src/HOL/Set.thy
author nipkow
Mon, 16 Aug 2004 14:22:27 +0200
changeset 15131 c69542757a4d
parent 15120 f0359f75682e
child 15140 322485b816ac
permissions -rw-r--r--
New theory header syntax.
clasohm@923
     1
(*  Title:      HOL/Set.thy
clasohm@923
     2
    ID:         $Id$
wenzelm@12257
     3
    Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
clasohm@923
     4
*)
clasohm@923
     5
wenzelm@11979
     6
header {* Set theory for higher-order logic *}
clasohm@923
     7
nipkow@15131
     8
theory Set
nipkow@15131
     9
import HOL
nipkow@15131
    10
begin
wenzelm@2261
    11
wenzelm@11979
    12
text {* A set in HOL is simply a predicate. *}
wenzelm@11979
    13
wenzelm@11979
    14
wenzelm@11979
    15
subsection {* Basic syntax *}
wenzelm@2261
    16
wenzelm@3947
    17
global
wenzelm@3947
    18
wenzelm@11979
    19
typedecl 'a set
wenzelm@12338
    20
arities set :: (type) type
clasohm@923
    21
wenzelm@11979
    22
consts
wenzelm@11979
    23
  "{}"          :: "'a set"                             ("{}")
wenzelm@11979
    24
  UNIV          :: "'a set"
wenzelm@11979
    25
  insert        :: "'a => 'a set => 'a set"
wenzelm@11979
    26
  Collect       :: "('a => bool) => 'a set"              -- "comprehension"
wenzelm@11979
    27
  Int           :: "'a set => 'a set => 'a set"          (infixl 70)
wenzelm@11979
    28
  Un            :: "'a set => 'a set => 'a set"          (infixl 65)
wenzelm@11979
    29
  UNION         :: "'a set => ('a => 'b set) => 'b set"  -- "general union"
wenzelm@11979
    30
  INTER         :: "'a set => ('a => 'b set) => 'b set"  -- "general intersection"
wenzelm@11979
    31
  Union         :: "'a set set => 'a set"                -- "union of a set"
wenzelm@11979
    32
  Inter         :: "'a set set => 'a set"                -- "intersection of a set"
wenzelm@11979
    33
  Pow           :: "'a set => 'a set set"                -- "powerset"
wenzelm@11979
    34
  Ball          :: "'a set => ('a => bool) => bool"      -- "bounded universal quantifiers"
wenzelm@11979
    35
  Bex           :: "'a set => ('a => bool) => bool"      -- "bounded existential quantifiers"
wenzelm@11979
    36
  image         :: "('a => 'b) => 'a set => 'b set"      (infixr "`" 90)
clasohm@923
    37
wenzelm@3820
    38
syntax
wenzelm@11979
    39
  "op :"        :: "'a => 'a set => bool"                ("op :")
wenzelm@11979
    40
consts
wenzelm@11979
    41
  "op :"        :: "'a => 'a set => bool"                ("(_/ : _)" [50, 51] 50)  -- "membership"
wenzelm@3820
    42
wenzelm@11979
    43
local
clasohm@923
    44
wenzelm@14692
    45
instance set :: (type) "{ord, minus}" ..
clasohm@923
    46
wenzelm@11979
    47
wenzelm@11979
    48
subsection {* Additional concrete syntax *}
wenzelm@2261
    49
clasohm@923
    50
syntax
wenzelm@11979
    51
  range         :: "('a => 'b) => 'b set"             -- "of function"
clasohm@923
    52
wenzelm@11979
    53
  "op ~:"       :: "'a => 'a set => bool"                 ("op ~:")  -- "non-membership"
wenzelm@11979
    54
  "op ~:"       :: "'a => 'a set => bool"                 ("(_/ ~: _)" [50, 51] 50)
clasohm@923
    55
wenzelm@11979
    56
  "@Finset"     :: "args => 'a set"                       ("{(_)}")
wenzelm@11979
    57
  "@Coll"       :: "pttrn => bool => 'a set"              ("(1{_./ _})")
wenzelm@11979
    58
  "@SetCompr"   :: "'a => idts => bool => 'a set"         ("(1{_ |/_./ _})")
wenzelm@2261
    59
wenzelm@11979
    60
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" 10)
wenzelm@11979
    61
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" 10)
wenzelm@11979
    62
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" 10)
wenzelm@11979
    63
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" 10)
wenzelm@7238
    64
wenzelm@11979
    65
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3ALL _:_./ _)" [0, 0, 10] 10)
wenzelm@11979
    66
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3EX _:_./ _)" [0, 0, 10] 10)
clasohm@923
    67
wenzelm@7238
    68
syntax (HOL)
wenzelm@11979
    69
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3! _:_./ _)" [0, 0, 10] 10)
wenzelm@11979
    70
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3? _:_./ _)" [0, 0, 10] 10)
clasohm@923
    71
clasohm@923
    72
translations
nipkow@10832
    73
  "range f"     == "f`UNIV"
clasohm@923
    74
  "x ~: y"      == "~ (x : y)"
clasohm@923
    75
  "{x, xs}"     == "insert x {xs}"
clasohm@923
    76
  "{x}"         == "insert x {}"
nipkow@13764
    77
  "{x. P}"      == "Collect (%x. P)"
paulson@4159
    78
  "UN x y. B"   == "UN x. UN y. B"
paulson@4159
    79
  "UN x. B"     == "UNION UNIV (%x. B)"
nipkow@13858
    80
  "UN x. B"     == "UN x:UNIV. B"
wenzelm@7238
    81
  "INT x y. B"  == "INT x. INT y. B"
paulson@4159
    82
  "INT x. B"    == "INTER UNIV (%x. B)"
nipkow@13858
    83
  "INT x. B"    == "INT x:UNIV. B"
nipkow@13764
    84
  "UN x:A. B"   == "UNION A (%x. B)"
nipkow@13764
    85
  "INT x:A. B"  == "INTER A (%x. B)"
nipkow@13764
    86
  "ALL x:A. P"  == "Ball A (%x. P)"
nipkow@13764
    87
  "EX x:A. P"   == "Bex A (%x. P)"
clasohm@923
    88
wenzelm@12633
    89
syntax (output)
wenzelm@11979
    90
  "_setle"      :: "'a set => 'a set => bool"             ("op <=")
wenzelm@11979
    91
  "_setle"      :: "'a set => 'a set => bool"             ("(_/ <= _)" [50, 51] 50)
wenzelm@11979
    92
  "_setless"    :: "'a set => 'a set => bool"             ("op <")
wenzelm@11979
    93
  "_setless"    :: "'a set => 'a set => bool"             ("(_/ < _)" [50, 51] 50)
clasohm@923
    94
wenzelm@12114
    95
syntax (xsymbols)
wenzelm@11979
    96
  "_setle"      :: "'a set => 'a set => bool"             ("op \<subseteq>")
wenzelm@11979
    97
  "_setle"      :: "'a set => 'a set => bool"             ("(_/ \<subseteq> _)" [50, 51] 50)
wenzelm@11979
    98
  "_setless"    :: "'a set => 'a set => bool"             ("op \<subset>")
wenzelm@11979
    99
  "_setless"    :: "'a set => 'a set => bool"             ("(_/ \<subset> _)" [50, 51] 50)
wenzelm@11979
   100
  "op Int"      :: "'a set => 'a set => 'a set"           (infixl "\<inter>" 70)
wenzelm@11979
   101
  "op Un"       :: "'a set => 'a set => 'a set"           (infixl "\<union>" 65)
wenzelm@11979
   102
  "op :"        :: "'a => 'a set => bool"                 ("op \<in>")
wenzelm@11979
   103
  "op :"        :: "'a => 'a set => bool"                 ("(_/ \<in> _)" [50, 51] 50)
wenzelm@11979
   104
  "op ~:"       :: "'a => 'a set => bool"                 ("op \<notin>")
wenzelm@11979
   105
  "op ~:"       :: "'a => 'a set => bool"                 ("(_/ \<notin> _)" [50, 51] 50)
nipkow@14381
   106
  Union         :: "'a set set => 'a set"                 ("\<Union>_" [90] 90)
nipkow@14381
   107
  Inter         :: "'a set set => 'a set"                 ("\<Inter>_" [90] 90)
nipkow@14381
   108
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
nipkow@14381
   109
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
nipkow@14381
   110
kleing@14565
   111
syntax (HTML output)
kleing@14565
   112
  "_setle"      :: "'a set => 'a set => bool"             ("op \<subseteq>")
kleing@14565
   113
  "_setle"      :: "'a set => 'a set => bool"             ("(_/ \<subseteq> _)" [50, 51] 50)
kleing@14565
   114
  "_setless"    :: "'a set => 'a set => bool"             ("op \<subset>")
kleing@14565
   115
  "_setless"    :: "'a set => 'a set => bool"             ("(_/ \<subset> _)" [50, 51] 50)
kleing@14565
   116
  "op Int"      :: "'a set => 'a set => 'a set"           (infixl "\<inter>" 70)
kleing@14565
   117
  "op Un"       :: "'a set => 'a set => 'a set"           (infixl "\<union>" 65)
kleing@14565
   118
  "op :"        :: "'a => 'a set => bool"                 ("op \<in>")
kleing@14565
   119
  "op :"        :: "'a => 'a set => bool"                 ("(_/ \<in> _)" [50, 51] 50)
kleing@14565
   120
  "op ~:"       :: "'a => 'a set => bool"                 ("op \<notin>")
kleing@14565
   121
  "op ~:"       :: "'a => 'a set => bool"                 ("(_/ \<notin> _)" [50, 51] 50)
kleing@14565
   122
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
kleing@14565
   123
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
kleing@14565
   124
nipkow@15120
   125
syntax (xsymbols)
wenzelm@11979
   126
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" 10)
wenzelm@11979
   127
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" 10)
wenzelm@11979
   128
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" 10)
wenzelm@11979
   129
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" 10)
nipkow@15120
   130
(*
nipkow@14381
   131
syntax (xsymbols)
wenzelm@14845
   132
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" 10)
wenzelm@14845
   133
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" 10)
wenzelm@14845
   134
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10)
wenzelm@14845
   135
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10)
nipkow@15120
   136
*)
nipkow@15120
   137
syntax (latex output)
nipkow@15120
   138
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" 10)
nipkow@15120
   139
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" 10)
nipkow@15120
   140
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10)
nipkow@15120
   141
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10)
nipkow@15120
   142
nipkow@15120
   143
text{* Note the difference between ordinary xsymbol syntax of indexed
nipkow@15120
   144
unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
nipkow@15120
   145
and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
nipkow@15120
   146
former does not make the index expression a subscript of the
nipkow@15120
   147
union/intersection symbol because this leads to problems with nested
nipkow@15120
   148
subscripts in Proof General.  *}
wenzelm@2261
   149
kleing@14565
   150
wenzelm@2412
   151
translations
wenzelm@11979
   152
  "op \<subseteq>" => "op <= :: _ set => _ set => bool"
wenzelm@11979
   153
  "op \<subset>" => "op <  :: _ set => _ set => bool"
wenzelm@2412
   154
wenzelm@11979
   155
typed_print_translation {*
wenzelm@11979
   156
  let
wenzelm@11979
   157
    fun le_tr' _ (Type ("fun", (Type ("set", _) :: _))) ts =
wenzelm@11979
   158
          list_comb (Syntax.const "_setle", ts)
wenzelm@11979
   159
      | le_tr' _ _ _ = raise Match;
wenzelm@2261
   160
wenzelm@11979
   161
    fun less_tr' _ (Type ("fun", (Type ("set", _) :: _))) ts =
wenzelm@11979
   162
          list_comb (Syntax.const "_setless", ts)
wenzelm@11979
   163
      | less_tr' _ _ _ = raise Match;
wenzelm@11979
   164
  in [("op <=", le_tr'), ("op <", less_tr')] end
wenzelm@11979
   165
*}
wenzelm@2261
   166
nipkow@14804
   167
nipkow@14804
   168
subsubsection "Bounded quantifiers"
nipkow@14804
   169
nipkow@14804
   170
syntax
nipkow@14804
   171
  "_setlessAll" :: "[idt, 'a, bool] => bool"  ("(3ALL _<_./ _)"  [0, 0, 10] 10)
nipkow@14804
   172
  "_setlessEx"  :: "[idt, 'a, bool] => bool"  ("(3EX _<_./ _)"  [0, 0, 10] 10)
nipkow@14804
   173
  "_setleAll"   :: "[idt, 'a, bool] => bool"  ("(3ALL _<=_./ _)" [0, 0, 10] 10)
nipkow@14804
   174
  "_setleEx"    :: "[idt, 'a, bool] => bool"  ("(3EX _<=_./ _)" [0, 0, 10] 10)
nipkow@14804
   175
nipkow@14804
   176
syntax (xsymbols)
nipkow@14804
   177
  "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
nipkow@14804
   178
  "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
nipkow@14804
   179
  "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
nipkow@14804
   180
  "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
nipkow@14804
   181
nipkow@14804
   182
syntax (HOL)
nipkow@14804
   183
  "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
nipkow@14804
   184
  "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
nipkow@14804
   185
  "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
nipkow@14804
   186
  "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)
nipkow@14804
   187
nipkow@14804
   188
syntax (HTML output)
nipkow@14804
   189
  "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
nipkow@14804
   190
  "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
nipkow@14804
   191
  "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
nipkow@14804
   192
  "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
nipkow@14804
   193
nipkow@14804
   194
translations
nipkow@14804
   195
 "\<forall>A\<subset>B. P"   =>  "ALL A. A \<subset> B --> P"
nipkow@14804
   196
 "\<exists>A\<subset>B. P"    =>  "EX A. A \<subset> B & P"
nipkow@14804
   197
 "\<forall>A\<subseteq>B. P"  =>  "ALL A. A \<subseteq> B --> P"
nipkow@14804
   198
 "\<exists>A\<subseteq>B. P"   =>  "EX A. A \<subseteq> B & P"
nipkow@14804
   199
nipkow@14804
   200
print_translation {*
nipkow@14804
   201
let
nipkow@14804
   202
  fun
nipkow@14804
   203
    all_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
nipkow@14804
   204
             Const("op -->",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
nipkow@14804
   205
  (if v=v' andalso T="set"
nipkow@14804
   206
   then Syntax.const "_setlessAll" $ Syntax.mark_bound v' $ n $ P
nipkow@14804
   207
   else raise Match)
nipkow@14804
   208
nipkow@14804
   209
  | all_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
nipkow@14804
   210
             Const("op -->",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
nipkow@14804
   211
  (if v=v' andalso T="set"
nipkow@14804
   212
   then Syntax.const "_setleAll" $ Syntax.mark_bound v' $ n $ P
nipkow@14804
   213
   else raise Match);
nipkow@14804
   214
nipkow@14804
   215
  fun
nipkow@14804
   216
    ex_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
nipkow@14804
   217
            Const("op &",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
nipkow@14804
   218
  (if v=v' andalso T="set"
nipkow@14804
   219
   then Syntax.const "_setlessEx" $ Syntax.mark_bound v' $ n $ P
nipkow@14804
   220
   else raise Match)
nipkow@14804
   221
nipkow@14804
   222
  | ex_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
nipkow@14804
   223
            Const("op &",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
nipkow@14804
   224
  (if v=v' andalso T="set"
nipkow@14804
   225
   then Syntax.const "_setleEx" $ Syntax.mark_bound v' $ n $ P
nipkow@14804
   226
   else raise Match)
nipkow@14804
   227
in
nipkow@14804
   228
[("ALL ", all_tr'), ("EX ", ex_tr')]
nipkow@14804
   229
end
nipkow@14804
   230
*}
nipkow@14804
   231
nipkow@14804
   232
nipkow@14804
   233
wenzelm@11979
   234
text {*
wenzelm@11979
   235
  \medskip Translate between @{text "{e | x1...xn. P}"} and @{text
wenzelm@11979
   236
  "{u. EX x1..xn. u = e & P}"}; @{text "{y. EX x1..xn. y = e & P}"} is
wenzelm@11979
   237
  only translated if @{text "[0..n] subset bvs(e)"}.
