory, lattice theory and projective
wenzelm@30172
   900
  geometry.  See \hyperlink{file.~~/src/HOL/ex/Coherent.thy}{\mbox{\isa{\isatt{{\isachartilde}{\isachartilde}{\isacharslash}src{\isacharslash}HOL{\isacharslash}ex{\isacharslash}Coherent{\isachardot}thy}}}} for some
wenzelm@30172
   901
  examples.%
wenzelm@30172
   902
\end{isamarkuptext}%
wenzelm@30172
   903
\isamarkuptrue%
wenzelm@30172
   904
%
haftmann@31907
   905
\isamarkupsection{Checking and refuting propositions%
haftmann@31907
   906
}
haftmann@31907
   907
\isamarkuptrue%
haftmann@31907
   908
%
haftmann@31907
   909
\begin{isamarkuptext}%
haftmann@31907
   910
Identifying incorrect propositions usually involves evaluation of
haftmann@31907
   911
  particular assignments and systematic counter example search.  This
haftmann@31907
   912
  is supported by the following commands.
haftmann@31907
   913
haftmann@31907
   914
  \begin{matharray}{rcl}
haftmann@31907
   915
    \indexdef{HOL}{command}{value}\hypertarget{command.HOL.value}{\hyperlink{command.HOL.value}{\mbox{\isa{\isacommand{value}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isa{{\isachardoublequote}context\ {\isasymrightarrow}{\isachardoublequote}} \\
haftmann@31907
   916
    \indexdef{HOL}{command}{quickcheck}\hypertarget{command.HOL.quickcheck}{\hyperlink{command.HOL.quickcheck}{\mbox{\isa{\isacommand{quickcheck}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isa{{\isachardoublequote}proof\ {\isasymrightarrow}{\isachardoublequote}} \\
haftmann@31907
   917
    \indexdef{HOL}{command}{quickcheck\_params}\hypertarget{command.HOL.quickcheck-params}{\hyperlink{command.HOL.quickcheck-params}{\mbox{\isa{\isacommand{quickcheck{\isacharunderscore}params}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}}
haftmann@31907
   918
  \end{matharray}
haftmann@31907
   919
haftmann@31907
   920
  \begin{rail}
haftmann@31907
   921
    'value' ( ( '[' name ']' ) ? ) modes? term
haftmann@31907
   922
    ;
haftmann@31907
   923
haftmann@31907
   924
    'quickcheck' ( ( '[' args ']' ) ? ) nat?
haftmann@31907
   925
    ;
haftmann@31907
   926
haftmann@31907
   927
    'quickcheck_params' ( ( '[' args ']' ) ? )
haftmann@31907
   928
    ;
haftmann@31907
   929
haftmann@31907
   930
    modes: '(' (name + ) ')'
haftmann@31907
   931
    ;
haftmann@31907
   932
haftmann@31907
   933
    args: ( name '=' value + ',' )
haftmann@31907
   934
    ;
haftmann@31907
   935
  \end{rail}
haftmann@31907
   936
haftmann@31907
   937
  \begin{description}
haftmann@31907
   938
haftmann@31907
   939
  \item \hyperlink{command.HOL.value}{\mbox{\isa{\isacommand{value}}}}~\isa{t} evaluates and prints a
haftmann@31907
   940
    term; optionally \isa{modes} can be specified, which are
haftmann@31907
   941
    appended to the current print mode (see also \cite{isabelle-ref}).
haftmann@31907
   942
    Internally, the evaluation is performed by registered evaluators,
haftmann@31907
   943
    which are invoked sequentially until a result is returned.
haftmann@31907
   944
    Alternatively a specific evaluator can be selected using square
haftmann@37419
   945
    brackets; typical evaluators use the current set of code equations
haftmann@37419
   946
    to normalize and include \isa{simp} for fully symbolic evaluation
haftmann@37419
   947
    using the simplifier, \isa{nbe} for \emph{normalization by evaluation}
haftmann@37419
   948
    and \emph{code} for code generation in SML.
haftmann@31907
   949
haftmann@31907
   950
  \item \hyperlink{command.HOL.quickcheck}{\mbox{\isa{\isacommand{quickcheck}}}} tests the current goal for
haftmann@31907
   951
    counter examples using a series of arbitrary assignments for its
haftmann@31907
   952
    free variables; by default the first subgoal is tested, an other
haftmann@31907
   953
    can be selected explicitly using an optional goal index.
haftmann@31907
   954
    A number of configuration options are supported for
haftmann@31907
   955
    \hyperlink{command.HOL.quickcheck}{\mbox{\isa{\isacommand{quickcheck}}}}, notably:
haftmann@31907
   956
haftmann@31907
   957
    \begin{description}
haftmann@31907
   958
wenzelm@40515
   959
    \item[\isa{size}] specifies the maximum size of the search space
wenzelm@40515
   960
    for assignment values.
haftmann@31907
   961
wenzelm@40515
   962
    \item[\isa{iterations}] sets how many sets of assignments are
wenzelm@40515
   963
    generated for each particular size.
haftmann@31907
   964
wenzelm@40515
   965
    \item[\isa{no{\isacharunderscore}assms}] specifies whether assumptions in
wenzelm@40515
   966
    structured proofs should be ignored.
wenzelm@40515
   967
wenzelm@40515
   968
    \item[\isa{timeout}] sets the time limit in seconds.
wenzelm@40515
   969
wenzelm@40515
   970
    \item[\isa{default{\isacharunderscore}type}] sets the type(s) generally used to
wenzelm@40515
   971
    instantiate type variables.
