src/HOL/List.thy
author kleing
Wed, 14 Apr 2004 14:13:05 +0200
changeset 14565 c6dc17aab88a
parent 14538 1d9d75a8efae
child 14589 feae7b5fd425
permissions -rw-r--r--
use more symbols in HTML output
wenzelm@13462
     1
(*  Title:      HOL/List.thy
wenzelm@13462
     2
    ID:         $Id$
wenzelm@13462
     3
    Author:     Tobias Nipkow
wenzelm@13462
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
clasohm@923
     5
*)
clasohm@923
     6
wenzelm@13114
     7
header {* The datatype of finite lists *}
wenzelm@13122
     8
wenzelm@13122
     9
theory List = PreList:
clasohm@923
    10
wenzelm@13142
    11
datatype 'a list =
wenzelm@13366
    12
    Nil    ("[]")
wenzelm@13366
    13
  | Cons 'a  "'a list"    (infixr "#" 65)
clasohm@923
    14
clasohm@923
    15
consts
wenzelm@13366
    16
  "@" :: "'a list => 'a list => 'a list"    (infixr 65)
wenzelm@13366
    17
  filter:: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    18
  concat:: "'a list list => 'a list"
wenzelm@13366
    19
  foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
wenzelm@13366
    20
  foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
wenzelm@13366
    21
  hd:: "'a list => 'a"
wenzelm@13366
    22
  tl:: "'a list => 'a list"
wenzelm@13366
    23
  last:: "'a list => 'a"
wenzelm@13366
    24
  butlast :: "'a list => 'a list"
wenzelm@13366
    25
  set :: "'a list => 'a set"
wenzelm@13366
    26
  list_all:: "('a => bool) => ('a list => bool)"
wenzelm@13366
    27
  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool"
wenzelm@13366
    28
  map :: "('a=>'b) => ('a list => 'b list)"
wenzelm@13366
    29
  mem :: "'a => 'a list => bool"    (infixl 55)
wenzelm@13366
    30
  nth :: "'a list => nat => 'a"    (infixl "!" 100)
wenzelm@13366
    31
  list_update :: "'a list => nat => 'a => 'a list"
wenzelm@13366
    32
  take:: "nat => 'a list => 'a list"
wenzelm@13366
    33
  drop:: "nat => 'a list => 'a list"
wenzelm@13366
    34
  takeWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    35
  dropWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    36
  rev :: "'a list => 'a list"
wenzelm@13366
    37
  zip :: "'a list => 'b list => ('a * 'b) list"
wenzelm@13366
    38
  upt :: "nat => nat => nat list" ("(1[_../_'(])")
wenzelm@13366
    39
  remdups :: "'a list => 'a list"
wenzelm@13366
    40
  null:: "'a list => bool"
wenzelm@13366
    41
  "distinct":: "'a list => bool"
wenzelm@13366
    42
  replicate :: "nat => 'a => 'a list"
clasohm@923
    43
nipkow@13146
    44
nonterminals lupdbinds lupdbind
nipkow@5077
    45
clasohm@923
    46
syntax
wenzelm@13366
    47
  -- {* list Enumeration *}
wenzelm@13366
    48
  "@list" :: "args => 'a list"    ("[(_)]")
clasohm@923
    49
wenzelm@13366
    50
  -- {* Special syntax for filter *}
wenzelm@13366
    51
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_:_./ _])")
clasohm@923
    52
wenzelm@13366
    53
  -- {* list update *}
wenzelm@13366
    54
  "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
wenzelm@13366
    55
  "" :: "lupdbind => lupdbinds"    ("_")
wenzelm@13366
    56
  "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
wenzelm@13366
    57
  "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
nipkow@5077
    58
wenzelm@13366
    59
  upto:: "nat => nat => nat list"    ("(1[_../_])")
nipkow@5427
    60
clasohm@923
    61
translations
wenzelm@13366
    62
  "[x, xs]" == "x#[xs]"
wenzelm@13366
    63
  "[x]" == "x#[]"
wenzelm@13366
    64
  "[x:xs . P]"== "filter (%x. P) xs"
clasohm@923
    65
wenzelm@13366
    66
  "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs"
wenzelm@13366
    67
  "xs[i:=x]" == "list_update xs i x"
nipkow@5077
    68
wenzelm@13366
    69
  "[i..j]" == "[i..(Suc j)(]"
nipkow@5427
    70
nipkow@5427
    71
wenzelm@12114
    72
syntax (xsymbols)
wenzelm@13366
    73
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
kleing@14565
    74
syntax (HTML output)
kleing@14565
    75
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
wenzelm@2262
    76
wenzelm@2262
    77
wenzelm@13142
    78
text {*
wenzelm@13366
    79
  Function @{text size} is overloaded for all datatypes.Users may
wenzelm@13366
    80
  refer to the list version as @{text length}. *}
paulson@3342
    81
wenzelm@13142
    82
syntax length :: "'a list => nat"
wenzelm@13142
    83
translations "length" => "size :: _ list => nat"
paulson@3342
    84
wenzelm@13142
    85
typed_print_translation {*
wenzelm@13366
    86
  let
wenzelm@13366
    87
    fun size_tr' _ (Type ("fun", (Type ("list", _) :: _))) [t] =
wenzelm@13366
    88
          Syntax.const "length" $ t
wenzelm@13366
    89
      | size_tr' _ _ _ = raise Match;
wenzelm@13366
    90
  in [("size", size_tr')] end
wenzelm@13114
    91
*}
paulson@3437
    92
berghofe@5183
    93
primrec
nipkow@13145
    94
"hd(x#xs) = x"
berghofe@5183
    95
primrec
nipkow@13145
    96
"tl([]) = []"
nipkow@13145
    97
"tl(x#xs) = xs"
berghofe@5183
    98
primrec
nipkow@13145
    99
"null([]) = True"
nipkow@13145
   100
"null(x#xs) = False"
paulson@8972
   101
primrec
nipkow@13145
   102
"last(x#xs) = (if xs=[] then x else last xs)"
berghofe@5183
   103
primrec
nipkow@13145
   104
"butlast []= []"
nipkow@13145
   105
"butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
berghofe@5183
   106
primrec
nipkow@13145
   107
"x mem [] = False"
nipkow@13145
   108
"x mem (y#ys) = (if y=x then True else x mem ys)"
oheimb@5518
   109
primrec
nipkow@13145
   110
"set [] = {}"
nipkow@13145
   111
"set (x#xs) = insert x (set xs)"
berghofe@5183
   112
primrec
nipkow@13145
   113
list_all_Nil:"list_all P [] = True"
nipkow@13145
   114
list_all_Cons: "list_all P (x#xs) = (P(x) \<and> list_all P xs)"
oheimb@5518
   115
primrec
nipkow@13145
   116
"map f [] = []"
nipkow@13145
   117
"map f (x#xs) = f(x)#map f xs"
berghofe@5183
   118
primrec
nipkow@13145
   119
append_Nil:"[]@ys = ys"
nipkow@13145
   120
append_Cons: "(x#xs)@ys = x#(xs@ys)"
berghofe@5183
   121
primrec
nipkow@13145
   122
"rev([]) = []"
nipkow@13145
   123
"rev(x#xs) = rev(xs) @ [x]"
berghofe@5183
   124
primrec
nipkow@13145
   125
"filter P [] = []"
nipkow@13145
   126
"filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
berghofe@5183
   127
primrec
nipkow@13145
   128
foldl_Nil:"foldl f a [] = a"
nipkow@13145
   129
foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs"
berghofe@5183
   130
primrec
nipkow@13145
   131
"foldr f [] a = a"
nipkow@13145
   132
"foldr f (x#xs) a = f x (foldr f xs a)"
paulson@8000
   133
primrec
nipkow@13145
   134
"concat([]) = []"
nipkow@13145
   135
"concat(x#xs) = x @ concat(xs)"
berghofe@5183
   136
primrec
nipkow@13145
   137
drop_Nil:"drop n [] = []"
nipkow@13145
   138
drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
nipkow@13145
   139
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   140
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
berghofe@5183
   141
primrec
nipkow@13145
   142
take_Nil:"take n [] = []"
nipkow@13145
   143
take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
nipkow@13145
   144
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   145
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
berghofe@5183
   146
primrec
nipkow@13145
   147
nth_Cons:"(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
nipkow@13145
   148
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   149
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
wenzelm@13142
   150
primrec
nipkow@13145
   151
"[][i:=v] = []"
nipkow@13145
   152
"(x#xs)[i:=v] =
nipkow@13145
   153
(case i of 0 => v # xs
nipkow@13145
   154
| Suc j => x # xs[j:=v])"
berghofe@5183
   155
primrec
nipkow@13145
   156
"takeWhile P [] = []"
nipkow@13145
   157
"takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
berghofe@5183
   158
primrec
nipkow@13145
   159
"dropWhile P [] = []"
nipkow@13145
   160
"dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
berghofe@5183
   161
primrec
nipkow@13145
   162
"zip xs [] = []"
nipkow@13145
   163
zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
nipkow@13145
   164
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   165
-- {* but separate theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
nipkow@5427
   166
primrec
nipkow@13145
   167
upt_0: "[i..0(] = []"
nipkow@13145
   168
upt_Suc: "[i..(Suc j)(] = (if i <= j then [i..j(] @ [j] else [])"
berghofe@5183
   169
primrec
nipkow@13145
   170
"distinct [] = True"
nipkow@13145
   171
"distinct (x#xs) = (x ~: set xs \<and> distinct xs)"
berghofe@5183
   172
primrec
nipkow@13145
   173
"remdups [] = []"
nipkow@13145
   174
"remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
berghofe@5183
   175
primrec
nipkow@13147
   176
replicate_0: "replicate 0 x = []"
nipkow@13145
   177
replicate_Suc: "replicate (Suc n) x = x # replicate n x"
nipkow@8115
   178
defs
wenzelm@13114
   179
 list_all2_def:
wenzelm@13142
   180
 "list_all2 P xs ys == length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y)"
nipkow@8115
   181
paulson@3196
   182
wenzelm@13142
   183
subsection {* Lexicographic orderings on lists *}
nipkow@5281
   184
nipkow@5281
   185
consts
nipkow@13145
   186
lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
nipkow@5281
   187
primrec
nipkow@13145
   188
"lexn r 0 = {}"
nipkow@13145
   189
"lexn r (Suc n) =
nipkow@13145
   190
(prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
nipkow@13145
   191
{(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
nipkow@5281
   192
nipkow@5281
   193
constdefs
nipkow@13145
   194
lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@13145
   195
"lex r == \<Union>n. lexn r n"
nipkow@5281
   196
nipkow@13145
   197
lexico :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@13145
   198
"lexico r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
paulson@9336
   199
nipkow@13145
   200
sublist :: "'a list => nat set => 'a list"
nipkow@13145
   201
"sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..size xs(]))"
nipkow@5281
   202
nipkow@3507
   203
wenzelm@13142
   204
lemma not_Cons_self [simp]: "xs \<noteq> x # xs"
nipkow@13145
   205
by (induct xs) auto
nipkow@3507
   206
wenzelm@13142
   207
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric]
wenzelm@13114
   208
wenzelm@13142
   209
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
nipkow@13145
   210
by (induct xs) auto
wenzelm@13114
   211
wenzelm@13142
   212
lemma length_induct:
nipkow@13145
   213
"(!!xs. \<forall>ys. length ys < length xs --> P ys ==> P xs) ==> P xs"
nipkow@13145
   214
by (rule measure_induct [of length]) rules
wenzelm@13114
   215
wenzelm@13114
   216
wenzelm@13142
   217
subsection {* @{text lists}: the list-forming operator over sets *}
wenzelm@13114
   218
wenzelm@13142
   219
consts lists :: "'a set => 'a list set"
wenzelm@13142
   220
inductive "lists A"
nipkow@13145
   221
intros
nipkow@13145
   222
Nil [intro!]: "[]: lists A"
nipkow@13145
   223
Cons [intro!]: "[| a: A;l: lists A|] ==> a#l : lists A"
wenzelm@13114
   224
wenzelm@13142
   225
inductive_cases listsE [elim!]: "x#l : lists A"
wenzelm@13114
   226
wenzelm@13366
   227
lemma lists_mono [mono]: "A \<subseteq> B ==> lists A \<subseteq> lists B"
nipkow@13145
   228
by (unfold lists.defs) (blast intro!: lfp_mono)
wenzelm@13114
   229
berghofe@13883
   230
lemma lists_IntI:
berghofe@13883
   231
  assumes l: "l: lists A" shows "l: lists B ==> l: lists (A Int B)" using l
berghofe@13883
   232
  by induct blast+
wenzelm@13114
   233
wenzelm@13142
   234
lemma lists_Int_eq [simp]: "lists (A \<inter> B) = lists A \<inter> lists B"
nipkow@13145
   235
apply (rule mono_Int [THEN equalityI])
nipkow@13145
   236
apply (simp add: mono_def lists_mono)
nipkow@13145
   237
apply (blast intro!: lists_IntI)
nipkow@13145
   238
done
wenzelm@13114
   239
wenzelm@13142
   240
lemma append_in_lists_conv [iff]:
nipkow@13145
   241
"(xs @ ys : lists A) = (xs : lists A \<and> ys : lists A)"
nipkow@13145
   242
by (induct xs) auto
wenzelm@13114
   243
wenzelm@13114
   244
wenzelm@13142
   245
subsection {* @{text length} *}
wenzelm@13114
   246
wenzelm@13142
   247
text {*
nipkow@13145
   248
Needs to come before @{text "@"} because of theorem @{text
nipkow@13145
   249
append_eq_append_conv}.