wenzelm@11979
   238
*}
wenzelm@3947
   239
wenzelm@11979
   240
parse_translation {*
wenzelm@11979
   241
  let
wenzelm@11979
   242
    val ex_tr = snd (mk_binder_tr ("EX ", "Ex"));
clasohm@923
   243
wenzelm@11979
   244
    fun nvars (Const ("_idts", _) $ _ $ idts) = nvars idts + 1
wenzelm@11979
   245
      | nvars _ = 1;
clasohm@923
   246
wenzelm@11979
   247
    fun setcompr_tr [e, idts, b] =
wenzelm@11979
   248
      let
wenzelm@11979
   249
        val eq = Syntax.const "op =" $ Bound (nvars idts) $ e;
wenzelm@11979
   250
        val P = Syntax.const "op &" $ eq $ b;
wenzelm@11979
   251
        val exP = ex_tr [idts, P];
wenzelm@11979
   252
      in Syntax.const "Collect" $ Abs ("", dummyT, exP) end;
clasohm@923
   253
wenzelm@11979
   254
  in [("@SetCompr", setcompr_tr)] end;
wenzelm@11979
   255
*}
wenzelm@11979
   256
nipkow@13763
   257
(* To avoid eta-contraction of body: *)
wenzelm@11979
   258
print_translation {*
nipkow@13763
   259
let
nipkow@13763
   260
  fun btr' syn [A,Abs abs] =
nipkow@13763
   261
    let val (x,t) = atomic_abs_tr' abs
nipkow@13763
   262
    in Syntax.const syn $ x $ A $ t end
nipkow@13763
   263
in
nipkow@13858
   264
[("Ball", btr' "_Ball"),("Bex", btr' "_Bex"),
nipkow@13858
   265
 ("UNION", btr' "@UNION"),("INTER", btr' "@INTER")]
nipkow@13763
   266
end
nipkow@13763
   267
*}
nipkow@13763
   268
nipkow@13763
   269
print_translation {*
nipkow@13763
   270
let
nipkow@13763
   271
  val ex_tr' = snd (mk_binder_tr' ("Ex", "DUMMY"));
nipkow@13763
   272
nipkow@13763
   273
  fun setcompr_tr' [Abs (abs as (_, _, P))] =
nipkow@13763
   274
    let
nipkow@13763
   275
      fun check (Const ("Ex", _) $ Abs (_, _, P), n) = check (P, n + 1)
nipkow@13763
   276
        | check (Const ("op &", _) $ (Const ("op =", _) $ Bound m $ e) $ P, n) =
nipkow@13763
   277
            n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso
nipkow@13763
   278
            ((0 upto (n - 1)) subset add_loose_bnos (e, 0, []))
nipkow@13764
   279
        | check _ = false
wenzelm@11979
   280
wenzelm@11979
   281
        fun tr' (_ $ abs) =
wenzelm@11979
   282
          let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' [abs]
wenzelm@11979
   283
          in Syntax.const "@SetCompr" $ e $ idts $ Q end;
nipkow@13763
   284
    in if check (P, 0) then tr' P
nipkow@13763
   285
       else let val (x,t) = atomic_abs_tr' abs
nipkow@13763
   286
            in Syntax.const "@Coll" $ x $ t end
nipkow@13763
   287
    end;
wenzelm@11979
   288
  in [("Collect", setcompr_tr')] end;
wenzelm@11979
   289
*}
wenzelm@11979
   290
wenzelm@11979
   291
wenzelm@11979
   292
subsection {* Rules and definitions *}
wenzelm@11979
   293
wenzelm@11979
   294
text {* Isomorphisms between predicates and sets. *}
wenzelm@11979
   295
wenzelm@11979
   296
axioms
wenzelm@11979
   297
  mem_Collect_eq [iff]: "(a : {x. P(x)}) = P(a)"
wenzelm@11979
   298
  Collect_mem_eq [simp]: "{x. x:A} = A"
clasohm@923
   299
clasohm@923
   300
defs
wenzelm@11979
   301
  Ball_def:     "Ball A P       == ALL x. x:A --> P(x)"
wenzelm@11979
   302
  Bex_def:      "Bex A P        == EX x. x:A & P(x)"
regensbu@1273
   303
wenzelm@11979
   304
defs (overloaded)
wenzelm@11979
   305
  subset_def:   "A <= B         == ALL x:A. x:B"
wenzelm@11979
   306
  psubset_def:  "A < B          == (A::'a set) <= B & ~ A=B"
wenzelm@11979
   307
  Compl_def:    "- A            == {x. ~x:A}"
wenzelm@12257
   308
  set_diff_def: "A - B          == {x. x:A & ~x:B}"
wenzelm@11979
   309
wenzelm@11979
   310
defs
wenzelm@11979
   311
  Un_def:       "A Un B         == {x. x:A | x:B}"
wenzelm@11979
   312
  Int_def:      "A Int B        == {x. x:A & x:B}"
wenzelm@11979
   313
  INTER_def:    "INTER A B      == {y. ALL x:A. y: B(x)}"
wenzelm@11979
   314
  UNION_def:    "UNION A B      == {y. EX x:A. y: B(x)}"
wenzelm@11979
   315
  Inter_def:    "Inter S        == (INT x:S. x)"
wenzelm@11979
   316
  Union_def:    "Union S        == (UN x:S. x)"
wenzelm@11979
   317
  Pow_def:      "Pow A          == {B. B <= A}"
wenzelm@11979
   318
  empty_def:    "{}             == {x. False}"
wenzelm@11979
   319
  UNIV_def:     "UNIV           == {x. True}"
wenzelm@11979
   320
  insert_def:   "insert a B     == {x. x=a} Un B"
wenzelm@11979
   321
  image_def:    "f`A            == {y. EX x:A. y = f(x)}"
wenzelm@11979
   322
wenzelm@11979
   323
wenzelm@11979
   324
subsection {* Lemmas and proof tool setup *}
wenzelm@11979
   325
wenzelm@11979
   326
subsubsection {* Relating predicates and sets *}
wenzelm@11979
   327
wenzelm@12257
   328
lemma CollectI: "P(a) ==> a : {x. P(x)}"
wenzelm@11979
   329
  by simp
wenzelm@11979
   330
wenzelm@11979
   331
lemma CollectD: "a : {x. P(x)} ==> P(a)"
wenzelm@11979
   332
  by simp
wenzelm@11979
   333
wenzelm@11979
   334
lemma Collect_cong: "(!!x. P x = Q x) ==> {x. P(x)} = {x. Q(x)}"
wenzelm@11979
   335
  by simp
wenzelm@11979
   336
wenzelm@12257
   337
lemmas CollectE = CollectD [elim_format]
wenzelm@11979
   338
wenzelm@11979
   339
wenzelm@11979
   340
subsubsection {* Bounded quantifiers *}
wenzelm@11979
   341
wenzelm@11979
   342
lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x"
wenzelm@11979
   343
  by (simp add: Ball_def)
wenzelm@11979
   344
wenzelm@11979
   345
lemmas strip = impI allI ballI
wenzelm@11979
   346
wenzelm@11979
   347
lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x"
wenzelm@11979
   348
  by (simp add: Ball_def)
wenzelm@11979
   349
wenzelm@11979
   350
lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q"
wenzelm@11979
   351
  by (unfold Ball_def) blast
oheimb@14098
   352
ML {* bind_thm("rev_ballE",permute_prems 1 1 (thm "ballE")) *}
wenzelm@11979
   353
wenzelm@11979
   354
text {*
wenzelm@11979
   355
  \medskip This tactic takes assumptions @{prop "ALL x:A. P x"} and
wenzelm@11979
   356
  @{prop "a:A"}; creates assumption @{prop "P a"}.
wenzelm@11979
   357
*}
wenzelm@11979
   358
wenzelm@11979
   359
ML {*
wenzelm@11979
   360
  local val ballE = thm "ballE"
wenzelm@11979
   361
  in fun ball_tac i = etac ballE i THEN contr_tac (i + 1) end;
wenzelm@11979
   362
*}
wenzelm@11979
   363
wenzelm@11979
   364
text {*
wenzelm@11979
   365
  Gives better instantiation for bound:
wenzelm@11979
   366
*}
wenzelm@11979
   367
wenzelm@11979
   368
ML_setup {*
wenzelm@11979
   369
  claset_ref() := claset() addbefore ("bspec", datac (thm "bspec") 1);
wenzelm@11979
   370
*}
wenzelm@11979
   371
wenzelm@11979
   372
lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x"
wenzelm@11979
   373
  -- {* Normally the best argument order: @{prop "P x"} constrains the
wenzelm@11979
   374
    choice of @{prop "x:A"}. *}
wenzelm@11979
   375
  by (unfold Bex_def) blast
wenzelm@11979
   376
wenzelm@13113
   377
lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x"
wenzelm@11979
   378
  -- {* The best argument order when there is only one @{prop "x:A"}. *}
wenzelm@11979
   379
  by (unfold Bex_def) blast
wenzelm@11979
   380
wenzelm@11979
   381
lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x"
wenzelm@11979
   382
  by (unfold Bex_def) blast
wenzelm@11979
   383
wenzelm@11979
   384
lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q"
wenzelm@11979
   385
  by (unfold Bex_def) blast
wenzelm@11979
   386
wenzelm@11979
   387
lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)"
wenzelm@11979
   388
  -- {* Trival rewrite rule. *}
wenzelm@11979
   389
  by (simp add: Ball_def)
wenzelm@11979
   390
wenzelm@11979
   391
lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)"
wenzelm@11979
   392
  -- {* Dual form for existentials. *}
wenzelm@11979
   393
  by (simp add: Bex_def)
wenzelm@11979
   394
wenzelm@11979
   395
lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)"
wenzelm@11979
   396
  by blast
wenzelm@11979
   397
wenzelm@11979
   398
lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)"
wenzelm@11979
   399
  by blast
wenzelm@11979
   400
wenzelm@11979
   401
lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)"
wenzelm@11979
   402
  by blast
wenzelm@11979
   403
wenzelm@11979
   404
lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)"
wenzelm@11979
   405
  by blast
wenzelm@11979
   406
wenzelm@11979
   407
lemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)"
wenzelm@11979
   408
  by blast
wenzelm@11979
   409
wenzelm@11979
   410
lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)"
wenzelm@11979
   411
  by blast
wenzelm@11979
   412
wenzelm@11979
   413
ML_setup {*
wenzelm@13462
   414
  local
wenzelm@11979
   415
    val Ball_def = thm "Ball_def";
wenzelm@11979
   416
    val Bex_def = thm "Bex_def";
wenzelm@11979
   417
wenzelm@11979
   418
    val prove_bex_tac =
wenzelm@11979
   419
      rewrite_goals_tac [Bex_def] THEN Quantifier1.prove_one_point_ex_tac;
wenzelm@11979
   420
    val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac;
wenzelm@11979
   421
wenzelm@11979
   422
    val prove_ball_tac =
wenzelm@11979
   423
      rewrite_goals_tac [Ball_def] THEN Quantifier1.prove_one_point_all_tac;
wenzelm@11979
   424
    val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac;
wenzelm@11979
   425
  in
wenzelm@13462
   426
    val defBEX_regroup = Simplifier.simproc (Theory.sign_of (the_context ()))
wenzelm@13462
   427
      "defined BEX" ["EX x:A. P x & Q x"] rearrange_bex;
wenzelm@13462
   428
    val defBALL_regroup = Simplifier.simproc (Theory.sign_of (the_context ()))
wenzelm@13462
   429
      "defined BALL" ["ALL x:A. P x --> Q x"] rearrange_ball;
wenzelm@11979
   430
  end;
wenzelm@13462
   431
wenzelm@13462
   432
  Addsimprocs [defBALL_regroup, defBEX_regroup];
wenzelm@11979
   433
*}
wenzelm@11979
   434
wenzelm@11979
   435
wenzelm@11979
   436
subsubsection {* Congruence rules *}
wenzelm@11979
   437
wenzelm@11979
   438
lemma ball_cong [cong]:
wenzelm@11979
   439
  "A = B ==> (!!x. x:B ==> P x = Q x) ==>
wenzelm@11979
   440
    (ALL x:A. P x) = (ALL x:B. Q x)"
wenzelm@11979
   441
  by (simp add: Ball_def)
wenzelm@11979
   442
wenzelm@11979
   443
lemma bex_cong [cong]:
wenzelm@11979
   444
  "A = B ==> (!!x. x:B ==> P x = Q x) ==>
wenzelm@11979
   445
    (EX x:A. P x) = (EX x:B. Q x)"
wenzelm@11979
   446
  by (simp add: Bex_def cong: conj_cong)
wenzelm@11979
   447
wenzelm@11979
   448
wenzelm@11979
   449
subsubsection {* Subsets *}
wenzelm@11979
   450
wenzelm@12897
   451
lemma subsetI [intro!]: "(!!x. x:A ==> x:B) ==> A \<subseteq> B"
wenzelm@11979
   452
  by (simp add: subset_def)
wenzelm@11979
   453
wenzelm@11979
   454
text {*
wenzelm@11979
   455
  \medskip Map the type @{text "'a set => anything"} to just @{typ
wenzelm@11979
   456
  'a}; for overloading constants whose first argument has type @{typ
wenzelm@11979
   457
  "'a set"}.
wenzelm@11979
   458
*}
wenzelm@11979
   459
wenzelm@12897
   460
lemma subsetD [elim]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B"
wenzelm@11979
   461
  -- {* Rule in Modus Ponens style. *}
wenzelm@11979
   462
  by (unfold subset_def) blast
wenzelm@11979
   463
wenzelm@11979
   464
declare subsetD [intro?] -- FIXME
wenzelm@11979
   465
wenzelm@12897
   466
lemma rev_subsetD: "c \<in> A ==> A \<subseteq> B ==> c \<in> B"
wenzelm@11979
   467
  -- {* The same, with reversed premises for use with @{text erule} --
wenzelm@11979
   468
      cf @{text rev_mp}. *}
wenzelm@11979
   469
  by (rule subsetD)
wenzelm@11979
   470
wenzelm@11979
   471
declare rev_subsetD [intro?] -- FIXME
wenzelm@11979
   472
wenzelm@11979
   473
text {*
wenzelm@12897
   474
  \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}.
wenzelm@11979
   475
*}
wenzelm@11979
   476
wenzelm@11979
   477
ML {*
wenzelm@11979
   478
  local val rev_subsetD = thm "rev_subsetD"
wenzelm@11979
   479
  in fun impOfSubs th = th RSN (2, rev_subsetD) end;
wenzelm@11979
   480
*}
wenzelm@11979
   481
wenzelm@12897
   482
lemma subsetCE [elim]: "A \<subseteq>  B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P"
wenzelm@11979
   483
  -- {* Classical elimination rule. *}
wenzelm@11979
   484
  by (unfold subset_def) blast
wenzelm@11979
   485
wenzelm@11979
   486
text {*
wenzelm@12897
   487
  \medskip Takes assumptions @{prop "A \<subseteq> B"}; @{prop "c \<in> A"} and
wenzelm@12897
   488
  creates the assumption @{prop "c \<in> B"}.
wenzelm@11979
   489
*}
wenzelm@11979
   490
wenzelm@11979
   491
ML {*
wenzelm@11979
   492
  local val subsetCE = thm "subsetCE"
wenzelm@11979
   493
  in fun set_mp_tac i = etac subsetCE i THEN mp_tac i end;
wenzelm@11979
   494
*}
wenzelm@11979
   495
wenzelm@12897
   496
lemma contra_subsetD: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A"
wenzelm@11979
   497
  by blast
wenzelm@11979
   498
wenzelm@12897
   499
lemma subset_refl: "A \<subseteq> A"
wenzelm@11979
   500
  by fast
wenzelm@11979
   501
wenzelm@12897
   502
lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C"
wenzelm@11979
   503
  by blast
wenzelm@11979
   504
wenzelm@11979
   505
wenzelm@11979
   506
subsubsection {* Equality *}
wenzelm@11979
   507
paulson@13865
   508
lemma set_ext: assumes prem: "(!!x. (x:A) = (x:B))" shows "A = B"
paulson@13865
   509
  apply (rule prem [THEN ext, THEN arg_cong, THEN box_equals])
paulson@13865
   510
   apply (rule Collect_mem_eq)
paulson@13865
   511
  apply (rule Collect_mem_eq)
paulson@13865
   512
  done
paulson@13865
   513
wenzelm@12897
   514
lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B"
wenzelm@11979
   515
  -- {* Anti-symmetry of the subset relation. *}
wenzelm@12897
   516
  by (rules intro: set_ext subsetD)
wenzelm@12897
   517
wenzelm@12897
   518
lemmas equalityI [intro!] = subset_antisym
wenzelm@11979
   519
wenzelm@11979
   520
text {*
wenzelm@11979
   521
  \medskip Equality rules from ZF set theory -- are they appropriate
wenzelm@11979
   522
  here?
wenzelm@11979
   523
*}
wenzelm@11979
   524
wenzelm@12897
   525
lemma equalityD1: "A = B ==> A \<subseteq> B"
wenzelm@11979
   526
  by (simp add: subset_refl)
wenzelm@11979
   527
wenzelm@12897
   528
lemma equalityD2: "A = B ==> B \<subseteq> A"
wenzelm@11979
   529
  by (simp add: subset_refl)
wenzelm@11979
   530
wenzelm@11979
   531
text {*
wenzelm@11979
   532
  \medskip Be careful when adding this to the claset as @{text
wenzelm@11979
   533
  subset_empty} is in the simpset: @{prop "A = {}"} goes to @{prop "{}
wenzelm@12897
   534
  \<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}!