wenzelm@40515
   972
wenzelm@40515
   973
    \item[\isa{report}] if set quickcheck reports how many tests
wenzelm@40515
   974
    fulfilled the preconditions.
wenzelm@40515
   975
wenzelm@40515
   976
    \item[\isa{quiet}] if not set quickcheck informs about the
wenzelm@40515
   977
    current size for assignment values.
wenzelm@40515
   978
wenzelm@40515
   979
    \item[\isa{expect}] can be used to check if the user's
wenzelm@40515
   980
    expectation was met (\isa{no{\isacharunderscore}expectation}, \isa{no{\isacharunderscore}counterexample}, or \isa{counterexample}).
wenzelm@35352
   981
haftmann@31907
   982
    \end{description}
haftmann@31907
   983
haftmann@31907
   984
    These option can be given within square brackets.
haftmann@31907
   985
haftmann@31907
   986
  \item \hyperlink{command.HOL.quickcheck-params}{\mbox{\isa{\isacommand{quickcheck{\isacharunderscore}params}}}} changes quickcheck
haftmann@31907
   987
    configuration options persitently.
haftmann@31907
   988
haftmann@31907
   989
  \end{description}%
haftmann@31907
   990
\end{isamarkuptext}%
haftmann@31907
   991
\isamarkuptrue%
haftmann@31907
   992
%
wenzelm@28788
   993
\isamarkupsection{Unstructured case analysis and induction \label{sec:hol-induct-tac}%
wenzelm@26849
   994
}
wenzelm@26849
   995
\isamarkuptrue%
wenzelm@26849
   996
%
wenzelm@26849
   997
\begin{isamarkuptext}%
wenzelm@27124
   998
The following tools of Isabelle/HOL support cases analysis and
wenzelm@27124
   999
  induction in unstructured tactic scripts; see also
wenzelm@27124
  1000
  \secref{sec:cases-induct} for proper Isar versions of similar ideas.
wenzelm@26849
  1001
wenzelm@26849
  1002
  \begin{matharray}{rcl}
wenzelm@28788
  1003
    \indexdef{HOL}{method}{case\_tac}\hypertarget{method.HOL.case-tac}{\hyperlink{method.HOL.case-tac}{\mbox{\isa{case{\isacharunderscore}tac}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isa{method} \\
wenzelm@28788
  1004
    \indexdef{HOL}{method}{induct\_tac}\hypertarget{method.HOL.induct-tac}{\hyperlink{method.HOL.induct-tac}{\mbox{\isa{induct{\isacharunderscore}tac}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isa{method} \\
wenzelm@28788
  1005
    \indexdef{HOL}{method}{ind\_cases}\hypertarget{method.HOL.ind-cases}{\hyperlink{method.HOL.ind-cases}{\mbox{\isa{ind{\isacharunderscore}cases}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isa{method} \\
wenzelm@28788
  1006
    \indexdef{HOL}{command}{inductive\_cases}\hypertarget{command.HOL.inductive-cases}{\hyperlink{command.HOL.inductive-cases}{\mbox{\isa{\isacommand{inductive{\isacharunderscore}cases}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isa{{\isachardoublequote}local{\isacharunderscore}theory\ {\isasymrightarrow}\ local{\isacharunderscore}theory{\isachardoublequote}} \\
wenzelm@26849
  1007
  \end{matharray}
wenzelm@26849
  1008
wenzelm@26849
  1009
  \begin{rail}
wenzelm@40516
  1010
    'case_tac' goalspec? term rule?
wenzelm@26849
  1011
    ;
wenzelm@40516
  1012
    'induct_tac' goalspec? (insts * 'and') rule?
wenzelm@26849
  1013
    ;
wenzelm@40516
  1014
    'ind_cases' (prop +) ('for' (name +)) ?
wenzelm@26849
  1015
    ;
wenzelm@40516
  1016
    'inductive_cases' (thmdecl? (prop +) + 'and')
wenzelm@26849
  1017
    ;
wenzelm@26849
  1018
wenzelm@26849
  1019
    rule: ('rule' ':' thmref)
wenzelm@26849
  1020
    ;
wenzelm@26849
  1021
  \end{rail}
wenzelm@26849
  1022
wenzelm@28788
  1023
  \begin{description}
wenzelm@26849
  1024
wenzelm@28788
  1025
  \item \hyperlink{method.HOL.case-tac}{\mbox{\isa{case{\isacharunderscore}tac}}} and \hyperlink{method.HOL.induct-tac}{\mbox{\isa{induct{\isacharunderscore}tac}}} admit
wenzelm@28788
  1026
  to reason about inductive types.  Rules are selected according to
wenzelm@28788
  1027
  the declarations by the \hyperlink{attribute.cases}{\mbox{\isa{cases}}} and \hyperlink{attribute.induct}{\mbox{\isa{induct}}}
wenzelm@28788
  1028
  attributes, cf.\ \secref{sec:cases-induct}.  The \hyperlink{command.HOL.datatype}{\mbox{\isa{\isacommand{datatype}}}} package already takes care of this.