wenzelm@13142
   250
*}
wenzelm@13114
   251
wenzelm@13142
   252
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
nipkow@13145
   253
by (induct xs) auto
wenzelm@13114
   254
wenzelm@13142
   255
lemma length_map [simp]: "length (map f xs) = length xs"
nipkow@13145
   256
by (induct xs) auto
wenzelm@13114
   257
wenzelm@13142
   258
lemma length_rev [simp]: "length (rev xs) = length xs"
nipkow@13145
   259
by (induct xs) auto
wenzelm@13114
   260
wenzelm@13142
   261
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
nipkow@13145
   262
by (cases xs) auto
wenzelm@13142
   263
wenzelm@13142
   264
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
nipkow@13145
   265
by (induct xs) auto
wenzelm@13142
   266
wenzelm@13142
   267
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
nipkow@13145
   268
by (induct xs) auto
wenzelm@13114
   269
wenzelm@13114
   270
lemma length_Suc_conv:
nipkow@13145
   271
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
nipkow@13145
   272
by (induct xs) auto
wenzelm@13114
   273
nipkow@14025
   274
lemma Suc_length_conv:
nipkow@14025
   275
"(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
paulson@14208
   276
apply (induct xs, simp, simp)
nipkow@14025
   277
apply blast
nipkow@14025
   278
done
nipkow@14025
   279
oheimb@14099
   280
lemma impossible_Cons [rule_format]: 
oheimb@14099
   281
  "length xs <= length ys --> xs = x # ys = False"
paulson@14208
   282
apply (induct xs, auto)
oheimb@14099
   283
done
oheimb@14099
   284
nipkow@14247
   285
lemma list_induct2[consumes 1]: "\<And>ys.
nipkow@14247
   286
 \<lbrakk> length xs = length ys;
nipkow@14247
   287
   P [] [];
nipkow@14247
   288
   \<And>x xs y ys. \<lbrakk> length xs = length ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
nipkow@14247
   289
 \<Longrightarrow> P xs ys"
nipkow@14247
   290
apply(induct xs)
nipkow@14247
   291
 apply simp
nipkow@14247
   292
apply(case_tac ys)
nipkow@14247
   293
 apply simp
nipkow@14247
   294
apply(simp)
nipkow@14247
   295
done
wenzelm@13114
   296
wenzelm@13142
   297
subsection {* @{text "@"} -- append *}
wenzelm@13114
   298
wenzelm@13142
   299
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
nipkow@13145
   300
by (induct xs) auto
wenzelm@13114
   301
wenzelm@13142
   302
lemma append_Nil2 [simp]: "xs @ [] = xs"
nipkow@13145
   303
by (induct xs) auto
wenzelm@13114
   304
wenzelm@13142
   305
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
nipkow@13145
   306
by (induct xs) auto
wenzelm@13114
   307
wenzelm@13142
   308
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
nipkow@13145
   309
by (induct xs) auto
wenzelm@13114
   310
wenzelm@13142
   311
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
nipkow@13145
   312
by (induct xs) auto
wenzelm@13114
   313
wenzelm@13142
   314
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
nipkow@13145
   315
by (induct xs) auto
wenzelm@13114
   316
berghofe@13883
   317
lemma append_eq_append_conv [simp]:
berghofe@13883
   318
 "!!ys. length xs = length ys \<or> length us = length vs
berghofe@13883
   319
 ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
berghofe@13883
   320
apply (induct xs)
paulson@14208
   321
 apply (case_tac ys, simp, force)
paulson@14208
   322
apply (case_tac ys, force, simp)
nipkow@13145
   323
done
wenzelm@13114
   324
nipkow@14495
   325
lemma append_eq_append_conv2: "!!ys zs ts.
nipkow@14495
   326
 (xs @ ys = zs @ ts) =
nipkow@14495
   327
 (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)"
nipkow@14495
   328
apply (induct xs)
nipkow@14495
   329
 apply fastsimp
nipkow@14495
   330
apply(case_tac zs)
nipkow@14495
   331
 apply simp
nipkow@14495
   332
apply fastsimp
nipkow@14495
   333
done
nipkow@14495
   334
wenzelm@13142
   335
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)"
nipkow@13145
   336
by simp
wenzelm@13114
   337
wenzelm@13142
   338
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
nipkow@13145
   339
by simp
wenzelm@13114
   340
wenzelm@13142
   341
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)"
nipkow@13145
   342
by simp
wenzelm@13114
   343
wenzelm@13142
   344
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
nipkow@13145
   345
using append_same_eq [of _ _ "[]"] by auto
wenzelm@13114
   346
wenzelm@13142
   347
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
nipkow@13145
   348
using append_same_eq [of "[]"] by auto
wenzelm@13114
   349
wenzelm@13142
   350
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
nipkow@13145
   351
by (induct xs) auto
wenzelm@13114
   352
wenzelm@13142
   353
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
nipkow@13145
   354
by (induct xs) auto
wenzelm@13114
   355
wenzelm@13142
   356
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
nipkow@13145
   357
by (simp add: hd_append split: list.split)
wenzelm@13114
   358
wenzelm@13142
   359
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
nipkow@13145
   360
by (simp split: list.split)
wenzelm@13114
   361
wenzelm@13142
   362
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
nipkow@13145
   363
by (simp add: tl_append split: list.split)
wenzelm@13114
   364
wenzelm@13142
   365
nipkow@14300
   366
lemma Cons_eq_append_conv: "x#xs = ys@zs =
nipkow@14300
   367
 (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
nipkow@14300
   368
by(cases ys) auto
nipkow@14300
   369
nipkow@14300
   370
wenzelm@13142
   371
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
wenzelm@13114
   372
wenzelm@13114
   373
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
nipkow@13145
   374
by simp
wenzelm@13114
   375
wenzelm@13142
   376
lemma Cons_eq_appendI:
nipkow@13145
   377
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
nipkow@13145
   378
by (drule sym) simp
wenzelm@13114
   379
wenzelm@13142
   380
lemma append_eq_appendI:
nipkow@13145
   381
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
nipkow@13145
   382
by (drule sym) simp
wenzelm@13114
   383
wenzelm@13114
   384
wenzelm@13142
   385
text {*
nipkow@13145
   386
Simplification procedure for all list equalities.
nipkow@13145
   387
Currently only tries to rearrange @{text "@"} to see if
nipkow@13145
   388
- both lists end in a singleton list,
nipkow@13145
   389
- or both lists end in the same list.