wenzelm@11979
   535
*}
wenzelm@11979
   536
wenzelm@12897
   537
lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P"
wenzelm@11979
   538
  by (simp add: subset_refl)
wenzelm@11979
   539
wenzelm@11979
   540
lemma equalityCE [elim]:
wenzelm@12897
   541
    "A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P"
wenzelm@11979
   542
  by blast
wenzelm@11979
   543
wenzelm@11979
   544
text {*
wenzelm@11979
   545
  \medskip Lemma for creating induction formulae -- for "pattern
wenzelm@11979
   546
  matching" on @{text p}.  To make the induction hypotheses usable,
wenzelm@11979
   547
  apply @{text spec} or @{text bspec} to put universal quantifiers over the free
wenzelm@11979
   548
  variables in @{text p}.
wenzelm@11979
   549
*}
wenzelm@11979
   550
wenzelm@11979
   551
lemma setup_induction: "p:A ==> (!!z. z:A ==> p = z --> R) ==> R"
wenzelm@11979
   552
  by simp
wenzelm@11979
   553
wenzelm@11979
   554
lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)"
wenzelm@11979
   555
  by simp
wenzelm@11979
   556
paulson@13865
   557
lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)"
paulson@13865
   558
  by simp
paulson@13865
   559
wenzelm@11979
   560
wenzelm@11979
   561
subsubsection {* The universal set -- UNIV *}
wenzelm@11979
   562
wenzelm@11979
   563
lemma UNIV_I [simp]: "x : UNIV"
wenzelm@11979
   564
  by (simp add: UNIV_def)
wenzelm@11979
   565
wenzelm@11979
   566
declare UNIV_I [intro]  -- {* unsafe makes it less likely to cause problems *}
wenzelm@11979
   567
wenzelm@11979
   568
lemma UNIV_witness [intro?]: "EX x. x : UNIV"
wenzelm@11979
   569
  by simp
wenzelm@11979
   570
wenzelm@12897
   571
lemma subset_UNIV: "A \<subseteq> UNIV"
wenzelm@11979
   572
  by (rule subsetI) (rule UNIV_I)
wenzelm@11979
   573
wenzelm@11979
   574
text {*
wenzelm@11979
   575
  \medskip Eta-contracting these two rules (to remove @{text P})
wenzelm@11979
   576
  causes them to be ignored because of their interaction with
wenzelm@11979
   577
  congruence rules.
wenzelm@11979
   578
*}
wenzelm@11979
   579
wenzelm@11979
   580
lemma ball_UNIV [simp]: "Ball UNIV P = All P"
wenzelm@11979
   581
  by (simp add: Ball_def)
wenzelm@11979
   582
wenzelm@11979
   583
lemma bex_UNIV [simp]: "Bex UNIV P = Ex P"
wenzelm@11979
   584
  by (simp add: Bex_def)
wenzelm@11979
   585
wenzelm@11979
   586
wenzelm@11979
   587
subsubsection {* The empty set *}
wenzelm@11979
   588
wenzelm@11979
   589
lemma empty_iff [simp]: "(c : {}) = False"
wenzelm@11979
   590
  by (simp add: empty_def)
wenzelm@11979
   591
wenzelm@11979
   592
lemma emptyE [elim!]: "a : {} ==> P"
wenzelm@11979
   593
  by simp
wenzelm@11979
   594
wenzelm@12897
   595
lemma empty_subsetI [iff]: "{} \<subseteq> A"
wenzelm@11979
   596
    -- {* One effect is to delete the ASSUMPTION @{prop "{} <= A"} *}
wenzelm@11979
   597
  by blast
wenzelm@11979
   598
wenzelm@12897
   599
lemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}"
wenzelm@11979
   600
  by blast
wenzelm@11979
   601
wenzelm@12897
   602
lemma equals0D: "A = {} ==> a \<notin> A"
wenzelm@11979
   603
    -- {* Use for reasoning about disjointness: @{prop "A Int B = {}"} *}
wenzelm@11979
   604
  by blast
wenzelm@11979
   605
wenzelm@11979
   606
lemma ball_empty [simp]: "Ball {} P = True"
wenzelm@11979
   607
  by (simp add: Ball_def)
wenzelm@11979
   608
wenzelm@11979
   609
lemma bex_empty [simp]: "Bex {} P = False"
wenzelm@11979
   610
  by (simp add: Bex_def)
wenzelm@11979
   611
wenzelm@11979
   612
lemma UNIV_not_empty [iff]: "UNIV ~= {}"
wenzelm@11979
   613
  by (blast elim: equalityE)
wenzelm@11979
   614
wenzelm@11979
   615
wenzelm@12023
   616
subsubsection {* The Powerset operator -- Pow *}
wenzelm@11979
   617
wenzelm@12897
   618
lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)"
wenzelm@11979
   619
  by (simp add: Pow_def)
wenzelm@11979
   620
wenzelm@12897
   621
lemma PowI: "A \<subseteq> B ==> A \<in> Pow B"
wenzelm@11979
   622
  by (simp add: Pow_def)
wenzelm@11979
   623
wenzelm@12897
   624
lemma PowD: "A \<in> Pow B ==> A \<subseteq> B"
wenzelm@11979
   625
  by (simp add: Pow_def)
wenzelm@11979
   626
wenzelm@12897
   627
lemma Pow_bottom: "{} \<in> Pow B"
wenzelm@11979
   628
  by simp
wenzelm@11979
   629
wenzelm@12897
   630
lemma Pow_top: "A \<in> Pow A"
wenzelm@11979
   631
  by (simp add: subset_refl)
wenzelm@11979
   632
wenzelm@11979
   633
wenzelm@11979
   634
subsubsection {* Set complement *}
wenzelm@11979
   635
wenzelm@12897
   636
lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)"
wenzelm@11979
   637
  by (unfold Compl_def) blast
wenzelm@11979
   638
wenzelm@12897
   639
lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A"
wenzelm@11979
   640
  by (unfold Compl_def) blast
wenzelm@11979
   641
wenzelm@11979
   642
text {*
wenzelm@11979
   643
  \medskip This form, with negated conclusion, works well with the
wenzelm@11979
   644
  Classical prover.  Negated assumptions behave like formulae on the
wenzelm@11979
   645
  right side of the notional turnstile ... *}
wenzelm@11979
   646
wenzelm@11979
   647
lemma ComplD: "c : -A ==> c~:A"
wenzelm@11979
   648
  by (unfold Compl_def) blast
wenzelm@11979
   649
wenzelm@11979
   650
lemmas ComplE [elim!] = ComplD [elim_format]
wenzelm@11979
   651
wenzelm@11979
   652
wenzelm@11979
   653
subsubsection {* Binary union -- Un *}
wenzelm@11979
   654
wenzelm@11979
   655
lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)"
wenzelm@11979
   656
  by (unfold Un_def) blast
wenzelm@11979
   657
wenzelm@11979
   658
lemma UnI1 [elim?]: "c:A ==> c : A Un B"
wenzelm@11979
   659
  by simp
wenzelm@11979
   660
wenzelm@11979
   661
lemma UnI2 [elim?]: "c:B ==> c : A Un B"
wenzelm@11979
   662
  by simp
wenzelm@11979
   663
wenzelm@11979
   664
text {*
wenzelm@11979
   665
  \medskip Classical introduction rule: no commitment to @{prop A} vs
wenzelm@11979
   666
  @{prop B}.
wenzelm@11979
   667
*}
wenzelm@11979
   668
wenzelm@11979
   669
lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B"
wenzelm@11979
   670
  by auto
wenzelm@11979
   671
wenzelm@11979
   672
lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P"
wenzelm@11979
   673
  by (unfold Un_def) blast
wenzelm@11979
   674
wenzelm@11979
   675
wenzelm@12023
   676
subsubsection {* Binary intersection -- Int *}
wenzelm@11979
   677
wenzelm@11979
   678
lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)"
wenzelm@11979
   679
  by (unfold Int_def) blast
wenzelm@11979
   680
wenzelm@11979
   681
lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B"
wenzelm@11979
   682
  by simp
wenzelm@11979
   683
wenzelm@11979
   684
lemma IntD1: "c : A Int B ==> c:A"
wenzelm@11979
   685
  by simp
wenzelm@11979
   686
wenzelm@11979
   687
lemma IntD2: "c : A Int B ==> c:B"
wenzelm@11979
   688
  by simp
wenzelm@11979
   689
wenzelm@11979
   690
lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P"
wenzelm@11979
   691
  by simp
wenzelm@11979
   692
wenzelm@11979
   693
wenzelm@12023
   694
subsubsection {* Set difference *}
wenzelm@11979
   695
wenzelm@11979
   696
lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)"
wenzelm@11979
   697
  by (unfold set_diff_def) blast
wenzelm@11979
   698
wenzelm@11979
   699
lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B"
wenzelm@11979
   700
  by simp
wenzelm@11979
   701
wenzelm@11979
   702
lemma DiffD1: "c : A - B ==> c : A"
wenzelm@11979
   703
  by simp
wenzelm@11979
   704
wenzelm@11979
   705
lemma DiffD2: "c : A - B ==> c : B ==> P"
wenzelm@11979
   706
  by simp
wenzelm@11979
   707
wenzelm@11979
   708
lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P"
wenzelm@11979
   709
  by simp
wenzelm@11979
   710
wenzelm@11979
   711
wenzelm@11979
   712
subsubsection {* Augmenting a set -- insert *}
wenzelm@11979
   713
wenzelm@11979
   714
lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)"
wenzelm@11979
   715
  by (unfold insert_def) blast
wenzelm@11979
   716
wenzelm@11979
   717
lemma insertI1: "a : insert a B"
wenzelm@11979
   718
  by simp
wenzelm@11979
   719
wenzelm@11979
   720
lemma insertI2: "a : B ==> a : insert b B"
wenzelm@11979
   721
  by simp
wenzelm@11979
   722
wenzelm@11979
   723
lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P"
wenzelm@11979
   724
  by (unfold insert_def) blast
wenzelm@11979
   725
wenzelm@11979
   726
lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B"
wenzelm@11979
   727
  -- {* Classical introduction rule. *}
wenzelm@11979
   728
  by auto
wenzelm@11979
   729
wenzelm@12897
   730
lemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A - {x} \<subseteq> B else A \<subseteq> B)"
wenzelm@11979
   731
  by auto
wenzelm@11979
   732
wenzelm@11979
   733
wenzelm@11979
   734
subsubsection {* Singletons, using insert *}
wenzelm@11979
   735
wenzelm@11979
   736
lemma singletonI [intro!]: "a : {a}"
wenzelm@11979
   737
    -- {* Redundant? But unlike @{text insertCI}, it proves the subgoal immediately! *}
wenzelm@11979
   738
  by (rule insertI1)
wenzelm@11979
   739
wenzelm@11979
   740
lemma singletonD: "b : {a} ==> b = a"
wenzelm@11979
   741
  by blast
wenzelm@11979
   742
wenzelm@11979
   743
lemmas singletonE [elim!] = singletonD [elim_format]
wenzelm@11979
   744
wenzelm@11979
   745
lemma singleton_iff: "(b : {a}) = (b = a)"
wenzelm@11979
   746
  by blast
wenzelm@11979
   747
wenzelm@11979
   748
lemma singleton_inject [dest!]: "{a} = {b} ==> a = b"
wenzelm@11979
   749
  by blast
wenzelm@11979
   750
wenzelm@12897
   751
lemma singleton_insert_inj_eq [iff]: "({b} = insert a A) = (a = b & A \<subseteq> {b})"
wenzelm@11979
   752
  by blast
wenzelm@11979
   753
wenzelm@12897
   754
lemma singleton_insert_inj_eq' [iff]: "(insert a A = {b}) = (a = b & A \<subseteq> {b})"
wenzelm@11979
   755
  by blast
wenzelm@11979
   756
wenzelm@12897
   757
lemma subset_singletonD: "A \<subseteq> {x} ==> A = {} | A = {x}"
wenzelm@11979
   758
  by fast
wenzelm@11979
   759
wenzelm@11979
   760
lemma singleton_conv [simp]: "{x. x = a} = {a}"
wenzelm@11979
   761
  by blast
wenzelm@11979
   762
wenzelm@11979
   763
lemma singleton_conv2 [simp]: "{x. a = x} = {a}"
wenzelm@11979
   764
  by blast
wenzelm@11979
   765
wenzelm@12897
   766
lemma diff_single_insert: "A - {x} \<subseteq> B ==> x \<in> A ==> A \<subseteq> insert x B"
wenzelm@11979
   767
  by blast
wenzelm@11979
   768
wenzelm@11979
   769
wenzelm@11979
   770
subsubsection {* Unions of families *}
wenzelm@11979
   771
wenzelm@11979
   772
text {*
wenzelm@11979
   773
  @{term [source] "UN x:A. B x"} is @{term "Union (B`A)"}.
wenzelm@11979
   774
*}
wenzelm@11979
   775
wenzelm@11979
   776
lemma UN_iff [simp]: "(b: (UN x:A. B x)) = (EX x:A. b: B x)"
wenzelm@11979
   777
  by (unfold UNION_def) blast
wenzelm@11979
   778
wenzelm@11979
   779
lemma UN_I [intro]: "a:A ==> b: B a ==> b: (UN x:A. B x)"
wenzelm@11979
   780
  -- {* The order of the premises presupposes that @{term A} is rigid;
wenzelm@11979
   781
    @{term b} may be flexible. *}
wenzelm@11979
   782
  by auto
wenzelm@11979
   783
wenzelm@11979
   784
lemma UN_E [elim!]: "b : (UN x:A. B x) ==> (!!x. x:A ==> b: B x ==> R) ==> R"
wenzelm@11979
   785
  by (unfold UNION_def) blast
wenzelm@11979
   786
wenzelm@11979
   787
lemma UN_cong [cong]:
wenzelm@11979
   788
    "A = B ==> (!!x. x:B ==> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)"
wenzelm@11979
   789
  by (simp add: UNION_def)
wenzelm@11979
   790
wenzelm@11979
   791
wenzelm@11979
   792
subsubsection {* Intersections of families *}
wenzelm@11979
   793
wenzelm@11979
   794
text {* @{term [source] "INT x:A. B x"} is @{term "Inter (B`A)"}. *}
wenzelm@11979
   795
wenzelm@11979
   796
lemma INT_iff [simp]: "(b: (INT x:A. B x)) = (ALL x:A. b: B x)"
wenzelm@11979
   797
  by (unfold INTER_def) blast
wenzelm@11979
   798
wenzelm@11979
   799
lemma INT_I [intro!]: "(!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)"
wenzelm@11979
   800
  by (unfold INTER_def) blast
wenzelm@11979
   801
wenzelm@11979
   802
lemma INT_D [elim]: "b : (INT x:A. B x) ==> a:A ==> b: B a"
wenzelm@11979
   803
  by auto
wenzelm@11979
   804
wenzelm@11979
   805
lemma INT_E [elim]: "b : (INT x:A. B x) ==> (b: B a ==> R) ==> (a~:A ==> R) ==> R"
wenzelm@11979
   806
  -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a:A"}. *}
wenzelm@11979
   807
  by (unfold INTER_def) blast
wenzelm@11979
   808
wenzelm@11979
   809
lemma INT_cong [cong]:
wenzelm@11979
   810
    "A = B ==> (!!x. x:B ==> C x = D x) ==> (INT x:A. C x) = (INT x:B. D x)"
wenzelm@11979
   811
  by (simp add: INTER_def)
wenzelm@11979
   812
wenzelm@11979
   813
wenzelm@11979
   814
subsubsection {* Union *}
wenzelm@11979
   815
wenzelm@11979
   816
lemma Union_iff [simp]: "(A : Union C) = (EX X:C. A:X)"
wenzelm@11979
   817
  by (unfold Union_def) blast
wenzelm@11979
   818
wenzelm@11979
   819
lemma UnionI [intro]: "X:C ==> A:X ==> A : Union C"
wenzelm@11979
   820
  -- {* The order of the premises presupposes that @{term C} is rigid;
wenzelm@11979
   821
    @{term A} may be flexible. *}
wenzelm@11979
   822
  by auto
wenzelm@11979
   823
wenzelm@11979
   824
lemma UnionE [elim!]: "A : Union C ==> (!!X. A:X ==> X:C ==> R) ==> R"
wenzelm@11979
   825
  by (unfold Union_def) blast
wenzelm@11979
   826
wenzelm@11979
   827
wenzelm@11979
   828
subsubsection {* Inter *}
wenzelm@11979
   829
wenzelm@11979
   830
lemma Inter_iff [simp]: "(A : Inter C) = (ALL X:C. A:X)"
wenzelm@11979
   831
  by (unfold Inter_def) blast
wenzelm@11979
   832
wenzelm@11979
   833
lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C"
wenzelm@11979
   834
  by (simp add: Inter_def)
wenzelm@11979
   835
wenzelm@11979
   836
text {*
wenzelm@11979
   837
  \medskip A ``destruct'' rule -- every @{term X} in @{term C}
wenzelm@11979
   838
  contains @{term A} as an element, but @{prop "A:X"} can hold when
wenzelm@11979
   839
  @{prop "X:C"} does not!  This rule is analogous to @{text spec}.