wenzelm@27124
  1029
wenzelm@27124
  1030
  These unstructured tactics feature both goal addressing and dynamic
wenzelm@26849
  1031
  instantiation.  Note that named rule cases are \emph{not} provided
wenzelm@27124
  1032
  as would be by the proper \hyperlink{method.cases}{\mbox{\isa{cases}}} and \hyperlink{method.induct}{\mbox{\isa{induct}}} proof
wenzelm@27124
  1033
  methods (see \secref{sec:cases-induct}).  Unlike the \hyperlink{method.induct}{\mbox{\isa{induct}}} method, \hyperlink{method.induct-tac}{\mbox{\isa{induct{\isacharunderscore}tac}}} does not handle structured rule
wenzelm@27124
  1034
  statements, only the compact object-logic conclusion of the subgoal
wenzelm@27124
  1035
  being addressed.
wenzelm@26849
  1036
  
wenzelm@28788
  1037
  \item \hyperlink{method.HOL.ind-cases}{\mbox{\isa{ind{\isacharunderscore}cases}}} and \hyperlink{command.HOL.inductive-cases}{\mbox{\isa{\isacommand{inductive{\isacharunderscore}cases}}}} provide an interface to the internal \verb|mk_cases| operation.  Rules are simplified in an unrestricted
wenzelm@26861
  1038
  forward manner.
wenzelm@26849
  1039
wenzelm@26907
  1040
  While \hyperlink{method.HOL.ind-cases}{\mbox{\isa{ind{\isacharunderscore}cases}}} is a proof method to apply the
wenzelm@26907
  1041
  result immediately as elimination rules, \hyperlink{command.HOL.inductive-cases}{\mbox{\isa{\isacommand{inductive{\isacharunderscore}cases}}}} provides case split theorems at the theory level
wenzelm@26907
  1042
  for later use.  The \hyperlink{keyword.for}{\mbox{\isa{\isakeyword{for}}}} argument of the \hyperlink{method.HOL.ind-cases}{\mbox{\isa{ind{\isacharunderscore}cases}}} method allows to specify a list of variables that should
wenzelm@26849
  1043
  be generalized before applying the resulting rule.
wenzelm@26849
  1044
wenzelm@28788
  1045
  \end{description}%
wenzelm@26849
  1046
\end{isamarkuptext}%
wenzelm@26849
  1047
\isamarkuptrue%
wenzelm@26849
  1048
%
wenzelm@26849
  1049
\isamarkupsection{Executable code%
wenzelm@26849
  1050
}
wenzelm@26849
  1051
\isamarkuptrue%
wenzelm@26849
  1052
%
wenzelm@26849
  1053
\begin{isamarkuptext}%
wenzelm@26849
  1054
Isabelle/Pure provides two generic frameworks to support code
wenzelm@26849
  1055
  generation from executable specifications.  Isabelle/HOL
wenzelm@26849
  1056
  instantiates these mechanisms in a way that is amenable to end-user
wenzelm@26849
  1057
  applications.
wenzelm@26849
  1058
haftmann@37397
  1059
  \medskip One framework generates code from functional programs
haftmann@37397
  1060
  (including overloading using type classes) to SML \cite{SML}, OCaml
haftmann@39048
  1061
  \cite{OCaml}, Haskell \cite{haskell-revised-report} and Scala
haftmann@39048
  1062
  \cite{scala-overview-tech-report}.
haftmann@37397
  1063
  Conceptually, code generation is split up in three steps:
haftmann@37397
  1064
  \emph{selection} of code theorems, \emph{translation} into an
haftmann@37397
  1065
  abstract executable view and \emph{serialization} to a specific
haftmann@37397
  1066
  \emph{target language}.  Inductive specifications can be executed
haftmann@37397
  1067
  using the predicate compiler which operates within HOL.
haftmann@37397
  1068
  See \cite{isabelle-codegen} for an introduction.
haftmann@37397
  1069
haftmann@37397
  1070
  \begin{matharray}{rcl}
haftmann@37397
  1071
    \indexdef{HOL}{command}{export\_code}\hypertarget{command.HOL.export-code}{\hyperlink{command.HOL.export-code}{\mbox{\isa{\isacommand{export{\isacharunderscore}code}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isa{{\isachardoublequote}context\ {\isasymrightarrow}{\isachardoublequote}} \\
haftmann@37397
  1072
    \indexdef{HOL}{attribute}{code}\hypertarget{attribute.HOL.code}{\hyperlink{attribute.HOL.code}{\mbox{\isa{code}}}} & : & \isa{attribute} \\
haftmann@37397
  1073
    \indexdef{HOL}{command}{code\_abort}\hypertarget{command.HOL.code-abort}{\hyperlink{command.HOL.code-abort}{\mbox{\isa{\isacommand{code{\isacharunderscore}abort}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
haftmann@37397
  1074
    \indexdef{HOL}{command}{code\_datatype}\hypertarget{command.HOL.code-datatype}{\hyperlink{command.HOL.code-datatype}{\mbox{\isa{\isacommand{code{\isacharunderscore}datatype}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
haftmann@37397
  1075
    \indexdef{HOL}{command}{print\_codesetup}\hypertarget{command.HOL.print-codesetup}{\hyperlink{command.HOL.print-codesetup}{\mbox{\isa{\isacommand{print{\isacharunderscore}codesetup}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isa{{\isachardoublequote}context\ {\isasymrightarrow}{\isachardoublequote}} \\
haftmann@37397
  1076
    \indexdef{HOL}{attribute}{code\_inline}\hypertarget{attribute.HOL.code-inline}{\hyperlink{attribute.HOL.code-inline}{\mbox{\isa{code{\isacharunderscore}inline}}}} & : & \isa{attribute} \\