wenzelm@13142
   390
*}
wenzelm@13142
   391
wenzelm@13142
   392
ML_setup {*
nipkow@3507
   393
local
nipkow@3507
   394
wenzelm@13122
   395
val append_assoc = thm "append_assoc";
wenzelm@13122
   396
val append_Nil = thm "append_Nil";
wenzelm@13122
   397
val append_Cons = thm "append_Cons";
wenzelm@13122
   398
val append1_eq_conv = thm "append1_eq_conv";
wenzelm@13122
   399
val append_same_eq = thm "append_same_eq";
wenzelm@13122
   400
wenzelm@13114
   401
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
wenzelm@13462
   402
  (case xs of Const("List.list.Nil",_) => cons | _ => last xs)
wenzelm@13462
   403
  | last (Const("List.op @",_) $ _ $ ys) = last ys
wenzelm@13462
   404
  | last t = t;
nipkow@3507
   405
wenzelm@13114
   406
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
wenzelm@13462
   407
  | list1 _ = false;
wenzelm@13114
   408
wenzelm@13114
   409
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
wenzelm@13462
   410
  (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
wenzelm@13462
   411
  | butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys
wenzelm@13462
   412
  | butlast xs = Const("List.list.Nil",fastype_of xs);
wenzelm@13114
   413
wenzelm@13114
   414
val rearr_tac =
wenzelm@13462
   415
  simp_tac (HOL_basic_ss addsimps [append_assoc, append_Nil, append_Cons]);
wenzelm@13114
   416
wenzelm@13114
   417
fun list_eq sg _ (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
wenzelm@13462
   418
  let
wenzelm@13462
   419
    val lastl = last lhs and lastr = last rhs;
wenzelm@13462
   420
    fun rearr conv =
wenzelm@13462
   421
      let
wenzelm@13462
   422
        val lhs1 = butlast lhs and rhs1 = butlast rhs;
wenzelm@13462
   423
        val Type(_,listT::_) = eqT
wenzelm@13462
   424
        val appT = [listT,listT] ---> listT
wenzelm@13462
   425
        val app = Const("List.op @",appT)
wenzelm@13462
   426
        val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
wenzelm@13480
   427
        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
wenzelm@13480
   428
        val thm = Tactic.prove sg [] [] eq (K (rearr_tac 1));
wenzelm@13462
   429
      in Some ((conv RS (thm RS trans)) RS eq_reflection) end;
wenzelm@13114
   430
wenzelm@13462
   431
  in
wenzelm@13462
   432
    if list1 lastl andalso list1 lastr then rearr append1_eq_conv
wenzelm@13462
   433
    else if lastl aconv lastr then rearr append_same_eq
wenzelm@13462
   434
    else None
wenzelm@13462
   435
  end;
wenzelm@13462
   436
nipkow@3507
   437
in
wenzelm@13462
   438
wenzelm@13462
   439
val list_eq_simproc =
wenzelm@13462
   440
  Simplifier.simproc (Theory.sign_of (the_context ())) "list_eq" ["(xs::'a list) = ys"] list_eq;
wenzelm@13462
   441
wenzelm@13114
   442
end;
nipkow@3507
   443
wenzelm@13114
   444
Addsimprocs [list_eq_simproc];
wenzelm@13114
   445
*}
wenzelm@13114
   446
wenzelm@13114
   447
wenzelm@13142
   448
subsection {* @{text map} *}
wenzelm@13114
   449
wenzelm@13142
   450
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
nipkow@13145
   451
by (induct xs) simp_all
wenzelm@13114
   452
wenzelm@13142
   453
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
nipkow@13145
   454
by (rule ext, induct_tac xs) auto
wenzelm@13114
   455
wenzelm@13142
   456
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
nipkow@13145
   457
by (induct xs) auto
wenzelm@13114
   458
wenzelm@13142
   459
lemma map_compose: "map (f o g) xs = map f (map g xs)"
nipkow@13145
   460
by (induct xs) (auto simp add: o_def)
wenzelm@13114
   461
wenzelm@13142
   462
lemma rev_map: "rev (map f xs) = map f (rev xs)"
nipkow@13145
   463
by (induct xs) auto
wenzelm@13114
   464
nipkow@13737
   465
lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
nipkow@13737
   466
by (induct xs) auto
nipkow@13737
   467
wenzelm@13366
   468
lemma map_cong [recdef_cong]:
nipkow@13145
   469
"xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys"
nipkow@13145
   470
-- {* a congruence rule for @{text map} *}
nipkow@13737
   471
by simp
wenzelm@13114
   472
wenzelm@13142
   473
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
nipkow@13145
   474
by (cases xs) auto
wenzelm@13114
   475
wenzelm@13142
   476
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
nipkow@13145
   477
by (cases xs) auto
wenzelm@13114
   478
nipkow@14025
   479
lemma map_eq_Cons_conv[iff]:
nipkow@14025
   480
 "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
nipkow@13145
   481
by (cases xs) auto
wenzelm@13114
   482
nipkow@14025
   483
lemma Cons_eq_map_conv[iff]:
nipkow@14025
   484
 "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
nipkow@14025
   485
by (cases ys) auto
nipkow@14025
   486
nipkow@14111
   487
lemma ex_map_conv:
nipkow@14111
   488
  "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
nipkow@14111
   489
by(induct ys, auto)
nipkow@14111
   490
wenzelm@13114
   491
lemma map_injective:
nipkow@14338
   492
 "!!xs. map f xs = map f ys ==> inj f ==> xs = ys"
nipkow@14338
   493
by (induct ys) (auto dest!:injD)
wenzelm@13114
   494
nipkow@14339
   495
lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@14339
   496
by(blast dest:map_injective)
nipkow@14339
   497
wenzelm@13114
   498
lemma inj_mapI: "inj f ==> inj (map f)"
paulson@13585
   499
by (rules dest: map_injective injD intro: inj_onI)
wenzelm@13114
   500
wenzelm@13114
   501
lemma inj_mapD: "inj (map f) ==> inj f"
paulson@14208
   502
apply (unfold inj_on_def, clarify)
nipkow@13145
   503
apply (erule_tac x = "[x]" in ballE)
paulson@14208
   504
 apply (erule_tac x = "[y]" in ballE, simp, blast)
nipkow@13145
   505
apply blast
nipkow@13145
   506
done
wenzelm@13114
   507
nipkow@14339
   508
lemma inj_map[iff]: "inj (map f) = inj f"
nipkow@13145
   509
by (blast dest: inj_mapD intro: inj_mapI)
wenzelm@13114
   510
kleing@14343
   511
lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
kleing@14343
   512
by (induct xs, auto)
wenzelm@13114
   513
nipkow@14402
   514
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
nipkow@14402
   515
by (induct xs) auto
nipkow@14402
   516
wenzelm@13142
   517
subsection {* @{text rev} *}
wenzelm@13114
   518
wenzelm@13142
   519
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
nipkow@13145
   520
by (induct xs) auto
wenzelm@13114
   521
wenzelm@13142
   522
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
nipkow@13145
   523
by (induct xs) auto
wenzelm@13114
   524
wenzelm@13142
   525
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
nipkow@13145
   526
by (induct xs) auto
wenzelm@13114
   527
wenzelm@13142
   528
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
nipkow@13145
   529
by (induct xs) auto
wenzelm@13114
   530
wenzelm@13142
   531
lemma rev_is_rev_conv [iff]: "!!ys. (rev xs = rev ys) = (xs = ys)"
paulson@14208
   532
apply (induct xs, force)
paulson@14208
   533
apply (case_tac ys, simp, force)
nipkow@13145
   534
done
wenzelm@13114
   535
wenzelm@13366
   536
lemma rev_induct [case_names Nil snoc]:
wenzelm@13366
   537
  "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
nipkow@13145
   538
apply(subst rev_rev_ident[symmetric])
nipkow@13145
   539
apply(rule_tac list = "rev xs" in list.induct, simp_all)
nipkow@13145
   540
done
wenzelm@13114
   541
nipkow@13145
   542
ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}-- "compatibility"
wenzelm@13114
   543
wenzelm@13366
   544
lemma rev_exhaust [case_names Nil snoc]:
wenzelm@13366
   545
  "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
nipkow@13145
   546
by (induct xs rule: rev_induct) auto
wenzelm@13114
   547
wenzelm@13366
   548
lemmas rev_cases = rev_exhaust
wenzelm@13366
   549
wenzelm@13114
   550
wenzelm@13142
   551
subsection {* @{text set} *}
wenzelm@13114
   552
wenzelm@13142
   553
lemma finite_set [iff]: "finite (set xs)"
nipkow@13145
   554
by (induct xs) auto
wenzelm@13114
   555
wenzelm@13142
   556
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
nipkow@13145
   557
by (induct xs) auto
wenzelm@13114
   558
oheimb@14099
   559
lemma hd_in_set: "l = x#xs \<Longrightarrow> x\<in>set l"
paulson@14208
   560
by (case_tac l, auto)
oheimb@14099
   561
wenzelm@13142
   562
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
nipkow@13145
   563
by auto
wenzelm@13114
   564
oheimb@14099
   565
lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
oheimb@14099
   566
by auto
oheimb@14099
   567
wenzelm@13142
   568
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
nipkow@13145
   569
by (induct xs) auto
wenzelm@13114
   570
wenzelm@13142
   571
lemma set_rev [simp]: "set (rev xs) = set xs"
nipkow@13145
   572
by (induct xs) auto
wenzelm@13114
   573
wenzelm@13142
   574
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
nipkow@13145
   575
by (induct xs) auto
wenzelm@13114
   576
wenzelm@13142
   577
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
nipkow@13145
   578
by (induct xs) auto
wenzelm@13114
   579
wenzelm@13142
   580
lemma set_upt [simp]: "set[i..j(] = {k. i \<le> k \<and> k < j}"
paulson@14208
   581
apply (induct j, simp_all)
paulson@14208
   582
apply (erule ssubst, auto)
nipkow@13145
   583
done
wenzelm@13114
   584
wenzelm@13142
   585
lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)"
paulson@14208
   586
apply (induct xs, simp, simp)
nipkow@13145
   587
apply (rule iffI)
nipkow@13145
   588
 apply (blast intro: eq_Nil_appendI Cons_eq_appendI)
nipkow@13145
   589
apply (erule exE)+
paulson@14208
   590
apply (case_tac ys, auto)
nipkow@13145
   591
done
wenzelm@13114
   592
wenzelm@13142
   593
lemma in_lists_conv_set: "(xs : lists A) = (\<forall>x \<in> set xs. x : A)"
nipkow@13145
   594
-- {* eliminate @{text lists} in favour of @{text set} *}
nipkow@13145
   595
by (induct xs) auto
wenzelm@13114
   596
wenzelm@13142
   597
lemma in_listsD [dest!]: "xs \<in> lists A ==> \<forall>x\<in>set xs. x \<in> A"