wenzelm@11979
   840
*}
wenzelm@11979
   841
wenzelm@11979
   842
lemma InterD [elim]: "A : Inter C ==> X:C ==> A:X"
wenzelm@11979
   843
  by auto
wenzelm@11979
   844
wenzelm@11979
   845
lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R"
wenzelm@11979
   846
  -- {* ``Classical'' elimination rule -- does not require proving
wenzelm@11979
   847
    @{prop "X:C"}. *}
wenzelm@11979
   848
  by (unfold Inter_def) blast
wenzelm@11979
   849
wenzelm@11979
   850
text {*
wenzelm@11979
   851
  \medskip Image of a set under a function.  Frequently @{term b} does
wenzelm@11979
   852
  not have the syntactic form of @{term "f x"}.
wenzelm@11979
   853
*}
wenzelm@11979
   854
wenzelm@11979
   855
lemma image_eqI [simp, intro]: "b = f x ==> x:A ==> b : f`A"
wenzelm@11979
   856
  by (unfold image_def) blast
wenzelm@11979
   857
wenzelm@11979
   858
lemma imageI: "x : A ==> f x : f ` A"
wenzelm@11979
   859
  by (rule image_eqI) (rule refl)
wenzelm@11979
   860
wenzelm@11979
   861
lemma rev_image_eqI: "x:A ==> b = f x ==> b : f`A"
wenzelm@11979
   862
  -- {* This version's more effective when we already have the
wenzelm@11979
   863
    required @{term x}. *}
wenzelm@11979
   864
  by (unfold image_def) blast
wenzelm@11979
   865
wenzelm@11979
   866
lemma imageE [elim!]:
wenzelm@11979
   867
  "b : (%x. f x)`A ==> (!!x. b = f x ==> x:A ==> P) ==> P"
wenzelm@11979
   868
  -- {* The eta-expansion gives variable-name preservation. *}
wenzelm@11979
   869
  by (unfold image_def) blast
wenzelm@11979
   870
wenzelm@11979
   871
lemma image_Un: "f`(A Un B) = f`A Un f`B"
wenzelm@11979
   872
  by blast
wenzelm@11979
   873
wenzelm@11979
   874
lemma image_iff: "(z : f`A) = (EX x:A. z = f x)"
wenzelm@11979
   875
  by blast
wenzelm@11979
   876
wenzelm@12897
   877
lemma image_subset_iff: "(f`A \<subseteq> B) = (\<forall>x\<in>A. f x \<in> B)"
wenzelm@11979
   878
  -- {* This rewrite rule would confuse users if made default. *}
wenzelm@11979
   879
  by blast
wenzelm@11979
   880
wenzelm@12897
   881
lemma subset_image_iff: "(B \<subseteq> f`A) = (EX AA. AA \<subseteq> A & B = f`AA)"
wenzelm@11979
   882
  apply safe
wenzelm@11979
   883
   prefer 2 apply fast
paulson@14208
   884
  apply (rule_tac x = "{a. a : A & f a : B}" in exI, fast)
wenzelm@11979
   885
  done
wenzelm@11979
   886
wenzelm@12897
   887
lemma image_subsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f`A \<subseteq> B"
wenzelm@11979
   888
  -- {* Replaces the three steps @{text subsetI}, @{text imageE},
wenzelm@11979
   889
    @{text hypsubst}, but breaks too many existing proofs. *}
wenzelm@11979
   890
  by blast
wenzelm@11979
   891
wenzelm@11979
   892
text {*
wenzelm@11979
   893
  \medskip Range of a function -- just a translation for image!
wenzelm@11979
   894
*}
wenzelm@11979
   895
wenzelm@12897
   896
lemma range_eqI: "b = f x ==> b \<in> range f"
wenzelm@11979
   897
  by simp
wenzelm@11979
   898
wenzelm@12897
   899
lemma rangeI: "f x \<in> range f"
wenzelm@11979
   900
  by simp
wenzelm@11979
   901
wenzelm@12897
   902
lemma rangeE [elim?]: "b \<in> range (\<lambda>x. f x) ==> (!!x. b = f x ==> P) ==> P"
wenzelm@11979
   903
  by blast
wenzelm@11979
   904
wenzelm@11979
   905
wenzelm@11979
   906
subsubsection {* Set reasoning tools *}
wenzelm@11979
   907
wenzelm@11979
   908
text {*
wenzelm@11979
   909
  Rewrite rules for boolean case-splitting: faster than @{text
wenzelm@11979
   910
  "split_if [split]"}.
wenzelm@11979
   911
*}
wenzelm@11979
   912
wenzelm@11979
   913
lemma split_if_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))"
wenzelm@11979
   914
  by (rule split_if)
wenzelm@11979
   915
wenzelm@11979
   916
lemma split_if_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))"
wenzelm@11979
   917
  by (rule split_if)
wenzelm@11979
   918
wenzelm@11979
   919
text {*
wenzelm@11979
   920
  Split ifs on either side of the membership relation.  Not for @{text
wenzelm@11979
   921
  "[simp]"} -- can cause goals to blow up!
wenzelm@11979
   922
*}
wenzelm@11979
   923
wenzelm@11979
   924
lemma split_if_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))"
wenzelm@11979
   925
  by (rule split_if)
wenzelm@11979
   926
wenzelm@11979
   927
lemma split_if_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))"
wenzelm@11979
   928
  by (rule split_if)
wenzelm@11979
   929
wenzelm@11979
   930
lemmas split_ifs = if_bool_eq_conj split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2
wenzelm@11979
   931
wenzelm@11979
   932
lemmas mem_simps =
wenzelm@11979
   933
  insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
wenzelm@11979
   934
  mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
wenzelm@11979
   935
  -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
wenzelm@11979
   936
wenzelm@11979
   937
(*Would like to add these, but the existing code only searches for the
wenzelm@11979
   938
  outer-level constant, which in this case is just "op :"; we instead need
wenzelm@11979
   939
  to use term-nets to associate patterns with rules.  Also, if a rule fails to
wenzelm@11979
   940
  apply, then the formula should be kept.
wenzelm@11979
   941
  [("uminus", Compl_iff RS iffD1), ("op -", [Diff_iff RS iffD1]),
wenzelm@11979
   942
   ("op Int", [IntD1,IntD2]),
wenzelm@11979
   943
   ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
wenzelm@11979
   944
 *)
wenzelm@11979
   945
wenzelm@11979
   946
ML_setup {*
wenzelm@11979
   947
  val mksimps_pairs = [("Ball", [thm "bspec"])] @ mksimps_pairs;
wenzelm@11979
   948
  simpset_ref() := simpset() setmksimps (mksimps mksimps_pairs);
wenzelm@11979
   949
*}
wenzelm@11979
   950
wenzelm@11979
   951
declare subset_UNIV [simp] subset_refl [simp]
wenzelm@11979
   952
wenzelm@11979
   953
wenzelm@11979
   954
subsubsection {* The ``proper subset'' relation *}
wenzelm@11979
   955
wenzelm@12897
   956
lemma psubsetI [intro!]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B"
wenzelm@11979
   957
  by (unfold psubset_def) blast
wenzelm@11979
   958
paulson@13624
   959
lemma psubsetE [elim!]: 
paulson@13624
   960
    "[|A \<subset> B;  [|A \<subseteq> B; ~ (B\<subseteq>A)|] ==> R|] ==> R"
paulson@13624
   961
  by (unfold psubset_def) blast
paulson@13624
   962
wenzelm@11979
   963
lemma psubset_insert_iff:
wenzelm@12897
   964
  "(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)"
wenzelm@12897
   965
  by (auto simp add: psubset_def subset_insert_iff)
wenzelm@12897
   966
wenzelm@12897
   967
lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)"
wenzelm@12897
   968
  by (simp only: psubset_def)
wenzelm@12897
   969
wenzelm@12897
   970
lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B"
wenzelm@12897
   971
  by (simp add: psubset_eq)
wenzelm@12897
   972
paulson@14335
   973
lemma psubset_trans: "[| A \<subset> B; B \<subset> C |] ==> A \<subset> C"
paulson@14335
   974
apply (unfold psubset_def)
paulson@14335
   975
apply (auto dest: subset_antisym)
paulson@14335
   976
done
paulson@14335
   977
paulson@14335
   978
lemma psubsetD: "[| A \<subset> B; c \<in> A |] ==> c \<in> B"
paulson@14335
   979
apply (unfold psubset_def)
paulson@14335
   980
apply (auto dest: subsetD)
paulson@14335
   981
done
paulson@14335
   982
wenzelm@12897
   983
lemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C"
wenzelm@12897
   984
  by (auto simp add: psubset_eq)
wenzelm@12897
   985
wenzelm@12897
   986
lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C"
wenzelm@12897
   987
  by (auto simp add: psubset_eq)
wenzelm@12897
   988
wenzelm@12897
   989
lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B - A)"
wenzelm@12897
   990
  by (unfold psubset_def) blast
wenzelm@12897
   991
wenzelm@12897
   992
lemma atomize_ball:
wenzelm@12897
   993
    "(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)"
wenzelm@12897
   994
  by (simp only: Ball_def atomize_all atomize_imp)
wenzelm@12897
   995
wenzelm@12897
   996
declare atomize_ball [symmetric, rulify]
wenzelm@12897
   997
wenzelm@12897
   998
wenzelm@12897
   999
subsection {* Further set-theory lemmas *}
wenzelm@12897
  1000
wenzelm@12897
  1001
subsubsection {* Derived rules involving subsets. *}
wenzelm@12897
  1002
wenzelm@12897
  1003
text {* @{text insert}. *}
wenzelm@12897
  1004
wenzelm@12897
  1005
lemma subset_insertI: "B \<subseteq> insert a B"
wenzelm@12897
  1006
  apply (rule subsetI)
wenzelm@12897
  1007
  apply (erule insertI2)
wenzelm@12897
  1008
  done
wenzelm@12897
  1009
nipkow@14302
  1010
lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B"
nipkow@14302
  1011
by blast
nipkow@14302
  1012
wenzelm@12897
  1013
lemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)"
wenzelm@12897
  1014
  by blast
wenzelm@12897
  1015
wenzelm@12897
  1016
wenzelm@12897
  1017
text {* \medskip Big Union -- least upper bound of a set. *}
wenzelm@12897
  1018
wenzelm@12897
  1019
lemma Union_upper: "B \<in> A ==> B \<subseteq> Union A"
wenzelm@12897
  1020
  by (rules intro: subsetI UnionI)
wenzelm@12897
  1021
wenzelm@12897
  1022
lemma Union_least: "(!!X. X \<in> A ==> X \<subseteq> C) ==> Union A \<subseteq> C"
wenzelm@12897
  1023
  by (rules intro: subsetI elim: UnionE dest: subsetD)
wenzelm@12897
  1024
wenzelm@12897
  1025
wenzelm@12897
  1026
text {* \medskip General union. *}
wenzelm@12897
  1027
wenzelm@12897
  1028
lemma UN_upper: "a \<in> A ==> B a \<subseteq> (\<Union>x\<in>A. B x)"
wenzelm@12897
  1029
  by blast
wenzelm@12897
  1030
wenzelm@12897
  1031
lemma UN_least: "(!!x. x \<in> A ==> B x \<subseteq> C) ==> (\<Union>x\<in>A. B x) \<subseteq> C"
wenzelm@12897
  1032
  by (rules intro: subsetI elim: UN_E dest: subsetD)
wenzelm@12897
  1033
wenzelm@12897
  1034
wenzelm@12897
  1035
text {* \medskip Big Intersection -- greatest lower bound of a set. *}
wenzelm@12897
  1036
wenzelm@12897
  1037
lemma Inter_lower: "B \<in> A ==> Inter A \<subseteq> B"
wenzelm@12897
  1038
  by blast
wenzelm@12897
  1039
ballarin@14551
  1040
lemma Inter_subset:
ballarin@14551
  1041
  "[| !!X. X \<in> A ==> X \<subseteq> B; A ~= {} |] ==> \<Inter>A \<subseteq> B"
ballarin@14551
  1042
  by blast
ballarin@14551
  1043
wenzelm@12897
  1044
lemma Inter_greatest: "(!!X. X \<in> A ==> C \<subseteq> X) ==> C \<subseteq> Inter A"
wenzelm@12897
  1045
  by (rules intro: InterI subsetI dest: subsetD)
wenzelm@12897
  1046
wenzelm@12897
  1047
lemma INT_lower: "a \<in> A ==> (\<Inter>x\<in>A. B x) \<subseteq> B a"
wenzelm@12897
  1048
  by blast
wenzelm@12897
  1049
wenzelm@12897
  1050
lemma INT_greatest: "(!!x. x \<in> A ==> C \<subseteq> B x) ==> C \<subseteq> (\<Inter>x\<in>A. B x)"
wenzelm@12897
  1051
  by (rules intro: INT_I subsetI dest: subsetD)
wenzelm@12897
  1052
wenzelm@12897
  1053
wenzelm@12897
  1054
text {* \medskip Finite Union -- the least upper bound of two sets. *}
wenzelm@12897
  1055
wenzelm@12897
  1056
lemma Un_upper1: "A \<subseteq> A \<union> B"
wenzelm@12897
  1057
  by blast
wenzelm@12897
  1058
wenzelm@12897
  1059
lemma Un_upper2: "B \<subseteq> A \<union> B"
wenzelm@12897
  1060
  by blast
wenzelm@12897
  1061
wenzelm@12897
  1062
lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C"
wenzelm@12897
  1063
  by blast
wenzelm@12897
  1064
wenzelm@12897
  1065
wenzelm@12897
  1066
text {* \medskip Finite Intersection -- the greatest lower bound of two sets. *}
wenzelm@12897
  1067
wenzelm@12897
  1068
lemma Int_lower1: "A \<inter> B \<subseteq> A"
wenzelm@12897
  1069
  by blast
wenzelm@12897
  1070
wenzelm@12897
  1071
lemma Int_lower2: "A \<inter> B \<subseteq> B"
wenzelm@12897
  1072
  by blast
wenzelm@12897
  1073
wenzelm@12897
  1074
lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B"
wenzelm@12897
  1075
  by blast
wenzelm@12897
  1076
wenzelm@12897
  1077
wenzelm@12897
  1078
text {* \medskip Set difference. *}
wenzelm@12897
  1079
wenzelm@12897
  1080
lemma Diff_subset: "A - B \<subseteq> A"
wenzelm@12897
  1081
  by blast
wenzelm@12897
  1082
nipkow@14302
  1083
lemma Diff_subset_conv: "(A - B \<subseteq> C) = (A \<subseteq> B \<union> C)"
nipkow@14302
  1084
by blast
nipkow@14302
  1085
wenzelm@12897
  1086
wenzelm@12897
  1087
text {* \medskip Monotonicity. *}
wenzelm@12897
  1088
wenzelm@13421
  1089
lemma mono_Un: includes mono shows "f A \<union> f B \<subseteq> f (A \<union> B)"
wenzelm@12897
  1090
  apply (rule Un_least)
wenzelm@13421
  1091
   apply (rule Un_upper1 [THEN mono])
wenzelm@13421
  1092
  apply (rule Un_upper2 [THEN mono])
wenzelm@12897
  1093
  done
wenzelm@12897
  1094
wenzelm@13421
  1095
lemma mono_Int: includes mono shows "f (A \<inter> B) \<subseteq> f A \<inter> f B"
wenzelm@12897
  1096
  apply (rule Int_greatest)
wenzelm@13421
  1097
   apply (rule Int_lower1 [THEN mono])
wenzelm@13421
  1098
  apply (rule Int_lower2 [THEN mono])
wenzelm@12897
  1099
  done
wenzelm@12897
  1100
wenzelm@12897
  1101
wenzelm@12897
  1102
subsubsection {* Equalities involving union, intersection, inclusion, etc. *}
wenzelm@12897
  1103
wenzelm@12897
  1104
text {* @{text "{}"}. *}
wenzelm@12897
  1105
wenzelm@12897
  1106
lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})"
wenzelm@12897
  1107
  -- {* supersedes @{text "Collect_False_empty"} *}
wenzelm@12897
  1108
  by auto
wenzelm@12897
  1109
wenzelm@12897
  1110
lemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})"
wenzelm@12897
  1111
  by blast
wenzelm@12897
  1112
wenzelm@12897
  1113
lemma not_psubset_empty [iff]: "\<not> (A < {})"
wenzelm@12897
  1114
  by (unfold psubset_def) blast
wenzelm@12897
  1115
wenzelm@12897
  1116
lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)"
wenzelm@12897
  1117
  by auto
wenzelm@12897
  1118
wenzelm@12897
  1119
lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}"
wenzelm@12897
  1120
  by blast
wenzelm@12897
  1121
wenzelm@12897
  1122
lemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} \<union> {x. Q x}"
wenzelm@12897
  1123
  by blast
wenzelm@12897
  1124
paulson@14812
  1125
lemma Collect_imp_eq: "{x. P x --> Q x} = -{x. P x} \<union> {x. Q x}"
paulson@14812
  1126
  by blast
paulson@14812
  1127
wenzelm@12897
  1128
lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}"
wenzelm@12897
  1129
  by blast
wenzelm@12897
  1130
wenzelm@12897
  1131
lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
wenzelm@12897
  1132
  by blast
wenzelm@12897
  1133
wenzelm@12897
  1134
lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
wenzelm@12897
  1135
  by blast
wenzelm@12897
  1136
wenzelm@12897
  1137
lemma Collect_ex_eq: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
wenzelm@12897
  1138
  by blast
wenzelm@12897
  1139
wenzelm@12897
  1140
lemma Collect_bex_eq: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
wenzelm@12897
  1141
  by blast
wenzelm@12897
  1142
wenzelm@12897
  1143
wenzelm@12897
  1144
text {* \medskip @{text insert}. *}
wenzelm@12897
  1145
wenzelm@12897
  1146
lemma insert_is_Un: "insert a A = {a} Un A"
wenzelm@12897
  1147
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a {}"} *}
wenzelm@12897
  1148
  by blast
wenzelm@12897
  1149
wenzelm@12897
  1150