haftmann@37397
  1077
    \indexdef{HOL}{attribute}{code\_post}\hypertarget{attribute.HOL.code-post}{\hyperlink{attribute.HOL.code-post}{\mbox{\isa{code{\isacharunderscore}post}}}} & : & \isa{attribute} \\
haftmann@37397
  1078
    \indexdef{HOL}{command}{print\_codeproc}\hypertarget{command.HOL.print-codeproc}{\hyperlink{command.HOL.print-codeproc}{\mbox{\isa{\isacommand{print{\isacharunderscore}codeproc}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isa{{\isachardoublequote}context\ {\isasymrightarrow}{\isachardoublequote}} \\
haftmann@37397
  1079
    \indexdef{HOL}{command}{code\_thms}\hypertarget{command.HOL.code-thms}{\hyperlink{command.HOL.code-thms}{\mbox{\isa{\isacommand{code{\isacharunderscore}thms}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isa{{\isachardoublequote}context\ {\isasymrightarrow}{\isachardoublequote}} \\
haftmann@37397
  1080
    \indexdef{HOL}{command}{code\_deps}\hypertarget{command.HOL.code-deps}{\hyperlink{command.HOL.code-deps}{\mbox{\isa{\isacommand{code{\isacharunderscore}deps}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isa{{\isachardoublequote}context\ {\isasymrightarrow}{\isachardoublequote}} \\
haftmann@37397
  1081
    \indexdef{HOL}{command}{code\_const}\hypertarget{command.HOL.code-const}{\hyperlink{command.HOL.code-const}{\mbox{\isa{\isacommand{code{\isacharunderscore}const}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
haftmann@37397
  1082
    \indexdef{HOL}{command}{code\_type}\hypertarget{command.HOL.code-type}{\hyperlink{command.HOL.code-type}{\mbox{\isa{\isacommand{code{\isacharunderscore}type}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
haftmann@37397
  1083
    \indexdef{HOL}{command}{code\_class}\hypertarget{command.HOL.code-class}{\hyperlink{command.HOL.code-class}{\mbox{\isa{\isacommand{code{\isacharunderscore}class}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
haftmann@37397
  1084
    \indexdef{HOL}{command}{code\_instance}\hypertarget{command.HOL.code-instance}{\hyperlink{command.HOL.code-instance}{\mbox{\isa{\isacommand{code{\isacharunderscore}instance}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
haftmann@37397
  1085
    \indexdef{HOL}{command}{code\_reserved}\hypertarget{command.HOL.code-reserved}{\hyperlink{command.HOL.code-reserved}{\mbox{\isa{\isacommand{code{\isacharunderscore}reserved}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
haftmann@37397
  1086
    \indexdef{HOL}{command}{code\_monad}\hypertarget{command.HOL.code-monad}{\hyperlink{command.HOL.code-monad}{\mbox{\isa{\isacommand{code{\isacharunderscore}monad}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
haftmann@37397
  1087
    \indexdef{HOL}{command}{code\_include}\hypertarget{command.HOL.code-include}{\hyperlink{command.HOL.code-include}{\mbox{\isa{\isacommand{code{\isacharunderscore}include}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
haftmann@37397
  1088
    \indexdef{HOL}{command}{code\_modulename}\hypertarget{command.HOL.code-modulename}{\hyperlink{command.HOL.code-modulename}{\mbox{\isa{\isacommand{code{\isacharunderscore}modulename}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
haftmann@39832
  1089
    \indexdef{HOL}{command}{code\_reflect}\hypertarget{command.HOL.code-reflect}{\hyperlink{command.HOL.code-reflect}{\mbox{\isa{\isacommand{code{\isacharunderscore}reflect}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}}
haftmann@37397
  1090
  \end{matharray}
haftmann@37397
  1091
haftmann@37397
  1092
  \begin{rail}
wenzelm@40516
  1093
     'export_code' ( constexpr + ) \\
wenzelm@40516
  1094
       ( ( 'in' target ( 'module_name' string ) ? \\
haftmann@37820
  1095
        ( 'file' ( string | '-' ) ) ? ( '(' args ')' ) ?) + ) ?
haftmann@37397
  1096
    ;
haftmann@37397
  1097
haftmann@37397
  1098
    const: term
haftmann@37397
  1099
    ;
haftmann@37397
  1100
haftmann@37397
  1101
    constexpr: ( const | 'name.*' | '*' )
haftmann@37397
  1102
    ;
haftmann@37397
  1103
haftmann@37397
  1104
    typeconstructor: nameref
haftmann@37397
  1105
    ;
haftmann@37397
  1106
haftmann@37397
  1107
    class: nameref
haftmann@37397
  1108
    ;
haftmann@37397
  1109
haftmann@39048
  1110
    target: 'SML' | 'OCaml' | 'Haskell' | 'Scala'
haftmann@37397
  1111
    ;
haftmann@37397
  1112
haftmann@38706
  1113
    'code' ( 'del' | 'abstype' | 'abstract' ) ?
haftmann@37397
  1114
    ;
haftmann@37397
  1115
wenzelm@40516
  1116
    'code_abort' ( const + )
haftmann@37397
  1117
    ;
haftmann@37397
  1118
wenzelm@40516
  1119
    'code_datatype' ( const + )
haftmann@37397
  1120
    ;
haftmann@37397
  1121
haftmann@37397
  1122
    'code_inline' ( 'del' ) ?
haftmann@37397
  1123
    ;
haftmann@37397
  1124
haftmann@37397
  1125
    'code_post' ( 'del' ) ?