nipkow@13145
   598
by (rule in_lists_conv_set [THEN iffD1])
wenzelm@13114
   599
wenzelm@13142
   600
lemma in_listsI [intro!]: "\<forall>x\<in>set xs. x \<in> A ==> xs \<in> lists A"
nipkow@13145
   601
by (rule in_lists_conv_set [THEN iffD2])
wenzelm@13114
   602
paulson@13508
   603
lemma finite_list: "finite A ==> EX l. set l = A"
paulson@13508
   604
apply (erule finite_induct, auto)
paulson@13508
   605
apply (rule_tac x="x#l" in exI, auto)
paulson@13508
   606
done
paulson@13508
   607
kleing@14388
   608
lemma card_length: "card (set xs) \<le> length xs"
kleing@14388
   609
by (induct xs) (auto simp add: card_insert_if)
wenzelm@13114
   610
wenzelm@13142
   611
subsection {* @{text mem} *}
wenzelm@13114
   612
wenzelm@13114
   613
lemma set_mem_eq: "(x mem xs) = (x : set xs)"
nipkow@13145
   614
by (induct xs) auto
wenzelm@13114
   615
wenzelm@13114
   616
wenzelm@13142
   617
subsection {* @{text list_all} *}
wenzelm@13114
   618
wenzelm@13142
   619
lemma list_all_conv: "list_all P xs = (\<forall>x \<in> set xs. P x)"
nipkow@13145
   620
by (induct xs) auto
wenzelm@13114
   621
wenzelm@13142
   622
lemma list_all_append [simp]:
nipkow@13145
   623
"list_all P (xs @ ys) = (list_all P xs \<and> list_all P ys)"
nipkow@13145
   624
by (induct xs) auto
wenzelm@13114
   625
wenzelm@13114
   626
wenzelm@13142
   627
subsection {* @{text filter} *}
wenzelm@13114
   628
wenzelm@13142
   629
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
nipkow@13145
   630
by (induct xs) auto
wenzelm@13114
   631
wenzelm@13142
   632
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
nipkow@13145
   633
by (induct xs) auto
wenzelm@13114
   634
wenzelm@13142
   635
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
nipkow@13145
   636
by (induct xs) auto
wenzelm@13114
   637
wenzelm@13142
   638
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
nipkow@13145
   639
by (induct xs) auto
wenzelm@13114
   640
wenzelm@13142
   641
lemma length_filter [simp]: "length (filter P xs) \<le> length xs"
nipkow@13145
   642
by (induct xs) (auto simp add: le_SucI)
wenzelm@13114
   643
wenzelm@13142
   644
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
nipkow@13145
   645
by auto
wenzelm@13114
   646
wenzelm@13114
   647
wenzelm@13142
   648
subsection {* @{text concat} *}
wenzelm@13114
   649
wenzelm@13142
   650
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
nipkow@13145
   651
by (induct xs) auto
wenzelm@13114
   652
wenzelm@13142
   653
lemma concat_eq_Nil_conv [iff]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   654
by (induct xss) auto
wenzelm@13114
   655
wenzelm@13142
   656
lemma Nil_eq_concat_conv [iff]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   657
by (induct xss) auto
wenzelm@13114
   658
wenzelm@13142
   659
lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)"
nipkow@13145
   660
by (induct xs) auto
wenzelm@13114
   661
wenzelm@13142
   662
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
nipkow@13145
   663
by (induct xs) auto
wenzelm@13114
   664
wenzelm@13142
   665
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
nipkow@13145
   666
by (induct xs) auto
wenzelm@13114
   667
wenzelm@13142
   668
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
nipkow@13145
   669
by (induct xs) auto
wenzelm@13114
   670
wenzelm@13114
   671
wenzelm@13142
   672
subsection {* @{text nth} *}
wenzelm@13114
   673
wenzelm@13142
   674
lemma nth_Cons_0 [simp]: "(x # xs)!0 = x"
nipkow@13145
   675
by auto
wenzelm@13114
   676
wenzelm@13142
   677
lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n"
nipkow@13145
   678
by auto
wenzelm@13114
   679
wenzelm@13142
   680
declare nth.simps [simp del]
wenzelm@13114
   681
wenzelm@13114
   682
lemma nth_append:
nipkow@13145
   683
"!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
paulson@14208
   684
apply (induct "xs", simp)
paulson@14208
   685
apply (case_tac n, auto)
nipkow@13145
   686
done
wenzelm@13114
   687
nipkow@14402
   688
lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
nipkow@14402
   689
by (induct "xs") auto
nipkow@14402
   690
nipkow@14402
   691
lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
nipkow@14402
   692
by (induct "xs") auto
nipkow@14402
   693
wenzelm@13142
   694
lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)"
paulson@14208
   695
apply (induct xs, simp)
paulson@14208
   696
apply (case_tac n, auto)
nipkow@13145
   697
done
wenzelm@13114
   698
wenzelm@13142
   699
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
paulson@14208
   700
apply (induct_tac xs, simp, simp)
nipkow@13145
   701
apply safe
paulson@14208
   702
apply (rule_tac x = 0 in exI, simp)
paulson@14208
   703
 apply (rule_tac x = "Suc i" in exI, simp)
paulson@14208
   704
apply (case_tac i, simp)
nipkow@13145
   705
apply (rename_tac j)
paulson@14208
   706
apply (rule_tac x = j in exI, simp)
nipkow@13145
   707
done
wenzelm@13114
   708
nipkow@13145
   709
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)"
nipkow@13145
   710
by (auto simp add: set_conv_nth)
wenzelm@13114
   711
wenzelm@13142
   712
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
nipkow@13145
   713
by (auto simp add: set_conv_nth)
wenzelm@13114
   714
wenzelm@13114
   715
lemma all_nth_imp_all_set:
nipkow@13145
   716
"[| !i < length xs. P(xs!i); x : set xs|] ==> P x"
nipkow@13145
   717
by (auto simp add: set_conv_nth)
wenzelm@13114
   718
wenzelm@13114
   719
lemma all_set_conv_all_nth:
nipkow@13145
   720
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
nipkow@13145
   721
by (auto simp add: set_conv_nth)
wenzelm@13114
   722
wenzelm@13114
   723
wenzelm@13142
   724
subsection {* @{text list_update} *}
wenzelm@13114
   725
wenzelm@13142
   726
lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs"
nipkow@13145
   727
by (induct xs) (auto split: nat.split)
wenzelm@13114
   728
wenzelm@13114
   729
lemma nth_list_update:
nipkow@13145
   730
"!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
nipkow@13145
   731
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   732
wenzelm@13142
   733
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
nipkow@13145
   734
by (simp add: nth_list_update)
wenzelm@13114
   735
wenzelm@13142
   736
lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j"
nipkow@13145
   737
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   738
wenzelm@13142
   739
lemma list_update_overwrite [simp]:
nipkow@13145
   740
"!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]"
nipkow@13145
   741
by (induct xs) (auto split: nat.split)
wenzelm@13114
   742
nipkow@14402
   743
lemma list_update_id[simp]: "!!i. i < length xs ==> xs[i := xs!i] = xs"
paulson@14208
   744
apply (induct xs, simp)
nipkow@14187
   745
apply(simp split:nat.splits)
nipkow@14187
   746
done
nipkow@14187
   747
wenzelm@13114
   748
lemma list_update_same_conv:
nipkow@13145
   749
"!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
nipkow@13145
   750
by (induct xs) (auto split: nat.split)
wenzelm@13114
   751
nipkow@14187
   752
lemma list_update_append1:
nipkow@14187
   753
 "!!i. i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
paulson@14208
   754
apply (induct xs, simp)
nipkow@14187
   755
apply(simp split:nat.split)
nipkow@14187
   756
done
nipkow@14187
   757
nipkow@14402
   758
lemma list_update_length [simp]:
nipkow@14402
   759
 "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
nipkow@14402
   760
by (induct xs, auto)
nipkow@14402
   761
wenzelm@13114
   762
lemma update_zip:
nipkow@13145
   763
"!!i xy xs. length xs = length ys ==>
nipkow@13145
   764
(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
nipkow@13145
   765
by (induct ys) (auto, case_tac xs, auto split: nat.split)
wenzelm@13114
   766
wenzelm@13114
   767
lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)"
nipkow@13145
   768
by (induct xs) (auto split: nat.split)
wenzelm@13114
   769
wenzelm@13114
   770
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
nipkow@13145
   771
by (blast dest!: set_update_subset_insert [THEN subsetD])
wenzelm@13114
   772
wenzelm@13114
   773
wenzelm@13142
   774
subsection {* @{text last} and @{text butlast} *}
wenzelm@13114
   775
wenzelm@13142
   776
lemma last_snoc [simp]: "last (xs @ [x]) = x"
nipkow@13145
   777
by (induct xs) auto
wenzelm@13114
   778
wenzelm@13142
   779
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
nipkow@13145
   780
by (induct xs) auto
wenzelm@13114
   781
nipkow@14302
   782
lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
nipkow@14302
   783
by(simp add:last.simps)
nipkow@14302
   784
nipkow@14302
   785
lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
nipkow@14302
   786
by(simp add:last.simps)
nipkow@14302
   787
nipkow@14302
   788
lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
nipkow@14302
   789
by (induct xs) (auto)
nipkow@14302
   790
nipkow@14302
   791
lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
nipkow@14302
   792
by(simp add:last_append)
nipkow@14302
   793
nipkow@14302
   794
lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
nipkow@14302
   795
by(simp add:last_append)
nipkow@14302
   796
nipkow@14302
   797
nipkow@14302
   798
wenzelm@13142
   799
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
nipkow@13145
   800
by (induct xs rule: rev_induct) auto
wenzelm@13114
   801
wenzelm@13114
   802
lemma butlast_append:
nipkow@13145
   803
"!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
nipkow@13145
   804
by (induct xs) auto
wenzelm@13114
   805
wenzelm@13142
   806
lemma append_butlast_last_id [simp]:
nipkow@13145
   807
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
nipkow@13145
   808
by (induct xs) auto
wenzelm@13114
   809
wenzelm@13142
   810
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
nipkow@13145
   811
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