lemma insert_not_empty [simp]: "insert a A \<noteq> {}"
wenzelm@12897
  1151
  by blast
wenzelm@12897
  1152
wenzelm@12897
  1153
lemmas empty_not_insert [simp] = insert_not_empty [symmetric, standard]
wenzelm@12897
  1154
wenzelm@12897
  1155
lemma insert_absorb: "a \<in> A ==> insert a A = A"
wenzelm@12897
  1156
  -- {* @{text "[simp]"} causes recursive calls when there are nested inserts *}
wenzelm@12897
  1157
  -- {* with \emph{quadratic} running time *}
wenzelm@12897
  1158
  by blast
wenzelm@12897
  1159
wenzelm@12897
  1160
lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A"
wenzelm@12897
  1161
  by blast
wenzelm@12897
  1162
wenzelm@12897
  1163
lemma insert_commute: "insert x (insert y A) = insert y (insert x A)"
wenzelm@12897
  1164
  by blast
wenzelm@12897
  1165
wenzelm@12897
  1166
lemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)"
wenzelm@12897
  1167
  by blast
wenzelm@12897
  1168
wenzelm@12897
  1169
lemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B"
wenzelm@12897
  1170
  -- {* use new @{text B} rather than @{text "A - {a}"} to avoid infinite unfolding *}
paulson@14208
  1171
  apply (rule_tac x = "A - {a}" in exI, blast)
wenzelm@11979
  1172
  done
wenzelm@11979
  1173
wenzelm@12897
  1174
lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a --> P u}"
wenzelm@12897
  1175
  by auto
wenzelm@12897
  1176
wenzelm@12897
  1177
lemma UN_insert_distrib: "u \<in> A ==> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)"
wenzelm@12897
  1178
  by blast
wenzelm@12897
  1179
nipkow@14302
  1180
lemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)"
mehta@14742
  1181
  by blast
nipkow@14302
  1182
nipkow@13103
  1183
lemma insert_disjoint[simp]:
nipkow@13103
  1184
 "(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})"
mehta@14742
  1185
 "({} = insert a A \<inter> B) = (a \<notin> B \<and> {} = A \<inter> B)"
mehta@14742
  1186
by auto
nipkow@13103
  1187
nipkow@13103
  1188
lemma disjoint_insert[simp]:
nipkow@13103
  1189
 "(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})"
mehta@14742
  1190
 "({} = A \<inter> insert b B) = (b \<notin> A \<and> {} = A \<inter> B)"
mehta@14742
  1191
by auto
mehta@14742
  1192
wenzelm@12897
  1193
text {* \medskip @{text image}. *}
wenzelm@12897
  1194
wenzelm@12897
  1195
lemma image_empty [simp]: "f`{} = {}"
wenzelm@12897
  1196
  by blast
wenzelm@12897
  1197
wenzelm@12897
  1198
lemma image_insert [simp]: "f ` insert a B = insert (f a) (f`B)"
wenzelm@12897
  1199
  by blast
wenzelm@12897
  1200
wenzelm@12897
  1201
lemma image_constant: "x \<in> A ==> (\<lambda>x. c) ` A = {c}"
wenzelm@12897
  1202
  by blast
wenzelm@12897
  1203
wenzelm@12897
  1204
lemma image_image: "f ` (g ` A) = (\<lambda>x. f (g x)) ` A"
wenzelm@12897
  1205
  by blast
wenzelm@12897
  1206
wenzelm@12897
  1207
lemma insert_image [simp]: "x \<in> A ==> insert (f x) (f`A) = f`A"
wenzelm@12897
  1208
  by blast
wenzelm@12897
  1209
wenzelm@12897
  1210
lemma image_is_empty [iff]: "(f`A = {}) = (A = {})"
wenzelm@12897
  1211
  by blast
wenzelm@12897
  1212
wenzelm@12897
  1213
lemma image_Collect: "f ` {x. P x} = {f x | x. P x}"
wenzelm@12897
  1214
  -- {* NOT suitable as a default simprule: the RHS isn't simpler than the LHS, *}
wenzelm@12897
  1215
  -- {* with its implicit quantifier and conjunction.  Also image enjoys better *}
wenzelm@12897
  1216
  -- {* equational properties than does the RHS. *}
wenzelm@12897
  1217
  by blast
wenzelm@12897
  1218
wenzelm@12897
  1219
lemma if_image_distrib [simp]:
wenzelm@12897
  1220
  "(\<lambda>x. if P x then f x else g x) ` S
wenzelm@12897
  1221
    = (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))"
wenzelm@12897
  1222
  by (auto simp add: image_def)
wenzelm@12897
  1223
wenzelm@12897
  1224
lemma image_cong: "M = N ==> (!!x. x \<in> N ==> f x = g x) ==> f`M = g`N"
wenzelm@12897
  1225
  by (simp add: image_def)
wenzelm@12897
  1226
wenzelm@12897
  1227
wenzelm@12897
  1228
text {* \medskip @{text range}. *}
wenzelm@12897
  1229
wenzelm@12897
  1230
lemma full_SetCompr_eq: "{u. \<exists>x. u = f x} = range f"
wenzelm@12897
  1231
  by auto
wenzelm@12897
  1232
wenzelm@12897
  1233
lemma range_composition [simp]: "range (\<lambda>x. f (g x)) = f`range g"
paulson@14208
  1234
by (subst image_image, simp)
wenzelm@12897
  1235
wenzelm@12897
  1236
wenzelm@12897
  1237
text {* \medskip @{text Int} *}
wenzelm@12897
  1238
wenzelm@12897
  1239
lemma Int_absorb [simp]: "A \<inter> A = A"
wenzelm@12897
  1240
  by blast
wenzelm@12897
  1241
wenzelm@12897
  1242
lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B"
wenzelm@12897
  1243
  by blast
wenzelm@12897
  1244
wenzelm@12897
  1245
lemma Int_commute: "A \<inter> B = B \<inter> A"
wenzelm@12897
  1246
  by blast
wenzelm@12897
  1247
wenzelm@12897
  1248
lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)"
wenzelm@12897
  1249
  by blast
wenzelm@12897
  1250
wenzelm@12897
  1251
lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)"
wenzelm@12897
  1252
  by blast
wenzelm@12897
  1253
wenzelm@12897
  1254
lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute
wenzelm@12897
  1255
  -- {* Intersection is an AC-operator *}
wenzelm@12897
  1256
wenzelm@12897
  1257
lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B"
wenzelm@12897
  1258
  by blast
wenzelm@12897
  1259
wenzelm@12897
  1260
lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A"
wenzelm@12897
  1261
  by blast
wenzelm@12897
  1262
wenzelm@12897
  1263
lemma Int_empty_left [simp]: "{} \<inter> B = {}"
wenzelm@12897
  1264
  by blast
wenzelm@12897
  1265
wenzelm@12897
  1266
lemma Int_empty_right [simp]: "A \<inter> {} = {}"
wenzelm@12897
  1267
  by blast
wenzelm@12897
  1268
wenzelm@12897
  1269
lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> -B)"
wenzelm@12897
  1270
  by blast
wenzelm@12897
  1271
wenzelm@12897
  1272
lemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)"
wenzelm@12897
  1273
  by blast
wenzelm@12897
  1274
wenzelm@12897
  1275
lemma Int_UNIV_left [simp]: "UNIV \<inter> B = B"
wenzelm@12897
  1276
  by blast
wenzelm@12897
  1277
wenzelm@12897
  1278
lemma Int_UNIV_right [simp]: "A \<inter> UNIV = A"
wenzelm@12897
  1279
  by blast
wenzelm@12897
  1280
wenzelm@12897
  1281
lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
wenzelm@12897
  1282
  by blast
wenzelm@12897
  1283
wenzelm@12897
  1284
lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)"
wenzelm@12897
  1285
  by blast
wenzelm@12897
  1286
wenzelm@12897
  1287
lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)"
wenzelm@12897
  1288
  by blast
wenzelm@12897
  1289
wenzelm@12897
  1290
lemma Int_UNIV [simp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)"
wenzelm@12897
  1291
  by blast
wenzelm@12897
  1292
paulson@15102
  1293
lemma Int_subset_iff [simp]: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)"
wenzelm@12897
  1294
  by blast
wenzelm@12897
  1295
wenzelm@12897
  1296
lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)"
wenzelm@12897
  1297
  by blast
wenzelm@12897
  1298
wenzelm@12897
  1299
wenzelm@12897
  1300
text {* \medskip @{text Un}. *}
wenzelm@12897
  1301
wenzelm@12897
  1302
lemma Un_absorb [simp]: "A \<union> A = A"
wenzelm@12897
  1303
  by blast
wenzelm@12897
  1304
wenzelm@12897
  1305
lemma Un_left_absorb: "A \<union> (A \<union> B) = A \<union> B"
wenzelm@12897
  1306
  by blast
wenzelm@12897
  1307
wenzelm@12897
  1308
lemma Un_commute: "A \<union> B = B \<union> A"
wenzelm@12897
  1309
  by blast
wenzelm@12897
  1310
wenzelm@12897
  1311
lemma Un_left_commute: "A \<union> (B \<union> C) = B \<union> (A \<union> C)"
wenzelm@12897
  1312
  by blast
wenzelm@12897
  1313
wenzelm@12897
  1314
lemma Un_assoc: "(A \<union> B) \<union> C = A \<union> (B \<union> C)"
wenzelm@12897
  1315
  by blast
wenzelm@12897
  1316
wenzelm@12897
  1317
lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute
wenzelm@12897
  1318
  -- {* Union is an AC-operator *}
wenzelm@12897
  1319
wenzelm@12897
  1320
lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B"
wenzelm@12897
  1321
  by blast
wenzelm@12897
  1322
wenzelm@12897
  1323
lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A"
wenzelm@12897
  1324
  by blast
wenzelm@12897
  1325
wenzelm@12897
  1326
lemma Un_empty_left [simp]: "{} \<union> B = B"
wenzelm@12897
  1327
  by blast
wenzelm@12897
  1328
wenzelm@12897
  1329
lemma Un_empty_right [simp]: "A \<union> {} = A"
wenzelm@12897
  1330
  by blast
wenzelm@12897
  1331
wenzelm@12897
  1332
lemma Un_UNIV_left [simp]: "UNIV \<union> B = UNIV"
wenzelm@12897
  1333
  by blast
wenzelm@12897
  1334
wenzelm@12897
  1335
lemma Un_UNIV_right [simp]: "A \<union> UNIV = UNIV"
wenzelm@12897
  1336
  by blast
wenzelm@12897
  1337
wenzelm@12897
  1338
lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
wenzelm@12897
  1339
  by blast
wenzelm@12897
  1340
wenzelm@12897
  1341
lemma Un_insert_left [simp]: "(insert a B) \<union> C = insert a (B \<union> C)"
wenzelm@12897
  1342
  by blast
wenzelm@12897
  1343
wenzelm@12897
  1344
lemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)"
wenzelm@12897
  1345
  by blast
wenzelm@12897
  1346
wenzelm@12897
  1347
lemma Int_insert_left:
wenzelm@12897
  1348
    "(insert a B) Int C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)"
wenzelm@12897
  1349
  by auto
wenzelm@12897
  1350
wenzelm@12897
  1351
lemma Int_insert_right:
wenzelm@12897
  1352
    "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)"
wenzelm@12897
  1353
  by auto
wenzelm@12897
  1354
wenzelm@12897
  1355
lemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)"
wenzelm@12897
  1356
  by blast
wenzelm@12897
  1357
wenzelm@12897
  1358
lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)"
wenzelm@12897
  1359
  by blast
wenzelm@12897
  1360
wenzelm@12897
  1361
lemma Un_Int_crazy:
wenzelm@12897
  1362
    "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)"
wenzelm@12897
  1363
  by blast
wenzelm@12897
  1364
wenzelm@12897
  1365
lemma subset_Un_eq: "(A \<subseteq> B) = (A \<union> B = B)"
wenzelm@12897
  1366
  by blast
wenzelm@12897
  1367
wenzelm@12897
  1368
lemma Un_empty [iff]: "(A \<union> B = {}) = (A = {} & B = {})"
wenzelm@12897
  1369
  by blast
paulson@15102
  1370
paulson@15102
  1371
lemma Un_subset_iff [simp]: "(A \<union> B \<subseteq> C) = (A \<subseteq> C & B \<subseteq> C)"
wenzelm@12897
  1372
  by blast
wenzelm@12897
  1373
wenzelm@12897
  1374
lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A"
wenzelm@12897
  1375
  by blast
wenzelm@12897
  1376
wenzelm@12897
  1377
wenzelm@12897
  1378
text {* \medskip Set complement *}
wenzelm@12897
  1379
wenzelm@12897
  1380
lemma Compl_disjoint [simp]: "A \<inter> -A = {}"
wenzelm@12897
  1381
  by blast
wenzelm@12897
  1382
wenzelm@12897
  1383
lemma Compl_disjoint2 [simp]: "-A \<inter> A = {}"
wenzelm@12897
  1384
  by blast
wenzelm@12897
  1385
paulson@13818
  1386
lemma Compl_partition: "A \<union> -A = UNIV"
paulson@13818
  1387
  by blast
paulson@13818
  1388
paulson@13818
  1389
lemma Compl_partition2: "-A \<union> A = UNIV"
wenzelm@12897
  1390
  by blast
wenzelm@12897
  1391
wenzelm@12897
  1392
lemma double_complement [simp]: "- (-A) = (A::'a set)"
wenzelm@12897
  1393
  by blast
wenzelm@12897
  1394
wenzelm@12897
  1395
lemma Compl_Un [simp]: "-(A \<union> B) = (-A) \<inter> (-B)"
wenzelm@12897
  1396
  by blast
wenzelm@12897
  1397
wenzelm@12897
  1398
lemma Compl_Int [simp]: "-(A \<inter> B) = (-A) \<union> (-B)"
wenzelm@12897
  1399
  by blast
wenzelm@12897
  1400
wenzelm@12897
  1401
lemma Compl_UN [simp]: "-(\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)"
wenzelm@12897
  1402
  by blast
wenzelm@12897
  1403
wenzelm@12897
  1404
lemma Compl_INT [simp]: "-(\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)"
wenzelm@12897
  1405
  by blast
wenzelm@12897
  1406
wenzelm@12897
  1407
lemma subset_Compl_self_eq: "(A \<subseteq> -A) = (A = {})"
wenzelm@12897
  1408
  by blast
wenzelm@12897
  1409
wenzelm@12897
  1410
lemma Un_Int_assoc_eq: "((A \<inter> B) \<union> C = A \<inter> (B \<union> C)) = (C \<subseteq> A)"
wenzelm@12897
  1411
  -- {* Halmos, Naive Set Theory, page 16. *}
wenzelm@12897
  1412
  by blast
wenzelm@12897
  1413
wenzelm@12897
  1414
lemma Compl_UNIV_eq [simp]: "-UNIV = {}"
wenzelm@12897
  1415
  by blast
wenzelm@12897
  1416
wenzelm@12897
  1417
lemma Compl_empty_eq [simp]: "-{} = UNIV"
wenzelm@12897
  1418
  by blast
wenzelm@12897
  1419
wenzelm@12897
  1420
lemma Compl_subset_Compl_iff [iff]: "(-A \<subseteq> -B) = (B \<subseteq> A)"
wenzelm@12897
  1421
  by blast
wenzelm@12897
  1422
wenzelm@12897
  1423
lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))"
wenzelm@12897
  1424
  by blast
wenzelm@12897
  1425
wenzelm@12897
  1426
wenzelm@12897
  1427
text {* \medskip @{text Union}. *}
wenzelm@12897
  1428
wenzelm@12897
  1429
lemma Union_empty [simp]: "Union({}) = {}"
wenzelm@12897
  1430
  by blast
wenzelm@12897
  1431
wenzelm@12897
  1432
lemma Union_UNIV [simp]: "Union UNIV = UNIV"
wenzelm@12897
  1433
  by blast
wenzelm@12897
  1434
wenzelm@12897
  1435
lemma Union_insert [simp]: "Union (insert a B) = a \<union> \<Union>B"
wenzelm@12897
  1436
  by blast
wenzelm@12897
  1437
wenzelm@12897
  1438
lemma Union_Un_distrib [simp]: "\<Union>(A Un B) = \<Union>A \<union> \<Union>B"
wenzelm@12897
  1439
  by blast
wenzelm@12897
  1440
wenzelm@12897
  1441
lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B"
wenzelm@12897
  1442
  by blast
wenzelm@12897
  1443
wenzelm@12897
  1444
lemma Union_empty_conv [iff]: "(\<Union>A = {}) = (\<forall>x\<in>A. x = {})"
nipkow@13653
  1445
  by blast
nipkow@13653
  1446
nipkow@13653
  1447
lemma empty_Union_conv [iff]: "({} = \<Union>A) = (\<forall>x\<in>A. x = {})"
nipkow@13653
  1448
  by blast
wenzelm@12897
  1449
wenzelm@12897
  1450
lemma Union_disjoint: "(\<Union>C \<inter> A = {}) = (\<forall>B\<in>C. B \<inter> A = {})"
wenzelm@12897
  1451
  by blast
wenzelm@12897
  1452
wenzelm@12897
  1453
wenzelm@12897
  1454
text {* \medskip @{text Inter}. *}
wenzelm@12897
  1455
wenzelm@12897
  1456
lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
wenzelm@12897
  1457
  by blast
wenzelm@12897
  1458
wenzelm@12897
  1459
lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
wenzelm@12897
  1460
  by blast
wenzelm@12897
  1461
wenzelm@12897
  1462
lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B"
wenzelm@12897
  1463
  by blast
wenzelm@12897
  1464
wenzelm@12897
  1465
lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)"
wenzelm@12897
  1466
  by blast
wenzelm@12897
  1467
wenzelm@12897
  1468
lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B"
wenzelm@12897
  1469
  by blast
wenzelm@12897
  1470
nipkow@13653
  1471
lemma Inter_UNIV_conv [iff]:
nipkow@13653
  1472
  "(\<Inter>A = UNIV) = (\<forall>x\<in>A. x = UNIV)"
nipkow@13653
  1473
  "(UNIV = \<Inter>A) = (\<forall>x\<in>A. x = UNIV)"
paulson@14208
  1474
  by blast+
nipkow@13653
  1475
wenzelm@12897
  1476
wenzelm@12897
  1477
text {*
wenzelm@12897
  1478
  \medskip @{text UN} and @{text INT}.