haftmann@37397
  1126
    ;
haftmann@37397
  1127
wenzelm@40516
  1128
    'code_thms' ( constexpr + ) ?
haftmann@37397
  1129
    ;
haftmann@37397
  1130
wenzelm@40516
  1131
    'code_deps' ( constexpr + ) ?
haftmann@37397
  1132
    ;
haftmann@37397
  1133
wenzelm@40516
  1134
    'code_const' (const + 'and') \\
haftmann@37397
  1135
      ( ( '(' target ( syntax ? + 'and' ) ')' ) + )
haftmann@37397
  1136
    ;
haftmann@37397
  1137
wenzelm@40516
  1138
    'code_type' (typeconstructor + 'and') \\
haftmann@37397
  1139
      ( ( '(' target ( syntax ? + 'and' ) ')' ) + )
haftmann@37397
  1140
    ;
haftmann@37397
  1141
wenzelm@40516
  1142
    'code_class' (class + 'and') \\
haftmann@37397
  1143
      ( ( '(' target \\ ( string ? + 'and' ) ')' ) + )
haftmann@37397
  1144
    ;
haftmann@37397
  1145
wenzelm@40516
  1146
    'code_instance' (( typeconstructor '::' class ) + 'and') \\
haftmann@37397
  1147
      ( ( '(' target ( '-' ? + 'and' ) ')' ) + )
haftmann@37397
  1148
    ;
haftmann@37397
  1149
wenzelm@40516
  1150
    'code_reserved' target ( string + )
haftmann@37397
  1151
    ;
haftmann@37397
  1152
wenzelm@40516
  1153
    'code_monad' const const target
haftmann@37397
  1154
    ;
haftmann@37397
  1155
wenzelm@40516
  1156
    'code_include' target ( string ( string | '-') )
haftmann@37397
  1157
    ;
haftmann@37397
  1158
wenzelm@40516
  1159
    'code_modulename' target ( ( string string ) + )
haftmann@37397
  1160
    ;
haftmann@37397
  1161
wenzelm@40516
  1162
    'code_reflect' string ( 'datatypes' ( string '=' ( string + '|' ) + 'and' ) ) ? \\
haftmann@39832
  1163
      ( 'functions' ( string + ) ) ? ( 'file' string ) ?
haftmann@39832
  1164
    ;
haftmann@39832
  1165
haftmann@37397
  1166
    syntax: string | ( 'infix' | 'infixl' | 'infixr' ) nat string
haftmann@37397
  1167
    ;
haftmann@37397
  1168
haftmann@37397
  1169
  \end{rail}
haftmann@37397
  1170
haftmann@37397
  1171
  \begin{description}
haftmann@37397
  1172
haftmann@37397
  1173
  \item \hyperlink{command.HOL.export-code}{\mbox{\isa{\isacommand{export{\isacharunderscore}code}}}} generates code for a given list
haftmann@39832
  1174
  of constants in the specified target language(s).  If no
haftmann@39832
  1175
  serialization instruction is given, only abstract code is generated
haftmann@39832
  1176
  internally.
haftmann@37397
  1177
haftmann@37397
  1178
  Constants may be specified by giving them literally, referring to
haftmann@37397
  1179
  all executable contants within a certain theory by giving \isa{{\isachardoublequote}name{\isachardot}{\isacharasterisk}{\isachardoublequote}}, or referring to \emph{all} executable constants currently
haftmann@37397
  1180
  available by giving \isa{{\isachardoublequote}{\isacharasterisk}{\isachardoublequote}}.
haftmann@37397
  1181
haftmann@37397
  1182
  By default, for each involved theory one corresponding name space
haftmann@37397
  1183
  module is generated.  Alternativly, a module name may be specified
haftmann@37397
  1184
  after the \hyperlink{keyword.module-name}{\mbox{\isa{\isakeyword{module{\isacharunderscore}name}}}} keyword; then \emph{all} code is
haftmann@37397
  1185
  placed in this module.
haftmann@37397
  1186
haftmann@39832
  1187
  For \emph{SML}, \emph{OCaml} and \emph{Scala} the file specification
haftmann@39832
  1188
  refers to a single file; for \emph{Haskell}, it refers to a whole
haftmann@39832
  1189
  directory, where code is generated in multiple files reflecting the
haftmann@39832
  1190
  module hierarchy.  Omitting the file specification denotes standard
haftmann@37748
  1191
  output.
haftmann@37397
  1192
haftmann@37397
  1193
  Serializers take an optional list of arguments in parentheses.  For
haftmann@37397
  1194
  \emph{SML} and \emph{OCaml}, ``\isa{no{\isacharunderscore}signatures}`` omits
haftmann@37397
  1195
  explicit module signatures.
haftmann@37397
  1196
  
haftmann@39832
  1197
  For \emph{Haskell} a module name prefix may be given using the
haftmann@39832
  1198
  ``\isa{{\isachardoublequote}root{\isacharcolon}{\isachardoublequote}}'' argument; ``\isa{string{\isacharunderscore}classes}'' adds a
haftmann@39832
  1199
  ``\verb|deriving (Read, Show)|'' clause to each appropriate
haftmann@39832
  1200
  datatype declaration.
haftmann@37397
  1201
haftmann@37397
  1202
  \item \hyperlink{attribute.HOL.code}{\mbox{\isa{code}}} explicitly selects (or with option
haftmann@38706
  1203
  ``\isa{{\isachardoublequote}del{\isachardoublequote}}'' deselects) a code equation for code generation.