   812
wenzelm@13114
   813
lemma in_set_butlast_appendI:
nipkow@13145
   814
"x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
nipkow@13145
   815
by (auto dest: in_set_butlastD simp add: butlast_append)
wenzelm@13114
   816
wenzelm@13114
   817
wenzelm@13142
   818
subsection {* @{text take} and @{text drop} *}
wenzelm@13114
   819
wenzelm@13142
   820
lemma take_0 [simp]: "take 0 xs = []"
nipkow@13145
   821
by (induct xs) auto
wenzelm@13114
   822
wenzelm@13142
   823
lemma drop_0 [simp]: "drop 0 xs = xs"
nipkow@13145
   824
by (induct xs) auto
wenzelm@13114
   825
wenzelm@13142
   826
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
nipkow@13145
   827
by simp
wenzelm@13114
   828
wenzelm@13142
   829
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
nipkow@13145
   830
by simp
wenzelm@13114
   831
wenzelm@13142
   832
declare take_Cons [simp del] and drop_Cons [simp del]
wenzelm@13114
   833
nipkow@14187
   834
lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
nipkow@14187
   835
by(cases xs, simp_all)
nipkow@14187
   836
nipkow@14187
   837
lemma drop_tl: "!!n. drop n (tl xs) = tl(drop n xs)"
nipkow@14187
   838
by(induct xs, simp_all add:drop_Cons drop_Suc split:nat.split)
nipkow@14187
   839
nipkow@14187
   840
lemma nth_via_drop: "!!n. drop n xs = y#ys \<Longrightarrow> xs!n = y"
paulson@14208
   841
apply (induct xs, simp)
nipkow@14187
   842
apply(simp add:drop_Cons nth_Cons split:nat.splits)
nipkow@14187
   843
done
nipkow@14187
   844
nipkow@13913
   845
lemma take_Suc_conv_app_nth:
nipkow@13913
   846
 "!!i. i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
paulson@14208
   847
apply (induct xs, simp)
paulson@14208
   848
apply (case_tac i, auto)
nipkow@13913
   849
done
nipkow@13913
   850
wenzelm@13142
   851
lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n"
nipkow@13145
   852
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   853
wenzelm@13142
   854
lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)"
nipkow@13145
   855
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   856
wenzelm@13142
   857
lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs"
nipkow@13145
   858
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   859
wenzelm@13142
   860
lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []"
nipkow@13145
   861
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   862
wenzelm@13142
   863
lemma take_append [simp]:
nipkow@13145
   864
"!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
nipkow@13145
   865
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   866
wenzelm@13142
   867
lemma drop_append [simp]:
nipkow@13145
   868
"!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
nipkow@13145
   869
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   870
wenzelm@13142
   871
lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs"
paulson@14208
   872
apply (induct m, auto)
paulson@14208
   873
apply (case_tac xs, auto)
paulson@14208
   874
apply (case_tac na, auto)
nipkow@13145
   875
done
wenzelm@13142
   876
wenzelm@13142
   877
lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs"
paulson@14208
   878
apply (induct m, auto)
paulson@14208
   879
apply (case_tac xs, auto)
nipkow@13145
   880
done
wenzelm@13114
   881
wenzelm@13114
   882
lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)"
paulson@14208
   883
apply (induct m, auto)
paulson@14208
   884
apply (case_tac xs, auto)
nipkow@13145
   885
done
wenzelm@13114
   886
wenzelm@13142
   887
lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs"
paulson@14208
   888
apply (induct n, auto)
paulson@14208
   889
apply (case_tac xs, auto)
nipkow@13145
   890
done
wenzelm@13114
   891
wenzelm@13114
   892
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)"
paulson@14208
   893
apply (induct n, auto)
paulson@14208
   894
apply (case_tac xs, auto)
nipkow@13145
   895
done
wenzelm@13114
   896
wenzelm@13142
   897
lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)"
paulson@14208
   898
apply (induct n, auto)
paulson@14208
   899
apply (case_tac xs, auto)
nipkow@13145
   900
done
wenzelm@13114
   901
wenzelm@13114
   902
lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)"
paulson@14208
   903
apply (induct xs, auto)
paulson@14208
   904
apply (case_tac i, auto)
nipkow@13145
   905
done
wenzelm@13114
   906
wenzelm@13114
   907
lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)"
paulson@14208
   908
apply (induct xs, auto)
paulson@14208
   909
apply (case_tac i, auto)
nipkow@13145
   910
done
wenzelm@13114
   911
wenzelm@13142
   912
lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i"
paulson@14208
   913
apply (induct xs, auto)
paulson@14208
   914
apply (case_tac n, blast)
paulson@14208
   915
apply (case_tac i, auto)
nipkow@13145
   916
done
wenzelm@13114
   917
wenzelm@13142
   918
lemma nth_drop [simp]:
nipkow@13145
   919
"!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
paulson@14208
   920
apply (induct n, auto)
paulson@14208
   921
apply (case_tac xs, auto)
nipkow@13145
   922
done
wenzelm@13114
   923
nipkow@14025
   924
lemma set_take_subset: "\<And>n. set(take n xs) \<subseteq> set xs"
nipkow@14025
   925
by(induct xs)(auto simp:take_Cons split:nat.split)
nipkow@14025
   926
nipkow@14025
   927
lemma set_drop_subset: "\<And>n. set(drop n xs) \<subseteq> set xs"
nipkow@14025
   928
by(induct xs)(auto simp:drop_Cons split:nat.split)
nipkow@14025
   929
nipkow@14187
   930
lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs"
nipkow@14187
   931
using set_take_subset by fast
nipkow@14187
   932
nipkow@14187
   933
lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs"
nipkow@14187
   934
using set_drop_subset by fast
nipkow@14187
   935
wenzelm@13114
   936
lemma append_eq_conv_conj:
nipkow@13145
   937
"!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
paulson@14208
   938
apply (induct xs, simp, clarsimp)
paulson@14208
   939
apply (case_tac zs, auto)
nipkow@13145
   940
done
wenzelm@13114
   941
paulson@14050
   942
lemma take_add [rule_format]: 
paulson@14050
   943
    "\<forall>i. i+j \<le> length(xs) --> take (i+j) xs = take i xs @ take j (drop i xs)"
paulson@14050
   944
apply (induct xs, auto) 
paulson@14050
   945
apply (case_tac i, simp_all) 
paulson@14050
   946
done
paulson@14050
   947
nipkow@14300
   948
lemma append_eq_append_conv_if:
nipkow@14300
   949
 "!! ys\<^isub>1. (xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) =
nipkow@14300
   950
  (if size xs\<^isub>1 \<le> size ys\<^isub>1
nipkow@14300
   951
   then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2
nipkow@14300
   952
   else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)"
nipkow@14300
   953
apply(induct xs\<^isub>1)
nipkow@14300
   954
 apply simp
nipkow@14300
   955
apply(case_tac ys\<^isub>1)
nipkow@14300
   956
apply simp_all
nipkow@14300
   957
done
nipkow@14300
   958
wenzelm@13114
   959
wenzelm@13142
   960
subsection {* @{text takeWhile} and @{text dropWhile} *}
wenzelm@13114
   961
wenzelm@13142
   962
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
nipkow@13145
   963
by (induct xs) auto
wenzelm@13114
   964
wenzelm@13142
   965
lemma takeWhile_append1 [simp]:
nipkow@13145
   966
"[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs"
nipkow@13145
   967
by (induct xs) auto
wenzelm@13114
   968
wenzelm@13142
   969
lemma takeWhile_append2 [simp]:
nipkow@13145
   970
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
nipkow@13145
   971
by (induct xs) auto
wenzelm@13114
   972
wenzelm@13142
   973
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
nipkow@13145
   974
by (induct xs) auto
wenzelm@13114
   975
wenzelm@13142
   976
lemma dropWhile_append1 [simp]:
nipkow@13145
   977
"[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
nipkow@13145
   978
by (induct xs) auto
wenzelm@13114
   979
wenzelm@13142
   980
lemma dropWhile_append2 [simp]:
nipkow@13145
   981
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
nipkow@13145
   982
by (induct xs) auto
wenzelm@13114
   983
wenzelm@13142
   984
lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
nipkow@13145
   985
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
   986
nipkow@13913
   987
lemma takeWhile_eq_all_conv[simp]:
nipkow@13913
   988
 "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
   989
by(induct xs, auto)
nipkow@13913
   990
nipkow@13913
   991
lemma dropWhile_eq_Nil_conv[simp]:
nipkow@13913
   992
 "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
   993
by(induct xs, auto)
nipkow@13913
   994
nipkow@13913
   995
lemma dropWhile_eq_Cons_conv:
nipkow@13913
   996
 "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)"
nipkow@13913
   997
by(induct xs, auto)
nipkow@13913
   998
wenzelm@13114
   999
wenzelm@13142
  1000
subsection {* @{text zip} *}
wenzelm@13114
  1001
wenzelm@13142
  1002
lemma zip_Nil [simp]: "zip [] ys = []"
nipkow@13145
  1003
by (induct ys) auto
wenzelm@13114
  1004
wenzelm@13142
  1005
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
nipkow@13145
  1006
by simp
wenzelm@13114
  1007
wenzelm@13142
  1008
declare zip_Cons [simp del]
wenzelm@13114
  1009
wenzelm@13142
  1010
lemma length_zip [simp]:
nipkow@13145
  1011
"!!xs. length (zip xs ys) = min (length xs) (length ys)"
paulson@14208
  1012
apply (induct ys, simp)
paulson@14208
  1013
apply (case_tac xs, auto)
nipkow@13145
  1014
done
wenzelm@13114
  1015
wenzelm@13114
  1016
lemma zip_append1:
nipkow@13145
  1017
"!!xs. zip (xs @ ys) zs =
nipkow@13145
  1018
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
paulson@14208
  1019
apply (induct zs, simp)
paulson@14208
  1020
apply (case_tac xs, simp_all)
nipkow@13145
  1021
done
wenzelm@13114
  1022
wenzelm@13114
  1023
lemma zip_append2:
nipkow@13145
  1024
"!!ys. zip xs (ys @ zs) =
nipkow@13145
  1025