wenzelm@12897
  1479
wenzelm@12897
  1480
  Basic identities: *}
wenzelm@12897
  1481
wenzelm@12897
  1482
lemma UN_empty [simp]: "(\<Union>x\<in>{}. B x) = {}"
wenzelm@12897
  1483
  by blast
wenzelm@12897
  1484
wenzelm@12897
  1485
lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
wenzelm@12897
  1486
  by blast
wenzelm@12897
  1487
wenzelm@12897
  1488
lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
wenzelm@12897
  1489
  by blast
wenzelm@12897
  1490
wenzelm@12897
  1491
lemma UN_absorb: "k \<in> I ==> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)"
paulson@15102
  1492
  by auto
wenzelm@12897
  1493
wenzelm@12897
  1494
lemma INT_empty [simp]: "(\<Inter>x\<in>{}. B x) = UNIV"
wenzelm@12897
  1495
  by blast
wenzelm@12897
  1496
wenzelm@12897
  1497
lemma INT_absorb: "k \<in> I ==> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)"
wenzelm@12897
  1498
  by blast
wenzelm@12897
  1499
wenzelm@12897
  1500
lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B"
wenzelm@12897
  1501
  by blast
wenzelm@12897
  1502
wenzelm@12897
  1503
lemma UN_Un: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)"
wenzelm@12897
  1504
  by blast
wenzelm@12897
  1505
wenzelm@12897
  1506
lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)"
wenzelm@12897
  1507
  by blast
wenzelm@12897
  1508
wenzelm@12897
  1509
lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)"
wenzelm@12897
  1510
  by blast
wenzelm@12897
  1511
wenzelm@12897
  1512
lemma INT_subset_iff: "(B \<subseteq> (\<Inter>i\<in>I. A i)) = (\<forall>i\<in>I. B \<subseteq> A i)"
wenzelm@12897
  1513
  by blast
wenzelm@12897
  1514
wenzelm@12897
  1515
lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B"
wenzelm@12897
  1516
  by blast
wenzelm@12897
  1517
wenzelm@12897
  1518
lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)"
wenzelm@12897
  1519
  by blast
wenzelm@12897
  1520
wenzelm@12897
  1521
lemma INT_insert_distrib:
wenzelm@12897
  1522
    "u \<in> A ==> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)"
wenzelm@12897
  1523
  by blast
wenzelm@12897
  1524
wenzelm@12897
  1525
lemma Union_image_eq [simp]: "\<Union>(B`A) = (\<Union>x\<in>A. B x)"
wenzelm@12897
  1526
  by blast
wenzelm@12897
  1527
wenzelm@12897
  1528
lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)"
wenzelm@12897
  1529
  by blast
wenzelm@12897
  1530
wenzelm@12897
  1531
lemma Inter_image_eq [simp]: "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
wenzelm@12897
  1532
  by blast
wenzelm@12897
  1533
wenzelm@12897
  1534
lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
wenzelm@12897
  1535
  by auto
wenzelm@12897
  1536
wenzelm@12897
  1537
lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
wenzelm@12897
  1538
  by auto
wenzelm@12897
  1539
wenzelm@12897
  1540
lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
wenzelm@12897
  1541
  by blast
wenzelm@12897
  1542
wenzelm@12897
  1543
lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
wenzelm@12897
  1544
  -- {* Look: it has an \emph{existential} quantifier *}
wenzelm@12897
  1545
  by blast
wenzelm@12897
  1546
nipkow@13653
  1547
lemma UNION_empty_conv[iff]:
nipkow@13653
  1548
  "({} = (UN x:A. B x)) = (\<forall>x\<in>A. B x = {})"
nipkow@13653
  1549
  "((UN x:A. B x) = {}) = (\<forall>x\<in>A. B x = {})"
nipkow@13653
  1550
by blast+
nipkow@13653
  1551
nipkow@13653
  1552
lemma INTER_UNIV_conv[iff]:
nipkow@13653
  1553
 "(UNIV = (INT x:A. B x)) = (\<forall>x\<in>A. B x = UNIV)"
nipkow@13653
  1554
 "((INT x:A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)"
nipkow@13653
  1555
by blast+
wenzelm@12897
  1556
wenzelm@12897
  1557
wenzelm@12897
  1558
text {* \medskip Distributive laws: *}
wenzelm@12897
  1559
wenzelm@12897
  1560
lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)"
wenzelm@12897
  1561
  by blast
wenzelm@12897
  1562
wenzelm@12897
  1563
lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)"
wenzelm@12897
  1564
  by blast
wenzelm@12897
  1565
wenzelm@12897
  1566
lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A`C) \<union> \<Union>(B`C)"
wenzelm@12897
  1567
  -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
wenzelm@12897
  1568
  -- {* Union of a family of unions *}
wenzelm@12897
  1569
  by blast
wenzelm@12897
  1570
wenzelm@12897
  1571
lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)"
wenzelm@12897
  1572
  -- {* Equivalent version *}
wenzelm@12897
  1573
  by blast
wenzelm@12897
  1574
wenzelm@12897
  1575
lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)"
wenzelm@12897
  1576
  by blast
wenzelm@12897
  1577
wenzelm@12897
  1578
lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A`C) \<inter> \<Inter>(B`C)"
wenzelm@12897
  1579
  by blast
wenzelm@12897
  1580
wenzelm@12897
  1581
lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)"
wenzelm@12897
  1582
  -- {* Equivalent version *}
wenzelm@12897
  1583
  by blast
wenzelm@12897
  1584
wenzelm@12897
  1585
lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)"
wenzelm@12897
  1586
  -- {* Halmos, Naive Set Theory, page 35. *}
wenzelm@12897
  1587
  by blast
wenzelm@12897
  1588
wenzelm@12897
  1589
lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)"
wenzelm@12897
  1590
  by blast
wenzelm@12897
  1591
wenzelm@12897
  1592
lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)"
wenzelm@12897
  1593
  by blast
wenzelm@12897
  1594
wenzelm@12897
  1595
lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)"
wenzelm@12897
  1596
  by blast
wenzelm@12897
  1597
wenzelm@12897
  1598
wenzelm@12897
  1599
text {* \medskip Bounded quantifiers.
wenzelm@12897
  1600
wenzelm@12897
  1601
  The following are not added to the default simpset because
wenzelm@12897
  1602
  (a) they duplicate the body and (b) there are no similar rules for @{text Int}. *}
wenzelm@12897
  1603
wenzelm@12897
  1604
lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) = ((\<forall>x\<in>A. P x) & (\<forall>x\<in>B. P x))"
wenzelm@12897
  1605
  by blast
wenzelm@12897
  1606
wenzelm@12897
  1607
lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) = ((\<exists>x\<in>A. P x) | (\<exists>x\<in>B. P x))"
wenzelm@12897
  1608
  by blast
wenzelm@12897
  1609
wenzelm@12897
  1610
lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) = (\<forall>x\<in>A. \<forall>z \<in> B x. P z)"
wenzelm@12897
  1611
  by blast
wenzelm@12897
  1612
wenzelm@12897
  1613
lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) = (\<exists>x\<in>A. \<exists>z\<in>B x. P z)"
wenzelm@12897
  1614
  by blast
wenzelm@12897
  1615
wenzelm@12897
  1616
wenzelm@12897
  1617
text {* \medskip Set difference. *}
wenzelm@12897
  1618
wenzelm@12897
  1619
lemma Diff_eq: "A - B = A \<inter> (-B)"
wenzelm@12897
  1620
  by blast
wenzelm@12897
  1621
wenzelm@12897
  1622
lemma Diff_eq_empty_iff [simp]: "(A - B = {}) = (A \<subseteq> B)"
wenzelm@12897
  1623
  by blast
wenzelm@12897
  1624
wenzelm@12897
  1625
lemma Diff_cancel [simp]: "A - A = {}"
wenzelm@12897
  1626
  by blast
wenzelm@12897
  1627
nipkow@14302
  1628
lemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)"
nipkow@14302
  1629
by blast
nipkow@14302
  1630
wenzelm@12897
  1631
lemma Diff_triv: "A \<inter> B = {} ==> A - B = A"
wenzelm@12897
  1632
  by (blast elim: equalityE)
wenzelm@12897
  1633
wenzelm@12897
  1634
lemma empty_Diff [simp]: "{} - A = {}"
wenzelm@12897
  1635
  by blast
wenzelm@12897
  1636
wenzelm@12897
  1637
lemma Diff_empty [simp]: "A - {} = A"
wenzelm@12897
  1638
  by blast
wenzelm@12897
  1639
wenzelm@12897
  1640
lemma Diff_UNIV [simp]: "A - UNIV = {}"
wenzelm@12897
  1641
  by blast
wenzelm@12897
  1642
wenzelm@12897
  1643
lemma Diff_insert0 [simp]: "x \<notin> A ==> A - insert x B = A - B"
wenzelm@12897
  1644
  by blast
wenzelm@12897
  1645
wenzelm@12897
  1646
lemma Diff_insert: "A - insert a B = A - B - {a}"
wenzelm@12897
  1647
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
wenzelm@12897
  1648
  by blast
wenzelm@12897
  1649
wenzelm@12897
  1650
lemma Diff_insert2: "A - insert a B = A - {a} - B"
wenzelm@12897
  1651
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
wenzelm@12897
  1652
  by blast
wenzelm@12897
  1653
wenzelm@12897
  1654
lemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))"
wenzelm@12897
  1655
  by auto
wenzelm@12897
  1656
wenzelm@12897
  1657
lemma insert_Diff1 [simp]: "x \<in> B ==> insert x A - B = A - B"
wenzelm@12897
  1658
  by blast
wenzelm@12897
  1659
nipkow@14302
  1660
lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"
nipkow@14302
  1661
by blast
nipkow@14302
  1662
wenzelm@12897
  1663
lemma insert_Diff: "a \<in> A ==> insert a (A - {a}) = A"
wenzelm@12897
  1664
  by blast
wenzelm@12897
  1665
wenzelm@12897
  1666
lemma Diff_insert_absorb: "x \<notin> A ==> (insert x A) - {x} = A"
wenzelm@12897
  1667
  by auto
wenzelm@12897
  1668
wenzelm@12897
  1669
lemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}"
wenzelm@12897
  1670
  by blast
wenzelm@12897
  1671
wenzelm@12897
  1672
lemma Diff_partition: "A \<subseteq> B ==> A \<union> (B - A) = B"
wenzelm@12897
  1673
  by blast
wenzelm@12897
  1674
wenzelm@12897
  1675
lemma double_diff: "A \<subseteq> B ==> B \<subseteq> C ==> B - (C - A) = A"
wenzelm@12897
  1676
  by blast
wenzelm@12897
  1677
wenzelm@12897
  1678
lemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B"
wenzelm@12897
  1679
  by blast
wenzelm@12897
  1680
wenzelm@12897
  1681
lemma Un_Diff_cancel2 [simp]: "(B - A) \<union> A = B \<union> A"
wenzelm@12897
  1682
  by blast
wenzelm@12897
  1683
wenzelm@12897
  1684
lemma Diff_Un: "A - (B \<union> C) = (A - B) \<inter> (A - C)"
wenzelm@12897
  1685
  by blast
wenzelm@12897
  1686
wenzelm@12897
  1687
lemma Diff_Int: "A - (B \<inter> C) = (A - B) \<union> (A - C)"
wenzelm@12897
  1688
  by blast
wenzelm@12897
  1689
wenzelm@12897
  1690
lemma Un_Diff: "(A \<union> B) - C = (A - C) \<union> (B - C)"
wenzelm@12897
  1691
  by blast
wenzelm@12897
  1692
wenzelm@12897
  1693
lemma Int_Diff: "(A \<inter> B) - C = A \<inter> (B - C)"
wenzelm@12897
  1694
  by blast
wenzelm@12897
  1695
wenzelm@12897
  1696
lemma Diff_Int_distrib: "C \<inter> (A - B) = (C \<inter> A) - (C \<inter> B)"
wenzelm@12897
  1697
  by blast
wenzelm@12897
  1698
wenzelm@12897
  1699
lemma Diff_Int_distrib2: "(A - B) \<inter> C = (A \<inter> C) - (B \<inter> C)"
wenzelm@12897
  1700
  by blast
wenzelm@12897
  1701
wenzelm@12897
  1702
lemma Diff_Compl [simp]: "A - (- B) = A \<inter> B"
wenzelm@12897
  1703
  by auto
wenzelm@12897
  1704
wenzelm@12897
  1705
lemma Compl_Diff_eq [simp]: "- (A - B) = -A \<union> B"
wenzelm@12897
  1706
  by blast
wenzelm@12897
  1707
wenzelm@12897
  1708
wenzelm@12897
  1709
text {* \medskip Quantification over type @{typ bool}. *}
wenzelm@12897
  1710
wenzelm@12897
  1711
lemma all_bool_eq: "(\<forall>b::bool. P b) = (P True & P False)"
wenzelm@12897
  1712
  apply auto
paulson@14208
  1713
  apply (tactic {* case_tac "b" 1 *}, auto)
wenzelm@12897
  1714
  done
wenzelm@12897
  1715
wenzelm@12897
  1716
lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x"
wenzelm@12897
  1717
  by (rule conjI [THEN all_bool_eq [THEN iffD2], THEN spec])
wenzelm@12897
  1718
wenzelm@12897
  1719
lemma ex_bool_eq: "(\<exists>b::bool. P b) = (P True | P False)"
wenzelm@12897
  1720
  apply auto
paulson@14208
  1721
  apply (tactic {* case_tac "b" 1 *}, auto)
wenzelm@12897
  1722
  done
wenzelm@12897
  1723
wenzelm@12897
  1724
lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)"
wenzelm@12897
  1725
  by (auto simp add: split_if_mem2)
wenzelm@12897
  1726
wenzelm@12897
  1727
lemma UN_bool_eq: "(\<Union>b::bool. A b) = (A True \<union> A False)"
wenzelm@12897
  1728
  apply auto
paulson@14208
  1729
  apply (tactic {* case_tac "b" 1 *}, auto)
wenzelm@12897
  1730
  done
wenzelm@12897
  1731
wenzelm@12897
  1732