haftmann@38706
  1204
  Usually packages introducing code equations provide a reasonable
haftmann@38706
  1205
  default setup for selection.  Variants \isa{{\isachardoublequote}code\ abstype{\isachardoublequote}} and
haftmann@38706
  1206
  \isa{{\isachardoublequote}code\ abstract{\isachardoublequote}} declare abstract datatype certificates or
haftmann@38706
  1207
  code equations on abstract datatype representations respectively.
haftmann@37397
  1208
haftmann@37397
  1209
  \item \hyperlink{command.HOL.code-abort}{\mbox{\isa{\isacommand{code{\isacharunderscore}abort}}}} declares constants which are not
haftmann@39832
  1210
  required to have a definition by means of code equations; if needed
haftmann@39832
  1211
  these are implemented by program abort instead.
haftmann@37397
  1212
haftmann@37397
  1213
  \item \hyperlink{command.HOL.code-datatype}{\mbox{\isa{\isacommand{code{\isacharunderscore}datatype}}}} specifies a constructor set
haftmann@37397
  1214
  for a logical type.
haftmann@37397
  1215
haftmann@37397
  1216
  \item \hyperlink{command.HOL.print-codesetup}{\mbox{\isa{\isacommand{print{\isacharunderscore}codesetup}}}} gives an overview on
haftmann@37397
  1217
  selected code equations and code generator datatypes.
haftmann@37397
  1218
haftmann@39832
  1219
  \item \hyperlink{attribute.HOL.code-inline}{\mbox{\isa{code{\isacharunderscore}inline}}} declares (or with option
haftmann@39832
  1220
  ``\isa{{\isachardoublequote}del{\isachardoublequote}}'' removes) inlining theorems which are applied as
haftmann@39832
  1221
  rewrite rules to any code equation during preprocessing.
haftmann@37397
  1222
haftmann@39832
  1223
  \item \hyperlink{attribute.HOL.code-post}{\mbox{\isa{code{\isacharunderscore}post}}} declares (or with option ``\isa{{\isachardoublequote}del{\isachardoublequote}}'' removes) theorems which are applied as rewrite rules to any
haftmann@39832
  1224
  result of an evaluation.
haftmann@37397
  1225
haftmann@39832
  1226
  \item \hyperlink{command.HOL.print-codeproc}{\mbox{\isa{\isacommand{print{\isacharunderscore}codeproc}}}} prints the setup of the code
haftmann@39832
  1227
  generator preprocessor.
haftmann@37397
  1228
haftmann@37397
  1229
  \item \hyperlink{command.HOL.code-thms}{\mbox{\isa{\isacommand{code{\isacharunderscore}thms}}}} prints a list of theorems
haftmann@37397
  1230
  representing the corresponding program containing all given
haftmann@37397
  1231
  constants after preprocessing.
haftmann@37397
  1232
haftmann@37397
  1233
  \item \hyperlink{command.HOL.code-deps}{\mbox{\isa{\isacommand{code{\isacharunderscore}deps}}}} visualizes dependencies of
haftmann@37397
  1234
  theorems representing the corresponding program containing all given
haftmann@37397
  1235
  constants after preprocessing.
haftmann@37397
  1236
haftmann@37397
  1237
  \item \hyperlink{command.HOL.code-const}{\mbox{\isa{\isacommand{code{\isacharunderscore}const}}}} associates a list of constants
haftmann@37397
  1238
  with target-specific serializations; omitting a serialization
haftmann@37397
  1239
  deletes an existing serialization.
haftmann@37397
  1240
haftmann@37397
  1241
  \item \hyperlink{command.HOL.code-type}{\mbox{\isa{\isacommand{code{\isacharunderscore}type}}}} associates a list of type
haftmann@37397
  1242
  constructors with target-specific serializations; omitting a
haftmann@37397
  1243
  serialization deletes an existing serialization.
haftmann@37397
  1244
haftmann@37397
  1245
  \item \hyperlink{command.HOL.code-class}{\mbox{\isa{\isacommand{code{\isacharunderscore}class}}}} associates a list of classes
haftmann@37397
  1246
  with target-specific class names; omitting a serialization deletes
haftmann@37397
  1247
  an existing serialization.  This applies only to \emph{Haskell}.
haftmann@37397
  1248
haftmann@37397
  1249
  \item \hyperlink{command.HOL.code-instance}{\mbox{\isa{\isacommand{code{\isacharunderscore}instance}}}} declares a list of type
haftmann@37397
  1250
  constructor / class instance relations as ``already present'' for a
haftmann@37397
  1251
  given target.  Omitting a ``\isa{{\isachardoublequote}{\isacharminus}{\isachardoublequote}}'' deletes an existing
haftmann@37397
  1252
  ``already present'' declaration.  This applies only to
haftmann@37397
  1253
  \emph{Haskell}.
haftmann@37397
  1254
haftmann@37397
  1255
  \item \hyperlink{command.HOL.code-reserved}{\mbox{\isa{\isacommand{code{\isacharunderscore}reserved}}}} declares a list of names as
haftmann@37397
  1256
  reserved for a given target, preventing it to be shadowed by any
haftmann@37397
  1257
  generated code.
haftmann@37397
  1258
haftmann@37397
  1259
  \item \hyperlink{command.HOL.code-monad}{\mbox{\isa{\isacommand{code{\isacharunderscore}monad}}}} provides an auxiliary mechanism
haftmann@37397
  1260
  to generate monadic code for Haskell.