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
paulson@14208
  1026
apply (induct xs, simp)
paulson@14208
  1027
apply (case_tac ys, simp_all)
nipkow@13145
  1028
done
wenzelm@13114
  1029
wenzelm@13142
  1030
lemma zip_append [simp]:
wenzelm@13142
  1031
 "[| length xs = length us; length ys = length vs |] ==>
nipkow@13145
  1032
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
nipkow@13145
  1033
by (simp add: zip_append1)
wenzelm@13114
  1034
wenzelm@13114
  1035
lemma zip_rev:
nipkow@14247
  1036
"length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
nipkow@14247
  1037
by (induct rule:list_induct2, simp_all)
wenzelm@13114
  1038
wenzelm@13142
  1039
lemma nth_zip [simp]:
nipkow@13145
  1040
"!!i xs. [| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
paulson@14208
  1041
apply (induct ys, simp)
nipkow@13145
  1042
apply (case_tac xs)
nipkow@13145
  1043
 apply (simp_all add: nth.simps split: nat.split)
nipkow@13145
  1044
done
wenzelm@13114
  1045
wenzelm@13114
  1046
lemma set_zip:
nipkow@13145
  1047
"set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
nipkow@13145
  1048
by (simp add: set_conv_nth cong: rev_conj_cong)
wenzelm@13114
  1049
wenzelm@13114
  1050
lemma zip_update:
nipkow@13145
  1051
"length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
nipkow@13145
  1052
by (rule sym, simp add: update_zip)
wenzelm@13114
  1053
wenzelm@13142
  1054
lemma zip_replicate [simp]:
nipkow@13145
  1055
"!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
paulson@14208
  1056
apply (induct i, auto)
paulson@14208
  1057
apply (case_tac j, auto)
nipkow@13145
  1058
done
wenzelm@13114
  1059
wenzelm@13142
  1060
wenzelm@13142
  1061
subsection {* @{text list_all2} *}
wenzelm@13114
  1062
kleing@14316
  1063
lemma list_all2_lengthD [intro?]: 
kleing@14316
  1064
  "list_all2 P xs ys ==> length xs = length ys"
nipkow@13145
  1065
by (simp add: list_all2_def)
wenzelm@13114
  1066
wenzelm@13142
  1067
lemma list_all2_Nil [iff]: "list_all2 P [] ys = (ys = [])"
nipkow@13145
  1068
by (simp add: list_all2_def)
wenzelm@13114
  1069
wenzelm@13142
  1070
lemma list_all2_Nil2[iff]: "list_all2 P xs [] = (xs = [])"
nipkow@13145
  1071
by (simp add: list_all2_def)
wenzelm@13114
  1072
wenzelm@13142
  1073
lemma list_all2_Cons [iff]:
nipkow@13145
  1074
"list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
nipkow@13145
  1075
by (auto simp add: list_all2_def)
wenzelm@13114
  1076
wenzelm@13114
  1077
lemma list_all2_Cons1:
nipkow@13145
  1078
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
nipkow@13145
  1079
by (cases ys) auto
wenzelm@13114
  1080
wenzelm@13114
  1081
lemma list_all2_Cons2:
nipkow@13145
  1082
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
nipkow@13145
  1083
by (cases xs) auto
wenzelm@13114
  1084
wenzelm@13142
  1085
lemma list_all2_rev [iff]:
nipkow@13145
  1086
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
nipkow@13145
  1087
by (simp add: list_all2_def zip_rev cong: conj_cong)
wenzelm@13114
  1088
kleing@13863
  1089
lemma list_all2_rev1:
kleing@13863
  1090
"list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
kleing@13863
  1091
by (subst list_all2_rev [symmetric]) simp
kleing@13863
  1092
wenzelm@13114
  1093
lemma list_all2_append1:
nipkow@13145
  1094
"list_all2 P (xs @ ys) zs =
nipkow@13145
  1095
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
nipkow@13145
  1096
list_all2 P xs us \<and> list_all2 P ys vs)"
nipkow@13145
  1097
apply (simp add: list_all2_def zip_append1)
nipkow@13145
  1098
apply (rule iffI)
nipkow@13145
  1099
 apply (rule_tac x = "take (length xs) zs" in exI)
nipkow@13145
  1100
 apply (rule_tac x = "drop (length xs) zs" in exI)
paulson@14208
  1101
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1102
apply (simp add: ball_Un)
nipkow@13145
  1103
done
wenzelm@13114
  1104
wenzelm@13114
  1105
lemma list_all2_append2:
nipkow@13145
  1106
"list_all2 P xs (ys @ zs) =
nipkow@13145
  1107
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
nipkow@13145
  1108
list_all2 P us ys \<and> list_all2 P vs zs)"
nipkow@13145
  1109
apply (simp add: list_all2_def zip_append2)
nipkow@13145
  1110
apply (rule iffI)
nipkow@13145
  1111
 apply (rule_tac x = "take (length ys) xs" in exI)
nipkow@13145
  1112
 apply (rule_tac x = "drop (length ys) xs" in exI)
paulson@14208
  1113
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1114
apply (simp add: ball_Un)
nipkow@13145
  1115
done
wenzelm@13114
  1116
kleing@13863
  1117
lemma list_all2_append:
nipkow@14247
  1118
  "length xs = length ys \<Longrightarrow>
nipkow@14247
  1119
  list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
nipkow@14247
  1120
by (induct rule:list_induct2, simp_all)
kleing@13863
  1121
kleing@13863
  1122
lemma list_all2_appendI [intro?, trans]:
kleing@13863
  1123
  "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
kleing@13863
  1124
  by (simp add: list_all2_append list_all2_lengthD)
kleing@13863
  1125
wenzelm@13114
  1126
lemma list_all2_conv_all_nth:
nipkow@13145
  1127
"list_all2 P xs ys =
nipkow@13145
  1128
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
nipkow@13145
  1129
by (force simp add: list_all2_def set_zip)
wenzelm@13114
  1130
berghofe@13883
  1131
lemma list_all2_trans:
berghofe@13883
  1132
  assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
berghofe@13883
  1133
  shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
berghofe@13883
  1134
        (is "!!bs cs. PROP ?Q as bs cs")
berghofe@13883
  1135
proof (induct as)
berghofe@13883
  1136
  fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
berghofe@13883
  1137
  show "!!cs. PROP ?Q (x # xs) bs cs"
berghofe@13883
  1138
  proof (induct bs)
berghofe@13883
  1139
    fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs"
berghofe@13883
  1140
    show "PROP ?Q (x # xs) (y # ys) cs"
berghofe@13883
  1141
      by (induct cs) (auto intro: tr I1 I2)
berghofe@13883
  1142
  qed simp
berghofe@13883
  1143
qed simp
berghofe@13883
  1144
kleing@13863
  1145
lemma list_all2_all_nthI [intro?]:
kleing@13863
  1146
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
kleing@13863
  1147
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1148
paulson@14395
  1149
lemma list_all2I:
paulson@14395
  1150
  "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
paulson@14395
  1151
  by (simp add: list_all2_def)
paulson@14395
  1152
kleing@14328
  1153
lemma list_all2_nthD:
kleing@13863
  1154
  "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
kleing@13863
  1155
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1156
nipkow@14302
  1157
lemma list_all2_nthD2:
nipkow@14302
  1158
  "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
nipkow@14302
  1159
  by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
nipkow@14302
  1160
kleing@13863
  1161
lemma list_all2_map1: 
kleing@13863
  1162
  "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
kleing@13863
  1163
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1164
kleing@13863
  1165
lemma list_all2_map2: 
kleing@13863
  1166
  "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
kleing@13863
  1167
  by (auto simp add: list_all2_conv_all_nth)
kleing@13863
  1168
kleing@14316
  1169
lemma list_all2_refl [intro?]:
kleing@13863
  1170
  "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
kleing@13863
  1171
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1172
kleing@13863
  1173
lemma list_all2_update_cong:
kleing@13863
  1174
  "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1175
  by (simp add: list_all2_conv_all_nth nth_list_update)
kleing@13863
  1176
kleing@13863
  1177
lemma list_all2_update_cong2:
kleing@13863
  1178
  "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1179
  by (simp add: list_all2_lengthD list_all2_update_cong)
kleing@13863
  1180
nipkow@14302
  1181
lemma list_all2_takeI [simp,intro?]:
nipkow@14302
  1182
  "\<And>n ys. list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
nipkow@14302
  1183
  apply (induct xs)
nipkow@14302
  1184
   apply simp
nipkow@14302
  1185
  apply (clarsimp simp add: list_all2_Cons1)
nipkow@14302
  1186
  apply (case_tac n)
nipkow@14302
  1187
  apply auto
nipkow@14302
  1188
  done
nipkow@14302
  1189
nipkow@14302
  1190
lemma list_all2_dropI [simp,intro?]:
kleing@13863
  1191
  "\<And>n bs. list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
paulson@14208
  1192
  apply (induct as, simp)
kleing@13863
  1193
  apply (clarsimp simp add: list_all2_Cons1)
paulson@14208
  1194
  apply (case_tac n, simp, simp)
kleing@13863
  1195
  done
kleing@13863
  1196
kleing@14327
  1197
lemma list_all2_mono [intro?]:
kleing@13863
  1198
  "\<And>y. list_all2 P x y \<Longrightarrow> (\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> list_all2 Q x y"
paulson@14208
  1199
  apply (induct x, simp)
paulson@14208
  1200
  apply (case_tac y, auto)
kleing@13863
  1201
  done
kleing@13863
  1202
wenzelm@13114
  1203
nipkow@14402
  1204
subsection {* @{text foldl} and @{text foldr} *}
wenzelm@13114
  1205
wenzelm@13142
  1206
lemma foldl_append [simp]:
nipkow@13145
  1207
"!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
nipkow@13145
  1208
by (induct xs) auto
wenzelm@13114
  1209
nipkow@14402
  1210
lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
nipkow@14402
  1211
by (induct xs) auto
nipkow@14402
  1212
nipkow@14402
  1213
lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)"
nipkow@14402
  1214
by (induct xs) auto
nipkow@14402
  1215
nipkow@14402
  1216
lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a"
nipkow@14402
  1217
by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"])
nipkow@14402
  1218
wenzelm@13142
  1219
text {*
nipkow@13145
  1220
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
nipkow@13145
  1221
difficult to use because it requires an additional transitivity step.