lemma INT_bool_eq: "(\<Inter>b::bool. A b) = (A True \<inter> A False)"
wenzelm@12897
  1733
  apply auto
paulson@14208
  1734
  apply (tactic {* case_tac "b" 1 *}, auto)
wenzelm@12897
  1735
  done
wenzelm@12897
  1736
wenzelm@12897
  1737
wenzelm@12897
  1738
text {* \medskip @{text Pow} *}
wenzelm@12897
  1739
wenzelm@12897
  1740
lemma Pow_empty [simp]: "Pow {} = {{}}"
wenzelm@12897
  1741
  by (auto simp add: Pow_def)
wenzelm@12897
  1742
wenzelm@12897
  1743
lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)"
wenzelm@12897
  1744
  by (blast intro: image_eqI [where ?x = "u - {a}", standard])
wenzelm@12897
  1745
wenzelm@12897
  1746
lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}"
wenzelm@12897
  1747
  by (blast intro: exI [where ?x = "- u", standard])
wenzelm@12897
  1748
wenzelm@12897
  1749
lemma Pow_UNIV [simp]: "Pow UNIV = UNIV"
wenzelm@12897
  1750
  by blast
wenzelm@12897
  1751
wenzelm@12897
  1752
lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)"
wenzelm@12897
  1753
  by blast
wenzelm@12897
  1754
wenzelm@12897
  1755
lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)"
wenzelm@12897
  1756
  by blast
wenzelm@12897
  1757
wenzelm@12897
  1758
lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)"
wenzelm@12897
  1759
  by blast
wenzelm@12897
  1760
wenzelm@12897
  1761
lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
wenzelm@12897
  1762
  by blast
wenzelm@12897
  1763
wenzelm@12897
  1764
lemma Pow_Int_eq [simp]: "Pow (A \<inter> B) = Pow A \<inter> Pow B"
wenzelm@12897
  1765
  by blast
wenzelm@12897
  1766
wenzelm@12897
  1767
lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))"
wenzelm@12897
  1768
  by blast
wenzelm@12897
  1769
wenzelm@12897
  1770
wenzelm@12897
  1771
text {* \medskip Miscellany. *}
wenzelm@12897
  1772
wenzelm@12897
  1773
lemma set_eq_subset: "(A = B) = (A \<subseteq> B & B \<subseteq> A)"
wenzelm@12897
  1774
  by blast
wenzelm@12897
  1775
wenzelm@12897
  1776
lemma subset_iff: "(A \<subseteq> B) = (\<forall>t. t \<in> A --> t \<in> B)"
wenzelm@12897
  1777
  by blast
wenzelm@12897
  1778
wenzelm@12897
  1779
lemma subset_iff_psubset_eq: "(A \<subseteq> B) = ((A \<subset> B) | (A = B))"
wenzelm@11979
  1780
  by (unfold psubset_def) blast
wenzelm@11979
  1781
wenzelm@12897
  1782
lemma all_not_in_conv [iff]: "(\<forall>x. x \<notin> A) = (A = {})"
wenzelm@12897
  1783
  by blast
wenzelm@12897
  1784
paulson@13831
  1785
lemma ex_in_conv: "(\<exists>x. x \<in> A) = (A \<noteq> {})"
paulson@13831
  1786
  by blast
paulson@13831
  1787
wenzelm@12897
  1788
lemma distinct_lemma: "f x \<noteq> f y ==> x \<noteq> y"
wenzelm@12897
  1789
  by rules
wenzelm@12897
  1790
wenzelm@12897
  1791
paulson@13860
  1792
text {* \medskip Miniscoping: pushing in quantifiers and big Unions
paulson@13860
  1793
           and Intersections. *}
wenzelm@12897
  1794
wenzelm@12897
  1795
lemma UN_simps [simp]:
wenzelm@12897
  1796
  "!!a B C. (UN x:C. insert a (B x)) = (if C={} then {} else insert a (UN x:C. B x))"
wenzelm@12897
  1797
  "!!A B C. (UN x:C. A x Un B)   = ((if C={} then {} else (UN x:C. A x) Un B))"
wenzelm@12897
  1798
  "!!A B C. (UN x:C. A Un B x)   = ((if C={} then {} else A Un (UN x:C. B x)))"
wenzelm@12897
  1799
  "!!A B C. (UN x:C. A x Int B)  = ((UN x:C. A x) Int B)"
wenzelm@12897
  1800
  "!!A B C. (UN x:C. A Int B x)  = (A Int (UN x:C. B x))"
wenzelm@12897
  1801
  "!!A B C. (UN x:C. A x - B)    = ((UN x:C. A x) - B)"
wenzelm@12897
  1802
  "!!A B C. (UN x:C. A - B x)    = (A - (INT x:C. B x))"
wenzelm@12897
  1803
  "!!A B. (UN x: Union A. B x) = (UN y:A. UN x:y. B x)"
wenzelm@12897
  1804
  "!!A B C. (UN z: UNION A B. C z) = (UN  x:A. UN z: B(x). C z)"
wenzelm@12897
  1805
  "!!A B f. (UN x:f`A. B x)     = (UN a:A. B (f a))"
wenzelm@12897
  1806
  by auto
wenzelm@12897
  1807
wenzelm@12897
  1808
lemma INT_simps [simp]:
wenzelm@12897
  1809
  "!!A B C. (INT x:C. A x Int B) = (if C={} then UNIV else (INT x:C. A x) Int B)"
wenzelm@12897
  1810
  "!!A B C. (INT x:C. A Int B x) = (if C={} then UNIV else A Int (INT x:C. B x))"
wenzelm@12897
  1811
  "!!A B C. (INT x:C. A x - B)   = (if C={} then UNIV else (INT x:C. A x) - B)"
wenzelm@12897
  1812
  "!!A B C. (INT x:C. A - B x)   = (if C={} then UNIV else A - (UN x:C. B x))"
wenzelm@12897
  1813
  "!!a B C. (INT x:C. insert a (B x)) = insert a (INT x:C. B x)"
wenzelm@12897
  1814
  "!!A B C. (INT x:C. A x Un B)  = ((INT x:C. A x) Un B)"
wenzelm@12897
  1815
  "!!A B C. (INT x:C. A Un B x)  = (A Un (INT x:C. B x))"
wenzelm@12897
  1816
  "!!A B. (INT x: Union A. B x) = (INT y:A. INT x:y. B x)"
wenzelm@12897
  1817
  "!!A B C. (INT z: UNION A B. C z) = (INT x:A. INT z: B(x). C z)"
wenzelm@12897
  1818
  "!!A B f. (INT x:f`A. B x)    = (INT a:A. B (f a))"
wenzelm@12897
  1819
  by auto
wenzelm@12897
  1820
wenzelm@12897
  1821
lemma ball_simps [simp]:
wenzelm@12897
  1822
  "!!A P Q. (ALL x:A. P x | Q) = ((ALL x:A. P x) | Q)"
wenzelm@12897
  1823
  "!!A P Q. (ALL x:A. P | Q x) = (P | (ALL x:A. Q x))"
wenzelm@12897
  1824
  "!!A P Q. (ALL x:A. P --> Q x) = (P --> (ALL x:A. Q x))"
wenzelm@12897
  1825
  "!!A P Q. (ALL x:A. P x --> Q) = ((EX x:A. P x) --> Q)"
wenzelm@12897
  1826
  "!!P. (ALL x:{}. P x) = True"
wenzelm@12897
  1827
  "!!P. (ALL x:UNIV. P x) = (ALL x. P x)"
wenzelm@12897
  1828
  "!!a B P. (ALL x:insert a B. P x) = (P a & (ALL x:B. P x))"
wenzelm@12897
  1829
  "!!A P. (ALL x:Union A. P x) = (ALL y:A. ALL x:y. P x)"
wenzelm@12897
  1830
  "!!A B P. (ALL x: UNION A B. P x) = (ALL a:A. ALL x: B a. P x)"
wenzelm@12897
  1831
  "!!P Q. (ALL x:Collect Q. P x) = (ALL x. Q x --> P x)"
wenzelm@12897
  1832
  "!!A P f. (ALL x:f`A. P x) = (ALL x:A. P (f x))"
wenzelm@12897
  1833
  "!!A P. (~(ALL x:A. P x)) = (EX x:A. ~P x)"
wenzelm@12897
  1834
  by auto
wenzelm@12897
  1835
wenzelm@12897
  1836
lemma bex_simps [simp]:
wenzelm@12897
  1837
  "!!A P Q. (EX x:A. P x & Q) = ((EX x:A. P x) & Q)"
wenzelm@12897
  1838
  "!!A P Q. (EX x:A. P & Q x) = (P & (EX x:A. Q x))"
wenzelm@12897
  1839
  "!!P. (EX x:{}. P x) = False"
wenzelm@12897
  1840
  "!!P. (EX x:UNIV. P x) = (EX x. P x)"
wenzelm@12897
  1841
  "!!a B P. (EX x:insert a B. P x) = (P(a) | (EX x:B. P x))"
wenzelm@12897
  1842
  "!!A P. (EX x:Union A. P x) = (EX y:A. EX x:y. P x)"
wenzelm@12897
  1843
  "!!A B P. (EX x: UNION A B. P x) = (EX a:A. EX x:B a. P x)"
wenzelm@12897
  1844
  "!!P Q. (EX x:Collect Q. P x) = (EX x. Q x & P x)"
wenzelm@12897
  1845
  "!!A P f. (EX x:f`A. P x) = (EX x:A. P (f x))"
wenzelm@12897
  1846
  "!!A P. (~(EX x:A. P x)) = (ALL x:A. ~P x)"
wenzelm@12897
  1847
  by auto
wenzelm@12897
  1848
wenzelm@12897
  1849
lemma ball_conj_distrib:
wenzelm@12897
  1850
  "(ALL x:A. P x & Q x) = ((ALL x:A. P x) & (ALL x:A. Q x))"
wenzelm@12897
  1851
  by blast
wenzelm@12897
  1852
wenzelm@12897
  1853
lemma bex_disj_distrib:
wenzelm@12897
  1854
  "(EX x:A. P x | Q x) = ((EX x:A. P x) | (EX x:A. Q x))"
wenzelm@12897
  1855
  by blast
wenzelm@12897
  1856
wenzelm@12897
  1857
paulson@13860
  1858
text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
paulson@13860
  1859
paulson@13860
  1860
lemma UN_extend_simps:
paulson@13860
  1861
  "!!a B C. insert a (UN x:C. B x) = (if C={} then {a} else (UN x:C. insert a (B x)))"
paulson@13860
  1862
  "!!A B C. (UN x:C. A x) Un B    = (if C={} then B else (UN x:C. A x Un B))"
paulson@13860
  1863
  "!!A B C. A Un (UN x:C. B x)   = (if C={} then A else (UN x:C. A Un B x))"
paulson@13860
  1864
  "!!A B C. ((UN x:C. A x) Int B) = (UN x:C. A x Int B)"
paulson@13860
  1865
  "!!A B C. (A Int (UN x:C. B x)) = (UN x:C. A Int B x)"
paulson@13860
  1866
  "!!A B C. ((UN x:C. A x) - B) = (UN x:C. A x - B)"
paulson@13860
  1867
  "!!A B C. (A - (INT x:C. B x)) = (UN x:C. A - B x)"
paulson@13860
  1868
  "!!A B. (UN y:A. UN x:y. B x) = (UN x: Union A. B x)"
paulson@13860
  1869
  "!!A B C. (UN  x:A. UN z: B(x). C z) = (UN z: UNION A B. C z)"
paulson@13860
  1870
  "!!A B f. (UN a:A. B (f a)) = (UN x:f`A. B x)"
paulson@13860
  1871
  by auto
paulson@13860
  1872
paulson@13860
  1873
lemma INT_extend_simps:
paulson@13860
  1874
  "!!A B C. (INT x:C. A x) Int B = (if C={} then B else (INT x:C. A x Int B))"
paulson@13860
  1875
  "!!A B C. A Int (INT x:C. B x) = (if C={} then A else (INT x:C. A Int B x))"
paulson@13860
  1876
  "!!A B C. (INT x:C. A x) - B   = (if C={} then UNIV-B else (INT x:C. A x - B))"
paulson@13860
  1877
  "!!A B C. A - (UN x:C. B x)   = (if C={} then A else (INT x:C. A - B x))"
paulson@13860
  1878
  "!!a B C. insert a (INT x:C. B x) = (INT x:C. insert a (B x))"
paulson@13860
  1879
  "!!A B C. ((INT x:C. A x) Un B)  = (INT x:C. A x Un B)"
paulson@13860
  1880
  "!!A B C. A Un (INT x:C. B x)  = (INT x:C. A Un B x)"
paulson@13860
  1881
  "!!A B. (INT y:A. INT x:y. B x) = (INT x: Union A. B x)"
paulson@13860
  1882
  "!!A B C. (INT x:A. INT z: B(x). C z) = (INT z: UNION A B. C z)"
paulson@13860
  1883
  "!!A B f. (INT a:A. B (f a))    = (INT x:f`A. B x)"
paulson@13860
  1884
  by auto
paulson@13860
  1885
paulson@13860
  1886
wenzelm@12897
  1887
subsubsection {* Monotonicity of various operations *}
wenzelm@12897
  1888
wenzelm@12897
  1889
lemma image_mono: "A \<subseteq> B ==> f`A \<subseteq> f`B"
wenzelm@12897
  1890
  by blast
wenzelm@12897
  1891
wenzelm@12897
  1892
lemma Pow_mono: "A \<subseteq> B ==> Pow A \<subseteq> Pow B"
wenzelm@12897
  1893
  by blast
wenzelm@12897
  1894
wenzelm@12897
  1895
lemma Union_mono: "A \<subseteq> B ==> \<Union>A \<subseteq> \<Union>B"
wenzelm@12897
  1896
  by blast
wenzelm@12897
  1897
wenzelm@12897
  1898
lemma Inter_anti_mono: "B \<subseteq> A ==> \<Inter>A \<subseteq> \<Inter>B"
wenzelm@12897
  1899
  by blast
wenzelm@12897
  1900
wenzelm@12897
  1901
lemma UN_mono:
wenzelm@12897
  1902
  "A \<subseteq> B ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==>
wenzelm@12897
  1903
    (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)"
wenzelm@12897
  1904
  by (blast dest: subsetD)
wenzelm@12897
  1905
wenzelm@12897
  1906
lemma INT_anti_mono:
wenzelm@12897
  1907
  "B \<subseteq> A ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==>
wenzelm@12897
  1908
    (\<Inter>x\<in>A. f x) \<subseteq> (\<Inter>x\<in>A. g x)"
wenzelm@12897
  1909
  -- {* The last inclusion is POSITIVE! *}
wenzelm@12897
  1910
  by (blast dest: subsetD)
wenzelm@12897
  1911
wenzelm@12897
  1912
lemma insert_mono: "C \<subseteq> D ==> insert a C \<subseteq> insert a D"
wenzelm@12897
  1913
  by blast
wenzelm@12897
  1914
wenzelm@12897
  1915
lemma Un_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<union> B \<subseteq> C \<union> D"
wenzelm@12897
  1916
  by blast
wenzelm@12897
  1917
wenzelm@12897
  1918
lemma Int_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<inter> B \<subseteq> C \<inter> D"
wenzelm@12897
  1919
  by blast
wenzelm@12897
  1920
wenzelm@12897
  1921
lemma Diff_mono: "A \<subseteq> C ==> D \<subseteq> B ==> A - B \<subseteq> C - D"
wenzelm@12897
  1922
  by blast
wenzelm@12897
  1923
wenzelm@12897
  1924
lemma Compl_anti_mono: "A \<subseteq> B ==> -B \<subseteq> -A"
wenzelm@12897
  1925
  by blast
wenzelm@12897
  1926
wenzelm@12897
  1927
text {* \medskip Monotonicity of implications. *}
wenzelm@12897
  1928
wenzelm@12897
  1929
lemma in_mono: "A \<subseteq> B ==> x \<in> A --> x \<in> B"
wenzelm@12897
  1930
  apply (rule impI)
paulson@14208
  1931
  apply (erule subsetD, assumption)
wenzelm@12897
  1932
  done
wenzelm@12897
  1933
wenzelm@12897
  1934
lemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)"
wenzelm@12897
  1935
  by rules
wenzelm@12897
  1936
wenzelm@12897
  1937
lemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)"
wenzelm@12897
  1938
  by rules
wenzelm@12897
  1939
wenzelm@12897
  1940
lemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)"
wenzelm@12897
  1941
  by rules
wenzelm@12897
  1942
wenzelm@12897
  1943
lemma imp_refl: "P --> P" ..
wenzelm@12897
  1944
wenzelm@12897
  1945
lemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)"
wenzelm@12897
  1946
  by rules
wenzelm@12897
  1947
wenzelm@12897
  1948
lemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)"
wenzelm@12897
  1949
  by rules
wenzelm@12897
  1950
wenzelm@12897
  1951
lemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P \<subseteq> Collect Q"
wenzelm@12897
  1952
  by blast
wenzelm@12897
  1953
wenzelm@12897
  1954
lemma Int_Collect_mono:
wenzelm@12897
  1955
    "A \<subseteq> B ==> (!!x. x \<in> A ==> P x --> Q x) ==> A \<inter> Collect P \<subseteq> B \<inter> Collect Q"
wenzelm@12897
  1956
  by blast
wenzelm@12897
  1957
wenzelm@12897
  1958
lemmas basic_monos =
wenzelm@12897
  1959
  subset_refl imp_refl disj_mono conj_mono
wenzelm@12897
  1960
  ex_mono Collect_mono in_mono
wenzelm@12897
  1961
wenzelm@12897
  1962
lemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c"
wenzelm@12897
  1963
  by rules
wenzelm@12897
  1964
wenzelm@12897
  1965
lemma eq_to_mono2: "a = b ==> c = d ==> ~ b --> ~ d ==> ~ a --> ~ c"
wenzelm@12897
  1966
  by rules
wenzelm@7238
  1967
wenzelm@11982
  1968
lemma Least_mono:
wenzelm@11982
  1969
  "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y
wenzelm@11982
  1970
    ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)"
wenzelm@11982
  1971
    -- {* Courtesy of Stephan Merz *}
wenzelm@11982
  1972
  apply clarify
paulson@14208
  1973
  apply (erule_tac P = "%x. x : S" in LeastI2, fast)
wenzelm@11982
  1974
  apply (rule LeastI2)
wenzelm@11982
  1975
  apply (auto elim: monoD intro!: order_antisym)
wenzelm@11982
  1976
  done
wenzelm@11982
  1977
wenzelm@12020
  1978
wenzelm@12257
  1979
subsection {* Inverse image of a function *}
wenzelm@12257
  1980
wenzelm@12257
  1981
constdefs
wenzelm@12257
  1982
  vimage :: "('a => 'b) => 'b set => 'a set"    (infixr "-`" 90)
wenzelm@12257
  1983
  "f -` B == {x. f x : B}"
wenzelm@12257
  1984
wenzelm@12257
  1985
wenzelm@12257
  1986
subsubsection {* Basic rules *}
wenzelm@12257
  1987
wenzelm@12257
  1988
lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)"
wenzelm@12257
  1989
  by (unfold vimage_def) blast
wenzelm@12257
  1990
wenzelm@12257
  1991
lemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)"
wenzelm@12257
  1992
  by simp
wenzelm@12257
  1993
wenzelm@12257
  1994
lemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B"
wenzelm@12257
  1995
  by (unfold vimage_def) blast
wenzelm@12257
  1996
wenzelm@12257
  1997
lemma vimageI2: "f a : A ==> a : f -` A"
wenzelm@12257
  1998
  by (unfold vimage_def) fast
wenzelm@12257
  1999
wenzelm@12257
  2000
lemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P"
wenzelm@12257
  2001
  by (unfold vimage_def) blast
wenzelm@12257
  2002
wenzelm@12257
  2003
lemma vimageD: "a : f -` A ==> f a : A"
wenzelm@12257
  2004
  by (unfold vimage_def) fast
wenzelm@12257
  2005
wenzelm@12257
  2006
wenzelm@12257
  2007
subsubsection {* Equations *}
wenzelm@12257
  2008
wenzelm@12257
  2009
lemma vimage_empty [simp]: "f -` {} = {}"
wenzelm@12257
  2010
  by blast
wenzelm@12257
  2011
wenzelm@12257
  2012
lemma vimage_Compl: "f -` (-A) = -(f -` A)"
wenzelm@12257
  2013
  by blast
wenzelm@12257
  2014
wenzelm@12257
  2015
lemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)"
wenzelm@12257
  2016
  by blast
wenzelm@12257
  2017
wenzelm@12257
  2018
lemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)"
wenzelm@12257
  2019
  by fast
wenzelm@12257
  2020
wenzelm@12257
  2021
lemma vimage_Union: "f -` (Union A) = (UN X:A. f -` X)"
wenzelm@12257
  2022
  by blast
wenzelm@12257
  2023
wenzelm@12257
  2024
lemma vimage_UN: "f-`(UN x:A. B x) = (UN x:A. f -` B x)"
wenzelm@12257
  2025
  by blast
wenzelm@12257
  2026
wenzelm@12257
  2027
lemma vimage_INT: "f-`(INT x:A. B x) = (INT x:A. f -` B x)"
wenzelm@12257
  2028
  by blast
wenzelm@12257
  2029
wenzelm@12257
  2030
lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}"
wenzelm@12257
  2031
  by blast
wenzelm@12257
  2032
wenzelm@12257
  2033
lemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q"
wenzelm@12257
  2034
  by blast
wenzelm@12257
  2035
wenzelm@12257
  2036
lemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)"
wenzelm@12257
  2037
  -- {* NOT suitable for rewriting because of the recurrence of @{term "{a}"}. *}
wenzelm@12257
  2038
  by blast
wenzelm@12257
  2039
wenzelm@12257
  2040
lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)"
wenzelm@12257
  2041
  by blast
wenzelm@12257
  2042
wenzelm@12257
  2043
lemma vimage_UNIV [simp]: "f -` UNIV = UNIV"
wenzelm@12257
  2044
  by blast
wenzelm@12257
  2045
wenzelm@12257
  2046
lemma vimage_eq_UN: "f-`B = (UN y: B. f-`{y})"
wenzelm@12257
  2047
  -- {* NOT suitable for rewriting *}
wenzelm@12257
  2048
  by blast
wenzelm@12257
  2049
wenzelm@12897
  2050
lemma vimage_mono: "A \<subseteq> B ==> f -` A \<subseteq> f -` B"
wenzelm@12257
  2051
  -- {* monotonicity *}
wenzelm@12257
  2052
  by blast
wenzelm@12257
  2053
wenzelm@12257
  2054
paulson@14479
  2055
subsection {* Getting the Contents of a Singleton Set *}
paulson@14479
  2056
paulson@14479
  2057
constdefs
paulson@14479
  2058
  contents :: "'a set => 'a"
paulson@14479
  2059
   "contents X == THE x. X = {x}"
paulson@14479
  2060
paulson@14479
  2061
lemma contents_eq [simp]: "contents {x} = x"
paulson@14479
  2062
by (simp add: contents_def)
paulson@14479
  2063
paulson@14479
  2064
wenzelm@12023
  2065
subsection {* Transitivity rules for calculational reasoning *}
wenzelm@12020
  2066
wenzelm@12020
  2067
lemma forw_subst: "a = b ==> P b ==> P a"
wenzelm@12020
  2068
  by (rule ssubst)
wenzelm@12020
  2069
wenzelm@12020
  2070
lemma back_subst: "P a ==> a = b ==> P b"
wenzelm@12020
  2071
  by (rule subst)
wenzelm@12020
  2072
wenzelm@12897
  2073
lemma set_rev_mp: "x:A ==> A \<subseteq> B ==> x:B"
wenzelm@12020
  2074
  by (rule subsetD)
wenzelm@12020
  2075
wenzelm@12897
  2076
lemma set_mp: "A \<subseteq> B ==> x:A ==> x:B"
wenzelm@12020
  2077
  by (rule subsetD)
wenzelm@12020
  2078
wenzelm@12020
  2079
lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c"
wenzelm@12020
  2080
  by (rule subst)
wenzelm@12020
  2081
wenzelm@12020
  2082
lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c"
wenzelm@12020
  2083
  by (rule ssubst)
wenzelm@12020
  2084
wenzelm@12020
  2085
lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c"
wenzelm@12020
  2086
  by (rule subst)
wenzelm@12020
  2087
wenzelm@12020
  2088
lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c"
wenzelm@12020
  2089
  by (rule ssubst)
wenzelm@12020
  2090
wenzelm@12020
  2091
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==>
wenzelm@12020
  2092
  (!!x y. x < y ==> f x < f y) ==> f a < c"
wenzelm@12020
  2093
proof -
wenzelm@12020
  2094
  assume r: "!!x y. x < y ==> f x < f y"
wenzelm@12020
  2095
  assume "a < b" hence "f a < f b" by (rule r)
wenzelm@12020
  2096
  also assume "f b < c"
wenzelm@12020
  2097
  finally (order_less_trans) show ?thesis .
wenzelm@12020
  2098
qed
wenzelm@12020
  2099
wenzelm@12020
  2100
lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==>
wenzelm@12020
  2101
  (!!x y. x < y ==> f x < f y) ==> a < f c"
wenzelm@12020
  2102
proof -
wenzelm@12020
  2103
  assume r: "!!x y. x < y ==> f x < f y"
wenzelm@12020
  2104
  assume "a < f b"
wenzelm@12020
  2105
  also assume "b < c" hence "f b < f c" by (rule r)
wenzelm@12020
  2106
  finally (order_less_trans) show ?thesis .
wenzelm@12020
  2107
qed
wenzelm@12020
  2108
wenzelm@12020
  2109
lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==>
wenzelm@12020
  2110
  (!!x y. x <= y ==> f x <= f y) ==> f a < c"
wenzelm@12020
  2111
proof -
wenzelm@12020
  2112
  assume r: "!!x y. x <= y ==> f x <= f y"
wenzelm@12020
  2113
  assume "a <= b" hence "f a <= f b" by (rule r)
wenzelm@12020
  2114
  also assume "f b < c"
wenzelm@12020
  2115
  finally (order_le_less_trans) show ?thesis .
wenzelm@12020
  2116
qed
wenzelm@12020
  2117
wenzelm@12020
  2118
lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==>
wenzelm@12020
  2119
  (!!x y. x < y ==> f x < f y) ==> a < f c"
wenzelm@12020
  2120
proof -
wenzelm@12020
  2121
  assume r: "!!x y. x < y ==> f x < f y"
wenzelm@12020
  2122
  assume "a <= f b"
wenzelm@12020
  2123
  also assume "b < c" hence "f b < f c" by (rule r)
wenzelm@12020
  2124
  finally (order_le_less_trans) show ?thesis .
wenzelm@12020
  2125
qed
wenzelm@12020
  2126
wenzelm@12020
  2127
lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==>
wenzelm@12020
  2128
  (!!x y. x < y ==> f x < f y) ==> f a < c"
wenzelm@12020
  2129
proof -
wenzelm@12020
  2130
  assume r: "!!x y. x < y ==> f x < f y"
wenzelm@12020
  2131
  assume "a < b" hence "f a < f b" by (rule r)
wenzelm@12020
  2132
  also assume "f b <= c"
wenzelm@12020
  2133
  finally (order_less_le_trans) show ?thesis .
wenzelm@12020
  2134
qed
wenzelm@12020
  2135
wenzelm@12020
  2136
lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==>
wenzelm@12020
  2137
  (!!x y. x <= y ==> f x <= f y) ==> a < f c"
wenzelm@12020
  2138
proof -
wenzelm@12020
  2139
  assume r: "!!x y. x <= y ==> f x <= f y"
wenzelm@12020
  2140
  assume "a < f b"
wenzelm@12020
  2141
  also assume "b <= c" hence "f b <= f c" by (rule r)
wenzelm@12020
  2142
  finally (order_less_le_trans) show ?thesis .
wenzelm@12020
  2143
qed
wenzelm@12020
  2144
wenzelm@12020
  2145
lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==>
wenzelm@12020
  2146
  (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
wenzelm@12020
  2147
proof -
wenzelm@12020
  2148
  assume r: "!!x y. x <= y ==> f x <= f y"
wenzelm@12020
  2149
  assume "a <= f b"
wenzelm@12020
  2150
  also assume "b <= c" hence "f b <= f c" by (rule r)
wenzelm@12020
  2151
  finally (order_trans) show ?thesis .
wenzelm@12020
  2152
qed
wenzelm@12020
  2153
wenzelm@12020
  2154
lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==>
wenzelm@12020
  2155
  (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
wenzelm@12020
  2156
proof -
wenzelm@12020
  2157
  assume r: "!!x y. x <= y ==> f x <= f y"
wenzelm@12020
  2158
  assume "a <= b" hence "f a <= f b" by (rule r)
wenzelm@12020
  2159
  also assume "f b <= c"
wenzelm@12020
  2160
  finally (order_trans) show ?thesis .
wenzelm@12020
  2161
qed
wenzelm@12020
  2162
wenzelm@12020
  2163
lemma ord_le_eq_subst: "a <= b ==> f b = c ==>
wenzelm@12020
  2164
  (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
wenzelm@12020
  2165
proof -
wenzelm@12020
  2166
  assume r: "!!x y. x <= y ==> f x <= f y"
wenzelm@12020
  2167
  assume "a <= b" hence "f a <= f b" by (rule r)
wenzelm@12020
  2168
  also assume "f b = c"
wenzelm@12020
  2169
  finally (ord_le_eq_trans) show ?thesis .
wenzelm@12020
  2170
qed
wenzelm@12020
  2171
wenzelm@12020
  2172
lemma ord_eq_le_subst: "a = f b ==> b <= c ==>
wenzelm@12020
  2173
  (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
wenzelm@12020
  2174
proof -
wenzelm@12020
  2175
  assume r: "!!x y. x <= y ==> f x <= f y"
wenzelm@12020
  2176
  assume "a = f b"
wenzelm@12020
  2177
  also assume "b <= c" hence "f b <= f c" by (rule r)
wenzelm@12020
  2178
  finally (ord_eq_le_trans) show ?thesis .
wenzelm@12020
  2179
qed
wenzelm@12020
  2180
wenzelm@12020
  2181
lemma ord_less_eq_subst: "a < b ==> f b = c ==>
wenzelm@12020
  2182
  (!!x y. x < y ==> f x < f y) ==> f a < c"
wenzelm@12020
  2183
proof -
wenzelm@12020
  2184
  assume r: "!!x y. x < y ==> f x < f y"
wenzelm@12020
  2185
  assume "a < b" hence "f a < f b" by (rule r)
wenzelm@12020
  2186
  also assume "f b = c"
wenzelm@12020
  2187
  finally (ord_less_eq_trans) show ?thesis .
wenzelm@12020
  2188
qed
wenzelm@12020
  2189
wenzelm@12020
  2190
lemma ord_eq_less_subst: "a = f b ==> b < c ==>
wenzelm@12020
  2191
  (!!x y. x < y ==> f x < f y) ==> a < f c"
wenzelm@12020
  2192
proof -
wenzelm@12020
  2193
  assume r: "!!x y. x < y ==> f x < f y"
wenzelm@12020
  2194
  assume "a = f b"
wenzelm@12020
  2195
  also assume "b < c" hence "f b < f c" by (rule r)
wenzelm@12020
  2196
  finally (ord_eq_less_trans) show ?thesis .
wenzelm@12020
  2197
qed
wenzelm@12020
  2198
wenzelm@12020
  2199
text {*
wenzelm@12020
  2200
  Note that this list of rules is in reverse order of priorities.
wenzelm@12020
  2201
*}
wenzelm@12020
  2202
wenzelm@12020
  2203
lemmas basic_trans_rules [trans] =
wenzelm@12020
  2204
  order_less_subst2
wenzelm@12020
  2205
  order_less_subst1
wenzelm@12020
  2206
  order_le_less_subst2
wenzelm@12020
  2207
  order_le_less_subst1
wenzelm@12020
  2208
  order_less_le_subst2
wenzelm@12020
  2209
  order_less_le_subst1
wenzelm@12020
  2210
  order_subst2
wenzelm@12020
  2211
  order_subst1
wenzelm@12020
  2212
  ord_le_eq_subst
wenzelm@12020
  2213
  ord_eq_le_subst
wenzelm@12020
  2214
  ord_less_eq_subst
wenzelm@12020
  2215
  ord_eq_less_subst
wenzelm@12020
  2216
  forw_subst
wenzelm@12020
  2217
  back_subst
wenzelm@12020
  2218
  rev_mp
wenzelm@12020
  2219
  mp
wenzelm@12020
  2220
  set_rev_mp
wenzelm@12020
  2221
  set_mp
wenzelm@12020
  2222
  order_neq_le_trans
wenzelm@12020
  2223
  order_le_neq_trans
wenzelm@12020
  2224
  order_less_trans
wenzelm@12020
  2225
  order_less_asym'
wenzelm@12020
  2226
  order_le_less_trans
wenzelm@12020
  2227
  order_less_le_trans
wenzelm@12020
  2228
  order_trans
wenzelm@12020
  2229
  order_antisym
wenzelm@12020
  2230
  ord_le_eq_trans
wenzelm@12020
  2231
  ord_eq_le_trans
wenzelm@12020
  2232
  ord_less_eq_trans
wenzelm@12020
  2233
  ord_eq_less_trans
wenzelm@12020
  2234
  trans
wenzelm@12020
  2235
clasohm@923
  2236
end