haftmann@37397
  1261
haftmann@37397
  1262
  \item \hyperlink{command.HOL.code-include}{\mbox{\isa{\isacommand{code{\isacharunderscore}include}}}} adds arbitrary named content
haftmann@37397
  1263
  (``include'') to generated code.  A ``\isa{{\isachardoublequote}{\isacharminus}{\isachardoublequote}}'' as last argument
haftmann@37397
  1264
  will remove an already added ``include''.
haftmann@37397
  1265
haftmann@37397
  1266
  \item \hyperlink{command.HOL.code-modulename}{\mbox{\isa{\isacommand{code{\isacharunderscore}modulename}}}} declares aliasings from one
haftmann@37397
  1267
  module name onto another.
haftmann@37397
  1268
haftmann@39832
  1269
  \item \hyperlink{command.HOL.code-reflect}{\mbox{\isa{\isacommand{code{\isacharunderscore}reflect}}}} without a ``\isa{{\isachardoublequote}file{\isachardoublequote}}''
haftmann@39832
  1270
  argument compiles code into the system runtime environment and
haftmann@39832
  1271
  modifies the code generator setup that future invocations of system
haftmann@39832
  1272
  runtime code generation referring to one of the ``\isa{{\isachardoublequote}datatypes{\isachardoublequote}}'' or ``\isa{{\isachardoublequote}functions{\isachardoublequote}}'' entities use these precompiled
haftmann@39832
  1273
  entities.  With a ``\isa{{\isachardoublequote}file{\isachardoublequote}}'' argument, the corresponding code
haftmann@39832
  1274
  is generated into that specified file without modifying the code
haftmann@39832
  1275
  generator setup.
haftmann@39832
  1276
haftmann@37397
  1277
  \end{description}
haftmann@37397
  1278
haftmann@39832
  1279
  The other framework generates code from both functional and
haftmann@39832
  1280
  relational programs to SML.  See \cite{isabelle-HOL} for further
haftmann@39832
  1281
  information (this actually covers the new-style theory format as
haftmann@39832
  1282
  well).
wenzelm@26849
  1283
wenzelm@26849
  1284
  \begin{matharray}{rcl}
wenzelm@28788
  1285
    \indexdef{HOL}{command}{code\_module}\hypertarget{command.HOL.code-module}{\hyperlink{command.HOL.code-module}{\mbox{\isa{\isacommand{code{\isacharunderscore}module}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
wenzelm@28788
  1286
    \indexdef{HOL}{command}{code\_library}\hypertarget{command.HOL.code-library}{\hyperlink{command.HOL.code-library}{\mbox{\isa{\isacommand{code{\isacharunderscore}library}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
wenzelm@28788
  1287
    \indexdef{HOL}{command}{consts\_code}\hypertarget{command.HOL.consts-code}{\hyperlink{command.HOL.consts-code}{\mbox{\isa{\isacommand{consts{\isacharunderscore}code}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\
wenzelm@28788
  1288
    \indexdef{HOL}{command}{types\_code}\hypertarget{command.HOL.types-code}{\hyperlink{command.HOL.types-code}{\mbox{\isa{\isacommand{types{\isacharunderscore}code}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ theory{\isachardoublequote}} \\  
wenzelm@28788
  1289
    \indexdef{HOL}{attribute}{code}\hypertarget{attribute.HOL.code}{\hyperlink{attribute.HOL.code}{\mbox{\isa{code}}}} & : & \isa{attribute} \\
wenzelm@26849
  1290
  \end{matharray}
wenzelm@26849
  1291
wenzelm@26849
  1292
  \begin{rail}
wenzelm@40516
  1293
  ( 'code_module' | 'code_library' ) modespec ? name ? \\
wenzelm@26849
  1294
    ( 'file' name ) ? ( 'imports' ( name + ) ) ? \\
wenzelm@26849
  1295
    'contains' ( ( name '=' term ) + | term + )
wenzelm@26849
  1296
  ;
wenzelm@26849
  1297
wenzelm@26849
  1298
  modespec: '(' ( name * ) ')'
wenzelm@26849
  1299
  ;
wenzelm@26849
  1300
wenzelm@40516
  1301
  'consts_code' (codespec +)
wenzelm@26849
  1302
  ;
wenzelm@26849
  1303
wenzelm@26849
  1304
  codespec: const template attachment ?
wenzelm@26849
  1305
  ;
wenzelm@26849
  1306
wenzelm@40516
  1307
  'types_code' (tycodespec +)
wenzelm@26849
  1308
  ;
wenzelm@26849
  1309
wenzelm@26849
  1310
  tycodespec: name template attachment ?
wenzelm@26849
  1311
  ;
wenzelm@26849
  1312
wenzelm@26849
  1313
  const: term
wenzelm@26849
  1314
  ;
wenzelm@26849
  1315
wenzelm@26849
  1316
  template: '(' string ')'
wenzelm@26849
  1317
  ;
wenzelm@26849
  1318
wenzelm@26849
  1319
  attachment: 'attach' modespec ? verblbrace text verbrbrace
wenzelm@26849
  1320
  ;
wenzelm@26849
  1321
wenzelm@26849
  1322
  'code' (name)?