wenzelm@13142
  1222
*}
wenzelm@13114
  1223
wenzelm@13142
  1224
lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns"
nipkow@13145
  1225
by (induct ns) auto
wenzelm@13114
  1226
wenzelm@13142
  1227
lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns"
nipkow@13145
  1228
by (force intro: start_le_sum simp add: in_set_conv_decomp)
wenzelm@13114
  1229
wenzelm@13142
  1230
lemma sum_eq_0_conv [iff]:
nipkow@13145
  1231
"!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
nipkow@13145
  1232
by (induct ns) auto
wenzelm@13114
  1233
wenzelm@13142
  1234
wenzelm@13142
  1235
subsection {* @{text upto} *}
wenzelm@13142
  1236
wenzelm@13114
  1237
lemma upt_rec: "[i..j(] = (if i<j then i#[Suc i..j(] else [])"
nipkow@13145
  1238
-- {* Does not terminate! *}
nipkow@13145
  1239
by (induct j) auto
wenzelm@13114
  1240
wenzelm@13142
  1241
lemma upt_conv_Nil [simp]: "j <= i ==> [i..j(] = []"
nipkow@13145
  1242
by (subst upt_rec) simp
wenzelm@13114
  1243
wenzelm@13142
  1244
lemma upt_Suc_append: "i <= j ==> [i..(Suc j)(] = [i..j(]@[j]"
nipkow@13145
  1245
-- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
nipkow@13145
  1246
by simp
wenzelm@13114
  1247
wenzelm@13142
  1248
lemma upt_conv_Cons: "i < j ==> [i..j(] = i # [Suc i..j(]"
nipkow@13145
  1249
apply(rule trans)
nipkow@13145
  1250
apply(subst upt_rec)
paulson@14208
  1251
 prefer 2 apply (rule refl, simp)
nipkow@13145
  1252
done
wenzelm@13114
  1253
wenzelm@13114
  1254
lemma upt_add_eq_append: "i<=j ==> [i..j+k(] = [i..j(]@[j..j+k(]"
nipkow@13145
  1255
-- {* LOOPS as a simprule, since @{text "j <= j"}. *}
nipkow@13145
  1256
by (induct k) auto
wenzelm@13114
  1257
wenzelm@13142
  1258
lemma length_upt [simp]: "length [i..j(] = j - i"
nipkow@13145
  1259
by (induct j) (auto simp add: Suc_diff_le)
wenzelm@13114
  1260
wenzelm@13142
  1261
lemma nth_upt [simp]: "i + k < j ==> [i..j(] ! k = i + k"
nipkow@13145
  1262
apply (induct j)
nipkow@13145
  1263
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
nipkow@13145
  1264
done
wenzelm@13114
  1265
wenzelm@13142
  1266
lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..n(] = [i..i+m(]"
paulson@14208
  1267
apply (induct m, simp)
nipkow@13145
  1268
apply (subst upt_rec)
nipkow@13145
  1269
apply (rule sym)
nipkow@13145
  1270
apply (subst upt_rec)
nipkow@13145
  1271
apply (simp del: upt.simps)
nipkow@13145
  1272
done
wenzelm@13114
  1273
wenzelm@13114
  1274
lemma map_Suc_upt: "map Suc [m..n(] = [Suc m..n]"
nipkow@13145
  1275
by (induct n) auto
wenzelm@13114
  1276
wenzelm@13114
  1277
lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..n(]) ! i = f(m+i)"
nipkow@13145
  1278
apply (induct n m rule: diff_induct)
nipkow@13145
  1279
prefer 3 apply (subst map_Suc_upt[symmetric])
nipkow@13145
  1280
apply (auto simp add: less_diff_conv nth_upt)
nipkow@13145
  1281
done
wenzelm@13114
  1282
berghofe@13883
  1283
lemma nth_take_lemma:
berghofe@13883
  1284
  "!!xs ys. k <= length xs ==> k <= length ys ==>
berghofe@13883
  1285
     (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys"
berghofe@13883
  1286
apply (atomize, induct k)
paulson@14208
  1287
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
nipkow@13145
  1288
txt {* Both lists must be non-empty *}
paulson@14208
  1289
apply (case_tac xs, simp)
paulson@14208
  1290
apply (case_tac ys, clarify)
nipkow@13145
  1291
 apply (simp (no_asm_use))
nipkow@13145
  1292
apply clarify
nipkow@13145
  1293
txt {* prenexing's needed, not miniscoping *}
nipkow@13145
  1294
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
nipkow@13145
  1295
apply blast
nipkow@13145
  1296
done
wenzelm@13114
  1297
wenzelm@13114
  1298
lemma nth_equalityI:
wenzelm@13114
  1299
 "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
nipkow@13145
  1300
apply (frule nth_take_lemma [OF le_refl eq_imp_le])
nipkow@13145
  1301
apply (simp_all add: take_all)
nipkow@13145
  1302
done
wenzelm@13114
  1303
kleing@13863
  1304
(* needs nth_equalityI *)
kleing@13863
  1305
lemma list_all2_antisym:
kleing@13863
  1306
  "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> 
kleing@13863
  1307
  \<Longrightarrow> xs = ys"
kleing@13863
  1308
  apply (simp add: list_all2_conv_all_nth) 
paulson@14208
  1309
  apply (rule nth_equalityI, blast, simp)
kleing@13863
  1310
  done
kleing@13863
  1311
wenzelm@13142
  1312
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
nipkow@13145
  1313
-- {* The famous take-lemma. *}
nipkow@13145
  1314
apply (drule_tac x = "max (length xs) (length ys)" in spec)
nipkow@13145
  1315
apply (simp add: le_max_iff_disj take_all)
nipkow@13145
  1316
done
wenzelm@13114
  1317
wenzelm@13114
  1318
wenzelm@13142
  1319
subsection {* @{text "distinct"} and @{text remdups} *}
wenzelm@13114
  1320
wenzelm@13142
  1321
lemma distinct_append [simp]:
nipkow@13145
  1322
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
nipkow@13145
  1323
by (induct xs) auto
wenzelm@13114
  1324
wenzelm@13142
  1325
lemma set_remdups [simp]: "set (remdups xs) = set xs"
nipkow@13145
  1326
by (induct xs) (auto simp add: insert_absorb)
wenzelm@13114
  1327
wenzelm@13142
  1328
lemma distinct_remdups [iff]: "distinct (remdups xs)"
nipkow@13145
  1329
by (induct xs) auto
wenzelm@13114
  1330
wenzelm@13142
  1331
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
nipkow@13145
  1332
by (induct xs) auto
wenzelm@13114
  1333
wenzelm@13142
  1334
text {*
nipkow@13145
  1335
It is best to avoid this indexed version of distinct, but sometimes
nipkow@13145
  1336
it is useful. *}
nipkow@13124
  1337
lemma distinct_conv_nth:
nipkow@13145
  1338
"distinct xs = (\<forall>i j. i < size xs \<and> j < size xs \<and> i \<noteq> j --> xs!i \<noteq> xs!j)"
paulson@14208
  1339
apply (induct_tac xs, simp, simp)
paulson@14208
  1340
apply (rule iffI, clarsimp)
nipkow@13145
  1341
 apply (case_tac i)
paulson@14208
  1342
apply (case_tac j, simp)
nipkow@13145
  1343
apply (simp add: set_conv_nth)
nipkow@13145
  1344
 apply (case_tac j)
paulson@14208
  1345
apply (clarsimp simp add: set_conv_nth, simp)
nipkow@13145
  1346
apply (rule conjI)
nipkow@13145
  1347
 apply (clarsimp simp add: set_conv_nth)
nipkow@13145
  1348
 apply (erule_tac x = 0 in allE)
paulson@14208
  1349
 apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
nipkow@13145
  1350
apply (erule_tac x = "Suc i" in allE)
paulson@14208
  1351
apply (erule_tac x = "Suc j" in allE, simp)
nipkow@13145
  1352
done
nipkow@13124
  1353
kleing@14388
  1354
lemma distinct_card: "distinct xs \<Longrightarrow> card (set xs) = size xs"
kleing@14388
  1355
  by (induct xs) auto
kleing@14388
  1356
kleing@14388
  1357
lemma card_distinct: "card (set xs) = size xs \<Longrightarrow> distinct xs"
kleing@14388
  1358
proof (induct xs)
kleing@14388
  1359
  case Nil thus ?case by simp
kleing@14388
  1360
next
kleing@14388
  1361
  case (Cons x xs)
kleing@14388
  1362
  show ?case
kleing@14388
  1363
  proof (cases "x \<in> set xs")
kleing@14388
  1364
    case False with Cons show ?thesis by simp
kleing@14388
  1365
  next
kleing@14388
  1366
    case True with Cons.prems
kleing@14388
  1367
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  1368
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  1369
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  1370
    ultimately have False by simp
kleing@14388
  1371
    thus ?thesis ..
kleing@14388
  1372
  qed
kleing@14388
  1373
qed
kleing@14388
  1374
wenzelm@13114
  1375
wenzelm@13142
  1376
subsection {* @{text replicate} *}
wenzelm@13114
  1377
wenzelm@13142
  1378
lemma length_replicate [simp]: "length (replicate n x) = n"
nipkow@13145
  1379
by (induct n) auto
wenzelm@13142
  1380
wenzelm@13142
  1381
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
nipkow@13145
  1382
by (induct n) auto
wenzelm@13114
  1383
wenzelm@13114
  1384
lemma replicate_app_Cons_same:
nipkow@13145
  1385
"(replicate n x) @ (x # xs) = x # replicate n x @ xs"
nipkow@13145
  1386
by (induct n) auto
wenzelm@13114
  1387
wenzelm@13142
  1388
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
paulson@14208
  1389
apply (induct n, simp)
nipkow@13145
  1390
apply (simp add: replicate_app_Cons_same)
nipkow@13145
  1391
done
wenzelm@13114
  1392
wenzelm@13142
  1393
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
nipkow@13145
  1394
by (induct n) auto
wenzelm@13114
  1395
wenzelm@13142
  1396
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
nipkow@13145
  1397
by (induct n) auto
wenzelm@13114
  1398
wenzelm@13142
  1399
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
nipkow@13145
  1400
by (induct n) auto
wenzelm@13114
  1401
wenzelm@13142
  1402
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
nipkow@13145
  1403
by (atomize (full), induct n) auto
wenzelm@13114
  1404
wenzelm@13142
  1405
lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x"
paulson@14208
  1406
apply (induct n, simp)
nipkow@13145
  1407
apply (simp add: nth_Cons split: nat.split)
nipkow@13145
  1408
done
wenzelm@13114
  1409
wenzelm@13142
  1410
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
nipkow@13145
  1411
by (induct n) auto
wenzelm@13114
  1412
wenzelm@13142
  1413
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
nipkow@13145
  1414
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
wenzelm@13114
  1415
wenzelm@13142
  1416
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
nipkow@13145
  1417
by auto
wenzelm@13114
  1418
wenzelm@13142
  1419
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y"
nipkow@13145
  1420
by (simp add: set_replicate_conv_if split: split_if_asm)
wenzelm@13114
  1421
wenzelm@13114
  1422
oheimb@14099
  1423
subsection {* Lexicographic orderings on lists *}
wenzelm@13114
  1424
wenzelm@13142
  1425
lemma wf_lexn: "wf r ==> wf (lexn r n)"
paulson@14208
  1426
apply (induct_tac n, simp, simp)
nipkow@13145
  1427
apply(rule wf_subset)
nipkow@13145
  1428
 prefer 2 apply (rule Int_lower1)
nipkow@13145
  1429
apply(rule wf_prod_fun_image)
paulson@14208
  1430
 prefer 2 apply (rule inj_onI, auto)
nipkow@13145
  1431
done
wenzelm@13114
  1432
wenzelm@13114
  1433
lemma lexn_length:
nipkow@13145
  1434
"!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
nipkow@13145
  1435
by (induct n) auto
wenzelm@13114
  1436
wenzelm@13142
  1437
lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
nipkow@13145
  1438
apply (unfold lex_def)
nipkow@13145
  1439
apply (rule wf_UN)
paulson@14208
  1440
apply (blast intro: wf_lexn, clarify)
nipkow@13145
  1441
apply (rename_tac m n)
nipkow@13145
  1442
apply (subgoal_tac "m \<noteq> n")
nipkow@13145
  1443
 prefer 2 apply blast
nipkow@13145
  1444
apply (blast dest: lexn_length not_sym)
nipkow@13145
  1445
done
wenzelm@13114
  1446
wenzelm@13114
  1447
lemma lexn_conv:
nipkow@13145
  1448
"lexn r n =
nipkow@13145
  1449
{(xs,ys). length xs = n \<and> length ys = n \<and>
nipkow@13145
  1450
(\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
paulson@14208
  1451
apply (induct_tac n, simp, blast)
paulson@14208
  1452
apply (simp add: image_Collect lex_prod_def, safe, blast)
paulson@14208
  1453
 apply (rule_tac x = "ab # xys" in exI, simp)
paulson@14208
  1454
apply (case_tac xys, simp_all, blast)
nipkow@13145
  1455
done
wenzelm@13114
  1456
wenzelm@13114
  1457
lemma lex_conv:
nipkow@13145
  1458
"lex r =
nipkow@13145
  1459
{(xs,ys). length xs = length ys \<and>
nipkow@13145
  1460
(\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
nipkow@13145
  1461
by (force simp add: lex_def lexn_conv)
wenzelm@13114
  1462
wenzelm@13142
  1463
lemma wf_lexico [intro!]: "wf r ==> wf (lexico r)"
nipkow@13145
  1464
by (unfold lexico_def) blast
wenzelm@13114
  1465
wenzelm@13114
  1466
lemma lexico_conv:
nipkow@13145
  1467
"lexico r = {(xs,ys). length xs < length ys |
nipkow@13145
  1468
length xs = length ys \<and> (xs, ys) : lex r}"
nipkow@13145
  1469
by (simp add: lexico_def diag_def lex_prod_def measure_def inv_image_def)
wenzelm@13114
  1470
wenzelm@13142
  1471
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
nipkow@13145
  1472
by (simp add: lex_conv)
wenzelm@13114
  1473
wenzelm@13142
  1474
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
nipkow@13145
  1475
by (simp add:lex_conv)
wenzelm@13114
  1476
wenzelm@13142
  1477
lemma Cons_in_lex [iff]:
nipkow@13145
  1478
"((x # xs, y # ys) : lex r) =
nipkow@13145
  1479
((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
nipkow@13145
  1480
apply (simp add: lex_conv)
nipkow@13145
  1481
apply (rule iffI)
paulson@14208
  1482
 prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
paulson@14208
  1483
apply (case_tac xys, simp, simp)
nipkow@13145
  1484
apply blast
nipkow@13145
  1485
done
wenzelm@13114
  1486
wenzelm@13114
  1487
wenzelm@13142
  1488
subsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
wenzelm@13114
  1489
wenzelm@13142
  1490
lemma sublist_empty [simp]: "sublist xs {} = []"
nipkow@13145
  1491
by (auto simp add: sublist_def)
wenzelm@13114
  1492
wenzelm@13142
  1493
lemma sublist_nil [simp]: "sublist [] A = []"
nipkow@13145
  1494
by (auto simp add: sublist_def)
wenzelm@13114
  1495
wenzelm@13114
  1496
lemma sublist_shift_lemma:
nipkow@13145
  1497
"map fst [p:zip xs [i..i + length xs(] . snd p : A] =
nipkow@13145
  1498
map fst [p:zip xs [0..length xs(] . snd p + i : A]"
nipkow@13145
  1499
by (induct xs rule: rev_induct) (simp_all add: add_commute)
wenzelm@13114
  1500
wenzelm@13114
  1501
lemma sublist_append:
nipkow@13145
  1502
"sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
nipkow@13145
  1503
apply (unfold sublist_def)
paulson@14208
  1504
apply (induct l' rule: rev_induct, simp)
nipkow@13145
  1505
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
nipkow@13145
  1506
apply (simp add: add_commute)
nipkow@13145
  1507
done
wenzelm@13114
  1508
wenzelm@13114
  1509
lemma sublist_Cons:
nipkow@13145
  1510
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
nipkow@13145
  1511
apply (induct l rule: rev_induct)
nipkow@13145
  1512
 apply (simp add: sublist_def)
nipkow@13145
  1513
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
nipkow@13145
  1514
done
wenzelm@13114
  1515
wenzelm@13142
  1516
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
nipkow@13145
  1517
by (simp add: sublist_Cons)
wenzelm@13114
  1518
wenzelm@13142
  1519
lemma sublist_upt_eq_take [simp]: "sublist l {..n(} = take n l"
paulson@14208
  1520
apply (induct l rule: rev_induct, simp)
nipkow@13145
  1521
apply (simp split: nat_diff_split add: sublist_append)
nipkow@13145
  1522
done
wenzelm@13114
  1523
wenzelm@13114
  1524
wenzelm@13142
  1525
lemma take_Cons':
nipkow@13145
  1526
"take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
nipkow@13145
  1527
by (cases n) simp_all
wenzelm@13114
  1528
wenzelm@13142
  1529
lemma drop_Cons':
nipkow@13145
  1530
"drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
nipkow@13145
  1531
by (cases n) simp_all
wenzelm@13114
  1532
wenzelm@13142
  1533
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
nipkow@13145
  1534
by (cases n) simp_all
wenzelm@13114
  1535
nipkow@13145
  1536
lemmas [simp] = take_Cons'[of "number_of v",standard]
nipkow@13145
  1537
                drop_Cons'[of "number_of v",standard]
nipkow@13145
  1538
                nth_Cons'[of _ _ "number_of v",standard]
nipkow@3507
  1539
wenzelm@13462
  1540
kleing@14388
  1541
lemma distinct_card: "distinct xs \<Longrightarrow> card (set xs) = size xs"
kleing@14388
  1542
  by (induct xs) auto
kleing@14388
  1543
kleing@14388
  1544
lemma card_length: "card (set xs) \<le> length xs"
kleing@14388
  1545
  by (induct xs) (auto simp add: card_insert_if)
kleing@14388
  1546
kleing@14388
  1547
lemma "card (set xs) = size xs \<Longrightarrow> distinct xs"
kleing@14388
  1548
proof (induct xs)
kleing@14388
  1549
  case Nil thus ?case by simp
kleing@14388
  1550
next
kleing@14388
  1551
  case (Cons x xs)
kleing@14388
  1552
  show ?case
kleing@14388
  1553
  proof (cases "x \<in> set xs")
kleing@14388
  1554
    case False with Cons show ?thesis by simp
kleing@14388
  1555
  next
kleing@14388
  1556
    case True with Cons.prems
kleing@14388
  1557
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  1558
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  1559
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  1560
    ultimately have False by simp
kleing@14388
  1561
    thus ?thesis ..
kleing@14388
  1562
  qed
kleing@14388
  1563
qed
kleing@14388
  1564
wenzelm@13366
  1565
subsection {* Characters and strings *}
wenzelm@13366
  1566
wenzelm@13366
  1567
datatype nibble =
wenzelm@13366
  1568
    Nibble0 | Nibble1 | Nibble2 | Nibble3 | Nibble4 | Nibble5 | Nibble6 | Nibble7
wenzelm@13366
  1569
  | Nibble8 | Nibble9 | NibbleA | NibbleB | NibbleC | NibbleD | NibbleE | NibbleF
wenzelm@13366
  1570
wenzelm@13366
  1571
datatype char = Char nibble nibble
wenzelm@13366
  1572
  -- "Note: canonical order of character encoding coincides with standard term ordering"
wenzelm@13366
  1573
wenzelm@13366
  1574
types string = "char list"
wenzelm@13366
  1575
wenzelm@13366
  1576
syntax
wenzelm@13366
  1577
  "_Char" :: "xstr => char"    ("CHR _")
wenzelm@13366
  1578
  "_String" :: "xstr => string"    ("_")
wenzelm@13366
  1579
wenzelm@13366
  1580
parse_ast_translation {*
wenzelm@13366
  1581
  let
wenzelm@13366
  1582
    val constants = Syntax.Appl o map Syntax.Constant;
wenzelm@13366
  1583
wenzelm@13366
  1584
    fun mk_nib n = "Nibble" ^ chr (n + (if n <= 9 then ord "0" else ord "A" - 10));
wenzelm@13366
  1585
    fun mk_char c =
wenzelm@13366
  1586
      if Symbol.is_ascii c andalso Symbol.is_printable c then
wenzelm@13366
  1587
        constants ["Char", mk_nib (ord c div 16), mk_nib (ord c mod 16)]
wenzelm@13366
  1588
      else error ("Printable ASCII character expected: " ^ quote c);
wenzelm@13366
  1589
wenzelm@13366
  1590
    fun mk_string [] = Syntax.Constant "Nil"
wenzelm@13366
  1591
      | mk_string (c :: cs) = Syntax.Appl [Syntax.Constant "Cons", mk_char c, mk_string cs];
wenzelm@13366
  1592
wenzelm@13366
  1593
    fun char_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  1594
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  1595
          [c] => mk_char c
wenzelm@13366
  1596
        | _ => error ("Single character expected: " ^ xstr))
wenzelm@13366
  1597
      | char_ast_tr asts = raise AST ("char_ast_tr", asts);
wenzelm@13366
  1598
wenzelm@13366
  1599
    fun string_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  1600
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  1601
          [] => constants [Syntax.constrainC, "Nil", "string"]
wenzelm@13366
  1602
        | cs => mk_string cs)
wenzelm@13366
  1603
      | string_ast_tr asts = raise AST ("string_tr", asts);
wenzelm@13366
  1604
  in [("_Char", char_ast_tr), ("_String", string_ast_tr)] end;
wenzelm@13366
  1605
*}
wenzelm@13366
  1606
wenzelm@13366
  1607
print_ast_translation {*
wenzelm@13366
  1608
  let
wenzelm@13366
  1609
    fun dest_nib (Syntax.Constant c) =
wenzelm@13366
  1610
        (case explode c of
wenzelm@13366
  1611
          ["N", "i", "b", "b", "l", "e", h] =>
wenzelm@13366
  1612
            if "0" <= h andalso h <= "9" then ord h - ord "0"
wenzelm@13366
  1613
            else if "A" <= h andalso h <= "F" then ord h - ord "A" + 10
wenzelm@13366
  1614
            else raise Match
wenzelm@13366
  1615
        | _ => raise Match)
wenzelm@13366
  1616
      | dest_nib _ = raise Match;
wenzelm@13366
  1617
wenzelm@13366
  1618
    fun dest_chr c1 c2 =
wenzelm@13366
  1619
      let val c = chr (dest_nib c1 * 16 + dest_nib c2)
wenzelm@13366
  1620
      in if Symbol.is_printable c then c else raise Match end;
wenzelm@13366
  1621
wenzelm@13366
  1622
    fun dest_char (Syntax.Appl [Syntax.Constant "Char", c1, c2]) = dest_chr c1 c2
wenzelm@13366
  1623
      | dest_char _ = raise Match;
wenzelm@13366
  1624
wenzelm@13366
  1625
    fun xstr cs = Syntax.Appl [Syntax.Constant "_xstr", Syntax.Variable (Syntax.implode_xstr cs)];
wenzelm@13366
  1626
wenzelm@13366
  1627
    fun char_ast_tr' [c1, c2] = Syntax.Appl [Syntax.Constant "_Char", xstr [dest_chr c1 c2]]
wenzelm@13366
  1628
      | char_ast_tr' _ = raise Match;
wenzelm@13366
  1629
wenzelm@13366
  1630
    fun list_ast_tr' [args] = Syntax.Appl [Syntax.Constant "_String",
wenzelm@13366
  1631
            xstr (map dest_char (Syntax.unfold_ast "_args" args))]
wenzelm@13366
  1632
      | list_ast_tr' ts = raise Match;
wenzelm@13366
  1633
  in [("Char", char_ast_tr'), ("@list", list_ast_tr')] end;
wenzelm@13366
  1634
*}
wenzelm@13366
  1635
wenzelm@13122
  1636
end