wenzelm@26849
  1323
  ;
haftmann@37397
  1324
  \end{rail}%
wenzelm@26849
  1325
\end{isamarkuptext}%
wenzelm@26849
  1326
\isamarkuptrue%
wenzelm@26849
  1327
%
wenzelm@27047
  1328
\isamarkupsection{Definition by specification \label{sec:hol-specification}%
wenzelm@27047
  1329
}
wenzelm@27047
  1330
\isamarkuptrue%
wenzelm@27047
  1331
%
wenzelm@27047
  1332
\begin{isamarkuptext}%
wenzelm@27047
  1333
\begin{matharray}{rcl}
wenzelm@28788
  1334
    \indexdef{HOL}{command}{specification}\hypertarget{command.HOL.specification}{\hyperlink{command.HOL.specification}{\mbox{\isa{\isacommand{specification}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ proof{\isacharparenleft}prove{\isacharparenright}{\isachardoublequote}} \\
wenzelm@28788
  1335
    \indexdef{HOL}{command}{ax\_specification}\hypertarget{command.HOL.ax-specification}{\hyperlink{command.HOL.ax-specification}{\mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}}}} & : & \isa{{\isachardoublequote}theory\ {\isasymrightarrow}\ proof{\isacharparenleft}prove{\isacharparenright}{\isachardoublequote}} \\
wenzelm@27047
  1336
  \end{matharray}
wenzelm@27047
  1337
wenzelm@27047
  1338
  \begin{rail}
wenzelm@40516
  1339
  ('specification' | 'ax_specification') '(' (decl +) ')' \\ (thmdecl? prop +)
wenzelm@27047
  1340
  ;
wenzelm@27047
  1341
  decl: ((name ':')? term '(' 'overloaded' ')'?)
wenzelm@27047
  1342
  \end{rail}
wenzelm@27047
  1343
wenzelm@28788
  1344
  \begin{description}
wenzelm@27047
  1345
wenzelm@28788
  1346
  \item \hyperlink{command.HOL.specification}{\mbox{\isa{\isacommand{specification}}}}~\isa{{\isachardoublequote}decls\ {\isasymphi}{\isachardoublequote}} sets up a
wenzelm@27047
  1347
  goal stating the existence of terms with the properties specified to
wenzelm@27047
  1348
  hold for the constants given in \isa{decls}.  After finishing the
wenzelm@27047
  1349
  proof, the theory will be augmented with definitions for the given
wenzelm@27047
  1350
  constants, as well as with theorems stating the properties for these
wenzelm@27047
  1351
  constants.
wenzelm@27047
  1352
wenzelm@28788
  1353
  \item \hyperlink{command.HOL.ax-specification}{\mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}}}~\isa{{\isachardoublequote}decls\ {\isasymphi}{\isachardoublequote}} sets up
wenzelm@28788
  1354
  a goal stating the existence of terms with the properties specified
wenzelm@28788
  1355
  to hold for the constants given in \isa{decls}.  After finishing
wenzelm@28788
  1356
  the proof, the theory will be augmented with axioms expressing the
wenzelm@28788
  1357
  properties given in the first place.
wenzelm@27047
  1358
wenzelm@28788
  1359
  \item \isa{decl} declares a constant to be defined by the
wenzelm@27047
  1360
  specification given.  The definition for the constant \isa{c} is
wenzelm@27047
  1361
  bound to the name \isa{c{\isacharunderscore}def} unless a theorem name is given in
wenzelm@27047
  1362
  the declaration.  Overloaded constants should be declared as such.
wenzelm@27047
  1363
wenzelm@28788
  1364
  \end{description}
wenzelm@27047
  1365
wenzelm@27047
  1366
  Whether to use \hyperlink{command.HOL.specification}{\mbox{\isa{\isacommand{specification}}}} or \hyperlink{command.HOL.ax-specification}{\mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}}} is to some extent a matter of style.  \hyperlink{command.HOL.specification}{\mbox{\isa{\isacommand{specification}}}} introduces no new axioms, and so by
wenzelm@27047
  1367
  construction cannot introduce inconsistencies, whereas \hyperlink{command.HOL.ax-specification}{\mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}}} does introduce axioms, but only after the
wenzelm@27047
  1368
  user has explicitly proven it to be safe.  A practical issue must be
wenzelm@27047
  1369
  considered, though: After introducing two constants with the same
wenzelm@27047
  1370
  properties using \hyperlink{command.HOL.specification}{\mbox{\isa{\isacommand{specification}}}}, one can prove
wenzelm@27047
  1371
  that the two constants are, in fact, equal.  If this might be a
wenzelm@27047
  1372
  problem, one should use \hyperlink{command.HOL.ax-specification}{\mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}}}.%
wenzelm@27047
  1373
\end{isamarkuptext}%
wenzelm@27047
  1374
\isamarkuptrue%
wenzelm@27047
  1375
%
wenzelm@26849
  1376
\isadelimtheory
wenzelm@26849
  1377
%
wenzelm@26849
  1378
\endisadelimtheory
wenzelm@26849
  1379
%
wenzelm@26849
  1380
\isatagtheory
wenzelm@26840
  1381
\isacommand{end}\isamarkupfalse%
wenzelm@26840
  1382
%
wenzelm@26840
  1383
\endisatagtheory
wenzelm@26840
  1384
{\isafoldtheory}%
wenzelm@26840
  1385
%
wenzelm@26840
  1386
\isadelimtheory
wenzelm@26840
  1387
%
wenzelm@26840
  1388
\endisadelimtheory
wenzelm@26849
  1389
\isanewline
wenzelm@26840
  1390
\end{isabellebody}%
wenzelm@26840
  1391
%%% Local Variables:
wenzelm@26840
  1392
%%% mode: latex
wenzelm@26840
  1393
%%% TeX-master: "root"
wenzelm@26840
  1394
%%% End: